//===- GCNRegPressure.h -----------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the GCNRegPressure class, which tracks registry pressure /// by bookkeeping number of SGPR/VGPRs used, weights for large SGPR/VGPRs. It /// also implements a compare function, which compares different register /// pressures, and declares one with max occupancy as winner. /// //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H #define LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H #include "GCNSubtarget.h" #include "llvm/CodeGen/LiveIntervals.h" #include namespace llvm { class MachineRegisterInfo; class raw_ostream; class SlotIndex; struct GCNRegPressure { enum RegKind { SGPR32, SGPR_TUPLE, VGPR32, VGPR_TUPLE, AGPR32, AGPR_TUPLE, TOTAL_KINDS }; GCNRegPressure() { clear(); } bool empty() const { return getSGPRNum() == 0 && getVGPRNum(false) == 0; } void clear() { std::fill(&Value[0], &Value[TOTAL_KINDS], 0); } unsigned getSGPRNum() const { return Value[SGPR32]; } unsigned getVGPRNum(bool UnifiedVGPRFile) const { if (UnifiedVGPRFile) { return Value[AGPR32] ? alignTo(Value[VGPR32], 4) + Value[AGPR32] : Value[VGPR32] + Value[AGPR32]; } return std::max(Value[VGPR32], Value[AGPR32]); } unsigned getAGPRNum() const { return Value[AGPR32]; } unsigned getVGPRTuplesWeight() const { return std::max(Value[VGPR_TUPLE], Value[AGPR_TUPLE]); } unsigned getSGPRTuplesWeight() const { return Value[SGPR_TUPLE]; } unsigned getOccupancy(const GCNSubtarget &ST) const { return std::min(ST.getOccupancyWithNumSGPRs(getSGPRNum()), ST.getOccupancyWithNumVGPRs(getVGPRNum(ST.hasGFX90AInsts()))); } void inc(unsigned Reg, LaneBitmask PrevMask, LaneBitmask NewMask, const MachineRegisterInfo &MRI); bool higherOccupancy(const GCNSubtarget &ST, const GCNRegPressure& O) const { return getOccupancy(ST) > O.getOccupancy(ST); } bool less(const GCNSubtarget &ST, const GCNRegPressure& O, unsigned MaxOccupancy = std::numeric_limits::max()) const; bool operator==(const GCNRegPressure &O) const { return std::equal(&Value[0], &Value[TOTAL_KINDS], O.Value); } bool operator!=(const GCNRegPressure &O) const { return !(*this == O); } void print(raw_ostream &OS, const GCNSubtarget *ST = nullptr) const; void dump() const { print(dbgs()); } private: unsigned Value[TOTAL_KINDS]; static unsigned getRegKind(Register Reg, const MachineRegisterInfo &MRI); friend GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2); }; inline GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2) { GCNRegPressure Res; for (unsigned I = 0; I < GCNRegPressure::TOTAL_KINDS; ++I) Res.Value[I] = std::max(P1.Value[I], P2.Value[I]); return Res; } class GCNRPTracker { public: using LiveRegSet = DenseMap; protected: const LiveIntervals &LIS; LiveRegSet LiveRegs; GCNRegPressure CurPressure, MaxPressure; const MachineInstr *LastTrackedMI = nullptr; mutable const MachineRegisterInfo *MRI = nullptr; GCNRPTracker(const LiveIntervals &LIS_) : LIS(LIS_) {} void reset(const MachineInstr &MI, const LiveRegSet *LiveRegsCopy, bool After); public: // live regs for the current state const decltype(LiveRegs) &getLiveRegs() const { return LiveRegs; } const MachineInstr *getLastTrackedMI() const { return LastTrackedMI; } void clearMaxPressure() { MaxPressure.clear(); } // returns MaxPressure, resetting it decltype(MaxPressure) moveMaxPressure() { auto Res = MaxPressure; MaxPressure.clear(); return Res; } decltype(LiveRegs) moveLiveRegs() { return std::move(LiveRegs); } static void printLiveRegs(raw_ostream &OS, const LiveRegSet& LiveRegs, const MachineRegisterInfo &MRI); }; class GCNUpwardRPTracker : public GCNRPTracker { public: GCNUpwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {} // reset tracker to the point just below MI // filling live regs upon this point using LIS void reset(const MachineInstr &MI, const LiveRegSet *LiveRegs = nullptr); // move to the state just above the MI void