//===-- SIFormMemoryClauses.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This pass extends the live ranges of registers used as pointers in /// sequences of adjacent SMEM and VMEM instructions if XNACK is enabled. A /// load that would overwrite a pointer would require breaking the soft clause. /// Artificially extend the live ranges of the pointer operands by adding /// implicit-def early-clobber operands throughout the soft clause. /// //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNRegPressure.h" #include "SIMachineFunctionInfo.h" #include "llvm/InitializePasses.h" using namespace llvm; #define DEBUG_TYPE "si-form-memory-clauses" // Clauses longer then 15 instructions would overflow one of the counters // and stall. They can stall even earlier if there are outstanding counters. static cl::opt MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15), cl::desc("Maximum length of a memory clause, instructions")); namespace { class SIFormMemoryClauses : public MachineFunctionPass { typedef DenseMap> RegUse; public: static char ID; public: SIFormMemoryClauses() : MachineFunctionPass(ID) { initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Form memory clauses"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getClearedProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::IsSSA); } private: bool canBundle(const MachineInstr &MI, const RegUse &Defs, const RegUse &Uses) const; bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT); void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const; bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses, GCNDownwardRPTracker &RPT); const GCNSubtarget *ST; const SIRegisterInfo *TRI; const MachineRegisterInfo *MRI; SIMachineFunctionInfo *MFI; unsigned LastRecordedOccupancy; unsigned MaxVGPRs; unsigned MaxSGPRs; }; } // End anonymous namespace. INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE, "SI Form memory clauses", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE, "SI Form memory clauses", false, false) char SIFormMemoryClauses::ID = 0; char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID; FunctionPass *llvm::createSIFormMemoryClausesPass() { return new SIFormMemoryClauses(); } static bool isVMEMClauseInst(const MachineInstr &MI) { return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI); } static bool isSMEMClauseInst(const MachineInstr &MI) { return SIInstrInfo::isSMRD(MI); } // There no sense to create store clauses, they do not define anything, // thus there is nothing to set early-clobber. static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) { assert(!MI.isDebugInstr() && "debug instructions should not reach here"); if (MI.isBundled()) return false; if (!MI.mayLoad() || MI.mayStore()) return false; if (SIInstrInfo::isAtomic(MI)) return false; if (IsVMEMClause && !isVMEMClauseInst(MI)) return false; if (!IsVMEMClause && !isSMEMClauseInst(MI)) return false; // If this is a load instruction where the result has been coalesced with an operand, then we cannot clause it. for (const MachineOperand &ResMO : MI.defs()) { Register ResReg = ResMO.getReg(); for (const MachineOperand &MO : MI.uses()) { if (!MO.isReg() || MO.isDef()) continue; if (MO.getReg() == ResReg) return false; } break; // Only check the first def. } return true; } static unsigned getMopState(const MachineOperand &MO) { unsigned S = 0; if (MO.isImplicit()) S |= RegState::Implicit; if (MO.isDead()) S |= RegState::Dead; if (MO.isUndef()) S |= RegState::Undef; if (MO.isKill()) S |= RegState::Kill; if (MO.isEarlyClobber()) S |= RegState::EarlyClobber; if (MO.getReg().isPhysical() && MO.isRenamable()) S |= RegState::Renamable; return S; } // Returns false if there is a use of a def already in the map. // In this case we must break the clause. bool SIFormMemoryClauses::canBundle(const MachineInstr &MI, const RegUse &Defs, const RegUse &Uses) const { // Check interference with defs. for (const MachineOperand &MO : MI.operands()) { // TODO: Prologue/Epilogue Insertion pass does not process bundled // instructions. if (MO.isFI()) return false; if (!MO.isReg()) continue; Register Reg = MO.getReg(); // If it is tied we will need to write same register as we read. if (MO.isTied()) return false; const RegUse &Map = MO.isDef() ? Uses : Defs; auto Conflict = Map.find(Reg); if (Conflict == Map.end()) continue; if (Reg.isPhysical()) return false; LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); if ((Conflict->second.second & Mask).any()) return false; } return true; } // Since all defs in the clause are early clobber we can run out of registers. // Function returns false if pressure would hit the limit if instruction is // bundled into a memory clause. bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT) { // NB: skip advanceBeforeNext() call. Since all defs will be marked // early-clobber they will all stay alive at least to the end of the // clause. Therefor we should not decrease pressure even if load // pointer becomes dead and could otherwise be reused for destination. RPT.advanceToNext(); GCNRegPressure MaxPressure = RPT.moveMaxPressure(); unsigned Occupancy = MaxPressure.getOccupancy(*ST); // Don't push over half the register budget. We don't want to introduce // spilling just to form a soft clause. // // FIXME: This pressure check is fundamentally broken. First, this is checking // the global pressure, not the pressure at this specific point in the // program. Second, it's not accounting for the increased liveness of the use // operands