//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Custom DAG lowering for SI // //===----------------------------------------------------------------------===// #include "SIISelLowering.h" #include "AMDGPU.h" #include "AMDGPUInstrInfo.h" #include "AMDGPUTargetMachine.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/ADT/FloatingPointMode.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ModRef.h" #include "llvm/Support/KnownBits.h" using namespace llvm; #define DEBUG_TYPE "si-lower" STATISTIC(NumTailCalls, "Number of tail calls"); static cl::opt DisableLoopAlignment( "amdgpu-disable-loop-alignment", cl::desc("Do not align and prefetch loops"), cl::init(false)); static cl::opt UseDivergentRegisterIndexing( "amdgpu-use-divergent-register-indexing", cl::Hidden, cl::desc("Use indirect register addressing for divergent indexes"), cl::init(false)); static bool hasFP32Denormals(const MachineFunction &MF) { const SIMachineFunctionInfo *Info = MF.getInfo(); return Info->getMode().allFP32Denormals(); } static bool hasFP64FP16Denormals(const MachineFunction &MF) { const SIMachineFunctionInfo *Info = MF.getInfo(); return Info->getMode().allFP64FP16Denormals(); } static unsigned findFirstFreeSGPR(CCState &CCInfo) { unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { return AMDGPU::SGPR0 + Reg; } } llvm_unreachable("Cannot allocate sgpr"); } SITargetLowering::SITargetLowering(const TargetMachine &TM, const GCNSubtarget &STI) : AMDGPUTargetLowering(TM, STI), Subtarget(&STI) { addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); const SIRegisterInfo *TRI = STI.getRegisterInfo(); const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); addRegisterClass(MVT::f64, V64RegClass); addRegisterClass(MVT::v2f32, V64RegClass); addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); if (Subtarget->has16BitInsts()) { addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); // Unless there are also VOP3P operations, not operations are really legal. addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); } addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); computeRegisterProperties(Subtarget->getRegisterInfo()); // The boolean content concept here is too inflexible. Compares only ever // really produce a 1-bit result. Any copy/extend from these will turn into a // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as // it's what most targets use. setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrOneBooleanContent); // We need to custom lower vector stores from local memory setOperationAction(ISD::LOAD, {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, MVT::i1, MVT::v32i32}, Custom); setOperationAction(ISD::STORE, {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, MVT::i1, MVT::v32i32}, Custom); setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); setOperationAction(ISD::SELECT, MVT::i1, Promote); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f64, Promote); AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); setOperationAction(ISD::SELECT_CC, {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); setOperationAction(ISD::SETCC, MVT::i1, Promote); setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); setOperationAction(ISD::TRUNCATE, {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, Expand); setOperationAction(ISD::FP_ROUND, {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, MVT::v3i16, MVT::v4i16, MVT::Other}, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::BR_CC, {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i32, Legal); setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, Expand); #if 0 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY}, MVT::i64, Legal); #endif // We only support LOAD/STORE and vector manipulation ops for vectors // with > 4 elements. for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16, MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32}) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch (Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::UNDEF: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::EXTRACT_SUBVECTOR: case ISD::SCALAR_TO_VECTOR: case ISD::IS_FPCLASS: break; case ISD::INSERT_SUBVECTOR: case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that // is expanded to avoid having two separate loops in case the index is a VGPR. // Most operations are naturally 32-bit vector operations. We only support // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); } for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); } for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); } for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); } for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); } setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, Expand); setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16}, Custom); // Avoid stack access for these. // TODO: Generalize to more vector types. setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, {MVT::v2i16, MVT::v2f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, MVT::v4i16, MVT::v4f16}, Custom); // Deal with vec3 vector operations when widened to vec4. setOperationAction(ISD::INSERT_SUBVECTOR, {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); // Deal with vec5/6/7 vector operations when widened to vec8. setOperationAction(ISD::INSERT_SUBVECTOR, {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, Custom); // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, // and output demarshalling setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); // We can't return success/failure, only the old value, // let LLVM add the comparison setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, Expand); setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); // FIXME: This should be narrowed to i32, but that only happens if i64 is // illegal. // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); // On SI this is s_memtime and s_memrealtime on VI. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); if (Subtarget->has16BitInsts()) { setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); } if (Subtarget->hasMadMacF32Insts()) setOperationAction(ISD::FMAD, MVT::f32, Legal); if (!Subtarget->hasBFI()) // fcopysign can be done in a single instruction with BFI. setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); if (!Subtarget->hasBCNT(32)) setOperationAction(ISD::CTPOP, MVT::i32, Expand); if (!Subtarget->hasBCNT(64)) setOperationAction(ISD::CTPOP, MVT::i64, Expand); if (Subtarget->hasFFBH()) setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); if (Subtarget->hasFFBL()) setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); // We only really have 32-bit BFE instructions (and 16-bit on VI). // // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any // effort to match them now. We want this to be false for i64 cases when the // extraction isn't restricted to the upper or lower half. Ideally we would // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that // span the midpoint are probably relatively rare, so don't worry about them // for now. if (Subtarget->hasBFE()) setHasExtractBitsInsn(true); // Clamp modifier on add/sub if (Subtarget->hasIntClamp()) setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); if (Subtarget->hasAddNoCarry()) setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, Legal); setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, Custom); // These are really only legal for ieee_mode functions. We should be avoiding // them for functions that don't have ieee_mode enabled, so just say they are // legal. setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, {MVT::f32, MVT::f64}, Legal); if (Subtarget->haveRoundOpsF64()) setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FRINT}, MVT::f64, Legal); else setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, MVT::f64, Custom); setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); setOperationAction(ISD::FDIV, MVT::f64, Custom); setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); if (Subtarget->has16BitInsts()) { setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, MVT::i16, Legal); AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, MVT::i16, Expand); setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTPOP}, MVT::i16, Promote); setOperationAction(ISD::LOAD, MVT::i16, Custom); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); // F16 - Constant Actions. setOperationAction(ISD::ConstantFP, MVT::f16, Legal); // F16 - Load/Store Actions. setOperationAction(ISD::LOAD, MVT::f16, Promote); AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); setOperationAction(ISD::STORE, MVT::f16, Promote); AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); // F16 - VOP1 Actions. setOperationAction( {ISD::FP_ROUND, ISD::FCOS, ISD::FSIN, ISD::FROUND, ISD::FPTRUNC_ROUND}, MVT::f16, Custom); setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); setOperationAction( {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::f16, Promote); // F16 - VOP2 Actions. setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::f16, Expand); setOperationAction(ISD::FDIV, MVT::f16, Custom); // F16 - VOP3 Actions. setOperationAction(ISD::FMA, MVT::f16, Legal); if (STI.hasMadF16()) setOperationAction(ISD::FMAD, MVT::f16, Legal); for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16, MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch (Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::UNDEF: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::INSERT_SUBVECTOR: case ISD::EXTRACT_SUBVECTOR: case ISD::SCALAR_TO_VECTOR: case ISD::IS_FPCLASS: break; case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } // v_perm_b32 can handle either of these. setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); // XXX - Do these do anything? Vector constants turn into build_vector. setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16}, Legal); setOperationAction(ISD::STORE, MVT::v2i16, Promote); AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); setOperationAction(ISD::STORE, MVT::v2f16, Promote); AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); setOperationAction(ISD::AND, MVT::v2i16, Promote); AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); setOperationAction(ISD::OR, MVT::v2i16, Promote); AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); setOperationAction(ISD::XOR, MVT::v2i16, Promote); AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v4i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v4f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4i16, Promote); AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4f16, Promote); AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v8i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v8f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v4i16, Promote); AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v4f16, Promote); AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v8i16, Promote); AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v8f16, Promote); AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v16i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v16f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v16i16, Promote); AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v16f16, Promote); AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, MVT::v2i32, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, MVT::v4i32, Expand); setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, MVT::v8i32, Expand); if (!Subtarget->hasVOP3PInsts()) setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16}, Custom); setOperationAction(ISD::FNEG, MVT::v2f16, Legal); // This isn't really legal, but this avoids the legalizer unrolling it (and // allows matching fneg (fabs x) patterns) setOperationAction(ISD::FABS, MVT::v2f16, Legal); setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Custom); setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::v4f16, MVT::v8f16, MVT::v16f16}, Expand); for (MVT Vec16 : {MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}) { setOperationAction( {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, Vec16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); } } if (Subtarget->hasVOP3PInsts()) { setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, MVT::v2i16, Legal); setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, MVT::v2f16, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16}, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, MVT::v16f16, MVT::v16i16}, Custom); for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16}) // Split vector operations. setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, ISD::MUL, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, ISD::SSUBSAT}, VT, Custom); for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16}) // Split vector operations. setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, VT, Custom); setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, Custom); setOperationAction(ISD::FEXP, MVT::v2f16, Custom); setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16}, Custom); if (Subtarget->hasPackedFP32Ops()) { setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, MVT::v2f32, Legal); setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, Custom); } } setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); if (Subtarget->has16BitInsts()) { setOperationAction(ISD::SELECT, MVT::v2i16, Promote); AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); setOperationAction(ISD::SELECT, MVT::v2f16, Promote); AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); } else { // Legalization hack. setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); } setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v16i16, MVT::v16f16}, Custom); setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); if (Subtarget->hasMad64_32()) setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, MVT::v2i16, MVT::v2f16}, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, {MVT::v2f16, MVT::v2i16, MVT::v3f16, MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::Other, MVT::f16, MVT::i16, MVT::i8}, Custom); setOperationAction(ISD::INTRINSIC_VOID, {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16, MVT::f16, MVT::i16, MVT::i8}, Custom); setTargetDAGCombine({ISD::ADD, ISD::ADDCARRY, ISD::SUB, ISD::SUBCARRY, ISD::FADD, ISD::FSUB, ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, ISD::FMA, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::SETCC, ISD::AND, ISD::OR, ISD::XOR, ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FCANONICALIZE, ISD::SCALAR_TO_VECTOR, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND_INREG, ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}); // All memory operations. Some folding on the pointer operand is done to help // matching the constant offsets in the addressing modes. setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE, ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD, ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR, ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN, ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX, ISD::ATOMIC_LOAD_FADD, ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN}); // FIXME: In other contexts we pretend this is a per-function property. setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); setSchedulingPreference(Sched::RegPressure); } const GCNSubtarget *SITargetLowering::getSubtarget() const { return Subtarget; } //===----------------------------------------------------------------------===// // TargetLowering queries //===----------------------------------------------------------------------===// // v_mad_mix* support a conversion from f16 to f32. // // There is only one special case when denormals are enabled we don't currently, // where this is OK to use. bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const { return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && DestVT.getScalarType() == MVT::f32 && SrcVT.getScalarType() == MVT::f16 && // TODO: This probably only requires no input flushing? !hasFP32Denormals(DAG.getMachineFunction()); } bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const { return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && DestTy.getScalarSizeInBits() == 32 && SrcTy.getScalarSizeInBits() == 16 && // TODO: This probably only requires no input flushing? !hasFP32Denormals(*MI.getMF()); } bool SITargetLowering::isShuffleMaskLegal(ArrayRef, EVT) const { // SI has some legal vector types, but no legal vector operations. Say no // shuffles are legal in order to prefer scalarizing some vector operations. return false; } MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { if (CC == CallingConv::AMDGPU_KERNEL) return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); if (VT.isVector()) { EVT ScalarVT = VT.getScalarType(); unsigned Size = ScalarVT.getSizeInBits(); if (Size == 16) { if (Subtarget->has16BitInsts()) { if (VT.isInteger()) return MVT::v2i16; return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); } return VT.isInteger() ? MVT::i32 : MVT::f32; } if (Size < 16) return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; } if (VT.getSizeInBits() > 32) return MVT::i32; return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); } unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { if (CC == CallingConv::AMDGPU_KERNEL) return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); if (VT.isVector()) { unsigned NumElts = VT.getVectorNumElements(); EVT ScalarVT = VT.getScalarType(); unsigned Size = ScalarVT.getSizeInBits(); // FIXME: Should probably promote 8-bit vectors to i16. if (Size == 16 && Subtarget->has16BitInsts()) return (NumElts + 1) / 2; if (Size <= 32) return NumElts; if (Size > 32) return NumElts * ((Size + 31) / 32); } else if (VT.getSizeInBits() > 32) return (VT.getSizeInBits() + 31) / 32; return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); } unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const { if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { unsigned NumElts = VT.getVectorNumElements(); EVT ScalarVT = VT.getScalarType(); unsigned Size = ScalarVT.getSizeInBits(); // FIXME: We should fix the ABI to be the same on targets without 16-bit // support, but unless we can properly handle 3-vectors, it will be still be // inconsistent. if (Size == 16 && Subtarget->has16BitInsts()) { if (ScalarVT == MVT::bf16) { RegisterVT = MVT::i32; IntermediateVT = MVT::v2bf16; } else { RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; IntermediateVT = RegisterVT; } NumIntermediates = (NumElts + 1) / 2; return NumIntermediates; } if (Size == 32) { RegisterVT = ScalarVT.getSimpleVT(); IntermediateVT = RegisterVT; NumIntermediates = NumElts; return NumIntermediates; } if (Size < 16 && Subtarget->has16BitInsts()) { // FIXME: Should probably form v2i16 pieces RegisterVT = MVT::i16; IntermediateVT = ScalarVT; NumIntermediates = NumElts; return NumIntermediates; } if (Size != 16 && Size <= 32) { RegisterVT = MVT::i32; IntermediateVT = ScalarVT; NumIntermediates = NumElts; return NumIntermediates; } if (Size > 32) { RegisterVT = MVT::i32; IntermediateVT = RegisterVT; NumIntermediates = NumElts * ((Size + 31) / 32); return NumIntermediates; } } return TargetLowering::getVectorTypeBreakdownForCallingConv( Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); } static EVT memVTFromLoadIntrData(Type *Ty, unsigned MaxNumLanes) { assert(MaxNumLanes != 0); if (auto *VT = dyn_cast(Ty)) { unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(VT->getElementType()), NumElts); } return EVT::getEVT(Ty); } // Peek through TFE struct returns to only use the data size. static EVT memVTFromLoadIntrReturn(Type *Ty, unsigned MaxNumLanes) { auto *ST = dyn_cast(Ty); if (!ST) return memVTFromLoadIntrData(Ty, MaxNumLanes); // TFE intrinsics return an aggregate type. assert(ST->getNumContainedTypes() == 2 && ST->getContainedType(1)->isIntegerTy(32)); return memVTFromLoadIntrData(ST->getContainedType(0), MaxNumLanes); } bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &CI, MachineFunction &MF, unsigned IntrID) const { Info.flags = MachineMemOperand::MONone; if (CI.hasMetadata(LLVMContext::MD_invariant_load)) Info.flags |= MachineMemOperand::MOInvariant; if (const AMDGPU::RsrcIntrinsic *RsrcIntr = AMDGPU::lookupRsrcIntrinsic(IntrID)) { AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), (Intrinsic::ID)IntrID); MemoryEffects ME = Attr.getMemoryEffects(); if (ME.doesNotAccessMemory()) return false; // TODO: Should images get their own address space? Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER; if (RsrcIntr->IsImage) Info.align.reset(); Info.flags |= MachineMemOperand::MODereferenceable; if (ME.onlyReadsMemory()) { unsigned MaxNumLanes = 4; if (RsrcIntr->IsImage) { const AMDGPU::ImageDimIntrinsicInfo *Intr = AMDGPU::getImageDimIntrinsicInfo(IntrID); const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); if (!BaseOpcode->Gather4) { // If this isn't a gather, we may have excess loaded elements in the // IR type. Check the dmask for the real number of elements loaded. unsigned DMask = cast(CI.getArgOperand(0))->getZExtValue(); MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); } } Info.memVT = memVTFromLoadIntrReturn(CI.getType(), MaxNumLanes); // FIXME: What does alignment mean for an image? Info.opc = ISD::INTRINSIC_W_CHAIN; Info.flags |= MachineMemOperand::MOLoad; } else if (ME.onlyWritesMemory()) { Info.opc = ISD::INTRINSIC_VOID; Type *DataTy = CI.getArgOperand(0)->getType(); if (RsrcIntr->IsImage) { unsigned DMask = cast(CI.getArgOperand(1))->getZExtValue(); unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); Info.memVT = memVTFromLoadIntrData(DataTy, DMaskLanes); } else Info.memVT = EVT::getEVT(DataTy); Info.flags |= MachineMemOperand::MOStore; } else { // Atomic Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable; // XXX - Should this be volatile without known ordering? Info.flags |= MachineMemOperand::MOVolatile; switch (IntrID) { default: break; case Intrinsic::amdgcn_raw_buffer_load_lds: case Intrinsic::amdgcn_struct_buffer_load_lds: { unsigned Width = cast(CI.getArgOperand(2))->getZExtValue(); Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); return true; } } } return true; } switch (IntrID) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: case Intrinsic::amdgcn_ds_fadd: case Intrinsic::amdgcn_ds_fmin: case Intrinsic::amdgcn_ds_fmax: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; const ConstantInt *Vol = cast(CI.getOperand(4)); if (!Vol->isZero()) Info.flags |= MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_buffer_atomic_fadd: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER; Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; const ConstantInt *Vol = dyn_cast(CI.getOperand(4)); if (!Vol || !Vol->isZero()) Info.flags |= MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_ds_append: case Intrinsic::amdgcn_ds_consume: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; const ConstantInt *Vol = cast(CI.getOperand(1)); if (!Vol->isZero()) Info.flags |= MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_global_atomic_csub: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_image_bvh_intersect_ray: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? Info.fallbackAddressSpace = AMDGPUAS::BUFFER_FAT_POINTER; Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable; return true; } case Intrinsic::amdgcn_global_atomic_fadd: case Intrinsic::amdgcn_global_atomic_fmin: case Intrinsic::amdgcn_global_atomic_fmax: case Intrinsic::amdgcn_flat_atomic_fadd: case Intrinsic::amdgcn_flat_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmax: case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align.reset(); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable | MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_ds_gws_init: case Intrinsic::amdgcn_ds_gws_barrier: case Intrinsic::amdgcn_ds_gws_sema_v: case Intrinsic::amdgcn_ds_gws_sema_br: case Intrinsic::amdgcn_ds_gws_sema_p: case Intrinsic::amdgcn_ds_gws_sema_release_all: { Info.opc = ISD::INTRINSIC_VOID; const GCNTargetMachine &TM = static_cast(getTargetMachine()); SIMachineFunctionInfo *MFI = MF.getInfo(); Info.ptrVal = MFI->getGWSPSV(TM); // This is an abstract access, but we need to specify a type and size. Info.memVT = MVT::i32; Info.size = 4; Info.align = Align(4); if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) Info.flags |= MachineMemOperand::MOLoad; else Info.flags |= MachineMemOperand::MOStore; return true; } case Intrinsic::amdgcn_global_load_lds: { Info.opc = ISD::INTRINSIC_VOID; unsigned Width = cast(CI.getArgOperand(2))->getZExtValue(); Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } case Intrinsic::amdgcn_ds_bvh_stack_rtn: { Info.opc = ISD::INTRINSIC_W_CHAIN; const GCNTargetMachine &TM = static_cast(getTargetMachine()); SIMachineFunctionInfo *MFI = MF.getInfo(); Info.ptrVal = MFI->getGWSPSV(TM); // This is an abstract access, but we need to specify a type and size. Info.memVT = MVT::i32; Info.size = 4; Info.align = Align(4); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; return true; } default: return false; } } bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, SmallVectorImpl &Ops, Type *&AccessTy) const { switch (II->getIntrinsicID()) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: case Intrinsic::amdgcn_ds_append: case Intrinsic::amdgcn_ds_consume: case Intrinsic::amdgcn_ds_fadd: case Intrinsic::amdgcn_ds_fmin: case Intrinsic::amdgcn_ds_fmax: case Intrinsic::amdgcn_global_atomic_fadd: case Intrinsic::amdgcn_flat_atomic_fadd: case Intrinsic::amdgcn_flat_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmax: case Intrinsic::amdgcn_global_atomic_fadd_v2bf16: case Intrinsic::amdgcn_flat_atomic_fadd_v2bf16: case Intrinsic::amdgcn_global_atomic_csub: { Value *Ptr = II->getArgOperand(0); AccessTy = II->getType(); Ops.push_back(Ptr); return true; } default: return false; } } bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { if (!Subtarget->hasFlatInstOffsets()) { // Flat instructions do not have offsets, and only have the register // address. return AM.BaseOffs == 0 && AM.Scale == 0; } return AM.Scale == 0 && (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT)); } bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { if (Subtarget->hasFlatGlobalInsts()) return AM.Scale == 0 && (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal)); if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { // Assume the we will use FLAT for all global memory accesses // on VI. // FIXME: This assumption is currently wrong. On VI we still use // MUBUF instructions for the r + i addressing mode. As currently // implemented, the MUBUF instructions only work on buffer < 4GB. // It may be possible to support > 4GB buffers with MUBUF instructions, // by setting the stride value in the resource descriptor which would // increase the size limit to (stride * 4GB). However, this is risky, // because it has never been validated. return isLegalFlatAddressingMode(AM); } return isLegalMUBUFAddressingMode(AM); } bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and // additionally can do r + r + i with addr64. 32-bit has more addressing // mode options. Depending on the resource constant, it can also do // (i64 r0) + (i32 r1) * (i14 i). // // Private arrays end up using a scratch buffer most of the time, so also // assume those use MUBUF instructions. Scratch loads / stores are currently // implemented as mubuf instructions with offen bit set, so slightly // different than the normal addr64. if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs)) return false; // FIXME: Since we can split immediate into soffset and immediate offset, // would it make sense to allow any immediate? switch (AM.Scale) { case 0: // r + i or just i, depending on HasBaseReg. return true; case 1: return true; // We have r + r or r + i. case 2: if (AM.HasBaseReg) { // Reject 2 * r + r. return false; } // Allow 2 * r as r + r // Or 2 * r + i is allowed as r + r + i. return true; default: // Don't allow n * r return false; } } bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; if (AS == AMDGPUAS::GLOBAL_ADDRESS) return isLegalGlobalAddressingMode(AM); if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || AS == AMDGPUAS::BUFFER_FAT_POINTER) { // If the offset isn't a multiple of 4, it probably isn't going to be // correctly aligned. // FIXME: Can we get the real alignment here? if (AM.BaseOffs % 4 != 0) return isLegalMUBUFAddressingMode(AM); // There are no SMRD extloads, so if we have to do a small type access we // will use a MUBUF load. // FIXME?: We also need to do this if unaligned, but we don't know the // alignment here. if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) return isLegalGlobalAddressingMode(AM); if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { // SMRD instructions have an 8-bit, dword offset on SI. if (!isUInt<8>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { // On CI+, this can also be a 32-bit literal constant offset. If it fits // in 8-bits, it can use a smaller encoding. if (!isUInt<32>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { // On VI, these use the SMEM format and the offset is 20-bit in bytes. if (!isUInt<20>(AM.BaseOffs)) return false; } else llvm_unreachable("unhandled generation"); if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { return isLegalMUBUFAddressingMode(AM); } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { // Basic, single offset DS instructions allow a 16-bit unsigned immediate // field. // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have // an 8-bit dword offset but we don't know the alignment here. if (!isUInt<16>(AM.BaseOffs)) return false; if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } else if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { // For an unknown address space, this usually means that this is for some // reason being used for pure arithmetic, and not based on some addressing // computation. We don't have instructions that compute pointers with any // addressing modes, so treat them as having no offset like flat // instructions. return isLegalFlatAddressingMode(AM); } // Assume a user alias of global for unknown address spaces. return isLegalGlobalAddressingMode(AM); } bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const { if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { return (MemVT.getSizeInBits() <= 4 * 32); } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); return (MemVT.getSizeInBits() <= MaxPrivateBits); } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { return (MemVT.getSizeInBits() <= 2 * 32); } return true; } bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *IsFast) const { if (IsFast) *IsFast = 0; if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || AddrSpace == AMDGPUAS::REGION_ADDRESS) { // Check if alignment requirements for ds_read/write instructions are // disabled. if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) return false; Align RequiredAlignment(PowerOf2Ceil(Size/8)); // Natural alignment. if (Subtarget->hasLDSMisalignedBug() && Size > 32 && Alignment < RequiredAlignment) return false; // Either, the alignment requirements are "enabled", or there is an // unaligned LDS access related hardware bug though alignment requirements // are "disabled". In either case, we need to check for proper alignment // requirements. // switch (Size) { case 64: // SI has a hardware bug in the LDS / GDS bounds checking: if the base // address is negative, then the instruction is incorrectly treated as // out-of-bounds even if base + offsets is in bounds. Split vectorized // loads here to avoid emitting ds_read2_b32. We may re-combine the // load later in the SILoadStoreOptimizer. if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) return false; // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we // can do a 4 byte aligned, 8 byte access in a single operation using // ds_read2/write2_b32 with adjacent offsets. RequiredAlignment = Align(4); if (Subtarget->hasUnalignedDSAccessEnabled()) { // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ // ds_write2_b32 depending on the alignment. In either case with either // alignment there is no faster way of doing this. // The numbers returned here and below are not additive, it is a 'speed // rank'. They are just meant to be compared to decide if a certain way // of lowering an operation is faster than another. For that purpose // naturally aligned operation gets it bitsize to indicate that "it // operates with a speed comparable to N-bit wide load". With the full // alignment ds128 is slower than ds96 for example. If underaligned it // is comparable to a speed of a single dword access, which would then // mean 32 < 128 and it is faster to issue a wide load regardless. // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a // wider load which will not be aligned anymore the latter is slower. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? 64 : (Alignment < Align(4)) ? 32 : 1; return true; } break; case 96: if (!Subtarget->hasDS96AndDS128()) return false; // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on // gfx8 and older. if (Subtarget->hasUnalignedDSAccessEnabled()) { // Naturally aligned access is fastest. However, also report it is Fast // if memory is aligned less than DWORD. A narrow load or store will be // be equally slow as a single ds_read_b96/ds_write_b96, but there will // be more of them, so overall we will pay less penalty issuing a single // instruction. // See comment on the values above. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? 96 : (Alignment < Align(4)) ? 32 : 1; return true; } break; case 128: if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) return false; // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a // single operation using ds_read2/write2_b64. RequiredAlignment = Align(8); if (Subtarget->hasUnalignedDSAccessEnabled()) { // Naturally aligned access is fastest. However, also report it is Fast // if memory is aligned less than DWORD. A narrow load or store will be // be equally slow as a single ds_read_b128/ds_write_b128, but there // will be more of them, so overall we will pay less penalty issuing a // single instruction. // See comment on the values above. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? 128 : (Alignment < Align(4)) ? 32 : 1; return true; } break; default: if (Size > 32) return false; break; } // See comment on the values above. // Note that we have a single-dword or sub-dword here, so if underaligned // it is a slowest possible access, hence returned value is 0. if (IsFast) *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; return Alignment >= RequiredAlignment || Subtarget->hasUnalignedDSAccessEnabled(); } if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { bool AlignedBy4 = Alignment >= Align(4); if (IsFast) *IsFast = AlignedBy4; return AlignedBy4 || Subtarget->enableFlatScratch() || Subtarget->hasUnalignedScratchAccess(); } // FIXME: We have to be conservative here and assume that flat operations // will access scratch. If we had access to the IR function, then we // could determine if any private memory was used in the function. if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && !Subtarget->hasUnalignedScratchAccess()) { bool AlignedBy4 = Alignment >= Align(4); if (IsFast) *IsFast = AlignedBy4; return AlignedBy4; } if (Subtarget->hasUnalignedBufferAccessEnabled()) { // If we have a uniform constant load, it still requires using a slow // buffer instruction if unaligned. if (IsFast) { // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so // 2-byte alignment is worse than 1 unless doing a 2-byte access. *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ? Alignment >= Align(4) : Alignment != Align(2); } return true; } // Smaller than dword value must be aligned. if (Size < 32) return false; // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the // byte-address are ignored, thus forcing Dword alignment. // This applies to private, global, and constant memory. if (IsFast) *IsFast = 1; return Size >= 32 && Alignment >= Align(4); } bool SITargetLowering::allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *IsFast) const { return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, Alignment, Flags, IsFast); } EVT SITargetLowering::getOptimalMemOpType( const MemOp &Op, const AttributeList &FuncAttributes) const { // FIXME: Should account for address space here. // The default fallback uses the private pointer size as a guess for a type to // use. Make sure we switch these to 64-bit accesses. if (Op.size() >= 16 && Op.isDstAligned(Align(4))) // XXX: Should only do for global return MVT::v4i32; if (Op.size() >= 8 && Op.isDstAligned(Align(4))) return MVT::v2i32; // Use the default. return MVT::Other; } bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { const MemSDNode *MemNode = cast(N); return MemNode->getMemOperand()->getFlags() & MONoClobber; } bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS; } bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { // Flat -> private/local is a simple truncate. // Flat -> global is no-op if (SrcAS == AMDGPUAS::FLAT_ADDRESS) return true; const GCNTargetMachine &TM = static_cast(getTargetMachine()); return TM.isNoopAddrSpaceCast(SrcAS, DestAS); } bool SITargetLowering::isMemOpUniform(const SDNode *N) const { const MemSDNode *MemNode = cast(N); return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); } TargetLoweringBase::LegalizeTypeAction SITargetLowering::getPreferredVectorAction(MVT VT) const { if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { // FIXME: Could be smarter if called for vector constants. return true; } bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; // TODO: Add more cases that are cheap. return Index == 0; } bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { if (Subtarget->has16BitInsts() && VT == MVT::i16) { switch (Op) { case ISD::LOAD: case ISD::STORE: // These operations are done with 32-bit instructions anyway. case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SELECT: // TODO: Extensions? return true; default: return false; } } // SimplifySetCC uses this function to determine whether or not it should // create setcc with i1 operands. We don't have instructions for i1 setcc. if (VT == MVT::i1 && Op == ISD::SETCC) return false; return TargetLowering::isTypeDesirableForOp(Op, VT); } SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, uint64_t Offset) const { const DataLayout &DL = DAG.getDataLayout(); MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); const ArgDescriptor *InputPtrReg; const TargetRegisterClass *RC; LLT ArgTy; MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); std::tie(InputPtrReg, RC, ArgTy) = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); // We may not have the kernarg segment argument if we have no kernel // arguments. if (!InputPtrReg) return DAG.getConstant(0, SL, PtrVT); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset)); } SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, const SDLoc &SL) const { uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), FIRST_IMPLICIT); return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); } SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, const SDLoc &SL) const { Function &F = DAG.getMachineFunction().getFunction(); std::optional KnownSize = AMDGPUMachineFunction::getLDSKernelIdMetadata(F); if (KnownSize.has_value()) return DAG.getConstant(*KnownSize, SL, MVT::i32); return SDValue(); } SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Val, bool Signed, const ISD::InputArg *Arg) const { // First, if it is a widened vector, narrow it. if (VT.isVector() && VT.getVectorNumElements() != MemVT.getVectorNumElements()) { EVT NarrowedVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), VT.getVectorNumElements()); Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, DAG.getConstant(0, SL, MVT::i32)); } // Then convert the vector elements or scalar value. if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && VT.bitsLT(MemVT)) { unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); } if (MemVT.isFloatingPoint()) Val = getFPExtOrFPRound(DAG, Val, SL, VT); else if (Signed) Val = DAG.getSExtOrTrunc(Val, SL, VT); else Val = DAG.getZExtOrTrunc(Val, SL, VT); return Val; } SDValue SITargetLowering::lowerKernargMemParameter( SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, uint64_t Offset, Align Alignment, bool Signed, const ISD::InputArg *Arg) const { MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); // Try to avoid using an extload by loading earlier than the argument address, // and extracting the relevant bits. The load should hopefully be merged with // the previous argument. if (MemVT.getStoreSize() < 4 && Alignment < 4) { // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). int64_t AlignDownOffset = alignDown(Offset, 4); int64_t OffsetDiff = Offset - AlignDownOffset; EVT IntVT = MemVT.changeTypeToInteger(); // TODO: If we passed in the base kernel offset we could have a better // alignment than 4, but we don't really need it. SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); } SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); } SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, const SDLoc &SL, SDValue Chain, const ISD::InputArg &Arg) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); if (Arg.Flags.isByVal()) { unsigned Size = Arg.Flags.getByValSize(); int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); return DAG.getFrameIndex(FrameIdx, MVT::i32); } unsigned ArgOffset = VA.getLocMemOffset(); unsigned ArgSize = VA.getValVT().getStoreSize(); int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); SDValue ArgValue; // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; MVT MemVT = VA.getValVT(); switch (VA.getLocInfo()) { default: break; case CCValAssign::BCvt: MemVT = VA.getLocVT(); break; case CCValAssign::SExt: ExtType = ISD::SEXTLOAD; break; case CCValAssign::ZExt: ExtType = ISD::ZEXTLOAD; break; case CCValAssign::AExt: ExtType = ISD::EXTLOAD; break; } ArgValue = DAG.getExtLoad( ExtType, SL, VA.getLocVT(), Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), MemVT); return ArgValue; } SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, const SIMachineFunctionInfo &MFI, EVT VT, AMDGPUFunctionArgInfo::PreloadedValue PVID) const { const ArgDescriptor *Reg; const TargetRegisterClass *RC; LLT Ty; std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); if (!Reg) { if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { // It's possible for a kernarg intrinsic call to appear in a kernel with // no allocated segment, in which case we do not add the user sgpr // argument, so just return null. return DAG.getConstant(0, SDLoc(), VT); } // It's undefined behavior if a function marked with the amdgpu-no-* // attributes uses the corresponding intrinsic. return DAG.getUNDEF(VT); } return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); } static void processPSInputArgs(SmallVectorImpl &Splits, CallingConv::ID CallConv, ArrayRef Ins, BitVector &Skipped, FunctionType *FType, SIMachineFunctionInfo *Info) { for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { const ISD::InputArg *Arg = &Ins[I]; assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && "vector type argument should have been split"); // First check if it's a PS input addr. if (CallConv == CallingConv::AMDGPU_PS && !Arg->Flags.isInReg() && PSInputNum <= 15) { bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); // Inconveniently only the first part of the split is marked as isSplit, // so skip to the end. We only want to increment PSInputNum once for the // entire split argument. if (Arg->Flags.isSplit()) { while (!Arg->Flags.isSplitEnd()) { assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type"); if (!SkipArg) Splits.push_back(*Arg); Arg = &Ins[++I]; } } if (SkipArg) { // We can safely skip PS inputs. Skipped.set(Arg->getOrigArgIndex()); ++PSInputNum; continue; } Info->markPSInputAllocated(PSInputNum); if (Arg->Used) Info->markPSInputEnabled(PSInputNum); ++PSInputNum; } Splits.push_back(*Arg); } } // Allocate special inputs passed in VGPRs. void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { const LLT S32 = LLT::scalar(32); MachineRegisterInfo &MRI = MF.getRegInfo(); if (Info.hasWorkItemIDX()) { Register Reg = AMDGPU::VGPR0; MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); CCInfo.AllocateReg(Reg); unsigned Mask = (Subtarget->hasPackedTID() && Info.hasWorkItemIDY()) ? 