//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This contains a MachineSchedStrategy implementation for maximizing wave /// occupancy on GCN hardware. //===----------------------------------------------------------------------===// #include "GCNSchedStrategy.h" #include "SIMachineFunctionInfo.h" #define DEBUG_TYPE "machine-scheduler" using namespace llvm; GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( const MachineSchedContext *C) : GenericScheduler(C), TargetOccupancy(0), HasClusteredNodes(false), HasExcessPressure(false), MF(nullptr) { } void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { GenericScheduler::initialize(DAG); MF = &DAG->MF; const GCNSubtarget &ST = MF->getSubtarget(); // FIXME: This is also necessary, because some passes that run after // scheduling and before regalloc increase register pressure. const unsigned ErrorMargin = 3; SGPRExcessLimit = Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass); VGPRExcessLimit = Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass); SIMachineFunctionInfo &MFI = *MF->getInfo(); // Set the initial TargetOccupnacy to the maximum occupancy that we can // achieve for this function. This effectively sets a lower bound on the // 'Critical' register limits in the scheduler. TargetOccupancy = MFI.getOccupancy(); SGPRCriticalLimit = std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit); VGPRCriticalLimit = std::min(ST.getMaxNumVGPRs(TargetOccupancy), VGPRExcessLimit); // Subtract error margin from register limits and avoid overflow. SGPRCriticalLimit = std::min(SGPRCriticalLimit - ErrorMargin, SGPRCriticalLimit); VGPRCriticalLimit = std::min(VGPRCriticalLimit - ErrorMargin, VGPRCriticalLimit); SGPRExcessLimit = std::min(SGPRExcessLimit - ErrorMargin, SGPRExcessLimit); VGPRExcessLimit = std::min(VGPRExcessLimit - ErrorMargin, VGPRExcessLimit); } void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, const RegPressureTracker &RPTracker, const SIRegisterInfo *SRI, unsigned SGPRPressure, unsigned VGPRPressure) { Cand.SU = SU; Cand.AtTop = AtTop; // getDownwardPressure() and getUpwardPressure() make temporary changes to // the tracker, so we need to pass those function a non-const copy. RegPressureTracker &TempTracker = const_cast(RPTracker); Pressure.clear(); MaxPressure.clear(); if (AtTop) TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); else { // FIXME: I think for bottom up scheduling, the register pressure is cached // and can be retrieved by DAG->getPressureDif(SU). TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); } unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32]; unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32]; // If two instructions increase the pressure of different register sets // by the same amount, the generic scheduler will prefer to schedule the // instruction that increases the set with the least amount of registers, // which in our case would be SGPRs. This is rarely what we want, so // when we report excess/critical register pressure, we do it either // only for VGPRs or only for SGPRs. // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. const unsigned MaxVGPRPressureInc = 16; bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; // FIXME: We have to enter REG-EXCESS before we reach the actual threshold // to increase the likelihood we don't go over the limits. We should improve // the analysis to look through dependencies to find the path with the least // register pressure. // We only need to update the RPDelta for instructions that increase register // pressure. Instructions that decrease or keep reg pressure the same will be // marked as RegExcess in tryCandidate() when they are compared with // instructions that increase the register pressure. if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { HasExcessPressure = true; Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32); Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); } if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { HasExcessPressure = true; Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32); Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); } // Register pressure is considered 'CRITICAL' if it is approaching a value // that would reduce the wave occupancy for the execution unit. When // register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both // has the same cost, so we don't need to prefer one over the other. int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; if (SGPRDelta >= 0 || VGPRDelta >= 0) { HasExcessPressure = true; if (SGPRDelta > VGPRDelta) { Cand.RPDelta.CriticalMax = PressureChange(AMDGPU::RegisterPressureSets::SReg_32); Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); } else { Cand.RPDelta.CriticalMax = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32); Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); } } } // This function is mostly cut and pasted from // GenericScheduler::pickNodeFromQueue() void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, const RegPressureTracker &RPTracker, SchedCandidate &Cand) { const SIRegisterInfo *SRI = static_cast(TRI); ArrayRef Pressure = RPTracker.getRegSetPressureAtPos(); unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32]; unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32]; ReadyQueue &Q = Zone.Available; for (SUnit *SU : Q) { SchedCandidate TryCand(ZonePolicy); initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, SGPRPressure, VGPRPressure); // Pass SchedBoundary only when comparing nodes from the same boundary. SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); if (TryCand.Reason != NoCand) { // Initialize resource delta if needed in case future heuristics query it. if (TryCand.ResDelta == SchedResourceDelta()) TryCand.initResourceDelta(Zone.DAG, SchedModel); Cand.setBest(TryCand); LLVM_DEBUG(traceCandidate(Cand)); } } } // This function is mostly cut and pasted from // GenericScheduler::pickNodeBidirectional() SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { // Schedule as far as possible in the direction of no choice. This is most // efficient, but also provides the best heuristics for CriticalPSets. if (SUnit *SU = Bot.pickOnlyChoice()) { IsTopNode = false; return SU; } if (SUnit *SU = Top.pickOnlyChoice()) { IsTopNode = true; return SU; } // Set the bottom-up policy based on the state of the current bottom zone and // the instructions outside the zone, including the top zone. CandPolicy BotPolicy; setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); // Set the top-down policy based on the state of the current top zone and // the instructions outside the zone, including the bottom zone. CandPolicy TopPolicy; setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); // See if BotCand is still valid (because we previously scheduled from Top). LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); if (!BotCand.isValid() || BotCand.SU->isScheduled || BotCand.Policy != BotPolicy) { BotCand.reset(CandPolicy()); pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find the first candidate"); } else { LLVM_DEBUG(traceCandidate(BotCand)); #ifndef NDEBUG if (VerifyScheduling) { SchedCandidate TCand; TCand.reset(CandPolicy()); pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); assert(TCand.SU == BotCand.SU && "Last pick result should correspond to re-picking right now"); } #endif } // Check if the top Q has a better candidate. LLVM_DEBUG(dbgs() << "Picking from Top:\n"); if (!TopCand.isValid() || TopCand.SU->isScheduled || TopCand.Policy != TopPolicy) { TopCand.reset(CandPolicy()); pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find the first candidate"); } else { LLVM_DEBUG(traceCandidate(TopCand)); #ifndef NDEBUG if (VerifyScheduling) { SchedCandidate TCand; TCand.reset(CandPolicy()); pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); assert(TCand.SU == TopCand.SU && "Last pick result should correspond to re-picking right now"); } #endif } // Pick best from BotCand and TopCand. LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand); dbgs() << "Bot Cand: "; traceCandidate(BotCand);); SchedCandidate Cand = BotCand; TopCand.Reason = NoCand; GenericScheduler::tryCandidate(Cand, TopCand, nullptr); if (TopCand.Reason != NoCand) { Cand.setBest(TopCand); } LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand);); IsTopNode = Cand.AtTop; return Cand.SU; } // This function is mostly cut and pasted from // GenericScheduler::pickNode() SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { if (DAG->top() == DAG->bottom()) { assert(Top.Available.empty() && Top.Pending.empty() && Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); return nullptr; } SUnit *SU; do { if (RegionPolicy.OnlyTopDown) { SU = Top.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; TopCand.reset(NoPolicy); pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find a candidate"); SU = TopCand.SU; } IsTopNode = true; } else if (RegionPolicy.OnlyBottomUp) { SU = Bot.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; BotCand.reset(NoPolicy); pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find a candidate"); SU = BotCand.SU; } IsTopNode = false; } else { SU = pickNodeBidirectional(IsTopNode); } } while (SU->isScheduled); if (SU->isTopReady()) Top.removeReady(SU); if (SU->isBottomReady()) Bot.removeReady(SU); if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) { for (SDep &Dep : SU->Preds) { if (Dep.isCluster()) { HasClusteredNodes = true; break; } } } LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); return SU; } GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, std::unique_ptr S) : ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget()), MFI(*MF.getInfo()), StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) { LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); } void GCNScheduleDAGMILive::schedule() { if (Stage == Collect) { // Just record regions at the first pass. Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); return; } std::vector Unsched; Unsched.reserve(NumRegionInstrs); for (auto &I : *this) { Unsched.push_back(&I); } GCNRegPressure PressureBefore; if (LIS) { PressureBefore = Pressure[RegionIdx]; LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:"; GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI); dbgs() << "Region live-in pressure: "; llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs()); dbgs() << "Region register pressure: "; PressureBefore.print(dbgs())); } GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; // Set HasClusteredNodes to true for late stages where we have already // collected it. That way pickNode() will not scan SDep's when not needed. S.HasClusteredNodes = Stage > InitialSchedule; S.HasExcessPressure = false; ScheduleDAGMILive::schedule(); Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); RescheduleRegions[RegionIdx] = false; if (Stage == InitialSchedule && S.HasClusteredNodes) RegionsWithClusters[RegionIdx] = true; if (S.HasExcessPressure) RegionsWithHighRP[RegionIdx] = true; if (!LIS) return; // Check the results of scheduling. auto PressureAfter = getRealRegPressure(); LLVM_DEBUG(dbgs() << "Pressure after scheduling: "; PressureAfter.print(dbgs())); if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit && PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) { Pressure[RegionIdx] = PressureAfter; LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n"); return; } unsigned WavesAfter = std::min(S.TargetOccupancy, PressureAfter.getOccupancy(ST)); unsigned WavesBefore = std::min(S.TargetOccupancy, PressureBefore.getOccupancy(ST)); LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore << ", after " << WavesAfter << ".\n"); // We may not be able to keep the current target occupancy because of the just // scheduled region. We might still be able to revert scheduling if the // occupancy before was higher, or if the current schedule has register // pressure higher than the excess limits which could lead to more spilling. unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); // Allow memory bound functions to drop to 4 waves if not limited by an // attribute. if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy && WavesAfter >= MFI.getMinAllowedOccupancy()) { LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to " << MFI.getMinAllowedOccupancy() << " waves\n"); NewOccupancy = WavesAfter; } if (NewOccupancy < MinOccupancy) { MinOccupancy = NewOccupancy; MFI.limitOccupancy(MinOccupancy); LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to " << MinOccupancy << ".\n"); } unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF); unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF); if (PressureAfter.getVGPRNum(false) > MaxVGPRs || PressureAfter.getAGPRNum() > MaxVGPRs || PressureAfter.getSGPRNum() > MaxSGPRs) { RescheduleRegions[RegionIdx] = true; RegionsWithHighRP[RegionIdx] = true; } // If this condition is true, then either the occupancy before and after // scheduling is the same, or we are allowing the occupancy to drop because // the function is memory bound. Even if we are OK with the current occupancy, // we still need to verify that we will not introduce any extra chance of // spilling. if (WavesAfter >= MinOccupancy) { if (Stage == UnclusteredReschedule && !PressureAfter.less(ST, PressureBefore)) { LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n"); } else if (WavesAfter > MFI.getMinWavesPerEU() || PressureAfter.less(ST, PressureBefore) || !RescheduleRegions[RegionIdx]) { Pressure[RegionIdx] = PressureAfter; if (!RegionsWithClusters[RegionIdx] && (Stage + 1) == UnclusteredReschedule) RescheduleRegions[RegionIdx] = false; return; } else { LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n"); } } LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n"); RescheduleRegions[RegionIdx] = RegionsWithClusters[RegionIdx] || (Stage + 1) != UnclusteredReschedule; RegionEnd = RegionBegin; for (MachineInstr *MI : Unsched) { if (MI->isDebugInstr()) continue; if (MI->getIterator() != RegionEnd) { BB->remove(MI); BB->insert(RegionEnd, MI); if (!MI->isDebugInstr()) LIS->handleMove(*MI, true); } // Reset read-undef flags and update them later. for (auto &Op : MI->operands()) if (Op.isReg() && Op.isDef()) Op.setIsUndef(false); RegisterOperands RegOpers; RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); if (!MI->isDebugInstr()) { if (ShouldTrackLaneMasks) { // Adjust liveness and add missing dead+read-undef flags. SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); } else { // Adjust for missing dead-def flags. RegOpers.detectDeadDefs(*MI, *LIS); } } RegionEnd = MI->getIterator(); ++RegionEnd; LLVM_DEBUG(dbgs() << "Scheduling " << *MI); } RegionBegin = Unsched.front()->getIterator(); Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); placeDebugValues(); } GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const { GCNDownwardRPTracker RPTracker(*LIS); RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]); return RPTracker.moveMaxPressure(); } void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) { GCNDownwardRPTracker RPTracker(*LIS); // If the block has the only successor then live-ins of that successor are // live-outs of the current block. We can reuse calculated live set if the // successor will be sent to scheduling past current block. const MachineBasicBlock *OnlySucc = nullptr; if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) { SlotIndexes *Ind = LIS->getSlotIndexes(); if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin())) OnlySucc = *MBB->succ_begin(); } // Scheduler sends regions from the end of the block upwards. size_t CurRegion = RegionIdx; for (size_t E = Regions.size(); CurRegion != E; ++CurRegion) if (Regions[CurRegion].first->getParent() != MBB) break; --CurRegion; auto I = MBB->begin(); auto LiveInIt = MBBLiveIns.find(MBB); if (LiveInIt != MBBLiveIns.end()) { auto LiveIn = std::move(LiveInIt->second); RPTracker.reset(*MBB->begin(), &LiveIn); MBBLiveIns.erase(LiveInIt); } else { auto &Rgn = Regions[CurRegion]; I = Rgn.first; auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second); auto LRS = BBLiveInMap.lookup(NonDbgMI); #ifdef EXPENSIVE_CHECKS assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS)); #endif RPTracker.reset(*I, &LRS); } for ( ; ; ) { I = RPTracker.getNext(); if (Regions[CurRegion].first == I) { LiveIns[CurRegion] = RPTracker.getLiveRegs(); RPTracker.clearMaxPressure(); } if (Regions[CurRegion].second == I) { Pressure[CurRegion] = RPTracker.moveMaxPressure(); if (CurRegion-- == RegionIdx) break; } RPTracker.advanceToNext(); RPTracker.advanceBeforeNext(); } if (OnlySucc) { if (I != MBB->end()) { RPTracker.advanceToNext(); RPTracker.advance(MBB->end()); } RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs()); RPTracker.advanceBeforeNext(); MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs(); } } DenseMap GCNScheduleDAGMILive::getBBLiveInMap() const { assert(!Regions.empty()); std::vector BBStarters; BBStarters.reserve(Regions.size()); auto I = Regions.rbegin(), E = Regions.rend(); auto *BB = I->first->getParent(); do { auto *MI = &*skipDebugInstructionsForward(I->first, I->second); BBStarters.push_back(MI); do { ++I; } while (I != E && I->first->getParent() == BB); } while (I != E); return getLiveRegMap(BBStarters, false /*After*/, *LIS); } void GCNScheduleDAGMILive::finalizeSchedule() { LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n"); LiveIns.resize(Regions.size()); Pressure.resize(Regions.size()); RescheduleRegions.resize(Regions.size()); RegionsWithClusters.resize(Regions.size()); RegionsWithHighRP.resize(Regions.size()); RescheduleRegions.set(); RegionsWithClusters.reset(); RegionsWithHighRP.reset(); if (!Regions.empty()) BBLiveInMap = getBBLiveInMap(); std::vector> SavedMutations; do { Stage++; RegionIdx = 0; MachineBasicBlock *MBB = nullptr; if (Stage > InitialSchedule) { if (!LIS) break; // Retry function scheduling if we found resulting occupancy and it is // lower than used for first pass scheduling. This will give more freedom // to schedule low register pressure blocks. // Code is partially copied from MachineSchedulerBase::scheduleRegions(). if (Stage == UnclusteredReschedule) { if (RescheduleRegions.none()) continue; LLVM_DEBUG(dbgs() << "Retrying function scheduling without clustering.\n"); } if (Stage == ClusteredLowOccupancyReschedule) { if (StartingOccupancy <= MinOccupancy) break; LLVM_DEBUG( dbgs() << "Retrying function scheduling with lowest recorded occupancy " << MinOccupancy << ".\n"); } } if (Stage == UnclusteredReschedule) SavedMutations.swap(Mutations); for (auto Region : Regions) { if ((Stage == UnclusteredReschedule && !RescheduleRegions[RegionIdx]) || (Stage == ClusteredLowOccupancyReschedule && !RegionsWithClusters[RegionIdx] && !RegionsWithHighRP[RegionIdx])) { ++RegionIdx; continue; } RegionBegin = Region.first; RegionEnd = Region.second; if (RegionBegin->getParent() != MBB) { if (MBB) finishBlock(); MBB = RegionBegin->getParent(); startBlock(MBB); if (Stage == InitialSchedule) computeBlockPressure(MBB); } unsigned NumRegionInstrs = std::distance(begin(), end()); enterRegion(MBB, begin(), end(), NumRegionInstrs); // Skip empty scheduling regions (0 or 1 schedulable instructions). if (begin() == end() || begin() == std::prev(end())) { exitRegion(); continue; } LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " " << MBB->getName() << "\n From: " << *begin() << " To: "; if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; else dbgs() << "End"; dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); schedule(); exitRegion(); ++RegionIdx; } finishBlock(); if (Stage == UnclusteredReschedule) SavedMutations.swap(Mutations); } while (Stage != LastStage); }