due to the early clobber we will introduce. Third, the pressure // tracking does not account for the alignment requirements for SGPRs, or the // fragmentation of registers the allocator will need to satisfy. if (Occupancy >= MFI->getMinAllowedOccupancy() && MaxPressure.getVGPRNum(ST->hasGFX90AInsts()) <= MaxVGPRs / 2 && MaxPressure.getSGPRNum() <= MaxSGPRs / 2) { LastRecordedOccupancy = Occupancy; return true; } return false; } // Collect register defs and uses along with their lane masks and states. void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const { for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; LaneBitmask Mask = Reg.isVirtual() ? TRI->getSubRegIndexLaneMask(MO.getSubReg()) : LaneBitmask::getAll(); RegUse &Map = MO.isDef() ? Defs : Uses; auto Loc = Map.find(Reg); unsigned State = getMopState(MO); if (Loc == Map.end()) { Map[Reg] = std::make_pair(State, Mask); } else { Loc->second.first |= State; Loc->second.second |= Mask; } } } // Check register def/use conflicts, occupancy limits and collect def/use maps. // Return true if instruction can be bundled with previous. It it cannot // def/use maps are not updated. bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses, GCNDownwardRPTracker &RPT) { if (!canBundle(MI, Defs, Uses)) return false; if (!checkPressure(MI, RPT)) return false; collectRegUses(MI, Defs, Uses); return true; } bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; ST = &MF.getSubtarget(); if (!ST->isXNACKEnabled()) return false; const SIInstrInfo *TII = ST->getInstrInfo(); TRI = ST->getRegisterInfo(); MRI = &MF.getRegInfo(); MFI = MF.getInfo(); LiveIntervals *LIS = &getAnalysis(); SlotIndexes *Ind = LIS->getSlotIndexes(); bool Changed = false; MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count(); MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count(); unsigned FuncMaxClause = AMDGPU::getIntegerAttribute( MF.getFunction(), "amdgpu-max-memory-clause", MaxClause); for (MachineBasicBlock &MBB : MF) { GCNDownwardRPTracker RPT(*LIS); MachineBasicBlock::instr_iterator Next; for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) { MachineInstr &MI = *I; Next = std::next(I); if (MI.isMetaInstruction()) continue; bool IsVMEM = isVMEMClauseInst(MI); if (!isValidClauseInst(MI, IsVMEM)) continue; if (!RPT.getNext().isValid()) RPT.reset(MI); else { // Advance the state to the current MI. RPT.advance(MachineBasicBlock::const_iterator(MI)); RPT.advanceBeforeNext(); } const GCNRPTracker::LiveRegSet LiveRegsCopy(RPT.getLiveRegs()); RegUse Defs, Uses; if (!processRegUses(MI, Defs, Uses, RPT)) { RPT.reset(MI, &LiveRegsCopy); continue; } MachineBasicBlock::iterator LastClauseInst = Next; unsigned Length = 1; for ( ; Next != E && Length < FuncMaxClause; ++Next) { // Debug instructions should not change the kill insertion. if (Next->isMetaInstruction()) continue; if (!isValidClauseInst(*Next, IsVMEM)) break; // A load from pointer which was loaded inside the same bundle is an // impossible clause because we will need to write and read the same // register inside. In this case processRegUses will return false. if (!processRegUses(*Next, Defs, Uses, RPT)) break; LastClauseInst = Next; ++Length; } if (Length < 2) { RPT.reset(MI, &LiveRegsCopy); continue; } Changed = true; MFI->limitOccupancy(LastRecordedOccupancy); assert(!LastClauseInst->isMetaInstruction()); SlotIndex ClauseLiveInIdx = LIS->getInstructionIndex(MI); SlotIndex ClauseLiveOutIdx = LIS->getInstructionIndex(*LastClauseInst).getNextIndex(); // Track the last inserted kill. MachineInstrBuilder Kill; // Insert one kill per register, with operands covering all necessary // subregisters. for (auto &&R : Uses) { Register Reg = R.first; if (Reg.isPhysical()) continue; // Collect the register operands we should extend the live ranges of. SmallVector> KillOps; const LiveInterval &LI = LIS->getInterval(R.first); if (!LI.hasSubRanges()) { if (!LI.liveAt(ClauseLiveOutIdx)) { KillOps.emplace_back(R.second.first | RegState::Kill, AMDGPU::NoSubRegister); } } else { LaneBitmask KilledMask; for (const LiveInterval::SubRange &SR : LI.subranges()) { if (SR.liveAt(ClauseLiveInIdx) && !SR.liveAt(ClauseLiveOutIdx)) KilledMask |= SR.LaneMask; } if (KilledMask.none()) continue; SmallVector KilledIndexes; bool Success = TRI->getCoveringSubRegIndexes( *MRI, MRI->getRegClass(Reg), KilledMask, KilledIndexes); (void)Success; assert(Success && "Failed to find subregister mask to cover lanes"); for (unsigned SubReg : KilledIndexes) { KillOps.emplace_back(R.second.first | RegState::Kill, SubReg); } } if (KillOps.empty()) continue; // We only want to extend the live ranges of used registers. If they // already have existing uses beyond the bundle, we don't need the kill. // // It's possible all of the use registers were already live past the // bundle. Kill = BuildMI(*MI.getParent(), std::next(LastClauseInst), DebugLoc(), TII->get(AMDGPU::KILL)); for (auto &Op : KillOps) Kill.addUse(Reg, std::get<0>(Op), std::get<1>(Op)); Ind->insertMachineInstrInMaps(*Kill); } if (!Kill) { RPT.reset(MI, &LiveRegsCopy); continue; } // Restore the state after processing the end of the bundle. RPT.reset(*Kill, &LiveRegsCopy); for (auto &&R : Defs) { Register Reg = R.first; Uses.erase(Reg); if (Reg.isPhysical()) continue; LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); } for (auto &&R : Uses) { Register Reg = R.first; if (Reg.isPhysical()) continue; LIS->removeInterval(Reg); LIS->createAndComputeVirtRegInterval(Reg); } } } return Changed; }