0x3ff : ~0u; Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); } if (Info.hasWorkItemIDY()) { assert(Info.hasWorkItemIDX()); if (Subtarget->hasPackedTID()) { Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 10)); } else { unsigned Reg = AMDGPU::VGPR1; MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); CCInfo.AllocateReg(Reg); Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); } } if (Info.hasWorkItemIDZ()) { assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); if (Subtarget->hasPackedTID()) { Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 20)); } else { unsigned Reg = AMDGPU::VGPR2; MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); CCInfo.AllocateReg(Reg); Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); } } } // Try to allocate a VGPR at the end of the argument list, or if no argument // VGPRs are left allocating a stack slot. // If \p Mask is is given it indicates bitfield position in the register. // If \p Arg is given use it with new ]p Mask instead of allocating new. static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, ArgDescriptor Arg = ArgDescriptor()) { if (Arg.isSet()) return ArgDescriptor::createArg(Arg, Mask); ArrayRef ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); if (RegIdx == ArgVGPRs.size()) { // Spill to stack required. int64_t Offset = CCInfo.AllocateStack(4, Align(4)); return ArgDescriptor::createStack(Offset, Mask); } unsigned Reg = ArgVGPRs[RegIdx]; Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); return ArgDescriptor::createRegister(Reg, Mask); } static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, const TargetRegisterClass *RC, unsigned NumArgRegs) { ArrayRef ArgSGPRs = ArrayRef(RC->begin(), 32); unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); if (RegIdx == ArgSGPRs.size()) report_fatal_error("ran out of SGPRs for arguments"); unsigned Reg = ArgSGPRs[RegIdx]; Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); MF.addLiveIn(Reg, RC); return ArgDescriptor::createRegister(Reg); } // If this has a fixed position, we still should allocate the register in the // CCInfo state. Technically we could get away with this for values passed // outside of the normal argument range. static void allocateFixedSGPRInputImpl(CCState &CCInfo, const TargetRegisterClass *RC, MCRegister Reg) { Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); MF.addLiveIn(Reg, RC); } static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { if (Arg) { allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, Arg.getRegister()); } else Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); } static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { if (Arg) { allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, Arg.getRegister()); } else Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); } /// Allocate implicit function VGPR arguments at the end of allocated user /// arguments. void SITargetLowering::allocateSpecialInputVGPRs( CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { const unsigned Mask = 0x3ff; ArgDescriptor Arg; if (Info.hasWorkItemIDX()) { Arg = allocateVGPR32Input(CCInfo, Mask); Info.setWorkItemIDX(Arg); } if (Info.hasWorkItemIDY()) { Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); Info.setWorkItemIDY(Arg); } if (Info.hasWorkItemIDZ()) Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); } /// Allocate implicit function VGPR arguments in fixed registers. void SITargetLowering::allocateSpecialInputVGPRsFixed( CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); if (!Reg) report_fatal_error("failed to allocated VGPR for implicit arguments"); const unsigned Mask = 0x3ff; Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); } void SITargetLowering::allocateSpecialInputSGPRs( CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { auto &ArgInfo = Info.getArgInfo(); // TODO: Unify handling with private memory pointers. if (Info.hasDispatchPtr()) allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); // Implicit arg ptr takes the place of the kernarg segment pointer. This is a // constant offset from the kernarg segment. if (Info.hasImplicitArgPtr()) allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); if (Info.hasDispatchID()) allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); // flat_scratch_init is not applicable for non-kernel functions. if (Info.hasWorkGroupIDX()) allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); if (Info.hasWorkGroupIDY()) allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); if (Info.hasWorkGroupIDZ()) allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); if (Info.hasLDSKernelId()) allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); } // Allocate special inputs passed in user SGPRs. void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { if (Info.hasImplicitBufferPtr()) { Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(ImplicitBufferPtrReg); } // FIXME: How should these inputs interact with inreg / custom SGPR inputs? if (Info.hasPrivateSegmentBuffer()) { Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); CCInfo.AllocateReg(PrivateSegmentBufferReg); } if (Info.hasDispatchPtr()) { Register DispatchPtrReg = Info.addDispatchPtr(TRI); MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(DispatchPtrReg); } if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) { Register QueuePtrReg = Info.addQueuePtr(TRI); MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(QueuePtrReg); } if (Info.hasKernargSegmentPtr()) { MachineRegisterInfo &MRI = MF.getRegInfo(); Register InputPtrReg = Info.addKernargSegmentPtr(TRI); CCInfo.AllocateReg(InputPtrReg); Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); } if (Info.hasDispatchID()) { Register DispatchIDReg = Info.addDispatchID(TRI); MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(DispatchIDReg); } if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(FlatScratchInitReg); } if (Info.hasLDSKernelId()) { Register Reg = Info.addLDSKernelId(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read // these from the dispatch pointer. } // Allocate special input registers that are initialized per-wave. void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF, SIMachineFunctionInfo &Info, CallingConv::ID CallConv, bool IsShader) const { if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { // Note: user SGPRs are handled by the front-end for graphics shaders // Pad up the used user SGPRs with dead inputs. unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to // rely on it to reach 16 since if we end up having no stack usage, it will // not really be added. unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + Info.hasWorkGroupIDY() + Info.hasWorkGroupIDZ() + Info.hasWorkGroupInfo(); for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { Register Reg = Info.addReservedUserSGPR(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } } if (Info.hasWorkGroupIDX()) { Register Reg = Info.addWorkGroupIDX(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupIDY()) { Register Reg = Info.addWorkGroupIDY(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupIDZ()) { Register Reg = Info.addWorkGroupIDZ(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupInfo()) { Register Reg = Info.addWorkGroupInfo(); MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasPrivateSegmentWaveByteOffset()) { // Scratch wave offset passed in system SGPR. unsigned PrivateSegmentWaveByteOffsetReg; if (IsShader) { PrivateSegmentWaveByteOffsetReg = Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); // This is true if the scratch wave byte offset doesn't have a fixed // location. if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); } } else PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); } assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || Info.getNumPreloadedSGPRs() >= 16); } static void reservePrivateMemoryRegs(const TargetMachine &TM, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) { // Now that we've figured out where the scratch register inputs are, see if // should reserve the arguments and use them directly. MachineFrameInfo &MFI = MF.getFrameInfo(); bool HasStackObjects = MFI.hasStackObjects(); const GCNSubtarget &ST = MF.getSubtarget(); // Record that we know we have non-spill stack objects so we don't need to // check all stack objects later. if (HasStackObjects) Info.setHasNonSpillStackObjects(true); // Everything live out of a block is spilled with fast regalloc, so it's // almost certain that spilling will be required. if (TM.getOptLevel() == CodeGenOpt::None) HasStackObjects = true; // For now assume stack access is needed in any callee functions, so we need // the scratch registers to pass in. bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); if (!ST.enableFlatScratch()) { if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { // If we have stack objects, we unquestionably need the private buffer // resource. For the Code Object V2 ABI, this will be the first 4 user // SGPR inputs. We can reserve those and use them directly. Register PrivateSegmentBufferReg = Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); Info.setScratchRSrcReg(PrivateSegmentBufferReg); } else { unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); // We tentatively reserve the last registers (skipping the last registers // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, // we'll replace these with the ones immediately after those which were // really allocated. In the prologue copies will be inserted from the // argument to these reserved registers. // Without HSA, relocations are used for the scratch pointer and the // buffer resource setup is always inserted in the prologue. Scratch wave // offset is still in an input SGPR. Info.setScratchRSrcReg(ReservedBufferReg); } } MachineRegisterInfo &MRI = MF.getRegInfo(); // For entry functions we have to set up the stack pointer if we use it, // whereas non-entry functions get this "for free". This means there is no // intrinsic advantage to using S32 over S34 in cases where we do not have // calls but do need a frame pointer (i.e. if we are requested to have one // because frame pointer elimination is disabled). To keep things simple we // only ever use S32 as the call ABI stack pointer, and so using it does not // imply we need a separate frame pointer. // // Try to use s32 as the SP, but move it if it would interfere with input // arguments. This won't work with calls though. // // FIXME: Move SP to avoid any possible inputs, or find a way to spill input // registers. if (!MRI.isLiveIn(AMDGPU::SGPR32)) { Info.setStackPtrOffsetReg(AMDGPU::SGPR32); } else { assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); if (MFI.hasCalls()) report_fatal_error("call in graphics shader with too many input SGPRs"); for (unsigned Reg : AMDGPU::SGPR_32RegClass) { if (!MRI.isLiveIn(Reg)) { Info.setStackPtrOffsetReg(Reg); break; } } if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) report_fatal_error("failed to find register for SP"); } // hasFP should be accurate for entry functions even before the frame is // finalized, because it does not rely on the known stack size, only // properties like whether variable sized objects are present. if (ST.getFrameLowering()->hasFP(MF)) { Info.setFrameOffsetReg(AMDGPU::SGPR33); } } bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { const SIMachineFunctionInfo *Info = MF->getInfo(); return !Info->isEntryFunction(); } void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { } void SITargetLowering::insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); if (!IStart) return; const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); MachineBasicBlock::iterator MBBI = Entry->begin(); for (const MCPhysReg *I = IStart; *I; ++I) { const TargetRegisterClass *RC = nullptr; if (AMDGPU::SReg_64RegClass.contains(*I)) RC = &AMDGPU::SGPR_64RegClass; else if (AMDGPU::SReg_32RegClass.contains(*I)) RC = &AMDGPU::SGPR_32RegClass; else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); Register NewVR = MRI->createVirtualRegister(RC); // Create copy from CSR to a virtual register. Entry->addLiveIn(*I); BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(*I); // Insert the copy-back instructions right before the terminator. for (auto *Exit : Exits) BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), TII->get(TargetOpcode::COPY), *I) .addReg(NewVR); } } SDValue SITargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); const Function &Fn = MF.getFunction(); FunctionType *FType = MF.getFunction().getFunctionType(); SIMachineFunctionInfo *Info = MF.getInfo(); if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { DiagnosticInfoUnsupported NoGraphicsHSA( Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); DAG.getContext()->diagnose(NoGraphicsHSA); return DAG.getEntryNode(); } Info->allocateKnownAddressLDSGlobal(Fn); SmallVector Splits; SmallVector ArgLocs; BitVector Skipped(Ins.size()); CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); bool IsGraphics = AMDGPU::isGraphics(CallConv); bool IsKernel = AMDGPU::isKernel(CallConv); bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); if (IsGraphics) { assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); } if (CallConv == CallingConv::AMDGPU_PS) { processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); // At least one interpolation mode must be enabled or else the GPU will // hang. // // Check PSInputAddr instead of PSInputEnable. The idea is that if the user // set PSInputAddr, the user wants to enable some bits after the compilation // based on run-time states. Since we can't know what the final PSInputEna // will look like, so we shouldn't do anything here and the user should take // responsibility for the correct programming. // // Otherwise, the following restrictions apply: // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be // enabled too. if ((Info->getPSInputAddr() & 0x7F) == 0 || ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { CCInfo.AllocateReg(AMDGPU::VGPR0); CCInfo.AllocateReg(AMDGPU::VGPR1); Info->markPSInputAllocated(0); Info->markPSInputEnabled(0); } if (Subtarget->isAmdPalOS()) { // For isAmdPalOS, the user does not enable some bits after compilation // based on run-time states; the register values being generated here are // the final ones set in hardware. Therefore we need to apply the // workaround to PSInputAddr and PSInputEnable together. (The case where // a bit is set in PSInputAddr but not PSInputEnable is where the // frontend set up an input arg for a particular interpolation mode, but // nothing uses that input arg. Really we should have an earlier pass // that removes such an arg.) unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); if ((PsInputBits & 0x7F) == 0 || ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) Info->markPSInputEnabled(countTrailingZeros(Info->getPSInputAddr())); } } else if (IsKernel) { assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); } else { Splits.append(Ins.begin(), Ins.end()); } if (IsEntryFunc) { allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); } else if (!IsGraphics) { // For the fixed ABI, pass workitem IDs in the last argument register. allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); } if (IsKernel) { analyzeFormalArgumentsCompute(CCInfo, Ins); } else { CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); CCInfo.AnalyzeFormalArguments(Splits, AssignFn); } SmallVector Chains; // FIXME: This is the minimum kernel argument alignment. We should improve // this to the maximum alignment of the arguments. // // FIXME: Alignment of explicit arguments totally broken with non-0 explicit // kern arg offset. const Align KernelArgBaseAlign = Align(16); for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { InVals.push_back(DAG.getUNDEF(Arg.VT)); continue; } CCValAssign &VA = ArgLocs[ArgIdx++]; MVT VT = VA.getLocVT(); if (IsEntryFunc && VA.isMemLoc()) { VT = Ins[i].VT; EVT MemVT = VA.getLocVT(); const uint64_t Offset = VA.getLocMemOffset(); Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); if (Arg.Flags.isByRef()) { SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); const GCNTargetMachine &TM = static_cast(getTargetMachine()); if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, Arg.Flags.getPointerAddrSpace())) { Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, Arg.Flags.getPointerAddrSpace()); } InVals.push_back(Ptr); continue; } SDValue Arg = lowerKernargMemParameter( DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]); Chains.push_back(Arg.getValue(1)); auto *ParamTy = dyn_cast(FType->getParamType(Ins[i].getOrigArgIndex())); if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { // On SI local pointers are just offsets into LDS, so they are always // less than 16-bits. On CI and newer they could potentially be // real pointers, so we can't guarantee their size. Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, DAG.getValueType(MVT::i16)); } InVals.push_back(Arg); continue; } else if (!IsEntryFunc && VA.isMemLoc()) { SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); InVals.push_back(Val); if (!Arg.Flags.isByVal()) Chains.push_back(Val.getValue(1)); continue; } assert(VA.isRegLoc() && "Parameter must be in a register!"); Register Reg = VA.getLocReg(); const TargetRegisterClass *RC = nullptr; if (AMDGPU::VGPR_32RegClass.contains(Reg)) RC = &AMDGPU::VGPR_32RegClass; else if (AMDGPU::SGPR_32RegClass.contains(Reg)) RC = &AMDGPU::SGPR_32RegClass; else llvm_unreachable("Unexpected register class in LowerFormalArguments!"); EVT ValVT = VA.getValVT(); Reg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); if (Arg.Flags.isSRet()) { // The return object should be reasonably addressable. // FIXME: This helps when the return is a real sret. If it is a // automatically inserted sret (i.e. CanLowerReturn returns false), an // extra copy is inserted in SelectionDAGBuilder which obscures this. unsigned NumBits = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); } // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, DAG.getValueType(ValVT)); Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, DAG.getValueType(ValVT)); Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; default: llvm_unreachable("Unknown loc info!"); } InVals.push_back(Val); } // Start adding system SGPRs. if (IsEntryFunc) { allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); } else { CCInfo.AllocateReg(Info->getScratchRSrcReg()); if (!IsGraphics) allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); } auto &ArgUsageInfo = DAG.getPass()->getAnalysis(); ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); unsigned StackArgSize = CCInfo.getNextStackOffset(); Info->setBytesInStackArgArea(StackArgSize); return Chains.empty() ? Chain : DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } // TODO: If return values can't fit in registers, we should return as many as // possible in registers before passing on stack. bool SITargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { // Replacing returns with sret/stack usage doesn't make sense for shaders. // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn // for shaders. Vector types should be explicitly handled by CC. if (AMDGPU::isEntryFunctionCC(CallConv)) return true; SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); } SDValue SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); if (AMDGPU::isKernel(CallConv)) { return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, OutVals, DL, DAG); } bool IsShader = AMDGPU::isShader(CallConv); Info->setIfReturnsVoid(Outs.empty()); bool IsWaveEnd = Info->returnsVoid() && IsShader; // CCValAssign - represent the assignment of the return value to a location. SmallVector RVLocs; SmallVector Splits; // CCState - Info about the registers and stack slots. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); SDValue Flag; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Copy the result values into the output registers. for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; ++I, ++RealRVLocIdx) { CCValAssign &VA = RVLocs[I]; assert(VA.isRegLoc() && "Can only return in registers!"); // TODO: Partially return in registers if return values don't fit. SDValue Arg = OutVals[RealRVLocIdx]; // Copied from other backends. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // FIXME: Does sret work properly? if (!Info->isEntryFunction()) { const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); if (I) { for (; *I; ++I) { if (AMDGPU::SReg_64RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i64)); else if (AMDGPU::SReg_32RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i32)); else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); } } } // Update chain and glue. RetOps[0] = Chain; if (Flag.getNode()) RetOps.push_back(Flag); unsigned Opc = AMDGPUISD::ENDPGM; if (!IsWaveEnd) Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; return DAG.getNode(Opc, DL, MVT::Other, RetOps); } SDValue SITargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals, bool IsThisReturn, SDValue ThisVal) const { CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; SDValue Val; if (VA.isRegLoc()) { Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); } else if (VA.isMemLoc()) { report_fatal_error("TODO: return values in memory"); } else llvm_unreachable("unknown argument location type"); switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; default: llvm_unreachable("Unknown loc info!"); } InVals.push_back(Val); } return Chain; } // Add code to pass special inputs required depending on used features separate // from the explicit user arguments present in the IR. void SITargetLowering::passSpecialInputs( CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info, SmallVectorImpl> &RegsToPass, SmallVectorImpl &MemOpChains, SDValue Chain) const { // If we don't have a call site, this was a call inserted by // legalization. These can never use special inputs. if (!CLI.CB) return; SelectionDAG &DAG = CLI.DAG; const SDLoc &DL = CLI.DL; const Function &F = DAG.getMachineFunction().getFunction(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); const AMDGPUFunctionArgInfo *CalleeArgInfo = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { auto &ArgUsageInfo = DAG.getPass()->getAnalysis(); CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); } // TODO: Unify with private memory register handling. This is complicated by // the fact that at least in kernels, the input argument is not necessarily // in the same location as the input. static constexpr std::pair ImplicitAttrs[] = { {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, }; for (auto Attr : ImplicitAttrs) { const ArgDescriptor *OutgoingArg; const TargetRegisterClass *ArgRC; LLT ArgTy; AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; // If the callee does not use the attribute value, skip copying the value. if (CLI.CB->hasFnAttr(Attr.second)) continue; std::tie(OutgoingArg, ArgRC, ArgTy) = CalleeArgInfo->getPreloadedValue(InputID); if (!OutgoingArg) continue; const ArgDescriptor *IncomingArg; const TargetRegisterClass *IncomingArgRC; LLT Ty; std::tie(IncomingArg, IncomingArgRC, Ty) = CallerArgInfo.getPreloadedValue(InputID); assert(IncomingArgRC == ArgRC); // All special arguments are ints for now. EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; SDValue InputReg; if (IncomingArg) { InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { // The implicit arg ptr is special because it doesn't have a corresponding // input for kernels, and is computed from the kernarg segment pointer. InputReg = getImplicitArgPtr(DAG, DL); } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { std::optional Id = AMDGPUMachineFunction::getLDSKernelIdMetadata(F); if (Id.has_value()) { InputReg = DAG.getConstant(*Id, DL, ArgVT); } else { InputReg = DAG.getUNDEF(ArgVT); } } else { // We may have proven the input wasn't needed, although the ABI is // requiring it. We just need to allocate the register appropriately. InputReg = DAG.getUNDEF(ArgVT); } if (OutgoingArg->isRegister()) { RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) report_fatal_error("failed to allocate implicit input argument"); } else { unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset); MemOpChains.push_back(ArgStore); } } // Pack workitem IDs into a single register or pass it as is if already // packed. const ArgDescriptor *OutgoingArg; const TargetRegisterClass *ArgRC; LLT Ty; std::tie(OutgoingArg, ArgRC, Ty) = CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); if (!OutgoingArg) std::tie(OutgoingArg, ArgRC, Ty) = CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); if (!OutgoingArg) std::tie(OutgoingArg, ArgRC, Ty) = CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); if (!OutgoingArg) return; const ArgDescriptor *IncomingArgX = std::get<0>( CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); const ArgDescriptor *IncomingArgY = std::get<0>( CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); const ArgDescriptor *IncomingArgZ = std::get<0>( CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); SDValue InputReg; SDLoc SL; const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); // If incoming ids are not packed we need to pack them. if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && NeedWorkItemIDX) { if (Subtarget->getMaxWorkitemID(F, 0) != 0) { InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); } else { InputReg = DAG.getConstant(0, DL, MVT::i32); } } if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, DAG.getShiftAmountConstant(10, MVT::i32, SL)); InputReg = InputReg.getNode() ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; } if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, DAG.getShiftAmountConstant(20, MVT::i32, SL)); InputReg = InputReg.getNode() ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; } if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { // We're in a situation where the outgoing function requires the workitem // ID, but the calling function does not have it (e.g a graphics function // calling a C calling convention function). This is illegal, but we need // to produce something. InputReg = DAG.getUNDEF(MVT::i32); } else { // Workitem ids are already packed, any of present incoming arguments // will carry all required fields. ArgDescriptor IncomingArg = ArgDescriptor::createArg( IncomingArgX ? *IncomingArgX : IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); } } if (OutgoingArg->isRegister()) { if (InputReg) RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); CCInfo.AllocateReg(OutgoingArg->getRegister()); } else { unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); if (InputReg) { SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset); MemOpChains.push_back(ArgStore); } } } static bool canGuaranteeTCO(CallingConv::ID CC) { return CC == CallingConv::Fast; } /// Return true if we might ever do TCO for calls with this calling convention. static bool mayTailCallThisCC(CallingConv::ID CC) { switch (CC) { case CallingConv::C: case CallingConv::AMDGPU_Gfx: return true; default: return canGuaranteeTCO(CC); } } bool SITargetLowering::isEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG) const { if (!mayTailCallThisCC(CalleeCC)) return false; // For a divergent call target, we need to do a waterfall loop over the // possible callees which precludes us from using a simple jump. if (Callee->isDivergent()) return false; MachineFunction &MF = DAG.getMachineFunction(); const Function &CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF.getCallingConv(); const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); // Kernels aren't callable, and don't have a live in return address so it // doesn't make sense to do a tail call with entry functions. if (!CallerPreserved) return false; bool CCMatch = CallerCC == CalleeCC; if (DAG.getTarget().Options.GuaranteedTailCallOpt) { if (canGuaranteeTCO(CalleeCC) && CCMatch) return true; return false; } // TODO: Can we handle var args? if (IsVarArg) return false; for (const Argument &Arg : CallerF.args()) { if (Arg.hasByValAttr()) return false; } LLVMContext &Ctx = *DAG.getContext(); // Check that the call results are passed in the same way. if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, CCAssignFnForCall(CalleeCC, IsVarArg), CCAssignFnForCall(CallerCC, IsVarArg))) return false; // The callee has to preserve all registers the caller needs to preserve. if (!CCMatch) { const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) return false; } // Nothing more to check if the callee is taking no arguments. if (Outs.empty()) return true; SmallVector ArgLocs; CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); const SIMachineFunctionInfo *FuncInfo = MF.getInfo(); // If the stack arguments for this call do not fit into our own save area then // the call cannot be made tail. // TODO: Is this really necessary? if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) return false; const MachineRegisterInfo &MRI = MF.getRegInfo(); return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); } bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { if (!CI->isTailCall()) return false; const Function *ParentFn = CI->getParent()->getParent(); if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) return false; return true; } // The wave scratch offset register is used as the global base pointer. SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; const SDLoc &DL = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; bool IsSibCall = false; bool IsThisReturn = false; MachineFunction &MF = DAG.getMachineFunction(); if (Callee.isUndef() || isNullConstant(Callee)) { if (!CLI.IsTailCall) { for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); } return Chain; } if (IsVarArg) { return lowerUnhandledCall(CLI, InVals, "unsupported call to variadic function "); } if (!CLI.CB) report_fatal_error("unsupported libcall legalization"); if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { return lowerUnhandledCall(CLI, InVals, "unsupported required tail call to function "); } if (AMDGPU::isShader(CallConv)) { // Note the issue is with the CC of the called function, not of the call // itself. return lowerUnhandledCall(CLI, InVals, "unsupported call to a shader function "); } if (AMDGPU::isShader(MF.getFunction().getCallingConv()) && CallConv != CallingConv::AMDGPU_Gfx) { // Only allow calls with specific calling conventions. return lowerUnhandledCall(CLI, InVals, "unsupported calling convention for call from " "graphics shader of function "); } if (IsTailCall) { IsTailCall = isEligibleForTailCallOptimization( Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) { report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); } bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; // A sibling call is one where we're under the usual C ABI and not planning // to change that but can still do a tail call: if (!TailCallOpt && IsTailCall) IsSibCall = true; if (IsTailCall) ++NumTailCalls; } const SIMachineFunctionInfo *Info = MF.getInfo(); SmallVector, 8> RegsToPass; SmallVector MemOpChains; // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); if (CallConv != CallingConv::AMDGPU_Gfx) { // With a fixed ABI, allocate fixed registers before user arguments. passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); } CCInfo.AnalyzeCallOperands(Outs, AssignFn); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (IsSibCall) { // Since we're not changing the ABI to make this a tail call, the memory // operands are already available in the caller's incoming argument space. NumBytes = 0; } // FPDiff is the byte offset of the call's argument area from the callee's. // Stores to callee stack arguments will be placed in FixedStackSlots offset // by this amount for a tail call. In a sibling call it must be 0 because the // caller will deallocate the entire stack and the callee still expects its // arguments to begin at SP+0. Completely unused for non-tail calls. int32_t FPDiff = 0; MachineFrameInfo &MFI = MF.getFrameInfo(); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!IsSibCall) { Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); if (!Subtarget->enableFlatScratch()) { SmallVector CopyFromChains; // In the HSA case, this should be an identity copy. SDValue ScratchRSrcReg = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); Chain = DAG.getTokenFactor(DL, CopyFromChains); } } MVT PtrVT = MVT::i32; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::FPExt: Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } if (VA.isRegLoc()) { RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); SDValue DstAddr; MachinePointerInfo DstInfo; unsigned LocMemOffset = VA.getLocMemOffset(); int32_t Offset = LocMemOffset; SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); MaybeAlign Alignment; if (IsTailCall) { ISD::ArgFlagsTy Flags = Outs[i].Flags; unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() : VA.getValVT().getStoreSize(); // FIXME: We can have better than the minimum byval required alignment. Alignment = Flags.isByVal() ? Flags.getNonZeroByValAlign() : commonAlignment(Subtarget->getStackAlignment(), Offset); Offset = Offset + FPDiff; int FI = MFI.CreateFixedObject(OpSize, Offset, true); DstAddr = DAG.getFrameIndex(FI, PtrVT); DstInfo = MachinePointerInfo::getFixedStack(MF, FI); // Make sure any stack arguments overlapping with where we're storing // are loaded before this eventual operation. Otherwise they'll be // clobbered. // FIXME: Why is this really necessary? This seems to just result in a // lot of code to copy the stack and write them back to the same // locations, which are supposed to be immutable? Chain = addTokenForArgument(Chain, DAG, MFI, FI); } else { // Stores to the argument stack area are relative to the stack pointer. SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), MVT::i32); DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); Alignment = commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); } if (Outs[i].Flags.isByVal()) { SDValue SizeNode = DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); SDValue Cpy = DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getNonZeroByValAlign(), /*isVol = */ false, /*AlwaysInline = */ true, /*isTailCall = */ false, DstInfo, MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); MemOpChains.push_back(Cpy); } else { SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); MemOpChains.push_back(Store); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (auto &RegToPass : RegsToPass) { Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, RegToPass.second, InFlag); InFlag = Chain.getValue(1); } // We don't usually want to end the call-sequence here because we would tidy // the frame up *after* the call, however in the ABI-changing tail-call case // we've carefully laid out the parameters so that when sp is reset they'll be // in the correct location. if (IsTailCall && !IsSibCall) { Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, DL); InFlag = Chain.getValue(1); } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add a redundant copy of the callee global which will not be legalized, as // we need direct access to the callee later. if (GlobalAddressSDNode *GSD = dyn_cast(Callee)) { const GlobalValue *GV = GSD->getGlobal(); Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); } else { Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); } if (IsTailCall) { // Each tail call may have to adjust the stack by a different amount, so // this information must travel along with the operation for eventual // consumption by emitEpilogue. Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); } // Add argument registers to the end of the list so that they are known live // into the call. for (auto &RegToPass : RegsToPass) { Ops.push_back(DAG.getRegister(RegToPass.first, RegToPass.second.getValueType())); } // Add a register mask operand representing the call-preserved registers. auto *TRI = static_cast(Subtarget->getRegisterInfo()); const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // If we're doing a tall call, use a TC_RETURN here rather than an // actual call instruction. if (IsTailCall) { MFI.setHasTailCall(); return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); } // Returns a chain and a flag for retval copy to use. SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); Chain = Call.getValue(0); InFlag = Call.getValue(1); uint64_t CalleePopBytes = NumBytes; Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InFlag, DL); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, InVals, IsThisReturn, IsThisReturn ? OutVals[0] : SDValue()); } // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, // except for applying the wave size scale to the increment amount. SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( SDValue Op, SelectionDAG &DAG) const { const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); SDLoc dl(Op); EVT VT = Op.getValueType(); SDValue Tmp1 = Op; SDValue Tmp2 = Op.getValue(1); SDValue Tmp3 = Op.getOperand(2); SDValue Chain = Tmp1.getOperand(0); Register SPReg = Info->getStackPtrOffsetReg(); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); SDValue Size = Tmp2.getOperand(1); SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); Chain = SP.getValue(1); MaybeAlign Alignment = cast(Tmp3)->getMaybeAlignValue(); const GCNSubtarget &ST = MF.getSubtarget(); const TargetFrameLowering *TFL = ST.getFrameLowering(); unsigned Opc = TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? ISD::ADD : ISD::SUB; SDValue ScaledSize = DAG.getNode( ISD::SHL, dl, VT, Size, DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32)); Align StackAlign = TFL->getStackAlign(); Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value if (Alignment && *Alignment > StackAlign) { Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, DAG.getConstant(-(uint64_t)Alignment->value() << ST.getWavefrontSizeLog2(), dl, VT)); } Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); return DAG.getMergeValues({Tmp1, Tmp2}, dl); } SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { // We only handle constant sizes here to allow non-entry block, static sized // allocas. A truly dynamic value is more difficult to support because we // don't know if the size value is uniform or not. If the size isn't uniform, // we would need to do a wave reduction to get the maximum size to know how // much to increment the uniform stack pointer. SDValue Size = Op.getOperand(1); if (isa(Size)) return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); } Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { Register Reg = StringSwitch(RegName) .Case("m0", AMDGPU::M0) .Case("exec", AMDGPU::EXEC) .Case("exec_lo", AMDGPU::EXEC_LO) .Case("exec_hi", AMDGPU::EXEC_HI) .Case("flat_scratch", AMDGPU::FLAT_SCR) .