recede(const MachineInstr &MI); // checks whether the tracker's state after receding MI corresponds // to reported by LIS bool isValid() const; }; class GCNDownwardRPTracker : public GCNRPTracker { // Last position of reset or advanceBeforeNext MachineBasicBlock::const_iterator NextMI; MachineBasicBlock::const_iterator MBBEnd; public: GCNDownwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {} MachineBasicBlock::const_iterator getNext() const { return NextMI; } // Reset tracker to the point before the MI // filling live regs upon this point using LIS. // Returns false if block is empty except debug values. bool reset(const MachineInstr &MI, const LiveRegSet *LiveRegs = nullptr); // Move to the state right before the next MI. Returns false if reached // end of the block. bool advanceBeforeNext(); // Move to the state at the MI, advanceBeforeNext has to be called first. void advanceToNext(); // Move to the state at the next MI. Returns false if reached end of block. bool advance(); // Advance instructions until before End. bool advance(MachineBasicBlock::const_iterator End); // Reset to Begin and advance to End. bool advance(MachineBasicBlock::const_iterator Begin, MachineBasicBlock::const_iterator End, const LiveRegSet *LiveRegsCopy = nullptr); }; LaneBitmask getLiveLaneMask(unsigned Reg, SlotIndex SI, const LiveIntervals &LIS, const MachineRegisterInfo &MRI); GCNRPTracker::LiveRegSet getLiveRegs(SlotIndex SI, const LiveIntervals &LIS, const MachineRegisterInfo &MRI); /// creates a map MachineInstr -> LiveRegSet /// R - range of iterators on instructions /// After - upon entry or exit of every instruction /// Note: there is no entry in the map for instructions with empty live reg set /// Complexity = O(NumVirtRegs * averageLiveRangeSegmentsPerReg * lg(R)) template DenseMap getLiveRegMap(Range &&R, bool After, LiveIntervals &LIS) { std::vector Indexes; Indexes.reserve(std::distance(R.begin(), R.end())); auto &SII = *LIS.getSlotIndexes(); for (MachineInstr *I : R) { auto SI = SII.getInstructionIndex(*I); Indexes.push_back(After ? SI.getDeadSlot() : SI.getBaseIndex()); } llvm::sort(Indexes); auto &MRI = (*R.begin())->getParent()->getParent()->getRegInfo(); DenseMap LiveRegMap; SmallVector LiveIdxs, SRLiveIdxs; for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { auto Reg = Register::index2VirtReg(I); if (!LIS.hasInterval(Reg)) continue; auto &LI = LIS.getInterval(Reg); LiveIdxs.clear(); if (!LI.findIndexesLiveAt(Indexes, std::back_inserter(LiveIdxs))) continue; if (!LI.hasSubRanges()) { for (auto SI : LiveIdxs) LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] = MRI.getMaxLaneMaskForVReg(Reg); } else for (const auto &S : LI.subranges()) { // constrain search for subranges by indexes live at main range SRLiveIdxs.clear(); S.findIndexesLiveAt(LiveIdxs, std::back_inserter(SRLiveIdxs)); for (auto SI : SRLiveIdxs) LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] |= S.LaneMask; } } return LiveRegMap; } inline GCNRPTracker::LiveRegSet getLiveRegsAfter(const MachineInstr &MI, const LiveIntervals &LIS) { return getLiveRegs(LIS.getInstructionIndex(MI).getDeadSlot(), LIS, MI.getParent()->getParent()->getRegInfo()); } inline GCNRPTracker::LiveRegSet getLiveRegsBefore(const MachineInstr &MI, const LiveIntervals &LIS) { return getLiveRegs(LIS.getInstructionIndex(MI).getBaseIndex(), LIS, MI.getParent()->getParent()->getRegInfo()); } template GCNRegPressure getRegPressure(const MachineRegisterInfo &MRI, Range &&LiveRegs) { GCNRegPressure Res; for (const auto &RM : LiveRegs) Res.inc(RM.first, LaneBitmask::getNone(), RM.second, MRI); return Res; } bool isEqual(const GCNRPTracker::LiveRegSet &S1, const GCNRPTracker::LiveRegSet &S2); void printLivesAt(SlotIndex SI, const LiveIntervals &LIS, const MachineRegisterInfo &MRI); } // end namespace llvm #endif // LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H