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) .Default(Register()); if (Reg == AMDGPU::NoRegister) { report_fatal_error(Twine("invalid register name \"" + StringRef(RegName) + "\".")); } if (!Subtarget->hasFlatScrRegister() && Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { report_fatal_error(Twine("invalid register \"" + StringRef(RegName) + "\" for subtarget.")); } switch (Reg) { case AMDGPU::M0: case AMDGPU::EXEC_LO: case AMDGPU::EXEC_HI: case AMDGPU::FLAT_SCR_LO: case AMDGPU::FLAT_SCR_HI: if (VT.getSizeInBits() == 32) return Reg; break; case AMDGPU::EXEC: case AMDGPU::FLAT_SCR: if (VT.getSizeInBits() == 64) return Reg; break; default: llvm_unreachable("missing register type checking"); } report_fatal_error(Twine("invalid type for register \"" + StringRef(RegName) + "\".")); } // If kill is not the last instruction, split the block so kill is always a // proper terminator. MachineBasicBlock * SITargetLowering::splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const { MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); return SplitBB; } // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, // \p MI will be the only instruction in the loop body block. Otherwise, it will // be the first instruction in the remainder block. // /// \returns { LoopBody, Remainder } static std::pair splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { MachineFunction *MF = MBB.getParent(); MachineBasicBlock::iterator I(&MI); // To insert the loop we need to split the block. Move everything after this // point to a new block, and insert a new empty block between the two. MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); MachineFunction::iterator MBBI(MBB); ++MBBI; MF->insert(MBBI, LoopBB); MF->insert(MBBI, RemainderBB); LoopBB->addSuccessor(LoopBB); LoopBB->addSuccessor(RemainderBB); // Move the rest of the block into a new block. RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); if (InstInLoop) { auto Next = std::next(I); // Move instruction to loop body. LoopBB->splice(LoopBB->begin(), &MBB, I, Next); // Move the rest of the block. RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); } else { RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); } MBB.addSuccessor(LoopBB); return std::pair(LoopBB, RemainderBB); } /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { MachineBasicBlock *MBB = MI.getParent(); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); auto I = MI.getIterator(); auto E = std::next(I); BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) .addImm(0); MIBundleBuilder Bundler(*MBB, I, E); finalizeBundle(*MBB, Bundler.begin()); } MachineBasicBlock * SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, MachineBasicBlock *BB) const { const DebugLoc &DL = MI.getDebugLoc(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); MachineBasicBlock *LoopBB; MachineBasicBlock *RemainderBB; const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); // Apparently kill flags are only valid if the def is in the same block? if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) Src->setIsKill(false); std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); MachineBasicBlock::iterator I = LoopBB->end(); const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg( AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); // Clear TRAP_STS.MEM_VIOL BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) .addImm(0) .addImm(EncodedReg); bundleInstWithWaitcnt(MI); Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); // Load and check TRAP_STS.MEM_VIOL BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) .addImm(EncodedReg); // FIXME: Do we need to use an isel pseudo that may clobber scc? BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) .addReg(Reg, RegState::Kill) .addImm(0); BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) .addMBB(LoopBB); return RemainderBB; } // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the // wavefront. If the value is uniform and just happens to be in a VGPR, this // will only do one iteration. In the worst case, this will loop 64 times. // // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, const DebugLoc &DL, const MachineOperand &Idx, unsigned InitReg, unsigned ResultReg, unsigned PhiReg, unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg) { MachineFunction *MF = OrigBB.getParent(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineBasicBlock::iterator I = LoopBB.begin(); const TargetRegisterClass *BoolRC = TRI->getBoolRC(); Register PhiExec = MRI.createVirtualRegister(BoolRC); Register NewExec = MRI.createVirtualRegister(BoolRC); Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); Register CondReg = MRI.createVirtualRegister(BoolRC); BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) .addReg(InitReg) .addMBB(&OrigBB) .addReg(ResultReg) .addMBB(&LoopBB); BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) .addReg(InitSaveExecReg) .addMBB(&OrigBB) .addReg(NewExec) .addMBB(&LoopBB); // Read the next variant <- also loop target. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); // Compare the just read M0 value to all possible Idx values. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) .addReg(CurrentIdxReg) .addReg(Idx.getReg(), 0, Idx.getSubReg()); // Update EXEC, save the original EXEC value to VCC. BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64), NewExec) .addReg(CondReg, RegState::Kill); MRI.setSimpleHint(NewExec, CondReg); if (UseGPRIdxMode) { if (Offset == 0) { SGPRIdxReg = CurrentIdxReg; } else { SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) .addReg(CurrentIdxReg, RegState::Kill) .addImm(Offset); } } else { // Move index from VCC into M0 if (Offset == 0) { BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addReg(CurrentIdxReg, RegState::Kill); } else { BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .addReg(CurrentIdxReg, RegState::Kill) .addImm(Offset); } } // Update EXEC, switch all done bits to 0 and all todo bits to 1. unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; MachineInstr *InsertPt = BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term), Exec) .addReg(Exec) .addReg(NewExec); // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use // s_cbranch_scc0? // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addMBB(&LoopBB); return InsertPt->getIterator(); } // This has slightly sub-optimal regalloc when the source vector is killed by // the read. The register allocator does not understand that the kill is // per-workitem, so is kept alive for the whole loop so we end up not re-using a // subregister from it, using 1 more VGPR than necessary. This was saved when // this was expanded after register allocation. static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, unsigned InitResultReg, unsigned PhiReg, int Offset, bool UseGPRIdxMode, Register &SGPRIdxReg) { MachineFunction *MF = MBB.getParent(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineRegisterInfo &MRI = MF->getRegInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register DstReg = MI.getOperand(0).getReg(); Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); // Save the EXEC mask BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) .addReg(Exec); MachineBasicBlock *LoopBB; MachineBasicBlock *RemainderBB; std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, InitResultReg, DstReg, PhiReg, TmpExec, Offset, UseGPRIdxMode, SGPRIdxReg); MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); MachineFunction::iterator MBBI(LoopBB); ++MBBI; MF->insert(MBBI, LandingPad); LoopBB->removeSuccessor(RemainderBB); LandingPad->addSuccessor(RemainderBB); LoopBB->addSuccessor(LandingPad); MachineBasicBlock::iterator First = LandingPad->begin(); BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) .addReg(SaveExec); return InsPt; } // Returns subreg index, offset static std::pair computeIndirectRegAndOffset(const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, unsigned VecReg, int Offset) { int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; // Skip out of bounds offsets, or else we would end up using an undefined // register. if (Offset >= NumElts || Offset < 0) return std::pair(AMDGPU::sub0, Offset); return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); } static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset) { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); assert(Idx->getReg() != AMDGPU::NoRegister); if (Offset == 0) { BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); } else { BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .add(*Idx) .addImm(Offset); } } static Register getIndirectSGPRIdx(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset) { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); if (Offset == 0) return Idx->getReg(); Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) .add(*Idx) .addImm(Offset); return Tmp; } static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST) { const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); Register Dst = MI.getOperand(0).getReg(); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); unsigned SubReg; std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); const bool UseGPRIdxMode = ST.useVGPRIndexMode(); // Check for a SGPR index. if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); if (UseGPRIdxMode) { // TODO: Look at the uses to avoid the copy. This may require rescheduling // to avoid interfering with other uses, so probably requires a new // optimization pass. Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); BuildMI(MBB, I, DL, GPRIDXDesc, Dst) .addReg(SrcReg) .addReg(Idx) .addImm(SubReg); } else { setM0ToIndexFromSGPR(TII, MRI, MI, Offset); BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(SrcReg, 0, SubReg) .addReg(SrcReg, RegState::Implicit); } MI.eraseFromParent(); return &MBB; } // Control flow needs to be inserted if indexing with a VGPR. const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); Register SGPRIdxReg; auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode, SGPRIdxReg); MachineBasicBlock *LoopBB = InsPt->getParent(); if (UseGPRIdxMode) { const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) .addReg(SrcReg) .addReg(SGPRIdxReg) .addImm(SubReg); } else { BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(SrcReg, 0, SubReg) .addReg(SrcReg, RegState::Implicit); } MI.eraseFromParent(); return LoopBB; } static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, MachineBasicBlock &MBB, const GCNSubtarget &ST) { const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); Register Dst = MI.getOperand(0).getReg(); const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); // This can be an immediate, but will be folded later. assert(Val->getReg()); unsigned SubReg; std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, SrcVec->getReg(), Offset); const bool UseGPRIdxMode = ST.useVGPRIndexMode(); if (Idx->getReg() == AMDGPU::NoRegister) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); assert(Offset == 0); BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) .add(*SrcVec) .add(*Val) .addImm(SubReg); MI.eraseFromParent(); return &MBB; } // Check for a SGPR index. if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); if (UseGPRIdxMode) { Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); BuildMI(MBB, I, DL, GPRIDXDesc, Dst) .addReg(SrcVec->getReg()) .add(*Val) .addReg(Idx) .addImm(SubReg); } else { setM0ToIndexFromSGPR(TII, MRI, MI, Offset); const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( TRI.getRegSizeInBits(*VecRC), 32, false); BuildMI(MBB, I, DL, MovRelDesc, Dst) .addReg(SrcVec->getReg()) .add(*Val) .addImm(SubReg); } MI.eraseFromParent(); return &MBB; } // Control flow needs to be inserted if indexing with a VGPR. if (Val->isReg()) MRI.clearKillFlags(Val->getReg()); const DebugLoc &DL = MI.getDebugLoc(); Register PhiReg = MRI.createVirtualRegister(VecRC); Register SGPRIdxReg; auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, UseGPRIdxMode, SGPRIdxReg); MachineBasicBlock *LoopBB = InsPt->getParent(); if (UseGPRIdxMode) { const MCInstrDesc &GPRIDXDesc = TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) .addReg(PhiReg) .add(*Val) .addReg(SGPRIdxReg) .addImm(AMDGPU::sub0); } else { const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( TRI.getRegSizeInBits(*VecRC), 32, false); BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) .addReg(PhiReg) .add(*Val) .addImm(AMDGPU::sub0); } MI.eraseFromParent(); return LoopBB; } MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineFunction *MF = BB->getParent(); SIMachineFunctionInfo *MFI = MF->getInfo(); switch (MI.getOpcode()) { case AMDGPU::S_UADDO_PSEUDO: case AMDGPU::S_USUBO_PSEUDO: { const DebugLoc &DL = MI.getDebugLoc(); MachineOperand &Dest0 = MI.getOperand(0); MachineOperand &Dest1 = MI.getOperand(1); MachineOperand &Src0 = MI.getOperand(2); MachineOperand &Src1 = MI.getOperand(3); unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) ? AMDGPU::S_ADD_I32 : AMDGPU::S_SUB_I32; BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) .addImm(1) .addImm(0); MI.eraseFromParent(); return BB; } case AMDGPU::S_ADD_U64_PSEUDO: case AMDGPU::S_SUB_U64_PSEUDO: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); const TargetRegisterClass *BoolRC = TRI->getBoolRC(); const DebugLoc &DL = MI.getDebugLoc(); MachineOperand &Dest = MI.getOperand(0); MachineOperand &Src0 = MI.getOperand(1); MachineOperand &Src1 = MI.getOperand(2); Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0); BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1); BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return BB; } case AMDGPU::V_ADD_U64_PSEUDO: case AMDGPU::V_SUB_U64_PSEUDO: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); const DebugLoc &DL = MI.getDebugLoc(); bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); MachineOperand &Dest = MI.getOperand(0); MachineOperand &Src0 = MI.getOperand(1); MachineOperand &Src1 = MI.getOperand(2); if (IsAdd && ST.hasLshlAddB64()) { auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), Dest.getReg()) .add(Src0) .addImm(0) .add(Src1); TII->legalizeOperands(*Add); MI.eraseFromParent(); return BB; } const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register CarryReg = MRI.createVirtualRegister(CarryRC); Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); const TargetRegisterClass *Src0RC = Src0.isReg() ? MRI.getRegClass(Src0.getReg()) : &AMDGPU::VReg_64RegClass; const TargetRegisterClass *Src1RC = Src1.isReg() ? MRI.getRegClass(Src1.getReg()) : &AMDGPU::VReg_64RegClass; const TargetRegisterClass *Src0SubRC = TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); const TargetRegisterClass *Src1SubRC = TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) .addReg(CarryReg, RegState::Define) .add(SrcReg0Sub0) .add(SrcReg1Sub0) .addImm(0); // clamp bit unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; MachineInstr *HiHalf = BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) .addReg(DeadCarryReg, RegState::Define | RegState::Dead) .add(SrcReg0Sub1) .add(SrcReg1Sub1) .addReg(CarryReg, RegState::Kill) .addImm(0); // clamp bit BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); TII->legalizeOperands(*LoHalf); TII->legalizeOperands(*HiHalf); MI.eraseFromParent(); return BB; } case AMDGPU::S_ADD_CO_PSEUDO: case AMDGPU::S_SUB_CO_PSEUDO: { // This pseudo has a chance to be selected // only from uniform add/subcarry node. All the VGPR operands // therefore assumed to be splat vectors. MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); MachineBasicBlock::iterator MII = MI; const DebugLoc &DL = MI.getDebugLoc(); MachineOperand &Dest = MI.getOperand(0); MachineOperand &CarryDest = MI.getOperand(1); MachineOperand &Src0 = MI.getOperand(2); MachineOperand &Src1 = MI.getOperand(3); MachineOperand &Src2 = MI.getOperand(4); unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) .addReg(Src0.getReg()); Src0.setReg(RegOp0); } if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) .addReg(Src1.getReg()); Src1.setReg(RegOp1); } Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); if (TRI->isVectorRegister(MRI, Src2.getReg())) { BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) .addReg(Src2.getReg()); Src2.setReg(RegOp2); } const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); assert(WaveSize == 64 || WaveSize == 32); if (WaveSize == 64) { if (ST.hasScalarCompareEq64()) { BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) .addReg(Src2.getReg()) .addImm(0); } else { const TargetRegisterClass *SubRC = TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) .add(Src2Sub0) .add(Src2Sub1); BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) .addReg(Src2_32, RegState::Kill) .addImm(0); } } else { BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) .addReg(Src2.getReg()) .addImm(0); } BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); unsigned SelOpc = (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) .addImm(-1) .addImm(0); MI.eraseFromParent(); return BB; } case AMDGPU::SI_INIT_M0: { BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .add(MI.getOperand(0)); MI.eraseFromParent(); return BB; } case AMDGPU::GET_GROUPSTATICSIZE: { assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); DebugLoc DL = MI.getDebugLoc(); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) .add(MI.getOperand(0)) .addImm(MFI->getLDSSize()); MI.eraseFromParent(); return BB; } case AMDGPU::SI_INDIRECT_SRC_V1: case AMDGPU::SI_INDIRECT_SRC_V2: case AMDGPU::SI_INDIRECT_SRC_V4: case AMDGPU::SI_INDIRECT_SRC_V8: case AMDGPU::SI_INDIRECT_SRC_V9: case AMDGPU::SI_INDIRECT_SRC_V10: case AMDGPU::SI_INDIRECT_SRC_V11: case AMDGPU::SI_INDIRECT_SRC_V12: case AMDGPU::SI_INDIRECT_SRC_V16: case AMDGPU::SI_INDIRECT_SRC_V32: return emitIndirectSrc(MI, *BB, *getSubtarget()); case AMDGPU::SI_INDIRECT_DST_V1: case AMDGPU::SI_INDIRECT_DST_V2: case AMDGPU::SI_INDIRECT_DST_V4: case AMDGPU::SI_INDIRECT_DST_V8: case AMDGPU::SI_INDIRECT_DST_V9: case AMDGPU::SI_INDIRECT_DST_V10: case AMDGPU::SI_INDIRECT_DST_V11: case AMDGPU::SI_INDIRECT_DST_V12: case AMDGPU::SI_INDIRECT_DST_V16: case AMDGPU::SI_INDIRECT_DST_V32: return emitIndirectDst(MI, *BB, *getSubtarget()); case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: case AMDGPU::SI_KILL_I1_PSEUDO: return splitKillBlock(MI, BB); case AMDGPU::V_CNDMASK_B64_PSEUDO: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); const DebugLoc &DL = MI.getDebugLoc(); Register SrcCond = MI.getOperand(3).getReg(); Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); Register SrcCondCopy = MRI.createVirtualRegister(CondRC); BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) .addReg(SrcCond); BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) .addImm(0) .addReg(Src0, 0, AMDGPU::sub0) .addImm(0) .addReg(Src1, 0, AMDGPU::sub0) .addReg(SrcCondCopy); BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) .addImm(0) .addReg(Src0, 0, AMDGPU::sub1) .addImm(0) .addReg(Src1, 0, AMDGPU::sub1) .addReg(SrcCondCopy); BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) .addReg(DstLo) .addImm(AMDGPU::sub0) .addReg(DstHi) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return BB; } case AMDGPU::SI_BR_UNDEF: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) .add(MI.getOperand(0)); Br->getOperand(1).setIsUndef(); // read undef SCC MI.eraseFromParent(); return BB; } case AMDGPU::ADJCALLSTACKUP: case AMDGPU::ADJCALLSTACKDOWN: { const SIMachineFunctionInfo *Info = MF->getInfo(); MachineInstrBuilder MIB(*MF, &MI); MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); return BB; } case AMDGPU::SI_CALL_ISEL: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const DebugLoc &DL = MI.getDebugLoc(); unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); MachineInstrBuilder MIB; MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); for (const MachineOperand &MO : MI.operands()) MIB.add(MO); MIB.cloneMemRefs(MI); MI.eraseFromParent(); return BB; } case AMDGPU::V_ADD_CO_U32_e32: case AMDGPU::V_SUB_CO_U32_e32: case AMDGPU::V_SUBREV_CO_U32_e32: { // TODO: Define distinct V_*_I32_Pseudo instructions instead. const DebugLoc &DL = MI.getDebugLoc(); unsigned Opc = MI.getOpcode(); bool NeedClampOperand = false; if (TII->pseudoToMCOpcode(Opc) == -1) { Opc = AMDGPU::getVOPe64(Opc); NeedClampOperand = true; } auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); if (TII->isVOP3(*I)) { const GCNSubtarget &ST = MF->getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); I.addReg(TRI->getVCC(), RegState::Define); } I.add(MI.getOperand(1)) .add(MI.getOperand(2)); if (NeedClampOperand) I.addImm(0); // clamp bit for e64 encoding TII->legalizeOperands(*I); MI.eraseFromParent(); return BB; } case AMDGPU::V_ADDC_U32_e32: case AMDGPU::V_SUBB_U32_e32: case AMDGPU::V_SUBBREV_U32_e32: // These instructions have an implicit use of vcc which counts towards the // constant bus limit. TII->legalizeOperands(MI); return BB; case AMDGPU::DS_GWS_INIT: case AMDGPU::DS_GWS_SEMA_BR: case AMDGPU::DS_GWS_BARRIER: TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); [[fallthrough]]; case AMDGPU::DS_GWS_SEMA_V: case AMDGPU::DS_GWS_SEMA_P: case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: // A s_waitcnt 0 is required to be the instruction immediately following. if (getSubtarget()->hasGWSAutoReplay()) { bundleInstWithWaitcnt(MI); return BB; } return emitGWSMemViolTestLoop(MI, BB); case AMDGPU::S_SETREG_B32: { // Try to optimize cases that only set the denormal mode or rounding mode. // // If the s_setreg_b32 fully sets all of the bits in the rounding mode or // denormal mode to a constant, we can use s_round_mode or s_denorm_mode // instead. // // FIXME: This could be predicates on the immediate, but tablegen doesn't // allow you to have a no side effect instruction in the output of a // sideeffecting pattern. unsigned ID, Offset, Width; AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width); if (ID != AMDGPU::Hwreg::ID_MODE) return BB; const unsigned WidthMask = maskTrailingOnes(Width); const unsigned SetMask = WidthMask << Offset; if (getSubtarget()->hasDenormModeInst()) { unsigned SetDenormOp = 0; unsigned SetRoundOp = 0; // The dedicated instructions can only set the whole denorm or round mode // at once, not a subset of bits in either. if (SetMask == (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { // If this fully sets both the round and denorm mode, emit the two // dedicated instructions for these. SetRoundOp = AMDGPU::S_ROUND_MODE; SetDenormOp = AMDGPU::S_DENORM_MODE; } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { SetRoundOp = AMDGPU::S_ROUND_MODE; } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { SetDenormOp = AMDGPU::S_DENORM_MODE; } if (SetRoundOp || SetDenormOp) { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { unsigned ImmVal = Def->getOperand(1).getImm(); if (SetRoundOp) { BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) .addImm(ImmVal & 0xf); // If we also have the denorm mode, get just the denorm mode bits. ImmVal >>= 4; } if (SetDenormOp) { BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) .addImm(ImmVal & 0xf); } MI.eraseFromParent(); return BB; } } } // If only FP bits are touched, used the no side effects pseudo. if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); return BB; } default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); } } bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { return isTypeLegal(VT.getScalarType()); } bool SITargetLowering::hasAtomicFaddRtnForTy(SDValue &Op) const { switch (Op.getValue(0).getSimpleValueType().SimpleTy) { case MVT::f32: return Subtarget->hasAtomicFaddRtnInsts(); case MVT::v2f16: case MVT::f64: return Subtarget->hasGFX90AInsts(); default: return false; } } bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { // This currently forces unfolding various combinations of fsub into fma with // free fneg'd operands. As long as we have fast FMA (controlled by // isFMAFasterThanFMulAndFAdd), we should perform these. // When fma is quarter rate, for f64 where add / sub are at best half rate, // most of these combines appear to be cycle neutral but save on instruction // count / code size. return true; } bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const { if (!VT.isVector()) { return MVT::i1; } return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); } MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { // TODO: Should i16 be used always if legal? For now it would force VALU // shifts. return (VT == MVT::i16) ? MVT::i16 : MVT::i32; } LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) ? Ty.changeElementSize(16) : Ty.changeElementSize(32); } // Answering this is somewhat tricky and depends on the specific device which // have different rates for fma or all f64 operations. // // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other // regardless of which device (although the number of cycles differs between // devices), so it is always profitable for f64. // // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable // only on full rate devices. Normally, we should prefer selecting v_mad_f32 // which we can always do even without fused FP ops since it returns the same // result as the separate operations and since it is always full // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 // however does not support denormals, so we do report fma as faster if we have // a fast fma device and require denormals. // bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const { VT = VT.getScalarType(); switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: { // If mad is not available this depends only on if f32 fma is full rate. if (!Subtarget->hasMadMacF32Insts()) return Subtarget->hasFastFMAF32(); // Otherwise f32 mad is always full rate and returns the same result as // the separate operations so should be preferred over fma. // However does not support denormals. if (hasFP32Denormals(MF)) return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); } case MVT::f64: return true; case MVT::f16: return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF); default: break; } return false; } bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, LLT Ty) const { switch (Ty.getScalarSizeInBits()) { case 16: return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); case 32: return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); case 64: return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); default: break; } return false; } bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { if (!Ty.isScalar()) return false; if (Ty.getScalarSizeInBits() == 16) return Subtarget->hasMadF16() && !hasFP64FP16Denormals(*MI.getMF()); if (Ty.getScalarSizeInBits() == 32) return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(*MI.getMF()); return false; } bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const { // TODO: Check future ftz flag // v_mad_f32/v_mac_f32 do not support denormals. EVT VT = N->getValueType(0); if (VT == MVT::f32) return Subtarget->hasMadMacF32Insts() && !hasFP32Denormals(DAG.getMachineFunction()); if (VT == MVT::f16) { return Subtarget->hasMadF16() && !hasFP64FP16Denormals(DAG.getMachineFunction()); } return false; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the // wider vector type is legal. SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); EVT VT = Op.getValueType(); assert(VT == MVT::v4f16 || VT == MVT::v4i16); SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); SDLoc SL(Op); SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, Op->getFlags()); SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); } // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the // wider vector type is legal. SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); EVT VT = Op.getValueType(); assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32); SDValue Lo0, Hi0; std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); SDValue Lo1, Hi1; std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); SDLoc SL(Op); SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Op->getFlags()); SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); } SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); EVT VT = Op.getValueType(); assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32); SDValue Lo0, Hi0; SDValue Op0 = Op.getOperand(0); std::tie(Lo0, Hi0) = Op0.getValueType().isVector() ? DAG.SplitVectorOperand(Op.getNode(), 0) : std::pair(Op0, Op0); SDValue Lo1, Hi1; std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); SDValue Lo2, Hi2; std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); SDLoc SL(Op); auto ResVT = DAG.GetSplitDestVTs(VT); SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, Op->getFlags()); SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, Op->getFlags()); return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); } SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::LOAD: { SDValue Result = LowerLOAD(Op, DAG); assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) && "Load should return a value and a chain"); return Result; } case ISD::FSIN: case ISD::FCOS: return LowerTrig(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::FDIV: return LowerFDIV(Op, DAG); case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::GlobalAddress: { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); return LowerGlobalAddress(MFI, Op, DAG); } case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); case ISD::INSERT_SUBVECTOR: return lowerINSERT_SUBVECTOR(Op, DAG); case ISD::INSERT_VECTOR_ELT: return lowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG); case ISD::SCALAR_TO_VECTOR: return lowerSCALAR_TO_VECTOR(Op, DAG); case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG); case ISD::FP_ROUND: return lowerFP_ROUND(Op, DAG); case ISD::FPTRUNC_ROUND: { unsigned Opc; SDLoc DL(Op); if (Op.getOperand(0)->getValueType(0) != MVT::f32) return SDValue(); // Get the rounding mode from the last operand int RoundMode = cast(Op.getOperand(1))->getZExtValue(); if (RoundMode == (int)RoundingMode::TowardPositive) Opc = AMDGPUISD::FPTRUNC_ROUND_UPWARD; else if (RoundMode == (int)RoundingMode::TowardNegative) Opc = AMDGPUISD::FPTRUNC_ROUND_DOWNWARD; else return SDValue(); return DAG.getNode(Opc, DL, Op.getNode()->getVTList(), Op->getOperand(0)); } case ISD::TRAP: return lowerTRAP(Op, DAG); case ISD::DEBUGTRAP: return lowerDEBUGTRAP(Op, DAG); case ISD::FABS: case ISD::FNEG: case ISD::FCANONICALIZE: case ISD::BSWAP: return splitUnaryVectorOp(Op, DAG); case ISD::FMINNUM: case ISD::FMAXNUM: return lowerFMINNUM_FMAXNUM(Op, DAG); case ISD::FMA: return splitTernaryVectorOp(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: case ISD::FADD: case ISD::FMUL: case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: case ISD::UADDSAT: case ISD::USUBSAT: case ISD::SADDSAT: case ISD::SSUBSAT: return splitBinaryVectorOp(Op, DAG); case ISD::SMULO: case ISD::UMULO: return lowerXMULO(Op, DAG); case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: return lowerXMUL_LOHI(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); } return SDValue(); } // Used for D16: Casts the result of an instruction into the right vector, // packs values if loads return unpacked values. static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, const SDLoc &DL, SelectionDAG &DAG, bool Unpacked) { if (!LoadVT.isVector()) return Result; // Cast back to the original packed type or to a larger type that is a // multiple of 32 bit for D16. Widening the return type is a required for // legalization. EVT FittingLoadVT = LoadVT; if ((LoadVT.getVectorNumElements() % 2) == 1) { FittingLoadVT = EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), LoadVT.getVectorNumElements() + 1); } if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. // Truncate to v2i16/v4i16. EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); // Workaround legalizer not scalarizing truncate after vector op // legalization but not creating intermediate vector trunc. SmallVector Elts; DAG.ExtractVectorElements(Result, Elts); for (SDValue &Elt : Elts) Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); // Pad illegal v1i16/v3fi6 to v4i16 if ((LoadVT.getVectorNumElements() % 2) == 1) Elts.push_back(DAG.getUNDEF(MVT::i16)); Result = DAG.getBuildVector(IntLoadVT, DL, Elts); // Bitcast to original type (v2f16/v4f16). return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); } // Cast back to the original packed type. return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); } SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, MemSDNode *M, SelectionDAG &DAG, ArrayRef Ops, bool IsIntrinsic) const { SDLoc DL(M); bool Unpacked = Subtarget->hasUnpackedD16VMem(); EVT LoadVT = M->getValueType(0); EVT EquivLoadVT = LoadVT; if (LoadVT.isVector()) { if (Unpacked) { EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, LoadVT.getVectorNumElements()); } else if ((LoadVT.getVectorNumElements() % 2) == 1) { // Widen v3f16 to legal type EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), LoadVT.getVectorNumElements() + 1); } } // Change from v4f16/v2f16 to EquivLoadVT. SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); SDValue Load = DAG.getMemIntrinsicNode( IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, VTList, Ops, M->getMemoryVT(), M->getMemOperand()); SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); } SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, SelectionDAG &DAG, ArrayRef Ops) const { SDLoc DL(M); EVT LoadVT = M->getValueType(0); EVT EltType = LoadVT.getScalarType(); EVT IntVT = LoadVT.changeTypeToInteger(); bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); assert(M->getNumValues() == 2 || M->getNumValues() == 3); bool IsTFE = M->getNumValues() == 3; unsigned Opc; if (IsFormat) { Opc = IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE : AMDGPUISD::BUFFER_LOAD_FORMAT; } else { // TODO: Support non-format TFE loads. if (IsTFE) return SDValue(); Opc = AMDGPUISD::BUFFER_LOAD; } if (IsD16) { return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); } // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); if (isTypeLegal(LoadVT)) { return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, M->getMemOperand(), DAG); } EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, M->getMemOperand(), DAG); return DAG.getMergeValues( {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, DL); } static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); const auto *CD = cast(N->getOperand(3)); unsigned CondCode = CD->getZExtValue(); if (!ICmpInst::isIntPredicate(static_cast(CondCode))) return DAG.getUNDEF(VT); ICmpInst::Predicate IcInput = static_cast(CondCode); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); SDLoc DL(N); EVT CmpVT = LHS.getValueType(); if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); } ISD::CondCode CCOpcode = getICmpCondCode(IcInput); unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, DAG.getCondCode(CCOpcode)); if (VT.bitsEq(CCVT)) return SetCC; return DAG.getZExtOrTrunc(SetCC, DL, VT); } static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); const auto *CD = cast(N->getOperand(3)); unsigned CondCode = CD->getZExtValue(); if (!FCmpInst::isFPPredicate(static_cast(CondCode))) return DAG.getUNDEF(VT); SDValue Src0 = N->getOperand(1); SDValue Src1 = N->getOperand(2); EVT CmpVT = Src0.getValueType(); SDLoc SL(N); if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); } FCmpInst::Predicate IcInput = static_cast(CondCode); ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, Src1, DAG.getCondCode(CCOpcode)); if (VT.bitsEq(CCVT)) return SetCC; return DAG.getZExtOrTrunc(SetCC, SL, VT); } static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDValue Src = N->getOperand(1); SDLoc SL(N); if (Src.getOpcode() == ISD::SETCC) { // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), Src.getOperand(1), Src.getOperand(2)); } if (const ConstantSDNode *Arg = dyn_cast(Src)) { // (ballot 0) -> 0 if (Arg->isZero()) return DAG.getConstant(0, SL, VT); // (ballot 1) -> EXEC/EXEC_LO if (Arg->isOne()) { Register Exec; if (VT.getScalarSizeInBits() == 32) Exec = AMDGPU::EXEC_LO; else if (VT.getScalarSizeInBits() == 64) Exec = AMDGPU::EXEC; else return SDValue(); return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); } } // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) // ISD::SETNE) return DAG.getNode( AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); } void SITargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::INSERT_VECTOR_ELT: { if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) Results.push_back(Res); return; } case ISD::EXTRACT_VECTOR_ELT: { if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) Results.push_back(Res); return; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = cast(N->getOperand(0))->getZExtValue(); switch (IID) { case Intrinsic::amdgcn_cvt_pkrtz: { SDValue Src0 = N->getOperand(1); SDValue Src1 = N->getOperand(2); SDLoc SL(N); SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, Src0, Src1); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); return; } case Intrinsic::amdgcn_cvt_pknorm_i16: case Intrinsic::amdgcn_cvt_pknorm_u16: case Intrinsic::amdgcn_cvt_pk_i16: case Intrinsic::amdgcn_cvt_pk_u16: { SDValue Src0 = N->getOperand(1); SDValue Src1 = N->getOperand(2); SDLoc SL(N); unsigned Opcode; if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; else if (IID == Intrinsic::amdgcn_cvt_pk_i16) Opcode = AMDGPUISD::CVT_PK_I16_I32; else Opcode = AMDGPUISD::CVT_PK_U16_U32; EVT VT = N->getValueType(0); if (isTypeLegal(VT)) Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); else { SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); } return; } } break; } case ISD::INTRINSIC_W_CHAIN: { if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { if (Res.getOpcode() == ISD::MERGE_VALUES) { // FIXME: Hacky for (unsigned I = 0; I < Res.getNumOperands(); I++) { Results.push_back(Res.getOperand(I)); } } else { Results.push_back(Res); Results.push_back(Res.getValue(1)); } return; } break; } case ISD::SELECT: { SDLoc SL(N); EVT VT = N->getValueType(0); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); EVT SelectVT = NewVT; if (NewVT.bitsLT(MVT::i32)) { LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); SelectVT = MVT::i32; } SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, N->getOperand(0), LHS, RHS); if (NewVT != SelectVT) NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); return; } case ISD::FNEG: { if (N->getValueType(0) != MVT::v2f16) break; SDLoc SL(N); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, BC, DAG.getConstant(0x80008000, SL, MVT::i32)); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); return; } case ISD::FABS: { if (N->getValueType(0) != MVT::v2f16) break; SDLoc SL(N); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, BC, DAG.getConstant(0x7fff7fff, SL, MVT::i32)); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); return; } default: break; } } /// Helper function for LowerBRCOND static SDNode *findUser(SDValue Value, unsigned Opcode) { SDNode *Parent = Value.getNode(); for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); I != E; ++I) { if (I.getUse().get() != Value) continue; if (I->getOpcode() == Opcode) return *I; } return nullptr; } unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { switch (cast(Intr->getOperand(1))->getZExtValue()) { case Intrinsic::amdgcn_if: return AMDGPUISD::IF; case Intrinsic::amdgcn_else: return AMDGPUISD::ELSE; case Intrinsic::amdgcn_loop: return AMDGPUISD::LOOP; case Intrinsic::amdgcn_end_cf: llvm_unreachable("should not occur"); default: return 0; } } // break, if_break, else_break are all only used as inputs to loop, not // directly as branch conditions. return 0; } bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { const Triple &TT = getTargetMachine().getTargetTriple(); return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && AMDGPU::shouldEmitConstantsToTextSection(TT); } bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { // FIXME: Either avoid relying on address space here or change the default // address space for functions to avoid the explicit check. return (GV->getValueType()->isFunctionTy() || !isNonGlobalAddrSpace(GV->getAddressSpace())) && !shouldEmitFixup(GV) && !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); } bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); } bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { if (!GV->hasExternalLinkage()) return true; const auto OS = getTargetMachine().getTargetTriple().getOS(); return OS == Triple::AMDHSA || OS == Triple::AMDPAL; } /// This transforms the control flow intrinsics to get the branch destination as /// last parameter, also switches branch target with BR if the need arise SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const { SDLoc DL(BRCOND); SDNode *Intr = BRCOND.getOperand(1).getNode(); SDValue Target = BRCOND.getOperand(2); SDNode *BR = nullptr; SDNode *SetCC = nullptr; if (Intr->getOpcode() == ISD::SETCC) { // As long as we negate the condition everything is fine SetCC = Intr; Intr = SetCC->getOperand(0).getNode(); } else { // Get the target from BR if we don't negate the condition BR = findUser(BRCOND, ISD::BR); assert(BR && "brcond missing unconditional branch user"); Target = BR->getOperand(1); } unsigned CFNode = isCFIntrinsic(Intr); if (CFNode == 0) { // This is a uniform branch so we don't need to legalize. return BRCOND; } bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; assert(!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)); // operands of the new intrinsic call SmallVector Ops; if (HaveChain) Ops.push_back(BRCOND.getOperand(0)); Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); Ops.push_back(Target); ArrayRef Res(Intr->value_begin() + 1, Intr->value_end()); // build the new intrinsic call SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); if (!HaveChain) { SDValue Ops[] = { SDValue(Result, 0), BRCOND.getOperand(0) }; Result = DAG.getMergeValues(Ops, DL).getNode(); } if (BR) { // Give the branch instruction our target SDValue Ops[] = { BR->getOperand(0), BRCOND.getOperand(2) }; SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); } SDValue Chain = SDValue(Result, Result->getNumValues() - 1); // Copy the intrinsic results to registers for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); if (!CopyToReg) continue; Chain = DAG.getCopyToReg( Chain, DL, CopyToReg->getOperand(1), SDValue(Result, i - 1), SDValue()); DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); } // Remove the old intrinsic from the chain DAG.ReplaceAllUsesOfValueWith( SDValue(Intr, Intr->getNumValues() - 1), Intr->getOperand(0)); return Chain; } SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); SDLoc DL(Op); // Checking the depth if (cast(Op.getOperand(0))->getZExtValue() != 0) return DAG.getConstant(0, DL, VT); MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); // Check for kernel and shader functions if (Info->isEntryFunction()) return DAG.getConstant(0, DL, VT); MachineFrameInfo &MFI = MF.getFrameInfo(); // There is a call to @llvm.returnaddress in this function MFI.setReturnAddressIsTaken(true); const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); // Get the return address reg and mark it as an implicit live-in Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); } SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, SDValue Op, const SDLoc &DL, EVT VT) const { return Op.getValueType().bitsLE(VT) ? DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : DAG.getNode(ISD::FP_ROUND, DL, VT, Op, DAG.getTargetConstant(0, DL, MVT::i32)); } SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); if (SrcVT != MVT::f64) return Op; SDLoc DL(Op); SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); } SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); bool IsIEEEMode = Info->getMode().IEEE; // FIXME: Assert during selection that this is only selected for // ieee_mode. Currently a combine can produce the ieee version for non-ieee // mode functions, but this happens to be OK since it's only done in cases // where there is known no sNaN. if (IsIEEEMode) return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16) return splitBinaryVectorOp(Op, DAG); return Op; } SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); bool isSigned = Op.getOpcode() == ISD::SMULO; if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { const APInt &C = RHSC->getAPIntValue(); // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } if (C.isPowerOf2()) { // smulo(x, signed_min) is same as umulo(x, signed_min). bool UseArithShift = isSigned && !C.isMinSignedValue(); SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); SDValue Overflow = DAG.getSetCC(SL, MVT::i1, DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, SL, VT, Result, ShiftAmt), LHS, ISD::SETNE); return DAG.getMergeValues({ Result, Overflow }, SL); } } SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, SL, VT, LHS, RHS); SDValue Sign = isSigned ? DAG.getNode(ISD::SRA, SL, VT, Result, DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) : DAG.getConstant(0, SL, VT); SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); return DAG.getMergeValues({ Result, Overflow }, SL); } SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { if (Op->isDivergent()) { // Select to V_MAD_[IU]64_[IU]32. return Op; } if (Subtarget->hasSMulHi()) { // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. return SDValue(); } // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to // calculate the high part, so we might as well do the whole thing with // V_MAD_[IU]64_[IU]32. return Op; } SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { if (!Subtarget->isTrapHandlerEnabled() || Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) return lowerTrapEndpgm(Op, DAG); if (std::optional HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) { switch (*HsaAbiVer) { case ELF::ELFABIVERSION_AMDGPU_HSA_V2: case ELF::ELFABIVERSION_AMDGPU_HSA_V3: return lowerTrapHsaQueuePtr(Op, DAG); case ELF::ELFABIVERSION_AMDGPU_HSA_V4: case ELF::ELFABIVERSION_AMDGPU_HSA_V5: return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG); } } llvm_unreachable("Unknown trap handler"); } SDValue SITargetLowering::lowerTrapEndpgm( SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); } SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { MachineFunction &MF = DAG.getMachineFunction(); uint64_t Offset = getImplicitParameterOffset(MF, Param); SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue SITargetLowering::lowerTrapHsaQueuePtr( SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); SDValue QueuePtr; // For code object version 5, QueuePtr is passed through implicit kernarg. if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { QueuePtr = loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); } else { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); Register UserSGPR = Info->getQueuePtrUserSGPR(); if (UserSGPR == AMDGPU::NoRegister) { // We probably are in a function incorrectly marked with // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the // trap, so just use a null pointer. QueuePtr = DAG.getConstant(0, SL, MVT::i64); } else { QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); } } SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, QueuePtr, SDValue()); uint64_t TrapID = static_cast(GCNSubtarget::TrapID::LLVMAMDHSATrap); SDValue Ops[] = { ToReg, DAG.getTargetConstant(TrapID, SL, MVT::i16), SGPR01, ToReg.getValue(1) }; return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); } SDValue SITargetLowering::lowerTrapHsa( SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); uint64_t TrapID = static_cast(GCNSubtarget::TrapID::LLVMAMDHSATrap); SDValue Ops[] = { Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16) }; return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); } SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Chain = Op.getOperand(0); MachineFunction &MF = DAG.getMachineFunction(); if (!Subtarget->isTrapHandlerEnabled() || Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { DiagnosticInfoUnsupported NoTrap(MF.getFunction(), "debugtrap handler not supported", Op.getDebugLoc(), DS_Warning); LLVMContext &Ctx = MF.getFunction().getContext(); Ctx.diagnose(NoTrap); return Chain; } uint64_t TrapID = static_cast(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); SDValue Ops[] = { Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16) }; return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); } SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, SelectionDAG &DAG) const { if (Subtarget->hasApertureRegs()) { const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) ? AMDGPU::SRC_SHARED_BASE : AMDGPU::SRC_PRIVATE_BASE; // Note: this feature (register) is broken. When used as a 32-bit operand, // it returns a wrong value (all zeroes?). The real value is in the upper 32 // bits. // // To work around the issue, directly emit a 64 bit mov from this register // then extract the high bits. Note that this shouldn't even result in a // shift being emitted and simply become a pair of registers (e.g.): // s_mov_b64 s[6:7], src_shared_base // v_mov_b32_e32 v1, s7 // // FIXME: It would be more natural to emit a CopyFromReg here, but then copy // coalescing would kick in and it would think it's okay to use the "HI" // subregister directly (instead of extracting the HI 32 bits) which is an // artificial (unusable) register. // Register TableGen definitions would need an overhaul to get rid of the // artificial "HI" aperture registers and prevent this kind of issue from // happening. SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, DAG.getRegister(ApertureRegNo, MVT::i64)); return DAG.getNode( ISD::TRUNCATE, DL, MVT::i32, DAG.getNode(ISD::SRL, DL, MVT::i64, {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); } // For code object version 5, private_base and shared_base are passed through // implicit kernargs. if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) { ImplicitParameter Param = (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); Register UserSGPR = Info->getQueuePtrUserSGPR(); if (UserSGPR == AMDGPU::NoRegister) { // We probably are in a function incorrectly marked with // amdgpu-no-queue-ptr. This is undefined. return DAG.getUNDEF(MVT::i32); } SDValue QueuePtr = CreateLiveInRegister( DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); // Offset into amd_queue_t for group_segment_aperture_base_hi / // private_segment_aperture_base_hi. uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset)); // TODO: Use custom target PseudoSourceValue. // TODO: We should use the value from the IR intrinsic call, but it might not // be available and how do we get it? MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, commonAlignment(Align(64), StructOffset), MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } /// Return true if the value is a known valid address, such that a null check is /// not necessary. static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, const AMDGPUTargetMachine &TM, unsigned AddrSpace) { if (isa(Val) || isa(Val) || isa(Val)) return true; if (auto *ConstVal = dyn_cast(Val)) return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); // TODO: Search through arithmetic, handle arguments and loads // marked nonnull. return false; } SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); const AddrSpaceCastSDNode *ASC = cast(Op); SDValue Src = ASC->getOperand(0); SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); unsigned SrcAS = ASC->getSrcAddressSpace(); const AMDGPUTargetMachine &TM = static_cast(getTargetMachine()); // flat -> local/private if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { unsigned DestAS = ASC->getDestAddressSpace(); if (DestAS == AMDGPUAS::LOCAL_ADDRESS || DestAS == AMDGPUAS::PRIVATE_ADDRESS) { SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); if (isKnownNonNull(Src, DAG, TM, SrcAS)) return Ptr; unsigned NullVal = TM.getNullPointerValue(DestAS); SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, SegmentNullPtr); } } // local/private -> flat if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) { if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); SDValue CvtPtr = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); if (isKnownNonNull(Src, DAG, TM, SrcAS)) return CvtPtr; unsigned NullVal = TM.getNullPointerValue(SrcAS); SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, FlatNullPtr); } } if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && Op.getValueType() == MVT::i64) { const SIMachineFunctionInfo *Info = DAG.getMachineFunction().getInfo(); SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT && Src.getValueType() == MVT::i64) return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); // global <-> flat are no-ops and never emitted. const MachineFunction &MF = DAG.getMachineFunction(); DiagnosticInfoUnsupported InvalidAddrSpaceCast( MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); DAG.getContext()->diagnose(InvalidAddrSpaceCast); return DAG.getUNDEF(ASC->getValueType(0)); } // This lowers an INSERT_SUBVECTOR by extracting the individual elements from // the small vector and inserting them into the big vector. That is better than // the default expansion of doing it via a stack slot. Even though the use of // the stack slot would be optimized away afterwards, the stack slot itself // remains. SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); SDValue Ins = Op.getOperand(1); SDValue Idx = Op.getOperand(2); EVT VecVT = Vec.getValueType(); EVT InsVT = Ins.getValueType(); EVT EltVT = VecVT.getVectorElementType(); unsigned InsNumElts = InsVT.getVectorNumElements(); unsigned IdxVal = cast(Idx)->getZExtValue(); SDLoc SL(Op); for (unsigned I = 0; I != InsNumElts; ++I) { SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, DAG.getConstant(I, SL, MVT::i32)); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, DAG.getConstant(IdxVal + I, SL, MVT::i32)); } return Vec; } SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getOperand(0); SDValue InsVal = Op.getOperand(1); SDValue Idx = Op.getOperand(2); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); unsigned VecSize = VecVT.getSizeInBits(); unsigned EltSize = EltVT.getSizeInBits(); SDLoc SL(Op); // Specially handle the case of v4i16 with static indexing. unsigned NumElts = VecVT.getVectorNumElements(); auto KIdx = dyn_cast(Idx); if (NumElts == 4 && EltSize == 16 && KIdx) { SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, DAG.getConstant(0, SL, MVT::i32)); SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, DAG.getConstant(1, SL, MVT::i32)); SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); unsigned Idx = KIdx->getZExtValue(); bool InsertLo = Idx < 2; SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, InsertLo ? LoVec : HiVec, DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); SDValue Concat = InsertLo ? DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); } // Static indexing does not lower to stack access, and hence there is no need // for special custom lowering to avoid stack access. if (isa(Idx)) return SDValue(); // Avoid stack access for dynamic indexing by custom lowering to // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); MVT IntVT = MVT::getIntegerVT(VecSize); // Convert vector index to bit-index and get the required bit mask. assert(isPowerOf2_32(EltSize)); const auto EltMask = maskTrailingOnes(EltSize); SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); // 1. Create a congruent vector with the target value in each element. SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, DAG.getSplatBuildVector(VecVT, SL, InsVal)); // 2. Mask off all other indicies except the required index within (1). SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); // 3. Mask off the required index within the target vector. SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, DAG.getNOT(SL, BFM, IntVT), BCVec); // 4. Get (2) and (3) ORed into the target vector. SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); } SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT ResultVT = Op.getValueType(); SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); EVT VecVT = Vec.getValueType(); unsigned VecSize = VecVT.getSizeInBits(); EVT EltVT = VecVT.getVectorElementType(); DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); // Make sure we do any optimizations that will make it easier to fold // source modifiers before obscuring it with bit operations. // XXX - Why doesn't this get called when vector_shuffle is expanded? if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) return Combined; if (VecSize == 128 || VecSize == 256) { SDValue Lo, Hi; EVT LoVT, HiVT; std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); if (VecSize == 128) { SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, DAG.getConstant(0, SL, MVT::i32))); Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, DAG.getConstant(1, SL, MVT::i32))); } else { assert(VecSize == 256); SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); SDValue Parts[4]; for (unsigned P = 0; P < 4; ++P) { Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, DAG.getConstant(P, SL, MVT::i32)); } Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, Parts[0], Parts[1])); Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, Parts[2], Parts[3])); } EVT IdxVT = Idx.getValueType(); unsigned NElem = VecVT.getVectorNumElements(); assert(isPowerOf2_32(NElem)); SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); } assert(VecSize <= 64); MVT IntVT = MVT::getIntegerVT(VecSize); // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. SDValue VecBC = peekThroughBitcasts(Vec); if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { SDValue Src = VecBC.getOperand(0); Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); } unsigned EltSize = EltVT.getSizeInBits(); assert(isPowerOf2_32(EltSize)); SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); // Convert vector index to bit-index (* EltSize) SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); if (ResultVT == MVT::f16) { SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); } return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); } static bool elementPairIsContiguous(ArrayRef Mask, int Elt) { assert(Elt % 2 == 0); return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); } SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT ResultVT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op); EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; EVT EltVT = PackVT.getVectorElementType(); int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); // vector_shuffle <0,1,6,7> lhs, rhs // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) // // vector_shuffle <6,7,2,3> lhs, rhs // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) // // vector_shuffle <6,7,0,1> lhs, rhs // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) // Avoid scalarizing when both halves are reading from consecutive elements. SmallVector Pieces; for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { if (elementPairIsContiguous(SVN->getMask(), I)) { const int Idx = SVN->getMaskElt(I); int VecIdx = Idx < SrcNumElts ? 0 : 1; int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, PackVT, SVN->getOperand(VecIdx), DAG.getConstant(EltIdx, SL, MVT::i32)); Pieces.push_back(SubVec); } else { const int Idx0 = SVN->getMaskElt(I); const int Idx1 = SVN->getMaskElt(I + 1); int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; SDValue Vec0 = SVN->getOperand(VecIdx0); SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); SDValue Vec1 = SVN->getOperand(VecIdx1); SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); } } return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); } SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue SVal = Op.getOperand(0); EVT ResultVT = Op.getValueType(); EVT SValVT = SVal.getValueType(); SDValue UndefVal = DAG.getUNDEF(SValVT); SDLoc SL(Op); SmallVector VElts; VElts.push_back(SVal); for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) VElts.push_back(UndefVal); return DAG.getBuildVector(ResultVT, SL, VElts); } SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT VT = Op.getValueType(); if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || VT == MVT::v8f16) { EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), VT.getVectorNumElements() / 2); MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); // Turn into pair of packed build_vectors. // TODO: Special case for constants that can be materialized with s_mov_b64. SmallVector LoOps, HiOps; for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { LoOps.push_back(Op.getOperand(I)); HiOps.push_back(Op.getOperand(I + E)); } SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, { CastLo, CastHi }); return DAG.getNode(ISD::BITCAST, SL, VT, Blend); } if (VT == MVT::v16i16 || VT == MVT::v16f16) { EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), VT.getVectorNumElements() / 4); MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); SmallVector Parts[4]; for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { for (unsigned P = 0; P < 4; ++P) Parts[P].push_back(Op.getOperand(I + P * E)); } SDValue Casts[4]; for (unsigned P = 0; P < 4; ++P) { SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); } SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); return DAG.getNode(ISD::BITCAST, SL, VT, Blend); } assert(VT == MVT::v2f16 || VT == MVT::v2i16); assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); // Avoid adding defined bits with the zero_extend. if (Hi.isUndef()) { Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); } Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, DAG.getConstant(16, SL, MVT::i32)); if (Lo.isUndef()) return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); return DAG.getNode(ISD::BITCAST, SL, VT, Or); } bool SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // We can fold offsets for anything that doesn't require a GOT relocation. return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && !shouldEmitGOTReloc(GA->getGlobal()); } static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, const SDLoc &DL, int64_t Offset, EVT PtrVT, unsigned GAFlags = SIInstrInfo::MO_NONE) { assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is // lowered to the following code sequence: // // For constant address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol // s_addc_u32 s1, s1, 0 // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // a fixup or relocation is emitted to replace $symbol with a literal // constant, which is a pc-relative offset from the encoding of the $symbol // operand to the global variable. // // For global address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // fixups or relocations are emitted to replace $symbol@*@lo and // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, // which is a 64-bit pc-relative offset from the encoding of the $symbol // operand to the global variable. // // What we want here is an offset from the value returned by s_getpc // (which is the address of the s_add_u32 instruction) to the global // variable, but since the encoding of $symbol starts 4 bytes after the start // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too // small. This requires us to add 4 to the global variable offset in order to // compute the correct address. Similarly for the s_addc_u32 instruction, the // encoding of $symbol starts 12 bytes after the start of the s_add_u32 // instruction. SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); SDValue PtrHi; if (GAFlags == SIInstrInfo::MO_NONE) { PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); } else { PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1); } return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); } SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GSD = cast(Op); SDLoc DL(GSD); EVT PtrVT = Op.getValueType(); const GlobalValue *GV = GSD->getGlobal(); if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && shouldUseLDSConstAddress(GV)) || GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) { Type *Ty = GV->getValueType(); // HIP uses an unsized array `extern __shared__ T s[]` or similar // zero-sized type in other languages to declare the dynamic shared // memory which size is not known at the compile time. They will be // allocated by the runtime and placed directly after the static // allocated ones. They all share the same offset. if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); // Adjust alignment for that dynamic shared memory array. MFI->setDynLDSAlign(DAG.getDataLayout(), *cast(GV)); return SDValue( DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); } } return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); } if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO); return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); } if (shouldEmitFixup(GV)) return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); else if (shouldEmitPCReloc(GV)) return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, SIInstrInfo::MO_REL32); SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, SIInstrInfo::MO_GOTPCREL32); Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); const DataLayout &DataLayout = DAG.getDataLayout(); Align Alignment = DataLayout.getABITypeAlign(PtrTy); MachinePointerInfo PtrInfo = MachinePointerInfo::getGOT(DAG.getMachineFunction()); return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const { // We can't use S_MOV_B32 directly, because there is no way to specify m0 as // the destination register. // // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, // so we will end up with redundant moves to m0. // // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. // A Null SDValue creates a glue result. SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, V, Chain); return SDValue(M0, 0); } SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, SDValue Op, MVT VT, unsigned Offset) const { SDLoc SL(Op); SDValue Param = lowerKernargMemParameter( DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); // The local size values will have the hi 16-bits as zero. return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, DAG.getValueType(VT)); } static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), "non-hsa intrinsic with hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, ArrayRef Elts) { assert(!Elts.empty()); MVT Type; unsigned NumElts = Elts.size(); if (NumElts <= 12) { Type = MVT::getVectorVT(MVT::f32, NumElts); } else { assert(Elts.size() <= 16); Type = MVT::v16f32; NumElts = 16; } SmallVector VecElts(NumElts); for (unsigned i = 0; i < Elts.size(); ++i) { SDValue Elt = Elts[i]; if (Elt.getValueType() != MVT::f32) Elt = DAG.getBitcast(MVT::f32, Elt); VecElts[i] = Elt; } for (unsigned i = Elts.size(); i < NumElts; ++i) VecElts[i] = DAG.getUNDEF(MVT::f32); if (NumElts == 1) return VecElts[0]; return DAG.getBuildVector(Type, DL, VecElts); } static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, SDValue Src, int ExtraElts) { EVT SrcVT = Src.getValueType(); SmallVector Elts; if (SrcVT.isVector()) DAG.ExtractVectorElements(Src, Elts); else Elts.push_back(Src); SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); while (ExtraElts--) Elts.push_back(Undef); return DAG.getBuildVector(CastVT, DL, Elts); } // Re-construct the required return value for a image load intrinsic. // This is more complicated due to the optional use TexFailCtrl which means the required // return type is an aggregate static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, ArrayRef ResultTypes, bool IsTexFail, bool Unpacked, bool IsD16, int DMaskPop, int NumVDataDwords, const SDLoc &DL) { // Determine the required return type. This is the same regardless of IsTexFail flag EVT ReqRetVT = ResultTypes[0]; int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ? ReqRetNumElts : (ReqRetNumElts + 1) / 2; int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ? DMaskPop : (DMaskPop + 1) / 2; MVT DataDwordVT = NumDataDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); MVT MaskPopVT = MaskPopDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); SDValue Data(Result, 0); SDValue TexFail; if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); if (MaskPopVT.isVector()) { Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, SDValue(Result, 0), ZeroIdx); } else { Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, SDValue(Result, 0), ZeroIdx); } } if (DataDwordVT.isVector()) Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, NumDataDwords - MaskPopDwords); if (IsD16) Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); EVT LegalReqRetVT = ReqRetVT; if (!ReqRetVT.isVector()) { if (!Data.getValueType().isInteger()) Data = DAG.getNode(ISD::BITCAST, DL, Data.getValueType().changeTypeToInteger(), Data); Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); } else { // We need to widen the return vector to a legal type if ((ReqRetVT.getVectorNumElements() % 2) == 1 && ReqRetVT.getVectorElementType().getSizeInBits() == 16) { LegalReqRetVT = EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), ReqRetVT.getVectorNumElements() + 1); } } Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); if (IsTexFail) { TexFail = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), DAG.getConstant(MaskPopDwords, DL, MVT::i32)); return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); } if (Result->getNumValues() == 1) return Data; return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); } static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, SDValue *LWE, bool &IsTexFail) { auto TexFailCtrlConst = cast(TexFailCtrl.getNode()); uint64_t Value = TexFailCtrlConst->getZExtValue(); if (Value) { IsTexFail = true; } SDLoc DL(TexFailCtrlConst); *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); Value &= ~(uint64_t)0x1; *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); Value &= ~(uint64_t)0x2; return Value == 0; } static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, MVT PackVectorVT, SmallVectorImpl &PackedAddrs, unsigned DimIdx, unsigned EndIdx, unsigned NumGradients) { SDLoc DL(Op); for (unsigned I = DimIdx; I < EndIdx; I++) { SDValue Addr = Op.getOperand(I); // Gradients are packed with undef for each coordinate. // In , notation, the registers look like this: // 1D: undef,dx/dh; undef,dx/dv // 2D: dy/dh,dx/dh; dy/dv,dx/dv // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv if (((I + 1) >= EndIdx) || ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || I == DimIdx + NumGradients - 1))) { if (Addr.getValueType() != MVT::i16) Addr = DAG.getBitcast(MVT::i16, Addr); Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); } else { Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); I++; } Addr = DAG.getBitcast(MVT::f32, Addr); PackedAddrs.push_back(Addr); } } SDValue SITargetLowering::lowerImage(SDValue Op, const AMDGPU::ImageDimIntrinsicInfo *Intr, SelectionDAG &DAG, bool WithChain) const { SDLoc DL(Op); MachineFunction &MF = DAG.getMachineFunction(); const GCNSubtarget* ST = &MF.getSubtarget(); const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); unsigned IntrOpcode = Intr->BaseOpcode; bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); SmallVector ResultTypes(Op->values()); SmallVector OrigResultTypes(Op->values()); bool IsD16 = false; bool IsG16 = false; bool IsA16 = false; SDValue VData; int NumVDataDwords; bool AdjustRetType = false; // Offset of intrinsic arguments const unsigned ArgOffset = WithChain ? 2 : 1; unsigned DMask; unsigned DMaskLanes = 0; if (BaseOpcode->Atomic) { VData = Op.getOperand(2); bool Is64Bit = VData.getValueType() == MVT::i64; if (BaseOpcode->AtomicX2) { SDValue VData2 = Op.getOperand(3); VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, {VData, VData2}); if (Is64Bit) VData = DAG.getBitcast(MVT::v4i32, VData); ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; DMask = Is64Bit ? 0xf : 0x3; NumVDataDwords = Is64Bit ? 4 : 2; } else { DMask = Is64Bit ? 0x3 : 0x1; NumVDataDwords = Is64Bit ? 2 : 1; } } else { auto *DMaskConst = cast(Op.getOperand(ArgOffset + Intr->DMaskIndex)); DMask = DMaskConst->getZExtValue(); DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask); if (BaseOpcode->Store) { VData = Op.getOperand(2); MVT StoreVT = VData.getSimpleValueType(); if (StoreVT.getScalarType() == MVT::f16) { if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) return Op; // D16 is unsupported for this instruction IsD16 = true; VData = handleD16VData(VData, DAG, true); } NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; } else { // Work out the num dwords based on the dmask popcount and underlying type // and whether packing is supported. MVT LoadVT = ResultTypes[0].getSimpleVT(); if (LoadVT.getScalarType() == MVT::f16) { if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) return Op; // D16 is unsupported for this instruction IsD16 = true; } // Confirm that the return type is large enough for the dmask specified if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || (!LoadVT.isVector() && DMaskLanes > 1)) return Op; // The sq block of gfx8 and gfx9 do not estimate register use correctly // for d16 image_gather4, image_gather4_l, and image_gather4_lz // instructions. if (IsD16 && !Subtarget->hasUnpackedD16VMem() && !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) NumVDataDwords = (DMaskLanes + 1) / 2; else NumVDataDwords = DMaskLanes; AdjustRetType = true; } } unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; SmallVector VAddrs; // Check for 16 bit addresses or derivatives and pack if true. MVT VAddrVT = Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); MVT VAddrScalarVT = VAddrVT.getScalarType(); MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); VAddrScalarVT = VAddrVT.getScalarType(); MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; // Push back extra arguments. for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); // Special handling of bias when A16 is on. Bias is of type half but // occupies full 32-bit. SDValue Bias = DAG.getBuildVector( MVT::v2f16, DL, {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); VAddrs.push_back(Bias); } else { assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && "Bias needs to be converted to 16 bit in A16 mode"); VAddrs.push_back(Op.getOperand(ArgOffset + I)); } } if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { // 16 bit gradients are supported, but are tied to the A16 control // so both gradients and addresses must be 16 bit LLVM_DEBUG( dbgs() << "Failed to lower image intrinsic: 16 bit addresses " "require 16 bit args for both gradients and addresses"); return Op; } if (IsA16) { if (!ST->hasA16()) { LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " "support 16 bit addresses\n"); return Op; } } // We've dealt with incorrect input so we know that if IsA16, IsG16 // are set then we have to compress/pack operands (either address, // gradient or both) // In the case where a16 and gradients are tied (no G16 support) then we // have already verified that both IsA16 and IsG16 are true if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { // Activate g16 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 } // Add gradients (packed or unpacked) if (IsG16) { // Pack the gradients // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, ArgOffset + Intr->GradientStart, ArgOffset + Intr->CoordStart, Intr->NumGradients); } else { for (unsigned I = ArgOffset + Intr->GradientStart; I < ArgOffset + Intr->CoordStart; I++) VAddrs.push_back(Op.getOperand(I)); } // Add addresses (packed or unpacked) if (IsA16) { packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, ArgOffset + Intr->CoordStart, VAddrEnd, 0 /* No gradients */); } else { // Add uncompressed address for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) VAddrs.push_back(Op.getOperand(I)); } // If the register allocator cannot place the address registers contiguously // without introducing moves, then using the non-sequential address encoding // is always preferable, since it saves VALU instructions and is usually a // wash in terms of code size or even better. // // However, we currently have no way of hinting to the register allocator that // MIMG addresses should be placed contiguously when it is possible to do so, // so force non-NSA for the common 2-address case as a heuristic. // // SIShrinkInstructions will convert NSA encodings to non-NSA after register // allocation when possible. // // TODO: we can actually allow partial NSA where the final register is a // contiguous set of the remaining addresses. // This could help where there are more addresses than supported. bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= (unsigned)ST->getNSAThreshold(MF) && VAddrs.size() <= (unsigned)ST->getNSAMaxSize(); SDValue VAddr; if (!UseNSA) VAddr = getBuildDwordsVector(DAG, DL, VAddrs); SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); SDValue Unorm; if (!BaseOpcode->Sampler) { Unorm = True; } else { auto UnormConst = cast(Op.getOperand(ArgOffset + Intr->UnormIndex)); Unorm = UnormConst->getZExtValue() ? True : False; } SDValue TFE; SDValue LWE; SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); bool IsTexFail = false; if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) return Op; if (IsTexFail) { if (!DMaskLanes) { // Expecting to get an error flag since TFC is on - and dmask is 0 // Force dmask to be at least 1 otherwise the instruction will fail DMask = 0x1; DMaskLanes = 1; NumVDataDwords = 1; } NumVDataDwords += 1; AdjustRetType = true; } // Has something earlier tagged that the return type needs adjusting // This happens if the instruction is a load or has set TexFailCtrl flags if (AdjustRetType) { // NumVDataDwords reflects the true number of dwords required in the return type if (DMaskLanes == 0 && !BaseOpcode->Store) { // This is a no-op load. This can be eliminated SDValue Undef = DAG.getUNDEF(Op.getValueType()); if (isa(Op)) return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); return Undef; } EVT NewVT = NumVDataDwords > 1 ? EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) : MVT::i32; ResultTypes[0] = NewVT; if (ResultTypes.size() == 3) { // Original result was aggregate type used for TexFailCtrl results // The actual instruction returns as a vector type which has now been // created. Remove the aggregate result. ResultTypes.erase(&ResultTypes[1]); } } unsigned CPol = cast( Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue(); if (BaseOpcode->Atomic) CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization if (CPol & ~AMDGPU::CPol::ALL) return Op; SmallVector Ops; if (BaseOpcode->Store || BaseOpcode->Atomic) Ops.push_back(VData); // vdata if (UseNSA) append_range(Ops, VAddrs); else Ops.push_back(VAddr); Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); if (BaseOpcode->Sampler) Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); if (IsGFX10Plus) Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); Ops.push_back(Unorm); Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); Ops.push_back(IsA16 && // r128, a16 for gfx9 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); if (IsGFX10Plus) Ops.push_back(IsA16 ? True : False); if (!Subtarget->hasGFX90AInsts()) { Ops.push_back(TFE); //tfe } else if (cast(TFE)->getZExtValue()) { report_fatal_error("TFE is not supported on this GPU"); } Ops.push_back(LWE); // lwe if (!IsGFX10Plus) Ops.push_back(DimInfo->DA ? True : False); if (BaseOpcode->HasD16) Ops.push_back(IsD16 ? True : False); if (isa(Op)) Ops.push_back(Op.getOperand(0)); // chain int NumVAddrDwords = UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; int Opcode = -1; if (IsGFX11Plus) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, UseNSA ? AMDGPU::MIMGEncGfx11NSA : AMDGPU::MIMGEncGfx11Default, NumVDataDwords, NumVAddrDwords); } else if (IsGFX10Plus) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, UseNSA ? AMDGPU::MIMGEncGfx10NSA : AMDGPU::MIMGEncGfx10Default, NumVDataDwords, NumVAddrDwords); } else { if (Subtarget->hasGFX90AInsts()) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, NumVDataDwords, NumVAddrDwords); if (Opcode == -1) return makeV_ILLEGAL(Op, DAG); } if (Opcode == -1 && Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, NumVDataDwords, NumVAddrDwords); if (Opcode == -1) Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, NumVDataDwords, NumVAddrDwords); } assert(Opcode != -1); MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); if (auto MemOp = dyn_cast(Op)) { MachineMemOperand *MemRef = MemOp->getMemOperand(); DAG.setNodeMemRefs(NewNode, {MemRef}); } if (BaseOpcode->AtomicX2) { SmallVector Elt; DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); } if (BaseOpcode->Store) return SDValue(NewNode, 0); return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail, Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes, NumVDataDwords, DL); } SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, SDValue Offset, SDValue CachePolicy, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); const DataLayout &DataLayout = DAG.getDataLayout(); Align Alignment = DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, VT.getStoreSize(), Alignment); if (!Offset->isDivergent()) { SDValue Ops[] = { Rsrc, Offset, // Offset CachePolicy }; // Widen vec3 load to vec4. if (VT.isVector() && VT.getVectorNumElements() == 3) { EVT WidenedVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); auto WidenedOp = DAG.getMemIntrinsicNode( AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, DAG.getVectorIdxConstant(0, DL)); return Subvector; } return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(VT), Ops, VT, MMO); } // We have a divergent offset. Emit a MUBUF buffer load instead. We can // assume that the buffer is unswizzled. SmallVector Loads; unsigned NumLoads = 1; MVT LoadVT = VT.getSimpleVT(); unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; assert((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)); if (NumElts == 8 || NumElts == 16) { NumLoads = NumElts / 4; LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); } SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); SDValue Ops[] = { DAG.getEntryNode(), // Chain Rsrc, // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex {}, // voffset {}, // soffset {}, // offset CachePolicy, // cachepolicy DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; // Use the alignment to ensure that the required offsets will fit into the // immediate offsets. setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); uint64_t InstOffset = cast(Ops[5])->getZExtValue(); for (unsigned i = 0; i < NumLoads; ++i) { Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, LoadVT, MMO, DAG)); } if (NumElts == 8 || NumElts == 16) return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); return Loads[0]; } SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, unsigned Dim, const ArgDescriptor &Arg) const { SDLoc SL(Op); MachineFunction &MF = DAG.getMachineFunction(); unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); if (MaxID == 0) return DAG.getConstant(0, SL, MVT::i32); SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, SDLoc(DAG.getEntryNode()), Arg); // Don't bother inserting AssertZext for packed IDs since we're emitting the // masking operations anyway. // // TODO: We could assert the top bit is 0 for the source copy. if (Arg.isMasked()) return Val; // Preserve the known bits after expansion to a copy. EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID)); return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, DAG.getValueType(SmallVT)); } SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); auto MFI = MF.getInfo(); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned IntrinsicID = cast(Op.getOperand(0))->getZExtValue(); // TODO: Should this propagate fast-math-flags? switch (IntrinsicID) { case Intrinsic::amdgcn_implicit_buffer_ptr: { if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) return emitNonHSAIntrinsicError(DAG, DL, VT); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); } case Intrinsic::amdgcn_dispatch_ptr: case Intrinsic::amdgcn_queue_ptr: { if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { DiagnosticInfoUnsupported BadIntrin( MF.getFunction(), "unsupported hsa intrinsic without hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; return getPreloadedValue(DAG, *MFI, VT, RegID); } case Intrinsic::amdgcn_implicitarg_ptr: { if (MFI->isEntryFunction()) return getImplicitArgPtr(DAG, DL); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); } case Intrinsic::amdgcn_kernarg_segment_ptr: { if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { // This only makes sense to call in a kernel, so just lower to null. return DAG.getConstant(0, DL, VT); } return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); } case Intrinsic::amdgcn_dispatch_id: { return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); } case Intrinsic::amdgcn_rcp: return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq: return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq_legacy: if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return emitRemovedIntrinsicError(DAG, DL, VT); return SDValue(); case Intrinsic::amdgcn_rcp_legacy: if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return emitRemovedIntrinsicError(DAG, DL, VT); return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq_clamp: { if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); Type *Type = VT.getTypeForEVT(*DAG.getContext()); APFloat Max = APFloat::getLargest(Type->getFltSemantics()); APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, DAG.getConstantFP(Max, DL, VT)); return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, DAG.getConstantFP(Min, DL, VT)); } case Intrinsic::r600_read_ngroups_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_X, Align(4), false); case Intrinsic::r600_read_ngroups_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Y, Align(4), false); case Intrinsic::r600_read_ngroups_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Z, Align(4), false); case Intrinsic::r600_read_global_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_X, Align(4), false); case Intrinsic::r600_read_global_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Y, Align(4), false); case Intrinsic::r600_read_global_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Z, Align(4), false); case Intrinsic::r600_read_local_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_X); case Intrinsic::r600_read_local_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Y); case Intrinsic::r600_read_local_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Z); case Intrinsic::amdgcn_workgroup_id_x: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_X); case Intrinsic::amdgcn_workgroup_id_y: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); case Intrinsic::amdgcn_workgroup_id_z: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); case Intrinsic::amdgcn_lds_kernel_id: { if (MFI->isEntryFunction()) return getLDSKernelId(DAG, DL); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::LDS_KERNEL_ID); } case Intrinsic::amdgcn_workitem_id_x: return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); case Intrinsic::amdgcn_workitem_id_y: return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); case Intrinsic::amdgcn_workitem_id_z: return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); case Intrinsic::amdgcn_wavefrontsize: return DAG.getConstant(MF.getSubtarget().getWavefrontSize(), SDLoc(Op), MVT::i32); case Intrinsic::amdgcn_s_buffer_load: { unsigned CPol = cast(Op.getOperand(3))->getZExtValue(); if (CPol & ~AMDGPU::CPol::ALL) return Op; return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), DAG); } case Intrinsic::amdgcn_fdiv_fast: return lowerFDIV_FAST(Op, DAG); case Intrinsic::amdgcn_sin: return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_cos: return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_mul_u24: return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_mul_i24: return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_log_clamp: { if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) return SDValue(); return emitRemovedIntrinsicError(DAG, DL, VT); } case Intrinsic::amdgcn_ldexp: return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_fract: return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_class: return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_div_fmas: return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); case Intrinsic::amdgcn_div_fixup: return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_div_scale: { const ConstantSDNode *Param = cast(Op.getOperand(3)); // Translate to the operands expected by the machine instruction. The // first parameter must be the same as the first instruction. SDValue Numerator = Op.getOperand(1); SDValue Denominator = Op.getOperand(2); // Note this order is opposite of the machine instruction's operations, // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The // intrinsic has the numerator as the first operand to match a normal // division operation. SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, Denominator, Numerator); } case Intrinsic::amdgcn_icmp: { // There is a Pat that handles this variant, so return it as-is. if (Op.getOperand(1).getValueType() == MVT::i1 && Op.getConstantOperandVal(2) == 0 && Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) return Op; return lowerICMPIntrinsic(*this, Op.getNode(), DAG); } case Intrinsic::amdgcn_fcmp: { return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); } case Intrinsic::amdgcn_ballot: return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); case Intrinsic::amdgcn_fmed3: return DAG.getNode(AMDGPUISD::FMED3, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_fdot2: return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); case Intrinsic::amdgcn_fmul_legacy: return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_sffbh: return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_sbfe: return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_ubfe: return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_cvt_pkrtz: case Intrinsic::amdgcn_cvt_pknorm_i16: case Intrinsic::amdgcn_cvt_pknorm_u16: case Intrinsic::amdgcn_cvt_pk_i16: case Intrinsic::amdgcn_cvt_pk_u16: { // FIXME: Stop adding cast if v2f16/v2i16 are legal. EVT VT = Op.getValueType(); unsigned Opcode; if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) Opcode = AMDGPUISD::CVT_PK_I16_I32; else Opcode = AMDGPUISD::CVT_PK_U16_U32; if (isTypeLegal(VT)) return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, Op.getOperand(1), Op.getOperand(2)); return DAG.getNode(ISD::BITCAST, DL, VT, Node); } case Intrinsic::amdgcn_fmad_ftz: return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_if_break: return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, Op->getOperand(1), Op->getOperand(2)), 0); case Intrinsic::amdgcn_groupstaticsize: { Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) return Op; const Module *M = MF.getFunction().getParent(); const GlobalValue *GV = M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, SIInstrInfo::MO_ABS32_LO); return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; } case Intrinsic::amdgcn_is_shared: case Intrinsic::amdgcn_is_private: { SDLoc SL(Op); unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; SDValue Aperture = getSegmentAperture(AS, SL, DAG); SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, DAG.getConstant(1, SL, MVT::i32)); return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); } case Intrinsic::amdgcn_perm: return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_reloc_constant: { Module *M = const_cast(MF.getFunction().getParent()); const MDNode *Metadata = cast(Op.getOperand(1))->getMD(); auto SymbolName = cast(Metadata->getOperand(0))->getString(); auto RelocSymbol = cast( M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, SIInstrInfo::MO_ABS32_LO); return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; } default: if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) return lowerImage(Op, ImageDimIntr, DAG, false); return Op; } } /// Update \p MMO based on the offset inputs to an intrinsic. static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset, SDValue SOffset, SDValue Offset, SDValue VIndex = SDValue()) { if (!isa(VOffset) || !isa(SOffset) || !isa(Offset)) { // The combined offset is not known to be constant, so we cannot represent // it in the MMO. Give up. MMO->setValue((Value *)nullptr); return; } if (VIndex && (!isa(VIndex) || !cast(VIndex)->isZero())) { // The strided index component of the address is not known to be zero, so we // cannot represent it in the MMO. Give up. MMO->setValue((Value *)nullptr); return; } MMO->setOffset(cast(VOffset)->getSExtValue() + cast(SOffset)->getSExtValue() + cast(Offset)->getSExtValue()); } SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, unsigned NewOpcode) const { SDLoc DL(Op); SDValue VData = Op.getOperand(2); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain VData, // vdata Op.getOperand(3), // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset Op.getOperand(5), // soffset Offsets.second, // offset Op.getOperand(6), // cachepolicy DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); EVT MemVT = VData.getValueType(); return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, M->getMemOperand()); } // Return a value to use for the idxen operand by examining the vindex operand. static unsigned getIdxEn(SDValue VIndex) { if (auto VIndexC = dyn_cast(VIndex)) // No need to set idxen if vindex is known to be zero. return VIndexC->getZExtValue() != 0; return 1; } SDValue SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, unsigned NewOpcode) const { SDLoc DL(Op); SDValue VData = Op.getOperand(2); auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain VData, // vdata Op.getOperand(3), // rsrc Op.getOperand(4), // vindex Offsets.first, // voffset Op.getOperand(6), // soffset Offsets.second, // offset Op.getOperand(7), // cachepolicy DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); EVT MemVT = VData.getValueType(); return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, M->getMemOperand()); } SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntrID = cast(Op.getOperand(1))->getZExtValue(); SDLoc DL(Op); switch (IntrID) { case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: { MemSDNode *M = cast(Op); SDValue Chain = M->getOperand(0); SDValue M0 = M->getOperand(2); SDValue Value = M->getOperand(3); unsigned IndexOperand = M->getConstantOperandVal(7); unsigned WaveRelease = M->getConstantOperandVal(8); unsigned WaveDone = M->getConstantOperandVal(9); unsigned OrderedCountIndex = IndexOperand & 0x3f; IndexOperand &= ~0x3f; unsigned CountDw = 0; if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { CountDw = (IndexOperand >> 24) & 0xf; IndexOperand &= ~(0xf << 24); if (CountDw < 1 || CountDw > 4) { report_fatal_error( "ds_ordered_count: dword count must be between 1 and 4"); } } if (IndexOperand) report_fatal_error("ds_ordered_count: bad index operand"); if (WaveDone && !WaveRelease) report_fatal_error("ds_ordered_count: wave_done requires wave_release"); unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; unsigned ShaderType = SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); unsigned Offset0 = OrderedCountIndex << 2; unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) Offset1 |= (CountDw - 1) << 6; if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) Offset1 |= ShaderType << 2; unsigned Offset = Offset0 | (Offset1 << 8); SDValue Ops[] = { Chain, Value, DAG.getTargetConstant(Offset, DL, MVT::i16), copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue }; return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, M->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_ds_fadd: { MemSDNode *M = cast(Op); unsigned Opc; switch (IntrID) { case Intrinsic::amdgcn_ds_fadd: Opc = ISD::ATOMIC_LOAD_FADD; break; } return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(), M->getOperand(0), M->getOperand(2), M->getOperand(3), M->getMemOperand()); } case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: case Intrinsic::amdgcn_ds_fmin: case Intrinsic::amdgcn_ds_fmax: { MemSDNode *M = cast(Op); unsigned Opc; switch (IntrID) { case Intrinsic::amdgcn_atomic_inc: Opc = AMDGPUISD::ATOMIC_INC; break; case Intrinsic::amdgcn_atomic_dec: Opc = AMDGPUISD::ATOMIC_DEC; break; case Intrinsic::amdgcn_ds_fmin: Opc = AMDGPUISD::ATOMIC_LOAD_FMIN; break; case Intrinsic::amdgcn_ds_fmax: Opc = AMDGPUISD::ATOMIC_LOAD_FMAX; break; default: llvm_unreachable("Unknown intrinsic!"); } SDValue Ops[] = { M->getOperand(0), // Chain M->getOperand(2), // Ptr M->getOperand(3) // Value }; return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_buffer_load: case Intrinsic::amdgcn_buffer_load_format: { unsigned Glc = cast(Op.getOperand(5))->getZExtValue(); unsigned Slc = cast(Op.getOperand(6))->getZExtValue(); unsigned IdxEn = getIdxEn(Op.getOperand(3)); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc Op.getOperand(3), // vindex SDValue(), // voffset -- will be set by setBufferOffsets SDValue(), // soffset -- will be set by setBufferOffsets SDValue(), // offset -- will be set by setBufferOffsets DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen }; setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]); unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; EVT VT = Op.getValueType(); EVT IntVT = VT.changeTypeToInteger(); auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); EVT LoadVT = Op.getValueType(); if (LoadVT.getScalarType() == MVT::f16) return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics if (LoadVT.getScalarType() == MVT::i8 || LoadVT.getScalarType() == MVT::i16) return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M); return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, M->getMemOperand(), DAG); } case Intrinsic::amdgcn_raw_buffer_load: case Intrinsic::amdgcn_raw_buffer_load_format: { const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format; auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset Op.getOperand(4), // soffset Offsets.second, // offset Op.getOperand(5), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]); return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); } case Intrinsic::amdgcn_struct_buffer_load: case Intrinsic::amdgcn_struct_buffer_load_format: { const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format; auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc Op.getOperand(3), // vindex Offsets.first, // voffset Op.getOperand(5), // soffset Offsets.second, // offset Op.getOperand(6), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]); return lowerIntrinsicLoad(cast(Op), IsFormat, DAG, Ops); } case Intrinsic::amdgcn_tbuffer_load: { MemSDNode *M = cast(Op); EVT LoadVT = Op.getValueType(); unsigned Dfmt = cast(Op.getOperand(7))->getZExtValue(); unsigned Nfmt = cast(Op.getOperand(8))->getZExtValue(); unsigned Glc = cast(Op.getOperand(9))->getZExtValue(); unsigned Slc = cast(Op.getOperand(10))->getZExtValue(); unsigned IdxEn = getIdxEn(Op.getOperand(3)); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc Op.getOperand(3), // vindex Op.getOperand(4), // voffset Op.getOperand(5), // soffset Op.getOperand(6), // offset DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen }; if (LoadVT.getScalarType() == MVT::f16) return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG, Ops); return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, Op->getVTList(), Ops, LoadVT, M->getMemOperand(), DAG); } case Intrinsic::amdgcn_raw_tbuffer_load: { MemSDNode *M = cast(Op); EVT LoadVT = Op.getValueType(); auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset Op.getOperand(4), // soffset Offsets.second, // offset Op.getOperand(5), // format Op.getOperand(6), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; if (LoadVT.getScalarType() == MVT::f16) return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG, Ops); return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, Op->getVTList(), Ops, LoadVT, M->getMemOperand(), DAG); } case Intrinsic::amdgcn_struct_tbuffer_load: { MemSDNode *M = cast(Op); EVT LoadVT = Op.getValueType(); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc Op.getOperand(3), // vindex Offsets.first, // voffset Op.getOperand(5), // soffset Offsets.second, // offset Op.getOperand(6), // format Op.getOperand(7), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; if (LoadVT.getScalarType() == MVT::f16) return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG, Ops); return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, Op->getVTList(), Ops, LoadVT, M->getMemOperand(), DAG); } case Intrinsic::amdgcn_buffer_atomic_swap: case Intrinsic::amdgcn_buffer_atomic_add: case Intrinsic::amdgcn_buffer_atomic_sub: case Intrinsic::amdgcn_buffer_atomic_csub: case Intrinsic::amdgcn_buffer_atomic_smin: case Intrinsic::amdgcn_buffer_atomic_umin: case Intrinsic::amdgcn_buffer_atomic_smax: case Intrinsic::amdgcn_buffer_atomic_umax: case Intrinsic::amdgcn_buffer_atomic_and: case Intrinsic::amdgcn_buffer_atomic_or: case Intrinsic::amdgcn_buffer_atomic_xor: case Intrinsic::amdgcn_buffer_atomic_fadd: { unsigned Slc = cast(Op.getOperand(6))->getZExtValue(); unsigned IdxEn = getIdxEn(Op.getOperand(4)); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // vdata Op.getOperand(3), // rsrc Op.getOperand(4), // vindex SDValue(), // voffset -- will be set by setBufferOffsets SDValue(), // soffset -- will be set by setBufferOffsets SDValue(), // offset -- will be set by setBufferOffsets DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen }; setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); EVT VT = Op.getValueType(); auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); unsigned Opcode = 0; switch (IntrID) { case Intrinsic::amdgcn_buffer_atomic_swap: Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; break; case Intrinsic::amdgcn_buffer_atomic_add: Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; break; case Intrinsic::amdgcn_buffer_atomic_sub: Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; break; case Intrinsic::amdgcn_buffer_atomic_csub: Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB; break; case Intrinsic::amdgcn_buffer_atomic_smin: Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; break; case Intrinsic::amdgcn_buffer_atomic_umin: Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; break; case Intrinsic::amdgcn_buffer_atomic_smax: Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; break; case Intrinsic::amdgcn_buffer_atomic_umax: Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; break; case Intrinsic::amdgcn_buffer_atomic_and: Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; break; case Intrinsic::amdgcn_buffer_atomic_or: Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; break; case Intrinsic::amdgcn_buffer_atomic_xor: Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; break; case Intrinsic::amdgcn_buffer_atomic_fadd: Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD; break; default: llvm_unreachable("unhandled atomic opcode"); } return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, M->getMemOperand()); } case Intrinsic::amdgcn_raw_buffer_atomic_fadd: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); case Intrinsic::amdgcn_struct_buffer_atomic_fadd: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); case Intrinsic::amdgcn_raw_buffer_atomic_fmin: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); case Intrinsic::amdgcn_struct_buffer_atomic_fmin: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); case Intrinsic::amdgcn_raw_buffer_atomic_fmax: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); case Intrinsic::amdgcn_struct_buffer_atomic_fmax: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); case Intrinsic::amdgcn_raw_buffer_atomic_swap: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); case Intrinsic::amdgcn_raw_buffer_atomic_add: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); case Intrinsic::amdgcn_raw_buffer_atomic_sub: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); case Intrinsic::amdgcn_raw_buffer_atomic_smin: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); case Intrinsic::amdgcn_raw_buffer_atomic_umin: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); case Intrinsic::amdgcn_raw_buffer_atomic_smax: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); case Intrinsic::amdgcn_raw_buffer_atomic_umax: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); case Intrinsic::amdgcn_raw_buffer_atomic_and: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); case Intrinsic::amdgcn_raw_buffer_atomic_or: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); case Intrinsic::amdgcn_raw_buffer_atomic_xor: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); case Intrinsic::amdgcn_raw_buffer_atomic_inc: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); case Intrinsic::amdgcn_raw_buffer_atomic_dec: return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); case Intrinsic::amdgcn_struct_buffer_atomic_swap: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); case Intrinsic::amdgcn_struct_buffer_atomic_add: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); case Intrinsic::amdgcn_struct_buffer_atomic_sub: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); case Intrinsic::amdgcn_struct_buffer_atomic_smin: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); case Intrinsic::amdgcn_struct_buffer_atomic_umin: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); case Intrinsic::amdgcn_struct_buffer_atomic_smax: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); case Intrinsic::amdgcn_struct_buffer_atomic_umax: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); case Intrinsic::amdgcn_struct_buffer_atomic_and: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); case Intrinsic::amdgcn_struct_buffer_atomic_or: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); case Intrinsic::amdgcn_struct_buffer_atomic_xor: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); case Intrinsic::amdgcn_struct_buffer_atomic_inc: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); case Intrinsic::amdgcn_struct_buffer_atomic_dec: return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); case Intrinsic::amdgcn_buffer_atomic_cmpswap: { unsigned Slc = cast(Op.getOperand(7))->getZExtValue(); unsigned IdxEn = getIdxEn(Op.getOperand(5)); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // src Op.getOperand(3), // cmp Op.getOperand(4), // rsrc Op.getOperand(5), // vindex SDValue(), // voffset -- will be set by setBufferOffsets SDValue(), // soffset -- will be set by setBufferOffsets SDValue(), // offset -- will be set by setBufferOffsets DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen }; setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]); EVT VT = Op.getValueType(); auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, Op->getVTList(), Ops, VT, M->getMemOperand()); } case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: { auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // src Op.getOperand(3), // cmp Op.getOperand(4), // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset Op.getOperand(6), // soffset Offsets.second, // offset Op.getOperand(7), // cachepolicy DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; EVT VT = Op.getValueType(); auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]); return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, Op->getVTList(), Ops, VT, M->getMemOperand()); } case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: { auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // src Op.getOperand(3), // cmp Op.getOperand(4), // rsrc Op.getOperand(5), // vindex Offsets.first, // voffset Op.getOperand(7), // soffset Offsets.second, // offset Op.getOperand(8), // cachepolicy DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; EVT VT = Op.getValueType(); auto *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]); return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, Op->getVTList(), Ops, VT, M->getMemOperand()); } case Intrinsic::amdgcn_image_bvh_intersect_ray: { MemSDNode *M = cast(Op); SDValue NodePtr = M->getOperand(2); SDValue RayExtent = M->getOperand(3); SDValue RayOrigin = M->getOperand(4); SDValue RayDir = M->getOperand(5); SDValue RayInvDir = M->getOperand(6); SDValue TDescr = M->getOperand(7); assert(NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64); assert(RayDir.getValueType() == MVT::v3f16 || RayDir.getValueType() == MVT::v3f32); if (!Subtarget->hasGFX10_AEncoding()) { emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); return SDValue(); } const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; const bool Is64 = NodePtr.getValueType() == MVT::i64; const unsigned NumVDataDwords = 4; const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; const bool UseNSA = Subtarget->hasNSAEncoding() && NumVAddrs <= Subtarget->getNSAMaxSize(); const unsigned BaseOpcodes[2][2] = { {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; int Opcode; if (UseNSA) { Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], IsGFX11Plus ? AMDGPU::MIMGEncGfx11NSA : AMDGPU::MIMGEncGfx10NSA, NumVDataDwords, NumVAddrDwords); } else { Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], IsGFX11Plus ? AMDGPU::MIMGEncGfx11Default : AMDGPU::MIMGEncGfx10Default, NumVDataDwords, NumVAddrDwords); } assert(Opcode != -1); SmallVector Ops; auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { SmallVector Lanes; DAG.ExtractVectorElements(Op, Lanes, 0, 3); if (Lanes[0].getValueSizeInBits() == 32) { for (unsigned I = 0; I < 3; ++I) Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); } else { if (IsAligned) { Ops.push_back( DAG.getBitcast(MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, { Lanes[0], Lanes[1] }))); Ops.push_back(Lanes[2]); } else { SDValue Elt0 = Ops.pop_back_val(); Ops.push_back( DAG.getBitcast(MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, { Elt0, Lanes[0] }))); Ops.push_back( DAG.getBitcast(MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, { Lanes[1], Lanes[2] }))); } } }; if (UseNSA && IsGFX11Plus) { Ops.push_back(NodePtr); Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); Ops.push_back(RayOrigin); if (IsA16) { SmallVector DirLanes, InvDirLanes, MergedLanes; DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); for (unsigned I = 0; I < 3; ++I) { MergedLanes.push_back(DAG.getBitcast( MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, {DirLanes[I], InvDirLanes[I]}))); } Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); } else { Ops.push_back(RayDir); Ops.push_back(RayInvDir); } } else { if (Is64) DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2); else Ops.push_back(NodePtr); Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); packLanes(RayOrigin, true); packLanes(RayDir, true); packLanes(RayInvDir, false); } if (!UseNSA) { // Build a single vector containing all the operands so far prepared. if (NumVAddrDwords > 12) { SDValue Undef = DAG.getUNDEF(MVT::i32); Ops.append(16 - Ops.size(), Undef); } assert(Ops.size() >= 8 && Ops.size() <= 12); SDValue MergedOps = DAG.getBuildVector( MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops); Ops.clear(); Ops.push_back(MergedOps); } Ops.push_back(TDescr); if (IsA16) Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1)); Ops.push_back(M->getChain()); auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); MachineMemOperand *MemRef = M->getMemOperand(); DAG.setNodeMemRefs(NewNode, {MemRef}); return SDValue(NewNode, 0); } case Intrinsic::amdgcn_global_atomic_fadd: { if (!Subtarget->hasAtomicFaddNoRtnInsts()) return makeV_ILLEGAL(Op, DAG); return SDValue(); } case Intrinsic::amdgcn_global_atomic_fmin: case Intrinsic::amdgcn_global_atomic_fmax: case Intrinsic::amdgcn_flat_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmax: { MemSDNode *M = cast(Op); SDValue Ops[] = { M->getOperand(0), // Chain M->getOperand(2), // Ptr M->getOperand(3) // Value }; unsigned Opcode = 0; switch (IntrID) { case Intrinsic::amdgcn_global_atomic_fmin: case Intrinsic::amdgcn_flat_atomic_fmin: { Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN; break; } case Intrinsic::amdgcn_global_atomic_fmax: case Intrinsic::amdgcn_flat_atomic_fmax: { Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX; break; } default: llvm_unreachable("unhandled atomic opcode"); } return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op), M->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } default: if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = AMDGPU::getImageDimIntrinsicInfo(IntrID)) return lowerImage(Op, ImageDimIntr, DAG, true); return SDValue(); } } // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to // dwordx4 if on SI and handle TFE loads. SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, ArrayRef Ops, EVT MemVT, MachineMemOperand *MMO, SelectionDAG &DAG) const { LLVMContext &C = *DAG.getContext(); MachineFunction &MF = DAG.getMachineFunction(); EVT VT = VTList.VTs[0]; assert(VTList.NumVTs == 2 || VTList.NumVTs == 3); bool IsTFE = VTList.NumVTs == 3; if (IsTFE) { unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32); unsigned NumOpDWords = NumValueDWords + 1; EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords); SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]); MachineMemOperand *OpDWordsMMO = MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4); SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops, OpDWordsVT, OpDWordsMMO, DAG); SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, DAG.getVectorIdxConstant(NumValueDWords, DL)); SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); SDValue ValueDWords = NumValueDWords == 1 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx) : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op, ZeroIdx); SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords); return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); } if (!Subtarget->hasDwordx3LoadStores() && (VT == MVT::v3i32 || VT == MVT::v3f32)) { EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4); EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4); MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16); SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, WidenedMemVT, WidenedMMO); SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op, DAG.getVectorIdxConstant(0, DL)); return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL); } return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO); } SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, bool ImageStore) const { EVT StoreVT = VData.getValueType(); // No change for f16 and legal vector D16 types. if (!StoreVT.isVector()) return VData; SDLoc DL(VData); unsigned NumElements = StoreVT.getVectorNumElements(); if (Subtarget->hasUnpackedD16VMem()) { // We need to unpack the packed data to store. EVT IntStoreVT = StoreVT.changeTypeToInteger(); SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); return DAG.UnrollVectorOp(ZExt.getNode()); } // The sq block of gfx8.1 does not estimate register use correctly for d16 // image store instructions. The data operand is computed as if it were not a // d16 image instruction. if (ImageStore && Subtarget->hasImageStoreD16Bug()) { // Bitcast to i16 EVT IntStoreVT = StoreVT.changeTypeToInteger(); SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); // Decompose into scalars SmallVector Elts; DAG.ExtractVectorElements(IntVData, Elts); // Group pairs of i16 into v2i16 and bitcast to i32 SmallVector PackedElts; for (unsigned I = 0; I < Elts.size() / 2; I += 1) { SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); PackedElts.push_back(IntPair); } if ((NumElements % 2) == 1) { // Handle v3i16 unsigned I = Elts.size() / 2; SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); PackedElts.push_back(IntPair); } // Pad using UNDEF PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); // Build final vector EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); return DAG.getBuildVector(VecVT, DL, PackedElts); } if (NumElements == 3) { EVT IntStoreVT = EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); EVT WidenedStoreVT = EVT::getVectorVT( *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), WidenedStoreVT.getStoreSizeInBits()); SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); } assert(isTypeLegal(StoreVT)); return VData; } SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Chain = Op.getOperand(0); unsigned IntrinsicID = cast(Op.getOperand(1))->getZExtValue(); MachineFunction &MF = DAG.getMachineFunction(); switch (IntrinsicID) { case Intrinsic::amdgcn_exp_compr: { if (!Subtarget->hasCompressedExport()) { DiagnosticInfoUnsupported BadIntrin( DAG.getMachineFunction().getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); } SDValue Src0 = Op.getOperand(4); SDValue Src1 = Op.getOperand(5); // Hack around illegal type on SI by directly selecting it. if (isTypeLegal(Src0.getValueType())) return SDValue(); const ConstantSDNode *Done = cast(Op.getOperand(6)); SDValue Undef = DAG.getUNDEF(MVT::f32); const SDValue Ops[] = { Op.getOperand(2), // tgt DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 Undef, // src2 Undef, // src3 Op.getOperand(7), // vm DAG.getTargetConstant(1, DL, MVT::i1), // compr Op.getOperand(3), // en Op.getOperand(0) // Chain }; unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); } case Intrinsic::amdgcn_s_barrier: { if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { const GCNSubtarget &ST = MF.getSubtarget(); unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; if (WGSize <= ST.getWavefrontSize()) return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, Op.getOperand(0)), 0); } return SDValue(); }; case Intrinsic::amdgcn_tbuffer_store: { SDValue VData = Op.getOperand(2); bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); if (IsD16) VData = handleD16VData(VData, DAG); unsigned Dfmt = cast(Op.getOperand(8))->getZExtValue(); unsigned Nfmt = cast(Op.getOperand(9))->getZExtValue(); unsigned Glc = cast(Op.getOperand(10))->getZExtValue(); unsigned Slc = cast(Op.getOperand(11))->getZExtValue(); unsigned IdxEn = getIdxEn(Op.getOperand(4)); SDValue Ops[] = { Chain, VData, // vdata Op.getOperand(3), // rsrc Op.getOperand(4), // vindex Op.getOperand(5), // voffset Op.getOperand(6), // soffset Op.getOperand(7), // offset DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen }; unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : AMDGPUISD::TBUFFER_STORE_FORMAT; MemSDNode *M = cast(Op); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_struct_tbuffer_store: { SDValue VData = Op.getOperand(2); bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); if (IsD16) VData = handleD16VData(VData, DAG); auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); SDValue Ops[] = { Chain, VData, // vdata Op.getOperand(3), // rsrc Op.getOperand(4), // vindex Offsets.first, // voffset Op.getOperand(6), // soffset Offsets.second, // offset Op.getOperand(7), // format Op.getOperand(8), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : AMDGPUISD::TBUFFER_STORE_FORMAT; MemSDNode *M = cast(Op); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_raw_tbuffer_store: { SDValue VData = Op.getOperand(2); bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); if (IsD16) VData = handleD16VData(VData, DAG); auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); SDValue Ops[] = { Chain, VData, // vdata Op.getOperand(3), // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset Op.getOperand(5), // soffset Offsets.second, // offset Op.getOperand(6), // format Op.getOperand(7), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : AMDGPUISD::TBUFFER_STORE_FORMAT; MemSDNode *M = cast(Op); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_buffer_store: case Intrinsic::amdgcn_buffer_store_format: { SDValue VData = Op.getOperand(2); bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); if (IsD16) VData = handleD16VData(VData, DAG); unsigned Glc = cast(Op.getOperand(6))->getZExtValue(); unsigned Slc = cast(Op.getOperand(7))->getZExtValue(); unsigned IdxEn = getIdxEn(Op.getOperand(4)); SDValue Ops[] = { Chain, VData, Op.getOperand(3), // rsrc Op.getOperand(4), // vindex SDValue(), // voffset -- will be set by setBufferOffsets SDValue(), // soffset -- will be set by setBufferOffsets SDValue(), // offset -- will be set by setBufferOffsets DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen }; setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]); unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; MemSDNode *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics EVT VDataType = VData.getValueType().getScalarType(); if (VDataType == MVT::i8 || VDataType == MVT::i16) return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_raw_buffer_store: case Intrinsic::amdgcn_raw_buffer_store_format: { const bool IsFormat = IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format; SDValue VData = Op.getOperand(2); EVT VDataVT = VData.getValueType(); EVT EltType = VDataVT.getScalarType(); bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); if (IsD16) { VData = handleD16VData(VData, DAG); VDataVT = VData.getValueType(); } if (!isTypeLegal(VDataVT)) { VData = DAG.getNode(ISD::BITCAST, DL, getEquivalentMemType(*DAG.getContext(), VDataVT), VData); } auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); SDValue Ops[] = { Chain, VData, Op.getOperand(3), // rsrc DAG.getConstant(0, DL, MVT::i32), // vindex Offsets.first, // voffset Op.getOperand(5), // soffset Offsets.second, // offset Op.getOperand(6), // cachepolicy, swizzled buffer DAG.getTargetConstant(0, DL, MVT::i1), // idxen }; unsigned Opc = IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; MemSDNode *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]); // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_struct_buffer_store: case Intrinsic::amdgcn_struct_buffer_store_format: { const bool IsFormat = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format; SDValue VData = Op.getOperand(2); EVT VDataVT = VData.getValueType(); EVT EltType = VDataVT.getScalarType(); bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); if (IsD16) { VData = handleD16VData(VData, DAG); VDataVT = VData.getValueType(); } if (!isTypeLegal(VDataVT)) { VData = DAG.getNode(ISD::BITCAST, DL, getEquivalentMemType(*DAG.getContext(), VDataVT), VData); } auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); SDValue Ops[] = { Chain, VData, Op.getOperand(3), // rsrc Op.getOperand(4), // vindex Offsets.first, // voffset Op.getOperand(6), // soffset Offsets.second, // offset Op.getOperand(7), // cachepolicy, swizzled buffer DAG.getTargetConstant(1, DL, MVT::i1), // idxen }; unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; MemSDNode *M = cast(Op); updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]); // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics EVT VDataType = VData.getValueType().getScalarType(); if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_raw_buffer_load_lds: case Intrinsic::amdgcn_struct_buffer_load_lds: { unsigned Opc; bool HasVIndex = IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds; unsigned OpOffset = HasVIndex ? 1 : 0; SDValue VOffset = Op.getOperand(5 + OpOffset); auto CVOffset = dyn_cast(VOffset); bool HasVOffset = !CVOffset || !CVOffset->isZero(); unsigned Size = Op->getConstantOperandVal(4); switch (Size) { default: return SDValue(); case 1: Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; break; case 2: Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; break; case 4: Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; break; } SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); SmallVector Ops; if (HasVIndex && HasVOffset) Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, { Op.getOperand(5), // VIndex VOffset })); else if (HasVIndex) Ops.push_back(Op.getOperand(5)); else if (HasVOffset) Ops.push_back(VOffset); Ops.push_back(Op.getOperand(2)); // rsrc Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); Ops.push_back( DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol Ops.push_back( DAG.getTargetConstant((Aux >> 3) & 1, DL, MVT::i8)); // swz Ops.push_back(M0Val.getValue(0)); // Chain Ops.push_back(M0Val.getValue(1)); // Glue auto *M = cast(Op); MachineMemOperand *LoadMMO = M->getMemOperand(); MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); LoadPtrI.Offset = Op->getConstantOperandVal(7 + OpOffset); MachinePointerInfo StorePtrI = LoadPtrI; StorePtrI.V = nullptr; StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; auto F = LoadMMO->getFlags() & ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, LoadMMO->getBaseAlign()); MachineMemOperand *StoreMMO = MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), LoadMMO->getBaseAlign()); auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); return SDValue(Load, 0); } case Intrinsic::amdgcn_global_load_lds: { unsigned Opc; unsigned Size = Op->getConstantOperandVal(4); switch (Size) { default: return SDValue(); case 1: Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; break; case 2: Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; break; case 4: Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; break; } auto *M = cast(Op); SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); SmallVector Ops; SDValue Addr = Op.getOperand(2); // Global ptr SDValue VOffset; // Try to split SAddr and VOffset. Global and LDS pointers share the same // immediate offset, so we cannot use a regular SelectGlobalSAddr(). if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { SDValue LHS = Addr.getOperand(0); SDValue RHS = Addr.getOperand(1); if (LHS->isDivergent()) std::swap(LHS, RHS); if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && RHS.getOperand(0).getValueType() == MVT::i32) { // add (i64 sgpr), (zero_extend (i32 vgpr)) Addr = LHS; VOffset = RHS.getOperand(0); } } Ops.push_back(Addr); if (!Addr->isDivergent()) { Opc = AMDGPU::getGlobalSaddrOp(Opc); if (!VOffset) VOffset = SDValue( DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, DAG.getTargetConstant(0, DL, MVT::i32)), 0); Ops.push_back(VOffset); } Ops.push_back(Op.getOperand(5)); // Offset Ops.push_back(Op.getOperand(6)); // CPol Ops.push_back(M0Val.getValue(0)); // Chain Ops.push_back(M0Val.getValue(1)); // Glue MachineMemOperand *LoadMMO = M->getMemOperand(); MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); LoadPtrI.Offset = Op->getConstantOperandVal(5); MachinePointerInfo StorePtrI = LoadPtrI; LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; auto F = LoadMMO->getFlags() & ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); LoadMMO = MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, LoadMMO->getBaseAlign()); MachineMemOperand *StoreMMO = MF.getMachineMemOperand(StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4)); auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); return SDValue(Load, 0); } case Intrinsic::amdgcn_end_cf: return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, Op->getOperand(2), Chain), 0); default: { if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) return lowerImage(Op, ImageDimIntr, DAG, true); return Op; } } } SDValue SITargetLowering::makeV_ILLEGAL(SDValue Op, SelectionDAG & DAG) const { // Create the V_ILLEGAL node. SDLoc DL(Op); auto Opcode = Subtarget->getGeneration() < AMDGPUSubtarget::GFX10 ? AMDGPU::V_ILLEGAL_gfx6_gfx7_gfx8_gfx9 : AMDGPU::V_ILLEGAL; auto EntryNode = DAG.getEntryNode(); auto IllegalNode = DAG.getMachineNode(Opcode, DL, MVT::Other, EntryNode); auto IllegalVal = SDValue(IllegalNode, 0u); // Add the V_ILLEGAL node to the root chain to prevent its removal. auto Chains = SmallVector(); Chains.push_back(IllegalVal); Chains.push_back(DAG.getRoot()); auto Root = DAG.getTokenFactor(SDLoc(Chains.back()), Chains); DAG.setRoot(Root); // Merge with UNDEF to satisfy return value requirements. auto UndefVal = DAG.getUNDEF(Op.getValueType()); return DAG.getMergeValues({UndefVal, IllegalVal}, DL); } // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: // offset (the offset that is included in bounds checking and swizzling, to be // split between the instruction's voffset and immoffset fields) and soffset // (the offset that is excluded from bounds checking and swizzling, to go in // the instruction's soffset field). This function takes the first kind of // offset and figures out how to split it between voffset and immoffset. std::pair SITargetLowering::splitBufferOffsets( SDValue Offset, SelectionDAG &DAG) const { SDLoc DL(Offset); const unsigned MaxImm = 4095; SDValue N0 = Offset; ConstantSDNode *C1 = nullptr; if ((C1 = dyn_cast(N0))) N0 = SDValue(); else if (DAG.isBaseWithConstantOffset(N0)) { C1 = cast(N0.getOperand(1)); N0 = N0.getOperand(0); } if (C1) { unsigned ImmOffset = C1->getZExtValue(); // If the immediate value is too big for the immoffset field, put the value // and -4096 into the immoffset field so that the value that is copied/added // for the voffset field is a multiple of 4096, and it stands more chance // of being CSEd with the copy/add for another similar load/store. // However, do not do that rounding down to a multiple of 4096 if that is a // negative number, as it appears to be illegal to have a negative offset // in the vgpr, even if adding the immediate offset makes it positive. unsigned Overflow = ImmOffset & ~MaxImm; ImmOffset -= Overflow; if ((int32_t)Overflow < 0) { Overflow += ImmOffset; ImmOffset = 0; } C1 = cast(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); if (Overflow) { auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); if (!N0) N0 = OverflowVal; else { SDValue Ops[] = { N0, OverflowVal }; N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); } } } if (!N0) N0 = DAG.getConstant(0, DL, MVT::i32); if (!C1) C1 = cast(DAG.getTargetConstant(0, DL, MVT::i32)); return {N0, SDValue(C1, 0)}; } // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the // three offsets (voffset, soffset and instoffset) into the SDValue[3] array // pointed to by Offsets. void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, SelectionDAG &DAG, SDValue *Offsets, Align Alignment) const { SDLoc DL(CombinedOffset); if (auto C = dyn_cast(CombinedOffset)) { uint32_t Imm = C->getZExtValue(); uint32_t SOffset, ImmOffset; if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget, Alignment)) { Offsets[0] = DAG.getConstant(0, DL, MVT::i32); Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); return; } } if (DAG.isBaseWithConstantOffset(CombinedOffset)) { SDValue N0 = CombinedOffset.getOperand(0); SDValue N1 = CombinedOffset.getOperand(1); uint32_t SOffset, ImmOffset; int Offset = cast(N1)->getSExtValue(); if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset, Subtarget, Alignment)) { Offsets[0] = N0; Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); return; } } Offsets[0] = CombinedOffset; Offsets[1] = DAG.getConstant(0, DL, MVT::i32); Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); } // Handle 8 bit and 16 bit buffer loads SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, EVT LoadVT, SDLoc DL, ArrayRef Ops, MemSDNode *M) const { EVT IntVT = LoadVT.changeTypeToInteger(); unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, M->getMemOperand()); SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); } // Handle 8 bit and 16 bit buffer stores SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, EVT VDataType, SDLoc DL, SDValue Ops[], MemSDNode *M) const { if (VDataType == MVT::f16) Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); Ops[1] = BufferStoreExt; unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : AMDGPUISD::BUFFER_STORE_SHORT; ArrayRef OpsRef = ArrayRef(&Ops[0], 9); return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, M->getMemOperand()); } static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, ISD::LoadExtType ExtType, SDValue Op, const SDLoc &SL, EVT VT) { if (VT.bitsLT(Op.getValueType())) return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); switch (ExtType) { case ISD::SEXTLOAD: return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); case ISD::ZEXTLOAD: return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); case ISD::EXTLOAD: return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); case ISD::NON_EXTLOAD: return Op; } llvm_unreachable("invalid ext type"); } SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; if (Ld->getAlign() < Align(4) || Ld->isDivergent()) return SDValue(); // FIXME: Constant loads should all be marked invariant. unsigned AS = Ld->getAddressSpace(); if (AS != AMDGPUAS::CONSTANT_ADDRESS && AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) return SDValue(); // Don't do this early, since it may interfere with adjacent load merging for // illegal types. We can avoid losing alignment information for exotic types // pre-legalize. EVT MemVT = Ld->getMemoryVT(); if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || MemVT.getSizeInBits() >= 32) return SDValue(); SDLoc SL(Ld); assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && "unexpected vector extload"); // TODO: Drop only high part of range. SDValue Ptr = Ld->getBasePtr(); SDValue NewLoad = DAG.getLoad( ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), nullptr); // Drop ranges EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); if (MemVT.isFloatingPoint()) { assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && "unexpected fp extload"); TruncVT = MemVT.changeTypeToInteger(); } SDValue Cvt = NewLoad; if (Ld->getExtensionType() == ISD::SEXTLOAD) { Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, DAG.getValueType(TruncVT)); } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || Ld->getExtensionType() == ISD::NON_EXTLOAD) { Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); } else { assert(Ld->getExtensionType() == ISD::EXTLOAD); } EVT VT = Ld->getValueType(0); EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); DCI.AddToWorklist(Cvt.getNode()); // We may need to handle exotic cases, such as i16->i64 extloads, so insert // the appropriate extension from the 32-bit load. Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); DCI.AddToWorklist(Cvt.getNode()); // Handle conversion back to floating point if necessary. Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); } SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); LoadSDNode *Load = cast(Op); ISD::LoadExtType ExtType = Load->getExtensionType(); EVT MemVT = Load->getMemoryVT(); if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) return SDValue(); // FIXME: Copied from PPC // First, load into 32 bits, then truncate to 1 bit. SDValue Chain = Load->getChain(); SDValue BasePtr = Load->getBasePtr(); MachineMemOperand *MMO = Load->getMemOperand(); EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, BasePtr, RealMemVT, MMO); if (!MemVT.isVector()) { SDValue Ops[] = { DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), NewLD.getValue(1) }; return DAG.getMergeValues(Ops, DL); } SmallVector Elts; for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, DAG.getConstant(I, DL, MVT::i32)); Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); } SDValue Ops[] = { DAG.getBuildVector(MemVT, DL, Elts), NewLD.getValue(1) }; return DAG.getMergeValues(Ops, DL); } if (!MemVT.isVector()) return SDValue(); assert(Op.getValueType().getVectorElementType() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."); Align Alignment = Load->getAlign(); unsigned AS = Load->getAddressSpace(); if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { return SplitVectorLoad(Op, DAG); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); // If there is a possibility that flat instruction access scratch memory // then we need to use the same legalization rules we use for private. if (AS == AMDGPUAS::FLAT_ADDRESS && !Subtarget->hasMultiDwordFlatScratchAddressing()) AS = MFI->hasFlatScratchInit() ? AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; unsigned NumElements = MemVT.getVectorNumElements(); if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { if (MemVT.isPow2VectorType()) return SDValue(); return WidenOrSplitVectorLoad(Op, DAG); } // Non-uniform loads will be selected to MUBUF instructions, so they // have the same legalization requirements as global and private // loads. // } if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || AS == AMDGPUAS::GLOBAL_ADDRESS) { if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && Alignment >= Align(4) && NumElements < 32) { if (MemVT.isPow2VectorType()) return SDValue(); return WidenOrSplitVectorLoad(Op, DAG); } // Non-uniform loads will be selected to MUBUF instructions, so they // have the same legalization requirements as global and private // loads. // } if (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { if (NumElements > 4) return SplitVectorLoad(Op, DAG); // v3 loads not supported on SI. if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) return WidenOrSplitVectorLoad(Op, DAG); // v3 and v4 loads are supported for private and global memory. return SDValue(); } if (AS == AMDGPUAS::PRIVATE_ADDRESS) { // Depending on the setting of the private_element_size field in the // resource descriptor, we can only make private accesses up to a certain // size. switch (Subtarget->getMaxPrivateElementSize()) { case 4: { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); return DAG.getMergeValues(Ops, DL); } case 8: if (NumElements > 2) return SplitVectorLoad(Op, DAG); return SDValue(); case 16: // Same as global/flat if (NumElements > 4) return SplitVectorLoad(Op, DAG); // v3 loads not supported on SI. if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) return WidenOrSplitVectorLoad(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { unsigned Fast = 0; auto Flags = Load->getMemOperand()->getFlags(); if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, Load->getAlign(), Flags, &Fast) && Fast > 1) return SDValue(); if (MemVT.isVector()) return SplitVectorLoad(Op, DAG); } if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), MemVT, *Load->getMemOperand())) { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); return DAG.getMergeValues(Ops, DL); } return SDValue(); } SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256) return splitTernaryVectorOp(Op, DAG); assert(VT.getSizeInBits() == 64); SDLoc DL(Op); SDValue Cond = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); SDValue One = DAG.getConstant(1, DL, MVT::i32); SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); return DAG.getNode(ISD::BITCAST, DL, VT, Res); } // Catch division cases where we can use shortcuts with rcp and rsq // instructions. SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT VT = Op.getValueType(); const SDNodeFlags Flags = Op->getFlags(); bool AllowInaccurateRcp = Flags.hasApproximateFuncs(); // Without !fpmath accuracy information, we can't do more because we don't // know exactly whether rcp is accurate enough to meet !fpmath requirement. if (!AllowInaccurateRcp) return SDValue(); if (const ConstantFPSDNode *CLHS = dyn_cast(LHS)) { if (CLHS->isExactlyValue(1.0)) { // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to // the CI documentation has a worst case error of 1 ulp. // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to // use it as long as we aren't trying to use denormals. // // v_rcp_f16 and v_rsq_f16 DO support denormals. // 1.0 / sqrt(x) -> rsq(x) // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP // error seems really high at 2^29 ULP. if (RHS.getOpcode() == ISD::FSQRT) return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); // 1.0 / x -> rcp(x) return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); } // Same as for 1.0, but expand the sign out of the constant. if (CLHS->isExactlyValue(-1.0)) { // -1.0 / x -> rcp (fneg x) SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); } } // Turn into multiply by the reciprocal. // x / y -> x * (1.0 / y) SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); } SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); EVT VT = Op.getValueType(); const SDNodeFlags Flags = Op->getFlags(); bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || DAG.getTarget().Options.UnsafeFPMath; if (!AllowInaccurateDiv) return SDValue(); SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); SDValue One = DAG.getConstantFP(1.0, SL, VT); SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); } static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue GlueChain, SDNodeFlags Flags) { if (GlueChain->getNumValues() <= 1) { return DAG.getNode(Opcode, SL, VT, A, B, Flags); } assert(GlueChain->getNumValues() == 3); SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); switch (Opcode) { default: llvm_unreachable("no chain equivalent for opcode"); case ISD::FMUL: Opcode = AMDGPUISD::FMUL_W_CHAIN; break; } return DAG.getNode(Opcode, SL, VTList, {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, Flags); } static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue C, SDValue GlueChain, SDNodeFlags Flags) { if (GlueChain->getNumValues() <= 1) { return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); } assert(GlueChain->getNumValues() == 3); SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); switch (Opcode) { default: llvm_unreachable("no chain equivalent for opcode"); case ISD::FMA: Opcode = AMDGPUISD::FMA_W_CHAIN; break; } return DAG.getNode(Opcode, SL, VTList, {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, Flags); } SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) return FastLowered; SDLoc SL(Op); SDValue Src0 = Op.getOperand(0); SDValue Src1 = Op.getOperand(1); SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); } // Faster 2.5 ULP division that does not support denormals. SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); const APFloat K0Val(BitsToFloat(0x6f800000)); const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); const APFloat K1Val(BitsToFloat(0x2f800000)); const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); // TODO: Should this propagate fast-math-flags? r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); // rcp does not support denormals. SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); } // Returns immediate value for setting the F32 denorm mode when using the // S_DENORM_MODE instruction. static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG, const SDLoc &SL, const GCNSubtarget *ST) { assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction()) ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; int Mode = SPDenormMode | (DPDenormModeDefault << 2); return DAG.getTargetConstant(Mode, SL, MVT::i32); } SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) return FastLowered; // The selection matcher assumes anything with a chain selecting to a // mayRaiseFPException machine instruction. Since we're introducing a chain // here, we need to explicitly report nofpexcept for the regular fdiv // lowering. SDNodeFlags Flags = Op->getFlags(); Flags.setNoFPExcept(true); SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {RHS, RHS, LHS}, Flags); SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {LHS, RHS, LHS}, Flags); // Denominator is scaled to not be denormal, so using rcp is ok. SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled, Flags); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled, Flags); const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction()); if (!HasFP32Denormals) { // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV // lowering. The chain dependence is insufficient, and we need glue. We do // not need the glue variants in a strictfp function. SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDNode *EnableDenorm; if (Subtarget->hasDenormModeInst()) { const SDValue EnableDenormValue = getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget); EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, DAG.getEntryNode(), EnableDenormValue).getNode(); } else { const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, SL, MVT::i32); EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, {EnableDenormValue, BitField, DAG.getEntryNode()}); } SDValue Ops[3] = { NegDivScale0, SDValue(EnableDenorm, 0), SDValue(EnableDenorm, 1) }; NegDivScale0 = DAG.getMergeValues(Ops, SL); } SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One, NegDivScale0, Flags); SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp, Fma0, Flags); SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1, Fma1, Flags); SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled, Mul, Flags); SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2, Flags); SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled, Fma3, Flags); if (!HasFP32Denormals) { SDNode *DisableDenorm; if (Subtarget->hasDenormModeInst()) { const SDValue DisableDenormValue = getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget); DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, Fma4.getValue(1), DisableDenormValue, Fma4.getValue(2)).getNode(); } else { const SDValue DisableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); DisableDenorm = DAG.getMachineNode( AMDGPU::S_SETREG_B32, SL, MVT::Other, {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); } SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, SDValue(DisableDenorm, 0), DAG.getRoot()); DAG.setRoot(OutputChain); } SDValue Scale = NumeratorScaled.getValue(1); SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, {Fma4, Fma1, Fma3, Scale}, Flags); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); } SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) return FastLowered; SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Mul, DivScale1); SDValue Scale; if (!Subtarget->hasUsableDivScaleConditionOutput()) { // Workaround a hardware bug on SI where the condition output from div_scale // is not usable. const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); // Figure out if the scale to use for div_fmas. SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); SDValue Scale0Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); SDValue Scale1Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); } else { Scale = DivScale1.getValue(1); } SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, Fma4, Fma3, Mul, Scale); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); } SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32) return LowerFDIV32(Op, DAG); if (VT == MVT::f64) return LowerFDIV64(Op, DAG); if (VT == MVT::f16) return LowerFDIV16(Op, DAG); llvm_unreachable("Unexpected type for fdiv"); } SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); StoreSDNode *Store = cast(Op); EVT VT = Store->getMemoryVT(); if (VT == MVT::i1) { return DAG.getTruncStore(Store->getChain(), DL, DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), Store->getBasePtr(), MVT::i1, Store->getMemOperand()); } assert(VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32); unsigned AS = Store->getAddressSpace(); if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { return SplitVectorStore(Op, DAG); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); // If there is a possibility that flat instruction access scratch memory // then we need to use the same legalization rules we use for private. if (AS == AMDGPUAS::FLAT_ADDRESS && !Subtarget->hasMultiDwordFlatScratchAddressing()) AS = MFI->hasFlatScratchInit() ? AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; unsigned NumElements = VT.getVectorNumElements(); if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) { if (NumElements > 4) return SplitVectorStore(Op, DAG); // v3 stores not supported on SI. if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) return SplitVectorStore(Op, DAG); if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), VT, *Store->getMemOperand())) return expandUnalignedStore(Store, DAG); return SDValue(); } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) { switch (Subtarget->getMaxPrivateElementSize()) { case 4: return scalarizeVectorStore(Store, DAG); case 8: if (NumElements > 2) return SplitVectorStore(Op, DAG); return SDValue(); case 16: if (NumElements > 4 || (NumElements == 3 && !Subtarget->enableFlatScratch())) return SplitVectorStore(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { unsigned Fast = 0; auto Flags = Store->getMemOperand()->getFlags(); if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, Store->getAlign(), Flags, &Fast) && Fast > 1) return SDValue(); if (VT.isVector()) return SplitVectorStore(Op, DAG); return expandUnalignedStore(Store, DAG); } // Probably an invalid store. If so we'll end up emitting a selection error. return SDValue(); } SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Arg = Op.getOperand(0); SDValue TrigVal; // Propagate fast-math flags so that the multiply we introduce can be folded // if Arg is already the result of a multiply by constant. auto Flags = Op->getFlags(); SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); if (Subtarget->hasTrigReducedRange()) { SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); } else { TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); } switch (Op.getOpcode()) { case ISD::FCOS: return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); case ISD::FSIN: return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); default: llvm_unreachable("Wrong trig opcode"); } } SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *AtomicNode = cast(Op); assert(AtomicNode->isCompareAndSwap()); unsigned AS = AtomicNode->getAddressSpace(); // No custom lowering required for local address space if (!AMDGPU::isFlatGlobalAddrSpace(AS)) return Op; // Non-local address space requires custom lowering for atomic compare // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 SDLoc DL(Op); SDValue ChainIn = Op.getOperand(0); SDValue Addr = Op.getOperand(1); SDValue Old = Op.getOperand(2); SDValue New = Op.getOperand(3); EVT VT = Op.getValueType(); MVT SimpleVT = VT.getSimpleVT(); MVT VecType = MVT::getVectorVT(SimpleVT, 2); SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); SDValue Ops[] = { ChainIn, Addr, NewOld }; return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), Ops, VT, AtomicNode->getMemOperand()); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); EVT ScalarVT = VT.getScalarType(); if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue Src = N->getOperand(0); EVT SrcVT = Src.getValueType(); // TODO: We could try to match extracting the higher bytes, which would be // easier if i8 vectors weren't promoted to i32 vectors, particularly after // types are legalized. v4i8 -> v4f32 is probably the only case to worry // about in practice. if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); DCI.AddToWorklist(Cvt.getNode()); // For the f16 case, fold to a cast to f32 and then cast back to f16. if (ScalarVT != MVT::f32) { Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, DAG.getTargetConstant(0, DL, MVT::i32)); } return Cvt; } } return SDValue(); } // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) // This is a variant of // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), // // The normal DAG combiner will do this, but only if the add has one use since // that would increase the number of instructions. // // This prevents us from seeing a constant offset that can be folded into a // memory instruction's addressing mode. If we know the resulting add offset of // a pointer can be folded into an addressing offset, we can replace the pointer // operand with the add of new constant offset. This eliminates one of the uses, // and may allow the remaining use to also be simplified. // SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, unsigned AddrSpace, EVT MemVT, DAGCombinerInfo &DCI) const { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // We only do this to handle cases where it's profitable when there are // multiple uses of the add, so defer to the standard combine. if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || N0->hasOneUse()) return SDValue(); const ConstantSDNode *CN1 = dyn_cast(N1); if (!CN1) return SDValue(); const ConstantSDNode *CAdd = dyn_cast(N0.getOperand(1)); if (!CAdd) return SDValue(); // If the resulting offset is too large, we can't fold it into the addressing // mode offset. APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); AddrMode AM; AM.HasBaseReg = true; AM.BaseOffs = Offset.getSExtValue(); if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); SDValue COffset = DAG.getConstant(Offset, SL, VT); SDNodeFlags Flags; Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && (N0.getOpcode() == ISD::OR || N0->getFlags().hasNoUnsignedWrap())); return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); } /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset /// by the chain and intrinsic ID. Theoretically we would also need to check the /// specific intrinsic, but they all place the pointer operand first. static unsigned getBasePtrIndex(const MemSDNode *N) { switch (N->getOpcode()) { case ISD::STORE: case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_VOID: return 2; default: return 1; } } SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned PtrIdx = getBasePtrIndex(N); SDValue Ptr = N->getOperand(PtrIdx); // TODO: We could also do this for multiplies. if (Ptr.getOpcode() == ISD::SHL) { SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), N->getMemoryVT(), DCI); if (NewPtr) { SmallVector NewOps(N->op_begin(), N->op_end()); NewOps[PtrIdx] = NewPtr; return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); } } return SDValue(); } static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || (Opc == ISD::XOR && Val == 0); } // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit // integer combine opportunities since most 64-bit operations are decomposed // this way. TODO: We won't want this for SALU especially if it is an inline // immediate. SDValue SITargetLowering::splitBinaryBitConstantOp( DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, const ConstantSDNode *CRHS) const { uint64_t Val = CRHS->getZExtValue(); uint32_t ValLo = Lo_32(Val); uint32_t ValHi = Hi_32(Val); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if ((bitOpWithConstantIsReducible(Opc, ValLo) || bitOpWithConstantIsReducible(Opc, ValHi)) || (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { // If we need to materialize a 64-bit immediate, it will be split up later // anyway. Avoid creating the harder to understand 64-bit immediate // materialization. return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); } return SDValue(); } // Returns true if argument is a boolean value which is not serialized into // memory or argument and does not require v_cndmask_b32 to be deserialized. static bool isBoolSGPR(SDValue V) { if (V.getValueType() != MVT::i1) return false; switch (V.getOpcode()) { default: break; case ISD::SETCC: case AMDGPUISD::FP_CLASS: return true; case ISD::AND: case ISD::OR: case ISD::XOR: return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); } return false; } // If a constant has all zeroes or all ones within each byte return it. // Otherwise return 0. static uint32_t getConstantPermuteMask(uint32_t C) { // 0xff for any zero byte in the mask uint32_t ZeroByteMask = 0; if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte if ((NonZeroByteMask & C) != NonZeroByteMask) return 0; // Partial bytes selected. return C; } // Check if a node selects whole bytes from its operand 0 starting at a byte // boundary while masking the rest. Returns select mask as in the v_perm_b32 // or -1 if not succeeded. // Note byte select encoding: // value 0-3 selects corresponding source byte; // value 0xc selects zero; // value 0xff selects 0xff. static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) { assert(V.getValueSizeInBits() == 32); if (V.getNumOperands() != 2) return ~0; ConstantSDNode *N1 = dyn_cast(V.getOperand(1)); if (!N1) return ~0; uint32_t C = N1->getZExtValue(); switch (V.getOpcode()) { default: break; case ISD::AND: if (uint32_t ConstMask = getConstantPermuteMask(C)) { return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); } break; case ISD::OR: if (uint32_t ConstMask = getConstantPermuteMask(C)) { return (0x03020100 & ~ConstMask) | ConstMask; } break; case ISD::SHL: if (C % 8) return ~0; return uint32_t((0x030201000c0c0c0cull << C) >> 32); case ISD::SRL: if (C % 8) return ~0; return uint32_t(0x0c0c0c0c03020100ull >> C); } return ~0; } SDValue SITargetLowering::performAndCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.isBeforeLegalize()) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); const ConstantSDNode *CRHS = dyn_cast(RHS); if (VT == MVT::i64 && CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) return Split; } if (CRHS && VT == MVT::i32) { // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb // nb = number of trailing zeroes in mask // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, // given that we are selecting 8 or 16 bit fields starting at byte boundary. uint64_t Mask = CRHS->getZExtValue(); unsigned Bits = llvm::popcount(Mask); if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { if (auto *CShift = dyn_cast(LHS->getOperand(1))) { unsigned Shift = CShift->getZExtValue(); unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); unsigned Offset = NB + Shift; if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. SDLoc SL(N); SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, LHS->getOperand(0), DAG.getConstant(Offset, SL, MVT::i32), DAG.getConstant(Bits, SL, MVT::i32)); EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, DAG.getValueType(NarrowVT)); SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); return Shl; } } } // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && isa(LHS.getOperand(2))) { uint32_t Sel = getConstantPermuteMask(Mask); if (!Sel) return SDValue(); // Select 0xc for all zero bytes Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); } } // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { ISD::CondCode LCC = cast(LHS.getOperand(2))->get(); ISD::CondCode RCC = cast(RHS.getOperand(2))->get(); SDValue X = LHS.getOperand(0); SDValue Y = RHS.getOperand(0); if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X || !isTypeLegal(X.getValueType())) return SDValue(); if (LCC == ISD::SETO) { if (X != LHS.getOperand(1)) return SDValue(); if (RCC == ISD::SETUNE) { const ConstantFPSDNode *C1 = dyn_cast(RHS.getOperand(1)); if (!C1 || !C1->isInfinity() || C1->isNegative()) return SDValue(); const uint32_t Mask = SIInstrFlags::N_NORMAL | SIInstrFlags::N_SUBNORMAL | SIInstrFlags::N_ZERO | SIInstrFlags::P_ZERO | SIInstrFlags::P_SUBNORMAL | SIInstrFlags::P_NORMAL; static_assert(((~(SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN | SIInstrFlags::N_INFINITY | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, "mask not equal"); SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, X, DAG.getConstant(Mask, DL, MVT::i32)); } } } if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) std::swap(LHS, RHS); if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && RHS.hasOneUse()) { ISD::CondCode LCC = cast(LHS.getOperand(2))->get(); // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) const ConstantSDNode *Mask = dyn_cast(RHS.getOperand(1)); if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && (RHS.getOperand(0) == LHS.getOperand(0) && LHS.getOperand(0) == LHS.getOperand(1))) { const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; unsigned NewMask = LCC == ISD::SETO ? Mask->getZExtValue() & ~OrdMask : Mask->getZExtValue() & OrdMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), DAG.getConstant(NewMask, DL, MVT::i32)); } } if (VT == MVT::i32 && (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { // and x, (sext cc from i1) => select cc, x, 0 if (RHS.getOpcode() != ISD::SIGN_EXTEND) std::swap(LHS, RHS); if (isBoolSGPR(RHS.getOperand(0))) return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); } // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { uint32_t LHSMask = getPermuteMask(DAG, LHS); uint32_t RHSMask = getPermuteMask(DAG, RHS); if (LHSMask != ~0u && RHSMask != ~0u) { // Canonicalize the expression in an attempt to have fewer unique masks // and therefore fewer registers used to hold the masks. if (LHSMask > RHSMask) { std::swap(LHSMask, RHSMask); std::swap(LHS, RHS); } // Select 0xc for each lane used from source operand. Zero has 0xc mask // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; // Check of we need to combine values from two sources within a byte. if (!(LHSUsedLanes & RHSUsedLanes) && // If we select high and lower word keep it for SDWA. // TODO: teach SDWA to work with v_perm_b32 and remove the check. !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { // Each byte in each mask is either selector mask 0-3, or has higher // bits set in either of masks, which can be 0xff for 0xff or 0x0c for // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise // mask which is not 0xff wins. By anding both masks we have a correct // result except that 0x0c shall be corrected to give 0x0c only. uint32_t Mask = LHSMask & RHSMask; for (unsigned I = 0; I < 32; I += 8) { uint32_t ByteSel = 0xff << I; if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) Mask &= (0x0c << I) & 0xffffffff; } // Add 4 to each active LHS lane. It will not affect any existing 0xff // or 0x0c. uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), RHS.getOperand(0), DAG.getConstant(Sel, DL, MVT::i32)); } } } return SDValue(); } SDValue SITargetLowering::performOrCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); if (VT == MVT::i1) { // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && RHS.getOpcode() == AMDGPUISD::FP_CLASS) { SDValue Src = LHS.getOperand(0); if (Src != RHS.getOperand(0)) return SDValue(); const ConstantSDNode *CLHS = dyn_cast(LHS.getOperand(1)); const ConstantSDNode *CRHS = dyn_cast(RHS.getOperand(1)); if (!CLHS || !CRHS) return SDValue(); // Only 10 bits are used. static const uint32_t MaxMask = 0x3ff; uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, Src, DAG.getConstant(NewMask, DL, MVT::i32)); } return SDValue(); } // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) if (isa(RHS) && LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && isa(LHS.getOperand(2))) { uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); if (!Sel) return SDValue(); Sel |= LHS.getConstantOperandVal(2); SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); } // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { uint32_t LHSMask = getPermuteMask(DAG, LHS); uint32_t RHSMask = getPermuteMask(DAG, RHS); if (LHSMask != ~0u && RHSMask != ~0u) { // Canonicalize the expression in an attempt to have fewer unique masks // and therefore fewer registers used to hold the masks. if (LHSMask > RHSMask) { std::swap(LHSMask, RHSMask); std::swap(LHS, RHS); } // Select 0xc for each lane used from source operand. Zero has 0xc mask // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; // Check of we need to combine values from two sources within a byte. if (!(LHSUsedLanes & RHSUsedLanes) && // If we select high and lower word keep it for SDWA. // TODO: teach SDWA to work with v_perm_b32 and remove the check. !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { // Kill zero bytes selected by other mask. Zero value is 0xc. LHSMask &= ~RHSUsedLanes; RHSMask &= ~LHSUsedLanes; // Add 4 to each active LHS lane LHSMask |= LHSUsedLanes & 0x04040404; // Combine masks uint32_t Sel = LHSMask | RHSMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), RHS.getOperand(0), DAG.getConstant(Sel, DL, MVT::i32)); } } } if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) return SDValue(); // TODO: This could be a generic combine with a predicate for extracting the // high half of an integer being free. // (or i64:x, (zero_extend i32:y)) -> // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) if (LHS.getOpcode() == ISD::ZERO_EXTEND && RHS.getOpcode() != ISD::ZERO_EXTEND) std::swap(LHS, RHS); if (RHS.getOpcode() == ISD::ZERO_EXTEND) { SDValue ExtSrc = RHS.getOperand(0); EVT SrcVT = ExtSrc.getValueType(); if (SrcVT == MVT::i32) { SDLoc SL(N); SDValue LowLHS, HiBits; std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); DCI.AddToWorklist(LowOr.getNode()); DCI.AddToWorklist(HiBits.getNode()); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LowOr, HiBits); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } } const ConstantSDNode *CRHS = dyn_cast(N->getOperand(1)); if (CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, N->getOperand(0), CRHS)) return Split; } return SDValue(); } SDValue SITargetLowering::performXorCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) return RV; EVT VT = N->getValueType(0); if (VT != MVT::i64) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); const ConstantSDNode *CRHS = dyn_cast(RHS); if (CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) return Split; } return SDValue(); } SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!Subtarget->has16BitInsts() || DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); SDValue Src = N->getOperand(0); if (Src.getValueType() != MVT::i16) return SDValue(); return SDValue(); } SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Src = N->getOperand(0); auto *VTSign = cast(N->getOperand(1)); if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && VTSign->getVT() == MVT::i8) || (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && VTSign->getVT() == MVT::i16)) && Src.hasOneUse()) { auto *M = cast(Src); SDValue Ops[] = { Src.getOperand(0), // Chain Src.getOperand(1), // rsrc Src.getOperand(2), // vindex Src.getOperand(3), // voffset Src.getOperand(4), // soffset Src.getOperand(5), // offset Src.getOperand(6), Src.getOperand(7) }; // replace with BUFFER_LOAD_BYTE/SHORT SDVTList ResList = DCI.DAG.getVTList(MVT::i32, Src.getOperand(0).getValueType()); unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), ResList, Ops, M->getMemoryVT(), M->getMemOperand()); return DCI.DAG.getMergeValues({BufferLoadSignExt, BufferLoadSignExt.getValue(1)}, SDLoc(N)); } return SDValue(); } SDValue SITargetLowering::performClassCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue Mask = N->getOperand(1); // fp_class x, 0 -> false if (const ConstantSDNode *CMask = dyn_cast(Mask)) { if (CMask->isZero()) return DAG.getConstant(0, SDLoc(N), MVT::i1); } if (N->getOperand(0).isUndef()) return DAG.getUNDEF(MVT::i1); return SDValue(); } SDValue SITargetLowering::performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); if (N0.isUndef()) { return DCI.DAG.getConstantFP( APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)), SDLoc(N), VT); } if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || N0.getOpcode() == ISD::SINT_TO_FP)) { return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, N->getFlags()); } if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) { return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, N0.getOperand(0), N->getFlags()); } return AMDGPUTargetLowering::performRcpCombine(N, DCI); } bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, unsigned MaxDepth) const { unsigned Opcode = Op.getOpcode(); if (Opcode == ISD::FCANONICALIZE) return true; if (auto *CFP = dyn_cast(Op)) { auto F = CFP->getValueAPF(); if (F.isNaN() && F.isSignaling()) return false; return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType()); } // If source is a result of another standard FP operation it is already in // canonical form. if (MaxDepth == 0) return false; switch (Opcode) { // These will flush denorms if required. case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FCEIL: case ISD::FFLOOR: case ISD::FMA: case ISD::FMAD: case ISD::FSQRT: case ISD::FDIV: case ISD::FREM: case ISD::FP_ROUND: case ISD::FP_EXTEND: case AMDGPUISD::FMUL_LEGACY: case AMDGPUISD::FMAD_FTZ: case AMDGPUISD::RCP: case AMDGPUISD::RSQ: case AMDGPUISD::RSQ_CLAMP: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RCP_IFLAG: case AMDGPUISD::DIV_SCALE: case AMDGPUISD::DIV_FMAS: case AMDGPUISD::DIV_FIXUP: case AMDGPUISD::FRACT: case AMDGPUISD::LDEXP: case AMDGPUISD::CVT_PKRTZ_F16_F32: case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: return true; // It can/will be lowered or combined as a bit operation. // Need to check their input recursively to handle. case ISD::FNEG: case ISD::FABS: case ISD::FCOPYSIGN: return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); case ISD::FSIN: case ISD::FCOS: case ISD::FSINCOS: return Op.getValueType().getScalarType() != MVT::f16; case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: case AMDGPUISD::CLAMP: case AMDGPUISD::FMED3: case AMDGPUISD::FMAX3: case AMDGPUISD::FMIN3: { // FIXME: Shouldn't treat the generic operations different based these. // However, we aren't really required to flush the result from // minnum/maxnum.. // snans will be quieted, so we only need to worry about denormals. if (Subtarget->supportsMinMaxDenormModes() || denormalsEnabledForType(DAG, Op.getValueType())) return true; // Flushing may be required. // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such // targets need to check their input recursively. // FIXME: Does this apply with clamp? It's implemented with max. for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) return false; } return true; } case ISD::SELECT: { return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); } case ISD::BUILD_VECTOR: { for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { SDValue SrcOp = Op.getOperand(i); if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) return false; } return true; } case ISD::EXTRACT_VECTOR_ELT: case ISD::EXTRACT_SUBVECTOR: { return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); } case ISD::INSERT_VECTOR_ELT: { return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); } case ISD::UNDEF: // Could be anything. return false; case ISD::BITCAST: return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); case ISD::TRUNCATE: { // Hack round the mess we make when legalizing extract_vector_elt if (Op.getValueType() == MVT::i16) { SDValue TruncSrc = Op.getOperand(0); if (TruncSrc.getValueType() == MVT::i32 && TruncSrc.getOpcode() == ISD::BITCAST && TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); } } return false; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrinsicID = cast(Op.getOperand(0))->getZExtValue(); // TODO: Handle more intrinsics switch (IntrinsicID) { case Intrinsic::amdgcn_cvt_pkrtz: case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_frexp_mant: case Intrinsic::amdgcn_fdot2: case Intrinsic::amdgcn_rcp: case Intrinsic::amdgcn_rsq: case Intrinsic::amdgcn_rsq_clamp: case Intrinsic::amdgcn_rcp_legacy: case Intrinsic::amdgcn_rsq_legacy: case Intrinsic::amdgcn_trig_preop: return true; default: break; } [[fallthrough]]; } default: return denormalsEnabledForType(DAG, Op.getValueType()) && DAG.isKnownNeverSNaN(Op); } llvm_unreachable("invalid operation"); } bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF, unsigned MaxDepth) const { MachineRegisterInfo &MRI = MF.getRegInfo(); MachineInstr *MI = MRI.getVRegDef(Reg); unsigned Opcode = MI->getOpcode(); if (Opcode == AMDGPU::G_FCANONICALIZE) return true; std::optional FCR; // Constant splat (can be padded with undef) or scalar constant. if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { if (FCR->Value.isSignaling()) return false; return !FCR->Value.isDenormal() || denormalsEnabledForType(MRI.getType(FCR->VReg), MF); } if (MaxDepth == 0) return false; switch (Opcode) { case AMDGPU::G_FADD: case AMDGPU::G_FSUB: case AMDGPU::G_FMUL: case AMDGPU::G_FCEIL: case AMDGPU::G_FFLOOR: case AMDGPU::G_FRINT: case AMDGPU::G_FNEARBYINT: case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND: case AMDGPU::G_INTRINSIC_TRUNC: case AMDGPU::G_INTRINSIC_ROUNDEVEN: case AMDGPU::G_FMA: case AMDGPU::G_FMAD: case AMDGPU::G_FSQRT: case AMDGPU::G_FDIV: case AMDGPU::G_FREM: case AMDGPU::G_FPOW: case AMDGPU::G_FPEXT: case AMDGPU::G_FLOG: case AMDGPU::G_FLOG2: case AMDGPU::G_FLOG10: case AMDGPU::G_FPTRUNC: case AMDGPU::G_AMDGPU_RCP_IFLAG: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2: case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3: return true; case AMDGPU::G_FNEG: case AMDGPU::G_FABS: case AMDGPU::G_FCOPYSIGN: return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1); case AMDGPU::G_FMINNUM: case AMDGPU::G_FMAXNUM: case AMDGPU::G_FMINNUM_IEEE: case AMDGPU::G_FMAXNUM_IEEE: { if (Subtarget->supportsMinMaxDenormModes() || denormalsEnabledForType(MRI.getType(Reg), MF)) return true; [[fallthrough]]; } case AMDGPU::G_BUILD_VECTOR: for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) return false; return true; case AMDGPU::G_INTRINSIC: switch (MI->getIntrinsicID()) { case Intrinsic::amdgcn_fmul_legacy: case Intrinsic::amdgcn_fmad_ftz: case Intrinsic::amdgcn_sqrt: case Intrinsic::amdgcn_fmed3: case Intrinsic::amdgcn_sin: case Intrinsic::amdgcn_cos: case Intrinsic::amdgcn_log_clamp: case Intrinsic::amdgcn_rcp: case Intrinsic::amdgcn_rcp_legacy: case Intrinsic::amdgcn_rsq: case Intrinsic::amdgcn_rsq_clamp: case Intrinsic::amdgcn_rsq_legacy: case Intrinsic::amdgcn_div_scale: case Intrinsic::amdgcn_div_fmas: case Intrinsic::amdgcn_div_fixup: case Intrinsic::amdgcn_fract: case Intrinsic::amdgcn_ldexp: case Intrinsic::amdgcn_cvt_pkrtz: case Intrinsic::amdgcn_cubeid: case Intrinsic::amdgcn_cubema: case Intrinsic::amdgcn_cubesc: case Intrinsic::amdgcn_cubetc: case Intrinsic::amdgcn_frexp_mant: case Intrinsic::amdgcn_fdot2: case Intrinsic::amdgcn_trig_preop: return true; default: break; } [[fallthrough]]; default: return false; } llvm_unreachable("invalid operation"); } // Constant fold canonicalize. SDValue SITargetLowering::getCanonicalConstantFP( SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { // Flush denormals to 0 if not enabled. if (C.isDenormal() && !denormalsEnabledForType(DAG, VT)) { return DAG.getConstantFP(APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT); } if (C.isNaN()) { APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); if (C.isSignaling()) { // Quiet a signaling NaN. // FIXME: Is this supposed to preserve payload bits? return DAG.getConstantFP(CanonicalQNaN, SL, VT); } // Make sure it is the canonical NaN bitpattern. // // TODO: Can we use -1 as the canonical NaN value since it's an inline // immediate? if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) return DAG.getConstantFP(CanonicalQNaN, SL, VT); } // Already canonical. return DAG.getConstantFP(C, SL, VT); } static bool vectorEltWillFoldAway(SDValue Op) { return Op.isUndef() || isa(Op); } SDValue SITargetLowering::performFCanonicalizeCombine( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // fcanonicalize undef -> qnan if (N0.isUndef()) { APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT)); return DAG.getConstantFP(QNaN, SDLoc(N), VT); } if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { EVT VT = N->getValueType(0); return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); } // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), // (fcanonicalize k) // // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 // TODO: This could be better with wider vectors that will be split to v2f16, // and to consider uses since there aren't that many packed operations. if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && isTypeLegal(MVT::v2f16)) { SDLoc SL(N); SDValue NewElts[2]; SDValue Lo = N0.getOperand(0); SDValue Hi = N0.getOperand(1); EVT EltVT = Lo.getValueType(); if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { for (unsigned I = 0; I != 2; ++I) { SDValue Op = N0.getOperand(I); if (ConstantFPSDNode *CFP = dyn_cast(Op)) { NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, CFP->getValueAPF()); } else if (Op.isUndef()) { // Handled below based on what the other operand is. NewElts[I] = Op; } else { NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); } } // If one half is undef, and one is constant, prefer a splat vector rather // than the normal qNaN. If it's a register, prefer 0.0 since that's // cheaper to use and may be free with a packed operation. if (NewElts[0].isUndef()) { if (isa(NewElts[1])) NewElts[0] = isa(NewElts[1]) ? NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); } if (NewElts[1].isUndef()) { NewElts[1] = isa(NewElts[0]) ? NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); } return DAG.getBuildVector(VT, SL, NewElts); } } unsigned SrcOpc = N0.getOpcode(); // If it's free to do so, push canonicalizes further up the source, which may // find a canonical source. // // TODO: More opcodes. Note this is unsafe for the _ieee minnum/maxnum for // sNaNs. if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) { auto *CRHS = dyn_cast(N0.getOperand(1)); if (CRHS && N0.hasOneUse()) { SDLoc SL(N); SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT, N0.getOperand(0)); SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF()); DCI.AddToWorklist(Canon0.getNode()); return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1); } } return isCanonicalized(DAG, N0) ? N0 : SDValue(); } static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { switch (Opc) { case ISD::FMAXNUM: case ISD::FMAXNUM_IEEE: return AMDGPUISD::FMAX3; case ISD::SMAX: return AMDGPUISD::SMAX3; case ISD::UMAX: return AMDGPUISD::UMAX3; case ISD::FMINNUM: case ISD::FMINNUM_IEEE: return AMDGPUISD::FMIN3; case ISD::SMIN: return AMDGPUISD::SMIN3; case ISD::UMIN: return AMDGPUISD::UMIN3; default: llvm_unreachable("Not a min/max opcode"); } } SDValue SITargetLowering::performIntMed3ImmCombine( SelectionDAG &DAG, const SDLoc &SL, SDValue Op0, SDValue Op1, bool Signed) const { ConstantSDNode *K1 = dyn_cast(Op1); if (!K1) return SDValue(); ConstantSDNode *K0 = dyn_cast(Op0.getOperand(1)); if (!K0) return SDValue(); if (Signed) { if (K0->getAPIntValue().sge(K1->getAPIntValue())) return SDValue(); } else { if (K0->getAPIntValue().uge(K1->getAPIntValue())) return SDValue(); } EVT VT = K0->getValueType(0); unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { return DAG.getNode(Med3Opc, SL, VT, Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); } // If there isn't a 16-bit med3 operation, convert to 32-bit. if (VT == MVT::i16) { MVT NVT = MVT::i32; unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); } return SDValue(); } static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { if (ConstantFPSDNode *C = dyn_cast(Op)) return C; if (BuildVectorSDNode *BV = dyn_cast(Op)) { if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) return C; } return nullptr; } SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL, SDValue Op0, SDValue Op1) const { ConstantFPSDNode *K1 = getSplatConstantFP(Op1); if (!K1) return SDValue(); ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); if (!K0) return SDValue(); // Ordered >= (although NaN inputs should have folded away by now). if (K0->getValueAPF() > K1->getValueAPF()) return SDValue(); const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); // TODO: Check IEEE bit enabled? EVT VT = Op0.getValueType(); if (Info->getMode().DX10Clamp) { // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the // hardware fmed3 behavior converting to a min. // FIXME: Should this be allowing -0.0? if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); } // med3 for f16 is only available on gfx9+, and not available for v2f16. if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { // This isn't safe with signaling NaNs because in IEEE mode, min/max on a // signaling NaN gives a quiet NaN. The quiet NaN input to the min would // then give the other result, which is different from med3 with a NaN // input. SDValue Var = Op0.getOperand(0); if (!DAG.isKnownNeverSNaN(Var)) return SDValue(); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if ((!K0->hasOneUse() || TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) && (!K1->hasOneUse() || TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) { return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), Var, SDValue(K0, 0), SDValue(K1, 0)); } } return SDValue(); } SDValue SITargetLowering::performMinMaxCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); unsigned Opc = N->getOpcode(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Only do this if the inner op has one use since this will just increases // register pressure for no benefit. if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && !VT.isVector() && (VT == MVT::i32 || VT == MVT::f32 || ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) { // max(max(a, b), c) -> max3(a, b, c) // min(min(a, b), c) -> min3(a, b, c) if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0.getOperand(0), Op0.getOperand(1), Op1); } // Try commuted. // max(a, max(b, c)) -> max3(a, b, c) // min(a, min(b, c)) -> min3(a, b, c) if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0, Op1.getOperand(0), Op1.getOperand(1)); } } // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) return Med3; } if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) return Med3; } // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || (Opc == AMDGPUISD::FMIN_LEGACY && Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && (VT == MVT::f32 || VT == MVT::f64 || (VT == MVT::f16 && Subtarget->has16BitInsts()) || (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && Op0.hasOneUse()) { if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) return Res; } return SDValue(); } static bool isClampZeroToOne(SDValue A, SDValue B) { if (ConstantFPSDNode *CA = dyn_cast(A)) { if (ConstantFPSDNode *CB = dyn_cast(B)) { // FIXME: Should this be allowing -0.0? return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); } } return false; } // FIXME: Should only worry about snans for version with chain. SDValue SITargetLowering::performFMed3Combine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and // NaNs. With a NaN input, the order of the operands may change the result. SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue Src0 = N->getOperand(0); SDValue Src1 = N->getOperand(1); SDValue Src2 = N->getOperand(2); if (isClampZeroToOne(Src0, Src1)) { // const_a, const_b, x -> clamp is safe in all cases including signaling // nans. // FIXME: Should this be allowing -0.0? return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); } const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother // handling no dx10-clamp? if (Info->getMode().DX10Clamp) { // If NaNs is clamped to 0, we are free to reorder the inputs. if (isa(Src0) && !isa(Src1)) std::swap(Src0, Src1); if (isa(Src1) && !isa(Src2)) std::swap(Src1, Src2); if (isa(Src0) && !isa(Src1)) std::swap(Src0, Src1); if (isClampZeroToOne(Src1, Src2)) return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); } return SDValue(); } SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Src0 = N->getOperand(0); SDValue Src1 = N->getOperand(1); if (Src0.isUndef() && Src1.isUndef()) return DCI.DAG.getUNDEF(N->getValueType(0)); return SDValue(); } // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (, var-idx) should be // expanded into a set of cmp/select instructions. bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, unsigned NumElem, bool IsDivergentIdx, const GCNSubtarget *Subtarget) { if (UseDivergentRegisterIndexing) return false; unsigned VecSize = EltSize * NumElem; // Sub-dword vectors of size 2 dword or less have better implementation. if (VecSize <= 64 && EltSize < 32) return false; // Always expand the rest of sub-dword instructions, otherwise it will be // lowered via memory. if (EltSize < 32) return true; // Always do this if var-idx is divergent, otherwise it will become a loop. if (IsDivergentIdx) return true; // Large vectors would yield too many compares and v_cndmask_b32 instructions. unsigned NumInsts = NumElem /* Number of compares */ + ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; // On some architectures (GFX9) movrel is not available and it's better // to expand. if (!Subtarget->hasMovrel()) return NumInsts <= 16; // If movrel is available, use it instead of expanding for vector of 8 // elements. return NumInsts <= 15; } bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { SDValue Idx = N->getOperand(N->getNumOperands() - 1); if (isa(Idx)) return false; SDValue Vec = N->getOperand(0); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); unsigned EltSize = EltVT.getSizeInBits(); unsigned NumElem = VecVT.getVectorNumElements(); return SITargetLowering::shouldExpandVectorDynExt( EltSize, NumElem, Idx->isDivergent(), getSubtarget()); } SDValue SITargetLowering::performExtractVectorEltCombine( SDNode *N, DAGCombinerInfo &DCI) const { SDValue Vec = N->getOperand(0); SelectionDAG &DAG = DCI.DAG; EVT VecVT = Vec.getValueType(); EVT VecEltVT = VecVT.getVectorElementType(); EVT ResVT = N->getValueType(0); unsigned VecSize = VecVT.getSizeInBits(); unsigned VecEltSize = VecEltVT.getSizeInBits(); if ((Vec.getOpcode() == ISD::FNEG || Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { SDLoc SL(N); SDValue Idx = N->getOperand(1); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt); } // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) // => // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) { SDLoc SL(N); SDValue Idx = N->getOperand(1); unsigned Opc = Vec.getOpcode(); switch(Opc) { default: break; // TODO: Support other binary operations. case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::ADD: case ISD::UMIN: case ISD::UMAX: case ISD::SMIN: case ISD::SMAX: case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::FMAXNUM_IEEE: case ISD::FMINNUM_IEEE: { SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(1), Idx); DCI.AddToWorklist(Elt0.getNode()); DCI.AddToWorklist(Elt1.getNode()); return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags()); } } } // EXTRACT_VECTOR_ELT (, var-idx) => n x select (e, const-idx) if (shouldExpandVectorDynExt(N)) { SDLoc SL(N); SDValue Idx = N->getOperand(1); SDValue V; for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { SDValue IC = DAG.getVectorIdxConstant(I, SL); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC); if (I == 0) V = Elt; else V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); } return V; } if (!DCI.isBeforeLegalize()) return SDValue(); // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit // elements. This exposes more load reduction opportunities by replacing // multiple small extract_vector_elements with a single 32-bit extract. auto *Idx = dyn_cast(N->getOperand(1)); if (isa(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() && VecSize > 32 && VecSize % 32 == 0 && Idx) { EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); unsigned BitIndex = Idx->getZExtValue() * VecEltSize; unsigned EltIdx = BitIndex / 32; unsigned LeftoverBitIdx = BitIndex % 32; SDLoc SL(N); SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); DCI.AddToWorklist(Cast.getNode()); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, DAG.getConstant(EltIdx, SL, MVT::i32)); DCI.AddToWorklist(Elt.getNode()); SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); DCI.AddToWorklist(Srl.getNode()); EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger(); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl); DCI.AddToWorklist(Trunc.getNode()); if (VecEltVT == ResVT) { return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc); } assert(ResVT.isScalarInteger()); return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT); } return SDValue(); } SDValue SITargetLowering::performInsertVectorEltCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Vec = N->getOperand(0); SDValue Idx = N->getOperand(2); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); // INSERT_VECTOR_ELT (, var-idx) // => BUILD_VECTOR n x select (e, const-idx) if (!shouldExpandVectorDynExt(N)) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue Ins = N->getOperand(1); EVT IdxVT = Idx.getValueType(); SmallVector Ops; for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { SDValue IC = DAG.getConstant(I, SL, IdxVT); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); Ops.push_back(V); } return DAG.getBuildVector(VecVT, SL, Ops); } unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, const SDNode *N0, const SDNode *N1) const { EVT VT = N0->getValueType(0); // Only do this if we are not trying to support denormals. v_mad_f32 does not // support denormals ever. if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) || (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) && getSubtarget()->hasMadF16())) && isOperationLegal(ISD::FMAD, VT)) return ISD::FMAD; const TargetOptions &Options = DAG.getTarget().Options; if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || (N0->getFlags().hasAllowContract() && N1->getFlags().hasAllowContract())) && isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { return ISD::FMA; } return 0; } // For a reassociatable opcode perform: // op x, (op y, z) -> op (op x, z), y, if x and z are uniform SDValue SITargetLowering::reassociateScalarOps(SDNode *N, SelectionDAG &DAG) const { EVT VT = N->getValueType(0); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) return SDValue(); unsigned Opc = N->getOpcode(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (!(Op0->isDivergent() ^ Op1->isDivergent())) return SDValue(); if (Op0->isDivergent()) std::swap(Op0, Op1); if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) return SDValue(); SDValue Op2 = Op1.getOperand(1); Op1 = Op1.getOperand(0); if (!(Op1->isDivergent() ^ Op2->isDivergent())) return SDValue(); if (Op1->isDivergent()) std::swap(Op1, Op2); SDLoc SL(N); SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); return DAG.getNode(Opc, SL, VT, Add1, Op2); } static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue N0, SDValue N1, SDValue N2, bool Signed) { unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); } // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high // multiplies, if any. // // Full 64-bit multiplies that feed into an addition are lowered here instead // of using the generic expansion. The generic expansion ends up with // a tree of ADD nodes that prevents us from using the "add" part of the // MAD instruction. The expansion produced here results in a chain of ADDs // instead of a tree. SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, DAGCombinerInfo &DCI) const { assert(N->getOpcode() == ISD::ADD); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (VT.isVector()) return SDValue(); // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall // result in scalar registers for uniform values. if (!N->isDivergent() && Subtarget->hasSMulHi()) return SDValue(); unsigned NumBits = VT.getScalarSizeInBits(); if (NumBits <= 32 || NumBits > 64) return SDValue(); if (LHS.getOpcode() != ISD::MUL) { assert(RHS.getOpcode() == ISD::MUL); std::swap(LHS, RHS); } // Avoid the fold if it would unduly increase the number of multiplies due to // multiple uses, except on hardware with full-rate multiply-add (which is // part of full-rate 64-bit ops). if (!Subtarget->hasFullRate64Ops()) { unsigned NumUsers = 0; for (SDNode *Use : LHS->uses()) { // There is a use that does not feed into addition, so the multiply can't // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. if (Use->getOpcode() != ISD::ADD) return SDValue(); // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer // MUL + 3xADD + 3xADDC over 3xMAD. ++NumUsers; if (NumUsers >= 3) return SDValue(); } } SDValue MulLHS = LHS.getOperand(0); SDValue MulRHS = LHS.getOperand(1); SDValue AddRHS = RHS; // Always check whether operands are small unsigned values, since that // knowledge is useful in more cases. Check for small signed values only if // doing so can unlock a shorter code sequence. bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; bool MulSignedLo = false; if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32; } // The operands and final result all have the same number of bits. If // operands need to be extended, they can be extended with garbage. The // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is // truncated away in the end. if (VT != MVT::i64) { MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); } // The basic code generated is conceptually straightforward. Pseudo code: // // accum = mad_64_32 lhs.lo, rhs.lo, accum // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi // // The second and third lines are optional, depending on whether the factors // are {sign,zero}-extended or not. // // The actual DAG is noisier than the pseudo code, but only due to // instructions that disassemble values into low and high parts, and // assemble the final result. SDValue Zero = DAG.getConstant(0, SL, MVT::i32); SDValue One = DAG.getConstant(1, SL, MVT::i32); auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); SDValue Accum = getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { auto AccumLo = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, Zero); auto AccumHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, Accum, One); if (!MulLHSUnsigned32) { auto MulLHSHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); } if (!MulRHSUnsigned32) { auto MulRHSHi = DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); } Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); Accum = DAG.getBitcast(MVT::i64, Accum); } if (VT != MVT::i64) Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); return Accum; } SDValue SITargetLowering::performAddCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { if (Subtarget->hasMad64_32()) { if (SDValue Folded = tryFoldToMad64_32(N, DCI)) return Folded; } return SDValue(); } if (SDValue V = reassociateScalarOps(N, DAG)) { return V; } if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) return SDValue(); // add x, zext (setcc) => addcarry x, 0, setcc // add x, sext (setcc) => subcarry x, 0, setcc unsigned Opc = LHS.getOpcode(); if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) std::swap(RHS, LHS); Opc = RHS.getOpcode(); switch (Opc) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: { auto Cond = RHS.getOperand(0); // If this won't be a real VOPC output, we would still need to insert an // extra instruction anyway. if (!isBoolSGPR(Cond)) break; SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; return DAG.getNode(Opc, SL, VTList, Args); } case ISD::ADDCARRY: { // add x, (addcarry y, 0, cc) => addcarry x, y, cc auto C = dyn_cast(RHS.getOperand(1)); if (!C || C->getZExtValue() != 0) break; SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); } } return SDValue(); } SDValue SITargetLowering::performSubCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // sub x, zext (setcc) => subcarry x, 0, setcc // sub x, sext (setcc) => addcarry x, 0, setcc unsigned Opc = RHS.getOpcode(); switch (Opc) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: { auto Cond = RHS.getOperand(0); // If this won't be a real VOPC output, we would still need to insert an // extra instruction anyway. if (!isBoolSGPR(Cond)) break; SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY; return DAG.getNode(Opc, SL, VTList, Args); } } if (LHS.getOpcode() == ISD::SUBCARRY) { // sub (subcarry x, 0, cc), y => subcarry x, y, cc auto C = dyn_cast(LHS.getOperand(1)); if (!C || !C->isZero()) return SDValue(); SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); } return SDValue(); } SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i32) return SDValue(); auto C = dyn_cast(N->getOperand(1)); if (!C || C->getZExtValue() != 0) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); // addcarry (add x, y), 0, cc => addcarry x, y, cc // subcarry (sub x, y), 0, cc => subcarry x, y, cc unsigned LHSOpc = LHS.getOpcode(); unsigned Opc = N->getOpcode(); if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); } return SDValue(); } SDValue SITargetLowering::performFAddCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // These should really be instruction patterns, but writing patterns with // source modifiers is a pain. // fadd (fadd (a, a), b) -> mad 2.0, a, b if (LHS.getOpcode() == ISD::FADD) { SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); if (FusedOp != 0) { const SDValue Two = DAG.getConstantFP(2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); } } } // fadd (b, fadd (a, a)) -> mad 2.0, a, b if (RHS.getOpcode() == ISD::FADD) { SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); if (FusedOp != 0) { const SDValue Two = DAG.getConstantFP(2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); } } } return SDValue(); } SDValue SITargetLowering::performFSubCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); assert(!VT.isVector()); // Try to get the fneg to fold into the source modifier. This undoes generic // DAG combines and folds them into the mad. // // Only do this if we are not trying to support denormals. v_mad_f32 does // not support denormals ever. SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::FADD) { // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); if (FusedOp != 0){ const SDValue Two = DAG.getConstantFP(2.0, SL, VT); SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); } } } if (RHS.getOpcode() == ISD::FADD) { // (fsub c, (fadd a, a)) -> mad -2.0, a, c SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); if (FusedOp != 0){ const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); } } } return SDValue(); } SDValue SITargetLowering::performFMACombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); if (!Subtarget->hasDot7Insts() || VT != MVT::f32) return SDValue(); // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) SDValue Op1 = N->getOperand(0); SDValue Op2 = N->getOperand(1); SDValue FMA = N->getOperand(2); if (FMA.getOpcode() != ISD::FMA || Op1.getOpcode() != ISD::FP_EXTEND || Op2.getOpcode() != ISD::FP_EXTEND) return SDValue(); // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, // regardless of the denorm mode setting. Therefore, // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. const TargetOptions &Options = DAG.getTarget().Options; if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || (N->getFlags().hasAllowContract() && FMA->getFlags().hasAllowContract())) { Op1 = Op1.getOperand(0); Op2 = Op2.getOperand(0); if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec1 = Op1.getOperand(0); SDValue Idx1 = Op1.getOperand(1); SDValue Vec2 = Op2.getOperand(0); SDValue FMAOp1 = FMA.getOperand(0); SDValue FMAOp2 = FMA.getOperand(1); SDValue FMAAcc = FMA.getOperand(2); if (FMAOp1.getOpcode() != ISD::FP_EXTEND || FMAOp2.getOpcode() != ISD::FP_EXTEND) return SDValue(); FMAOp1 = FMAOp1.getOperand(0); FMAOp2 = FMAOp2.getOperand(0); if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue Vec3 = FMAOp1.getOperand(0); SDValue Vec4 = FMAOp2.getOperand(0); SDValue Idx2 = FMAOp1.getOperand(1); if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || // Idx1 and Idx2 cannot be the same. Idx1 == Idx2) return SDValue(); if (Vec1 == Vec2 || Vec3 == Vec4) return SDValue(); if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) return SDValue(); if ((Vec1 == Vec3 && Vec2 == Vec4) || (Vec1 == Vec4 && Vec2 == Vec3)) { return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, DAG.getTargetConstant(0, SL, MVT::i1)); } } return SDValue(); } SDValue SITargetLowering::performSetCCCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = LHS.getValueType(); ISD::CondCode CC = cast(N->getOperand(2))->get(); auto CRHS = dyn_cast(RHS); if (!CRHS) { CRHS = dyn_cast(LHS); if (CRHS) { std::swap(LHS, RHS); CC = getSetCCSwappedOperands(CC); } } if (CRHS) { if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && isBoolSGPR(LHS.getOperand(0))) { // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc if ((CRHS->isAllOnes() && (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || (CRHS->isZero() && (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(-1, SL, MVT::i1)); if ((CRHS->isAllOnes() && (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || (CRHS->isZero() && (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) return LHS.getOperand(0); } const APInt &CRHSVal = CRHS->getAPIntValue(); if ((CC == ISD::SETEQ || CC == ISD::SETNE) && LHS.getOpcode() == ISD::SELECT && isa(LHS.getOperand(1)) && isa(LHS.getOperand(2)) && LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && isBoolSGPR(LHS.getOperand(0))) { // Given CT != FT: // setcc (select cc, CT, CF), CF, eq => xor cc, -1 // setcc (select cc, CT, CF), CF, ne => cc // setcc (select cc, CT, CF), CT, ne => xor cc, -1 // setcc (select cc, CT, CF), CT, eq => cc const APInt &CT = LHS.getConstantOperandAPInt(1); const APInt &CF = LHS.getConstantOperandAPInt(2); if ((CF == CRHSVal && CC == ISD::SETEQ) || (CT == CRHSVal && CC == ISD::SETNE)) return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(-1, SL, MVT::i1)); if ((CF == CRHSVal && CC == ISD::SETNE) || (CT == CRHSVal && CC == ISD::SETEQ)) return LHS.getOperand(0); } } if (VT != MVT::f32 && VT != MVT::f64 && (!Subtarget->has16BitInsts() || VT != MVT::f16)) return SDValue(); // Match isinf/isfinite pattern // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) // (fcmp one (fabs x), inf) -> (fp_class x, // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { const ConstantFPSDNode *CRHS = dyn_cast(RHS); if (!CRHS) return SDValue(); const APFloat &APF = CRHS->getValueAPF(); if (APF.isInfinity() && !APF.isNegative()) { const unsigned IsInfMask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | SIInstrFlags::P_ZERO | SIInstrFlags::N_NORMAL | SIInstrFlags::P_NORMAL | SIInstrFlags::N_SUBNORMAL | SIInstrFlags::P_SUBNORMAL; unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(Mask, SL, MVT::i32)); } } return SDValue(); } SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; SDValue Src = N->getOperand(0); SDValue Shift = N->getOperand(0); // TODO: Extend type shouldn't matter (assuming legal types). if (Shift.getOpcode() == ISD::ZERO_EXTEND) Shift = Shift.getOperand(0); if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x if (auto *C = dyn_cast(Shift.getOperand(1))) { SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), SDLoc(Shift.getOperand(0)), MVT::i32); unsigned ShiftOffset = 8 * Offset; if (Shift.getOpcode() == ISD::SHL) ShiftOffset -= C->getZExtValue(); else ShiftOffset += C->getZExtValue(); if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, MVT::f32, Shifted); } } } const TargetLowering &TLI = DAG.getTargetLoweringInfo(); APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { // We simplified Src. If this node is not dead, visit it again so it is // folded properly. if (N->getOpcode() != ISD::DELETED_NODE) DCI.AddToWorklist(N); return SDValue(N, 0); } // Handle (or x, (srl y, 8)) pattern when known bits are zero. if (SDValue DemandedSrc = TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); return SDValue(); } SDValue SITargetLowering::performClampCombine(SDNode *N, DAGCombinerInfo &DCI) const { ConstantFPSDNode *CSrc = dyn_cast(N->getOperand(0)); if (!CSrc) return SDValue(); const MachineFunction &MF = DCI.DAG.getMachineFunction(); const APFloat &F = CSrc->getValueAPF(); APFloat Zero = APFloat::getZero(F.getSemantics()); if (F < Zero || (F.isNaN() && MF.getInfo()->getMode().DX10Clamp)) { return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); } APFloat One(F.getSemantics(), "1.0"); if (F > One) return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); return SDValue(CSrc, 0); } SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (getTargetMachine().getOptLevel() == CodeGenOpt::None) return SDValue(); switch (N->getOpcode()) { case ISD::ADD: return performAddCombine(N, DCI); case ISD::SUB: return performSubCombine(N, DCI); case ISD::ADDCARRY: case ISD::SUBCARRY: return performAddCarrySubCarryCombine(N, DCI); case ISD::FADD: return performFAddCombine(N, DCI); case ISD::FSUB: return performFSubCombine(N, DCI); case ISD::SETCC: return performSetCCCombine(N, DCI); case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::FMAXNUM_IEEE: case ISD::FMINNUM_IEEE: case ISD::SMAX: case ISD::SMIN: case ISD::UMAX: case ISD::UMIN: case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: return performMinMaxCombine(N, DCI); case ISD::FMA: return performFMACombine(N, DCI); case ISD::AND: return performAndCombine(N, DCI); case ISD::OR: return performOrCombine(N, DCI); case ISD::XOR: return performXorCombine(N, DCI); case ISD::ZERO_EXTEND: return performZeroExtendCombine(N, DCI); case ISD::SIGN_EXTEND_INREG: return performSignExtendInRegCombine(N , DCI); case AMDGPUISD::FP_CLASS: return performClassCombine(N, DCI); case ISD::FCANONICALIZE: return performFCanonicalizeCombine(N, DCI); case AMDGPUISD::RCP: return performRcpCombine(N, DCI); case AMDGPUISD::FRACT: case AMDGPUISD::RSQ: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RCP_IFLAG: case AMDGPUISD::RSQ_CLAMP: case AMDGPUISD::LDEXP: { // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted SDValue Src = N->getOperand(0); if (Src.isUndef()) return Src; break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return performUCharToFloatCombine(N, DCI); case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: return performCvtF32UByteNCombine(N, DCI); case AMDGPUISD::FMED3: return performFMed3Combine(N, DCI); case AMDGPUISD::CVT_PKRTZ_F16_F32: return performCvtPkRTZCombine(N, DCI); case AMDGPUISD::CLAMP: return performClampCombine(N, DCI); case ISD::SCALAR_TO_VECTOR: { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) if (VT == MVT::v2i16 || VT == MVT::v2f16) { SDLoc SL(N); SDValue Src = N->getOperand(0); EVT EltVT = Src.getValueType(); if (EltVT == MVT::f16) Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); return DAG.getNode(ISD::BITCAST, SL, VT, Ext); } break; } case ISD::EXTRACT_VECTOR_ELT: return performExtractVectorEltCombine(N, DCI); case ISD::INSERT_VECTOR_ELT: return performInsertVectorEltCombine(N, DCI); case ISD::LOAD: { if (SDValue Widended = widenLoad(cast(N), DCI)) return Widended; [[fallthrough]]; } default: { if (!DCI.isBeforeLegalize()) { if (MemSDNode *MemNode = dyn_cast(N)) return performMemSDNodeCombine(MemNode, DCI); } break; } } return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); } /// Helper function for adjustWritemask static unsigned SubIdx2Lane(unsigned Idx) { switch (Idx) { default: return ~0u; case AMDGPU::sub0: return 0; case AMDGPU::sub1: return 1; case AMDGPU::sub2: return 2; case AMDGPU::sub3: return 3; case AMDGPU::sub4: return 4; // Possible with TFE/LWE } } /// Adjust the writemask of MIMG instructions SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, SelectionDAG &DAG) const { unsigned Opcode = Node->getMachineOpcode(); // Subtract 1 because the vdata output is not a MachineSDNode operand. int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) return Node; // not implemented for D16 SDNode *Users[5] = { nullptr }; unsigned Lane = 0; unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); unsigned NewDmask = 0; unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || Node->getConstantOperandVal(LWEIdx)) ? true : false; unsigned TFCLane = 0; bool HasChain = Node->getNumValues() > 1; if (OldDmask == 0) { // These are folded out, but on the chance it happens don't assert. return Node; } unsigned OldBitsSet = llvm::popcount(OldDmask); // Work out which is the TFE/LWE lane if that is enabled. if (UsesTFC) { TFCLane = OldBitsSet; } // Try to figure out the used register components for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); I != E; ++I) { // Don't look at users of the chain. if (I.getUse().getResNo() != 0) continue; // Abort if we can't understand the usage if (!I->isMachineOpcode() || I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) return Node; // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. // Note that subregs are packed, i.e. Lane==0 is the first bit set // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit // set, etc. Lane = SubIdx2Lane(I->getConstantOperandVal(1)); if (Lane == ~0u) return Node; // Check if the use is for the TFE/LWE generated result at VGPRn+1. if (UsesTFC && Lane == TFCLane) { Users[Lane] = *I; } else { // Set which texture component corresponds to the lane. unsigned Comp; for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { Comp = countTrailingZeros(Dmask); Dmask &= ~(1 << Comp); } // Abort if we have more than one user per component. if (Users[Lane]) return Node; Users[Lane] = *I; NewDmask |= 1 << Comp; } } // Don't allow 0 dmask, as hardware assumes one channel enabled. bool NoChannels = !NewDmask; if (NoChannels) { if (!UsesTFC) { // No uses of the result and not using TFC. Then do nothing. return Node; } // If the original dmask has one channel - then nothing to do if (OldBitsSet == 1) return Node; // Use an arbitrary dmask - required for the instruction to work NewDmask = 1; } // Abort if there's no change if (NewDmask == OldDmask) return Node; unsigned BitsSet = llvm::popcount(NewDmask); // Check for TFE or LWE - increase the number of channels by one to account // for the extra return value // This will need adjustment for D16 if this is also included in // adjustWriteMask (this function) but at present D16 are excluded. unsigned NewChannels = BitsSet + UsesTFC; int NewOpcode = AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); assert(NewOpcode != -1 && NewOpcode != static_cast(Node->getMachineOpcode()) && "failed to find equivalent MIMG op"); // Adjust the writemask in the node SmallVector Ops; Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); MVT ResultVT = NewChannels == 1 ? SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : NewChannels == 5 ? 8 : NewChannels); SDVTList NewVTList = HasChain ? DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), NewVTList, Ops); if (HasChain) { // Update chain. DAG.setNodeMemRefs(NewNode, Node->memoperands()); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); } if (NewChannels == 1) { assert(Node->hasNUsesOfValue(1, 0)); SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, SDLoc(Node), Users[Lane]->getValueType(0), SDValue(NewNode, 0)); DAG.ReplaceAllUsesWith(Users[Lane], Copy); return nullptr; } // Update the users of the node with the new indices for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { SDNode *User = Users[i]; if (!User) { // Handle the special case of NoChannels. We set NewDmask to 1 above, but // Users[0] is still nullptr because channel 0 doesn't really have a use. if (i || !NoChannels) continue; } else { SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); } switch (Idx) { default: break; case AMDGPU::sub0: Idx = AMDGPU::sub1; break; case AMDGPU::sub1: Idx = AMDGPU::sub2; break; case AMDGPU::sub2: Idx = AMDGPU::sub3; break; case AMDGPU::sub3: Idx = AMDGPU::sub4; break; } } DAG.RemoveDeadNode(Node); return nullptr; } static bool isFrameIndexOp(SDValue Op) { if (Op.getOpcode() == ISD::AssertZext) Op = Op.getOperand(0); return isa(Op); } /// Legalize target independent instructions (e.g. INSERT_SUBREG) /// with frame index operands. /// LLVM assumes that inputs are to these instructions are registers. SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const { if (Node->getOpcode() == ISD::CopyToReg) { RegisterSDNode *DestReg = cast(Node->getOperand(1)); SDValue SrcVal = Node->getOperand(2); // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have // to try understanding copies to physical registers. if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { SDLoc SL(Node); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue VReg = DAG.getRegister( MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); SDNode *Glued = Node->getGluedNode(); SDValue ToVReg = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); SDValue ToResultReg = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), VReg, ToVReg.getValue(1)); DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); DAG.RemoveDeadNode(Node); return ToResultReg.getNode(); } } SmallVector Ops; for (unsigned i = 0; i < Node->getNumOperands(); ++i) { if (!isFrameIndexOp(Node->getOperand(i))) { Ops.push_back(Node->getOperand(i)); continue; } SDLoc DL(Node); Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, Node->getOperand(i).getValueType(), Node->getOperand(i)), 0)); } return DAG.UpdateNodeOperands(Node, Ops); } /// Fold the instructions after selecting them. /// Returns null if users were already updated. SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, SelectionDAG &DAG) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); unsigned Opcode = Node->getMachineOpcode(); if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && !TII->isGather4(Opcode) && AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) { return adjustWritemask(Node, DAG); } if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) { legalizeTargetIndependentNode(Node, DAG); return Node; } switch (Opcode) { case AMDGPU::V_DIV_SCALE_F32_e64: case AMDGPU::V_DIV_SCALE_F64_e64: { // Satisfy the operand register constraint when one of the inputs is // undefined. Ordinarily each undef value will have its own implicit_def of // a vreg, so force these to use a single register. SDValue Src0 = Node->getOperand(1); SDValue Src1 = Node->getOperand(3); SDValue Src2 = Node->getOperand(5); if ((Src0.isMachineOpcode() && Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && (Src0 == Src1 || Src0 == Src2)) break; MVT VT = Src0.getValueType().getSimpleVT(); const TargetRegisterClass *RC = getRegClassFor(VT, Src0.getNode()->isDivergent()); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), UndefReg, Src0, SDValue()); // src0 must be the same register as src1 or src2, even if the value is // undefined, so make sure we don't violate this constraint. if (Src0.isMachineOpcode() && Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { if (Src1.isMachineOpcode() && Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) Src0 = Src1; else if (Src2.isMachineOpcode() && Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) Src0 = Src2; else { assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); Src0 = UndefReg; Src1 = UndefReg; } } else break; SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[1] = Src0; Ops[3] = Src1; Ops[5] = Src2; Ops.push_back(ImpDef.getValue(1)); return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); } default: break; } return Node; } // Any MIMG instructions that use tfe or lwe require an initialization of the // result register that will be written in the case of a memory access failure. // The required code is also added to tie this init code to the result of the // img instruction. void SITargetLowering::AddIMGInit(MachineInstr &MI) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); MachineBasicBlock &MBB = *MI.getParent(); MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); if (!TFE && !LWE) // intersect_ray return; unsigned TFEVal = TFE ? TFE->getImm() : 0; unsigned LWEVal = LWE->getImm(); unsigned D16Val = D16 ? D16->getImm() : 0; if (!TFEVal && !LWEVal) return; // At least one of TFE or LWE are non-zero // We have to insert a suitable initialization of the result value and // tie this to the dest of the image instruction. const DebugLoc &DL = MI.getDebugLoc(); int DstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); // Calculate which dword we have to initialize to 0. MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); // check that dmask operand is found. assert(MO_Dmask && "Expected dmask operand in instruction"); unsigned dmask = MO_Dmask->getImm(); // Determine the number of active lanes taking into account the // Gather4 special case unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask); bool Packed = !Subtarget->hasUnpackedD16VMem(); unsigned InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; // Abandon attempt if the dst size isn't large enough // - this is in fact an error but this is picked up elsewhere and // reported correctly. uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; if (DstSize < InitIdx) return; // Create a register for the initialization value. Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); unsigned NewDst = 0; // Final initialized value will be in here // If PRTStrictNull feature is enabled (the default) then initialize // all the result registers to 0, otherwise just the error indication // register (VGPRn+1) unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); for (; SizeLeft; SizeLeft--, CurrIdx++) { NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); // Initialize dword Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) .addImm(0); // Insert into the super-reg BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) .addReg(PrevDst) .addReg(SubReg) .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); PrevDst = NewDst; } // Add as an implicit operand MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); // Tie the just added implicit operand to the dst MI.tieOperands(DstIdx, MI.getNumOperands() - 1); } /// Assign the register class depending on the number of /// bits set in the writemask void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); if (TII->isVOP3(MI.getOpcode())) { // Make sure constant bus requirements are respected. TII->legalizeOperandsVOP3(MRI, MI); // Prefer VGPRs over AGPRs in mAI instructions where possible. // This saves a chain-copy of registers and better balance register // use between vgpr and agpr as agpr tuples tend to be big. if (!MI.getDesc().operands().empty()) { unsigned Opc = MI.getOpcode(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) { if (I == -1) break; MachineOperand &Op = MI.getOperand(I); if (!Op.isReg() || !Op.getReg().isVirtual()) continue; auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); if (!TRI->hasAGPRs(RC)) continue; auto *Src = MRI.getUniqueVRegDef(Op.getReg()); if (!Src || !Src->isCopy() || !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) continue; auto *NewRC = TRI->getEquivalentVGPRClass(RC); // All uses of agpr64 and agpr32 can also accept vgpr except for // v_accvgpr_read, but we do not produce agpr reads during selection, // so no use checks are needed. MRI.setRegClass(Op.getReg(), NewRC); } // Resolve the rest of AV operands to AGPRs. if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { if (Src2->isReg() && Src2->getReg().isVirtual()) { auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); if (TRI->isVectorSuperClass(RC)) { auto *NewRC = TRI->getEquivalentAGPRClass(RC); MRI.setRegClass(Src2->getReg(), NewRC); if (Src2->isTied()) MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); } } } } return; } if (TII->isMIMG(MI)) { if (!MI.mayStore()) AddIMGInit(MI); TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); } } static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val) { SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); } MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); // Build the half of the subregister with the constants before building the // full 128-bit register. If we are building multiple resource descriptors, // this will allow CSEing of the 2-component register. const SDValue Ops0[] = { DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), buildSMovImm32(DAG, DL, 0), DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) }; SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v2i32, Ops0), 0); // Combine the constants and the pointer. const SDValue Ops1[] = { DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), Ptr, DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), SubRegHi, DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); } /// Return a resource descriptor with the 'Add TID' bit enabled /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] /// of the resource descriptor) to create an offset, which is added to /// the resource pointer. MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const { SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); if (RsrcDword1) { PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, DAG.getConstant(RsrcDword1, DL, MVT::i32)), 0); } SDValue DataLo = buildSMovImm32(DAG, DL, RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); const SDValue Ops[] = { DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), PtrLo, DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), PtrHi, DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), DataLo, DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), DataHi, DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); } //===----------------------------------------------------------------------===// // SI Inline Assembly Support //===----------------------------------------------------------------------===// std::pair SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, StringRef Constraint, MVT VT) const { const SIRegisterInfo *TRI = static_cast(TRI_); const TargetRegisterClass *RC = nullptr; if (Constraint.size() == 1) { const unsigned BitWidth = VT.getSizeInBits(); switch (Constraint[0]) { default: return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); case 's': case 'r': switch (BitWidth) { case 16: RC = &AMDGPU::SReg_32RegClass; break; case 64: RC = &AMDGPU::SGPR_64RegClass; break; default: RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); if (!RC) return std::pair(0U, nullptr); break; } break; case 'v': switch (BitWidth) { case 16: RC = &AMDGPU::VGPR_32RegClass; break; default: RC = TRI->getVGPRClassForBitWidth(BitWidth); if (!RC) return std::pair(0U, nullptr); break; } break; case 'a': if (!Subtarget->hasMAIInsts()) break; switch (BitWidth) { case 16: RC = &AMDGPU::AGPR_32RegClass; break; default: RC = TRI->getAGPRClassForBitWidth(BitWidth); if (!RC) return std::pair(0U, nullptr); break; } break; } // We actually support i128, i16 and f16 as inline parameters // even if they are not reported as legal if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) return std::pair(0U, RC); } if (Constraint.startswith("{") && Constraint.endswith("}")) { StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); if (RegName.consume_front("v")) { RC = &AMDGPU::VGPR_32RegClass; } else if (RegName.consume_front("s")) { RC = &AMDGPU::SGPR_32RegClass; } else if (RegName.consume_front("a")) { RC = &AMDGPU::AGPR_32RegClass; } if (RC) { uint32_t Idx; if (RegName.consume_front("[")) { uint32_t End; bool Failed = RegName.consumeInteger(10, Idx); Failed |= !RegName.consume_front(":"); Failed |= RegName.consumeInteger(10, End); Failed |= !RegName.consume_back("]"); if (!Failed) { uint32_t Width = (End - Idx + 1) * 32; MCRegister Reg = RC->getRegister(Idx); if (SIRegisterInfo::isVGPRClass(RC)) RC = TRI->getVGPRClassForBitWidth(Width); else if (SIRegisterInfo::isSGPRClass(RC)) RC = TRI->getSGPRClassForBitWidth(Width); else if (SIRegisterInfo::isAGPRClass(RC)) RC = TRI->getAGPRClassForBitWidth(Width); if (RC) { Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); return std::pair(Reg, RC); } } } else { bool Failed = RegName.getAsInteger(10, Idx); if (!Failed && Idx < RC->getNumRegs()) return std::pair(RC->getRegister(Idx), RC); } } } auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); if (Ret.first) Ret.second = TRI->getPhysRegBaseClass(Ret.first); return Ret; } static bool isImmConstraint(StringRef Constraint) { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'I': case 'J': case 'A': case 'B': case 'C': return true; } } else if (Constraint == "DA" || Constraint == "DB") { return true; } return false; } SITargetLowering::ConstraintType SITargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 's': case 'v': case 'a': return C_RegisterClass; } } if (isImmConstraint(Constraint)) { return C_Other; } return TargetLowering::getConstraintType(Constraint); } static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { if (!AMDGPU::isInlinableIntLiteral(Val)) { Val = Val & maskTrailingOnes(Size); } return Val; } void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { if (isImmConstraint(Constraint)) { uint64_t Val; if (getAsmOperandConstVal(Op, Val) && checkAsmConstraintVal(Op, Constraint, Val)) { Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); } } else { TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } } bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { unsigned Size = Op.getScalarValueSizeInBits(); if (Size > 64) return false; if (Size == 16 && !Subtarget->has16BitInsts()) return false; if (ConstantSDNode *C = dyn_cast(Op)) { Val = C->getSExtValue(); return true; } if (ConstantFPSDNode *C = dyn_cast(Op)) { Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); return true; } if (BuildVectorSDNode *V = dyn_cast(Op)) { if (Size != 16 || Op.getNumOperands() != 2) return false; if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) return false; if (ConstantSDNode *C = V->getConstantSplatNode()) { Val = C->getSExtValue(); return true; } if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); return true; } } return false; } bool SITargetLowering::checkAsmConstraintVal(SDValue Op, const std::string &Constraint, uint64_t Val) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'I': return AMDGPU::isInlinableIntLiteral(Val); case 'J': return isInt<16>(Val); case 'A': return checkAsmConstraintValA(Op, Val); case 'B': return isInt<32>(Val); case 'C': return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || AMDGPU::isInlinableIntLiteral(Val); default: break; } } else if (Constraint.size() == 2) { if (Constraint == "DA") { int64_t HiBits = static_cast(Val >> 32); int64_t LoBits = static_cast(Val); return checkAsmConstraintValA(Op, HiBits, 32) && checkAsmConstraintValA(Op, LoBits, 32); } if (Constraint == "DB") { return true; } } llvm_unreachable("Invalid asm constraint"); } bool SITargetLowering::checkAsmConstraintValA(SDValue Op, uint64_t Val, unsigned MaxSize) const { unsigned Size = std::min(Op.getScalarValueSizeInBits(), MaxSize); bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) || (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) { return true; } return false; } static int getAlignedAGPRClassID(unsigned UnalignedClassID) { switch (UnalignedClassID) { case AMDGPU::VReg_64RegClassID: return AMDGPU::VReg_64_Align2RegClassID; case AMDGPU::VReg_96RegClassID: return AMDGPU::VReg_96_Align2RegClassID; case AMDGPU::VReg_128RegClassID: return AMDGPU::VReg_128_Align2RegClassID; case AMDGPU::VReg_160RegClassID: return AMDGPU::VReg_160_Align2RegClassID; case AMDGPU::VReg_192RegClassID: return AMDGPU::VReg_192_Align2RegClassID; case AMDGPU::VReg_224RegClassID: return AMDGPU::VReg_224_Align2RegClassID; case AMDGPU::VReg_256RegClassID: return AMDGPU::VReg_256_Align2RegClassID; case AMDGPU::VReg_288RegClassID: return AMDGPU::VReg_288_Align2RegClassID; case AMDGPU::VReg_320RegClassID: return AMDGPU::VReg_320_Align2RegClassID; case AMDGPU::VReg_352RegClassID: return AMDGPU::VReg_352_Align2RegClassID; case AMDGPU::VReg_384RegClassID: return AMDGPU::VReg_384_Align2RegClassID; case AMDGPU::VReg_512RegClassID: return AMDGPU::VReg_512_Align2RegClassID; case AMDGPU::VReg_1024RegClassID: return AMDGPU::VReg_1024_Align2RegClassID; case AMDGPU::AReg_64RegClassID: return AMDGPU::AReg_64_Align2RegClassID; case AMDGPU::AReg_96RegClassID: return AMDGPU::AReg_96_Align2RegClassID; case AMDGPU::AReg_128RegClassID: return AMDGPU::AReg_128_Align2RegClassID; case AMDGPU::AReg_160RegClassID: return AMDGPU::AReg_160_Align2RegClassID; case AMDGPU::AReg_192RegClassID: return AMDGPU::AReg_192_Align2RegClassID; case AMDGPU::AReg_256RegClassID: return AMDGPU::AReg_256_Align2RegClassID; case AMDGPU::AReg_512RegClassID: return AMDGPU::AReg_512_Align2RegClassID; case AMDGPU::AReg_1024RegClassID: return AMDGPU::AReg_1024_Align2RegClassID; default: return -1; } } // Figure out which registers should be reserved for stack access. Only after // the function is legalized do we know all of the non-spill stack objects or if // calls are present. void SITargetLowering::finalizeLowering(MachineFunction &MF) const { MachineRegisterInfo &MRI = MF.getRegInfo(); SIMachineFunctionInfo *Info = MF.getInfo(); const GCNSubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); const SIInstrInfo *TII = ST.getInstrInfo(); if (Info->isEntryFunction()) { // Callable functions have fixed registers used for stack access. reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); } assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())); if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); // We need to worry about replacing the default register with itself in case // of MIR testcases missing the MFI. if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); Info->limitOccupancy(MF); if (ST.isWave32() && !MF.empty()) { for (auto &MBB : MF) { for (auto &MI : MBB) { TII->fixImplicitOperands(MI); } } } // FIXME: This is a hack to fixup AGPR classes to use the properly aligned // classes if required. Ideally the register class constraints would differ // per-subtarget, but there's no easy way to achieve that right now. This is // not a problem for VGPRs because the correctly aligned VGPR class is implied // from using them as the register class for legal types. if (ST.needsAlignedVGPRs()) { for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { const Register Reg = Register::index2VirtReg(I); const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); if (!RC) continue; int NewClassID = getAlignedAGPRClassID(RC->getID()); if (NewClassID != -1) MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); } } TargetLoweringBase::finalizeLowering(MF); } void SITargetLowering::computeKnownBitsForFrameIndex( const int FI, KnownBits &Known, const MachineFunction &MF) const { TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); // Set the high bits to zero based on the maximum allowed scratch size per // wave. We can't use vaddr in MUBUF instructions if we don't know the address // calculation won't overflow, so assume the sign bit is never set. Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); } static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, KnownBits &Known, unsigned Dim) { unsigned MaxValue = ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); Known.Zero.setHighBits(countLeadingZeros(MaxValue)); } void SITargetLowering::computeKnownBitsForTargetInstr( GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth) const { const MachineInstr *MI = MRI.getVRegDef(R); switch (MI->getOpcode()) { case AMDGPU::G_INTRINSIC: { switch (MI->getIntrinsicID()) { case Intrinsic::amdgcn_workitem_id_x: knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); break; case Intrinsic::amdgcn_workitem_id_y: knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); break; case Intrinsic::amdgcn_workitem_id_z: knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); break; case Intrinsic::amdgcn_mbcnt_lo: case Intrinsic::amdgcn_mbcnt_hi: { // These return at most the wavefront size - 1. unsigned Size = MRI.getType(R).getSizeInBits(); Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2()); break; } case Intrinsic::amdgcn_groupstaticsize: { // We can report everything over the maximum size as 0. We can't report // based on the actual size because we don't know if it's accurate or not // at any given point. Known.Zero.setHighBits( countLeadingZeros(getSubtarget()->getAddressableLocalMemorySize())); break; } } break; } case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: Known.Zero.setHighBits(24); break; case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: Known.Zero.setHighBits(16); break; } } Align SITargetLowering::computeKnownAlignForTargetInstr( GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, unsigned Depth) const { const MachineInstr *MI = MRI.getVRegDef(R); switch (MI->getOpcode()) { case AMDGPU::G_INTRINSIC: case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { // FIXME: Can this move to generic code? What about the case where the call // site specifies a lower alignment? Intrinsic::ID IID = MI->getIntrinsicID(); LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); if (MaybeAlign RetAlign = Attrs.getRetAlignment()) return *RetAlign; return Align(1); } default: return Align(1); } } Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); const Align CacheLineAlign = Align(64); // Pre-GFX10 target did not benefit from loop alignment if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() || getSubtarget()->hasInstFwdPrefetchBug()) return PrefAlign; // On GFX10 I$ is 4 x 64 bytes cache lines. // By default prefetcher keeps one cache line behind and reads two ahead. // We can modify it with S_INST_PREFETCH for larger loops to have two lines // behind and one ahead. // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. // If loop fits 64 bytes it always spans no more than two cache lines and // does not need an alignment. // Else if loop is less or equal 128 bytes we do not need to modify prefetch, // Else if loop is less or equal 192 bytes we need two lines behind. const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const MachineBasicBlock *Header = ML->getHeader(); if (Header->getAlignment() != PrefAlign) return Header->getAlignment(); // Already processed. unsigned LoopSize = 0; for (const MachineBasicBlock *MBB : ML->blocks()) { // If inner loop block is aligned assume in average half of the alignment // size to be added as nops. if (MBB != Header) LoopSize += MBB->getAlignment().value() / 2; for (const MachineInstr &MI : *MBB) { LoopSize += TII->getInstSizeInBytes(MI); if (LoopSize > 192) return PrefAlign; } } if (LoopSize <= 64) return PrefAlign; if (LoopSize <= 128) return CacheLineAlign; // If any of parent loops is surrounded by prefetch instructions do not // insert new for inner loop, which would reset parent's settings. for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { if (MachineBasicBlock *Exit = P->getExitBlock()) { auto I = Exit->getFirstNonDebugInstr(); if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) return CacheLineAlign; } } MachineBasicBlock *Pre = ML->getLoopPreheader(); MachineBasicBlock *Exit = ML->getExitBlock(); if (Pre && Exit) { auto PreTerm = Pre->getFirstTerminator(); if (PreTerm == Pre->begin() || std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) .addImm(1); // prefetch 2 lines behind PC auto ExitHead = Exit->getFirstNonDebugInstr(); if (ExitHead == Exit->end() || ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) .addImm(2); // prefetch 1 line behind PC } return CacheLineAlign; } LLVM_ATTRIBUTE_UNUSED static bool isCopyFromRegOfInlineAsm(const SDNode *N) { assert(N->getOpcode() == ISD::CopyFromReg); do { // Follow the chain until we find an INLINEASM node. N = N->getOperand(0).getNode(); if (N->getOpcode() == ISD::INLINEASM || N->getOpcode() == ISD::INLINEASM_BR) return true; } while (N->getOpcode() == ISD::CopyFromReg); return false; } bool SITargetLowering::isSDNodeSourceOfDivergence( const SDNode *N, FunctionLoweringInfo *FLI, LegacyDivergenceAnalysis *KDA) const { switch (N->getOpcode()) { case ISD::CopyFromReg: { const RegisterSDNode *R = cast(N->getOperand(1)); const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); Register Reg = R->getReg(); // FIXME: Why does this need to consider isLiveIn? if (Reg.isPhysical() || MRI.isLiveIn(Reg)) return !TRI->isSGPRReg(MRI, Reg); if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) return KDA->isDivergent(V); assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); return !TRI->isSGPRReg(MRI, Reg); } case ISD::LOAD: { const LoadSDNode *L = cast(N); unsigned AS = L->getAddressSpace(); // A flat load may access private memory. return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; } case ISD::CALLSEQ_END: return true; case ISD::INTRINSIC_WO_CHAIN: return AMDGPU::isIntrinsicSourceOfDivergence( cast(N->getOperand(0))->getZExtValue()); case ISD::INTRINSIC_W_CHAIN: return AMDGPU::isIntrinsicSourceOfDivergence( cast(N->getOperand(1))->getZExtValue()); case AMDGPUISD::ATOMIC_CMP_SWAP: case AMDGPUISD::ATOMIC_INC: case AMDGPUISD::ATOMIC_DEC: case AMDGPUISD::ATOMIC_LOAD_FMIN: case AMDGPUISD::ATOMIC_LOAD_FMAX: case AMDGPUISD::BUFFER_ATOMIC_SWAP: case AMDGPUISD::BUFFER_ATOMIC_ADD: case AMDGPUISD::BUFFER_ATOMIC_SUB: case AMDGPUISD::BUFFER_ATOMIC_SMIN: case AMDGPUISD::BUFFER_ATOMIC_UMIN: case AMDGPUISD::BUFFER_ATOMIC_SMAX: case AMDGPUISD::BUFFER_ATOMIC_UMAX: case AMDGPUISD::BUFFER_ATOMIC_AND: case AMDGPUISD::BUFFER_ATOMIC_OR: case AMDGPUISD::BUFFER_ATOMIC_XOR: case AMDGPUISD::BUFFER_ATOMIC_INC: case AMDGPUISD::BUFFER_ATOMIC_DEC: case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: case AMDGPUISD::BUFFER_ATOMIC_CSUB: case AMDGPUISD::BUFFER_ATOMIC_FADD: case AMDGPUISD::BUFFER_ATOMIC_FMIN: case AMDGPUISD::BUFFER_ATOMIC_FMAX: // Target-specific read-modify-write atomics are sources of divergence. return true; default: if (auto *A = dyn_cast(N)) { // Generic read-modify-write atomics are sources of divergence. return A->readMem() && A->writeMem(); } return false; } } bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, EVT VT) const { switch (VT.getScalarType().getSimpleVT().SimpleTy) { case MVT::f32: return hasFP32Denormals(DAG.getMachineFunction()); case MVT::f64: case MVT::f16: return hasFP64FP16Denormals(DAG.getMachineFunction()); default: return false; } } bool SITargetLowering::denormalsEnabledForType(LLT Ty, MachineFunction &MF) const { switch (Ty.getScalarSizeInBits()) { case 32: return hasFP32Denormals(MF); case 64: case 16: return hasFP64FP16Denormals(MF); default: return false; } } bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN, unsigned Depth) const { if (Op.getOpcode() == AMDGPUISD::CLAMP) { const MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); if (Info->getMode().DX10Clamp) return true; // Clamped to 0. return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); } return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, SNaN, Depth); } // Global FP atomic instructions have a hardcoded FP mode and do not support // FP32 denormals, and only support v2f16 denormals. static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) { const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt); if (&Flt == &APFloat::IEEEsingle()) return DenormMode == DenormalMode::getPreserveSign(); return DenormMode == DenormalMode::getIEEE(); } // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe // floating point atomic instructions. May generate more efficient code, // but may not respect rounding and denormal modes, and may give incorrect // results for certain memory destinations. bool unsafeFPAtomicsDisabled(Function *F) { return F->getFnAttribute("amdgpu-unsafe-fp-atomics").getValueAsString() != "true"; } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { unsigned AS = RMW->getPointerAddressSpace(); if (AS == AMDGPUAS::PRIVATE_ADDRESS) return AtomicExpansionKind::NotAtomic; auto SSID = RMW->getSyncScopeID(); auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) { OptimizationRemarkEmitter ORE(RMW->getFunction()); LLVMContext &Ctx = RMW->getFunction()->getContext(); SmallVector SSNs; Ctx.getSyncScopeNames(SSNs); auto MemScope = SSNs[RMW->getSyncScopeID()].empty() ? "system" : SSNs[RMW->getSyncScopeID()]; ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) << "Hardware instruction generated for atomic " << RMW->getOperationName(RMW->getOperation()) << " operation at memory scope " << MemScope << " due to an unsafe request."; }); return Kind; }; bool HasSystemScope = SSID == SyncScope::System || SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"); switch (RMW->getOperation()) { case AtomicRMWInst::FAdd: { Type *Ty = RMW->getType(); if (Ty->isHalfTy()) return AtomicExpansionKind::CmpXChg; if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy())) return AtomicExpansionKind::CmpXChg; if (AMDGPU::isFlatGlobalAddrSpace(AS) && Subtarget->hasAtomicFaddNoRtnInsts()) { if (unsafeFPAtomicsDisabled(RMW->getFunction())) return AtomicExpansionKind::CmpXChg; // Always expand system scope fp atomics. if (HasSystemScope) return AtomicExpansionKind::CmpXChg; if (AS == AMDGPUAS::GLOBAL_ADDRESS && Ty->isFloatTy()) { // global atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, gfx11+. if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) return ReportUnsafeHWInst(AtomicExpansionKind::None); // global atomic fadd f32 rtn: gfx90a, gfx940, gfx11+. if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) return ReportUnsafeHWInst(AtomicExpansionKind::None); } // flat atomic fadd f32: gfx940, gfx11+. if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && Subtarget->hasFlatAtomicFaddF32Inst()) return ReportUnsafeHWInst(AtomicExpansionKind::None); // global and flat atomic fadd f64: gfx90a, gfx940. if (Ty->isDoubleTy() && Subtarget->hasGFX90AInsts()) return ReportUnsafeHWInst(AtomicExpansionKind::None); // If it is in flat address space, and the type is float, we will try to // expand it, if the target supports global and lds atomic fadd. The // reason we need that is, in the expansion, we emit the check of address // space. If it is in global address space, we emit the global atomic // fadd; if it is in shared address space, we emit the LDS atomic fadd. if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy() && Subtarget->hasLDSFPAtomicAdd()) { if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) return AtomicExpansionKind::Expand; if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) return AtomicExpansionKind::Expand; } return AtomicExpansionKind::CmpXChg; } // DS FP atomics do respect the denormal mode, but the rounding mode is // fixed to round-to-nearest-even. // The only exception is DS_ADD_F64 which never flushes regardless of mode. if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomicAdd()) { if (!Ty->isDoubleTy()) return AtomicExpansionKind::None; if (fpModeMatchesGlobalFPAtomicMode(RMW)) return AtomicExpansionKind::None; return RMW->getFunction() ->getFnAttribute("amdgpu-unsafe-fp-atomics") .getValueAsString() == "true" ? ReportUnsafeHWInst(AtomicExpansionKind::None) : AtomicExpansionKind::CmpXChg; } return AtomicExpansionKind::CmpXChg; } case AtomicRMWInst::FMin: case AtomicRMWInst::FMax: case AtomicRMWInst::Min: case AtomicRMWInst::Max: case AtomicRMWInst::UMin: case AtomicRMWInst::UMax: { if (AMDGPU::isFlatGlobalAddrSpace(AS)) { if (RMW->getType()->isFloatTy() && unsafeFPAtomicsDisabled(RMW->getFunction())) return AtomicExpansionKind::CmpXChg; // Always expand system scope min/max atomics. if (HasSystemScope) return AtomicExpansionKind::CmpXChg; } break; } default: break; } return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ? AtomicExpansionKind::NotAtomic : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ? AtomicExpansionKind::NotAtomic : AtomicExpansionKind::None; } TargetLowering::AtomicExpansionKind SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ? AtomicExpansionKind::NotAtomic : AtomicExpansionKind::None; } const TargetRegisterClass * SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass : &AMDGPU::SReg_32RegClass; if (!TRI->isSGPRClass(RC) && !isDivergent) return TRI->getEquivalentSGPRClass(RC); else if (TRI->isSGPRClass(RC) && isDivergent) return TRI->getEquivalentVGPRClass(RC); return RC; } // FIXME: This is a workaround for DivergenceAnalysis not understanding always // uniform values (as produced by the mask results of control flow intrinsics) // used outside of divergent blocks. The phi users need to also be treated as // always uniform. static bool hasCFUser(const Value *V, SmallPtrSet &Visited, unsigned WaveSize) { // FIXME: We assume we never cast the mask results of a control flow // intrinsic. // Early exit if the type won't be consistent as a compile time hack. IntegerType *IT = dyn_cast(V->getType()); if (!IT || IT->getBitWidth() != WaveSize) return false; if (!isa(V)) return false; if (!Visited.insert(V).second) return false; bool Result = false; for (const auto *U : V->users()) { if (const IntrinsicInst *Intrinsic = dyn_cast(U)) { if (V == U->getOperand(1)) { switch (Intrinsic->getIntrinsicID()) { default: Result = false; break; case Intrinsic::amdgcn_if_break: case Intrinsic::amdgcn_if: case Intrinsic::amdgcn_else: Result = true; break; } } if (V == U->getOperand(0)) { switch (Intrinsic->getIntrinsicID()) { default: Result = false; break; case Intrinsic::amdgcn_end_cf: case Intrinsic::amdgcn_loop: Result = true; break; } } } else { Result = hasCFUser(U, Visited, WaveSize); } if (Result) break; } return Result; } bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, const Value *V) const { if (const CallInst *CI = dyn_cast(V)) { if (CI->isInlineAsm()) { // FIXME: This cannot give a correct answer. This should only trigger in // the case where inline asm returns mixed SGPR and VGPR results, used // outside the defining block. We don't have a specific result to // consider, so this assumes if any value is SGPR, the overall register // also needs to be SGPR. const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); for (auto &TC : TargetConstraints) { if (TC.Type == InlineAsm::isOutput) { ComputeConstraintToUse(TC, SDValue()); const TargetRegisterClass *RC = getRegForInlineAsmConstraint( SIRI, TC.ConstraintCode, TC.ConstraintVT).second; if (RC && SIRI->isSGPRClass(RC)) return true; } } } } SmallPtrSet Visited; return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); } bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { SDNode::use_iterator I = N->use_begin(), E = N->use_end(); for (; I != E; ++I) { if (MemSDNode *M = dyn_cast(*I)) { if (getBasePtrIndex(M) == I.getOperandNo()) return true; } } return false; } bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const { if (!N0.hasOneUse()) return false; // Take care of the opportunity to keep N0 uniform if (N0->isDivergent() || !N1->isDivergent()) return true; // Check if we have a good chance to form the memory access pattern with the // base and offset return (DAG.isBaseWithConstantOffset(N0) && hasMemSDNodeUser(*N0->use_begin())); } MachineMemOperand::Flags SITargetLowering::getTargetMMOFlags(const Instruction &I) const { // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. if (I.getMetadata("amdgpu.noclobber")) return MONoClobber; return MachineMemOperand::MONone; } bool SITargetLowering::checkForPhysRegDependency( SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const { if (User->getOpcode() != ISD::CopyToReg) return false; if (!Def->isMachineOpcode()) return false; MachineSDNode *MDef = dyn_cast(Def); if (!MDef) return false; unsigned ResNo = User->getOperand(Op).getResNo(); if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1) return false; const MCInstrDesc &II = TII->get(MDef->getMachineOpcode()); if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) { PhysReg = AMDGPU::SCC; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo)); Cost = RC->getCopyCost(); return true; } return false; } void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { assert(Subtarget->hasAtomicFaddInsts() && "target should have atomic fadd instructions"); assert(AI->getType()->isFloatTy() && AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && "generic atomicrmw expansion only supports FP32 operand in flat " "address space"); assert(AI->getOperation() == AtomicRMWInst::FAdd && "only fadd is supported for now"); // Given: atomicrmw fadd float* %addr, float %val ordering // // With this expansion we produce the following code: // [...] // %int8ptr = bitcast float* %addr to i8* // br label %atomicrmw.check.shared // // atomicrmw.check.shared: // %is.shared = call i1 @llvm.amdgcn.is.shared(i8* %int8ptr) // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private // // atomicrmw.shared: // %cast.shared = addrspacecast float* %addr to float addrspace(3)* // %loaded.shared = atomicrmw fadd float addrspace(3)* %cast.shared, // float %val ordering // br label %atomicrmw.phi // // atomicrmw.check.private: // %is.private = call i1 @llvm.amdgcn.is.private(i8* %int8ptr) // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global // // atomicrmw.private: // %cast.private = addrspacecast float* %addr to float addrspace(5)* // %loaded.private = load float, float addrspace(5)* %cast.private // %val.new = fadd float %loaded.private, %val // store float %val.new, float addrspace(5)* %cast.private // br label %atomicrmw.phi // // atomicrmw.global: // %cast.global = addrspacecast float* %addr to float addrspace(1)* // %loaded.global = atomicrmw fadd float addrspace(1)* %cast.global, // float %val ordering // br label %atomicrmw.phi // // atomicrmw.phi: // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ], // [ %loaded.private, %atomicrmw.private ], // [ %loaded.global, %atomicrmw.global ] // br label %atomicrmw.end // // atomicrmw.end: // [...] IRBuilder<> Builder(AI); LLVMContext &Ctx = Builder.getContext(); BasicBlock *BB = Builder.GetInsertBlock(); Function *F = BB->getParent(); BasicBlock *ExitBB = BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); BasicBlock *CheckSharedBB = BasicBlock::Create(Ctx, "atomicrmw.check.shared", F, ExitBB); BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB); BasicBlock *CheckPrivateBB = BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB); BasicBlock *PrivateBB = BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB); BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB); BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB); Value *Val = AI->getValOperand(); Type *ValTy = Val->getType(); Value *Addr = AI->getPointerOperand(); PointerType *PtrTy = cast(Addr->getType()); auto CreateNewAtomicRMW = [AI](IRBuilder<> &Builder, Value *Addr, Value *Val) -> Value * { AtomicRMWInst *OldVal = Builder.CreateAtomicRMW(AI->getOperation(), Addr, Val, AI->getAlign(), AI->getOrdering(), AI->getSyncScopeID()); SmallVector> MDs; AI->getAllMetadata(MDs); for (auto &P : MDs) OldVal->setMetadata(P.first, P.second); return OldVal; }; std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); Value *Int8Ptr = Builder.CreateBitCast(Addr, Builder.getInt8PtrTy()); Builder.CreateBr(CheckSharedBB); Builder.SetInsertPoint(CheckSharedBB); CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {}, {Int8Ptr}, nullptr, "is.shared"); Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB); Builder.SetInsertPoint(SharedBB); Value *CastToLocal = Builder.CreateAddrSpaceCast( Addr, PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::LOCAL_ADDRESS)); Value *LoadedShared = CreateNewAtomicRMW(Builder, CastToLocal, Val); Builder.CreateBr(PhiBB); Builder.SetInsertPoint(CheckPrivateBB); CallInst *IsPrivate = Builder.CreateIntrinsic( Intrinsic::amdgcn_is_private, {}, {Int8Ptr}, nullptr, "is.private"); Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB); Builder.SetInsertPoint(PrivateBB); Value *CastToPrivate = Builder.CreateAddrSpaceCast( Addr, PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::PRIVATE_ADDRESS)); Value *LoadedPrivate = Builder.CreateLoad(ValTy, CastToPrivate, "loaded.private"); Value *NewVal = Builder.CreateFAdd(LoadedPrivate, Val, "val.new"); Builder.CreateStore(NewVal, CastToPrivate); Builder.CreateBr(PhiBB); Builder.SetInsertPoint(GlobalBB); Value *CastToGlobal = Builder.CreateAddrSpaceCast( Addr, PointerType::getWithSamePointeeType(PtrTy, AMDGPUAS::GLOBAL_ADDRESS)); Value *LoadedGlobal = CreateNewAtomicRMW(Builder, CastToGlobal, Val); Builder.CreateBr(PhiBB); Builder.SetInsertPoint(PhiBB); PHINode *Loaded = Builder.CreatePHI(ValTy, 3, "loaded.phi"); Loaded->addIncoming(LoadedShared, SharedBB); Loaded->addIncoming(LoadedPrivate, PrivateBB); Loaded->addIncoming(LoadedGlobal, GlobalBB); Builder.CreateBr(ExitBB); AI->replaceAllUsesWith(Loaded); AI->eraseFromParent(); }