//===-- EvergreenInstructions.td - EG Instruction defs ----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // TableGen definitions for instructions which are: // - Available to Evergreen and newer VLIW4/VLIW5 GPUs // - Available only on Evergreen family GPUs. // //===----------------------------------------------------------------------===// def isEG : Predicate< "Subtarget->getGeneration() >= AMDGPUSubtarget::EVERGREEN && " "!Subtarget->hasCaymanISA()" >; def isEGorCayman : Predicate< "Subtarget->getGeneration() == AMDGPUSubtarget::EVERGREEN ||" "Subtarget->getGeneration() == AMDGPUSubtarget::NORTHERN_ISLANDS" >; class EGPat : AMDGPUPat { let SubtargetPredicate = isEG; } class EGOrCaymanPat : AMDGPUPat { let SubtargetPredicate = isEGorCayman; } def IMMZeroBasedBitfieldMask : ImmLeaf ; def IMMPopCount : SDNodeXFormgetTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N), MVT::i32); }]>; //===----------------------------------------------------------------------===// // Evergreen / Cayman store instructions //===----------------------------------------------------------------------===// let SubtargetPredicate = isEGorCayman in { class CF_MEM_RAT_CACHELESS rat_inst, bits<4> rat_id, bits<4> mask, dag ins, string name, list pattern> : EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins, "MEM_RAT_CACHELESS "#name, pattern>; class CF_MEM_RAT rat_inst, bits<4> rat_id, bits<4> mask, dag ins, dag outs, string name, list pattern> : EG_CF_RAT <0x56, rat_inst, rat_id, mask, outs, ins, "MEM_RAT "#name, pattern>; class CF_MEM_RAT_STORE_TYPED has_eop> : CF_MEM_RAT <0x1, ?, 0xf, (ins R600_Reg128:$rw_gpr, R600_Reg128:$index_gpr, i32imm:$rat_id, InstFlag:$eop), (outs), "STORE_TYPED RAT($rat_id) $rw_gpr, $index_gpr" #!if(has_eop, ", $eop", ""), [(int_r600_rat_store_typed R600_Reg128:$rw_gpr, R600_Reg128:$index_gpr, (i32 imm:$rat_id))]>; def RAT_MSKOR : CF_MEM_RAT <0x11, 0, 0xf, (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr), (outs), "MSKOR $rw_gpr.XW, $index_gpr", [(mskor_global v4i32:$rw_gpr, i32:$index_gpr)] > { let eop = 0; } multiclass RAT_ATOMIC op_ret, bits<6> op_noret, string name> { let Constraints = "$rw_gpr = $out_gpr", eop = 0, mayStore = 1 in { def _RTN: CF_MEM_RAT ; def _NORET: CF_MEM_RAT ; } } // Swap no-ret is just store. Raw store to cached target // can only store on dword, which exactly matches swap_no_ret. defm RAT_ATOMIC_XCHG_INT : RAT_ATOMIC<1, 34, "ATOMIC_XCHG_INT">; defm RAT_ATOMIC_CMPXCHG_INT : RAT_ATOMIC<4, 36, "ATOMIC_CMPXCHG_INT">; defm RAT_ATOMIC_ADD : RAT_ATOMIC<7, 39, "ATOMIC_ADD">; defm RAT_ATOMIC_SUB : RAT_ATOMIC<8, 40, "ATOMIC_SUB">; defm RAT_ATOMIC_RSUB : RAT_ATOMIC<9, 41, "ATOMIC_RSUB">; defm RAT_ATOMIC_MIN_INT : RAT_ATOMIC<10, 42, "ATOMIC_MIN_INT">; defm RAT_ATOMIC_MIN_UINT : RAT_ATOMIC<11, 43, "ATOMIC_MIN_UINT">; defm RAT_ATOMIC_MAX_INT : RAT_ATOMIC<12, 44, "ATOMIC_MAX_INT">; defm RAT_ATOMIC_MAX_UINT : RAT_ATOMIC<13, 45, "ATOMIC_MAX_UINT">; defm RAT_ATOMIC_AND : RAT_ATOMIC<14, 46, "ATOMIC_AND">; defm RAT_ATOMIC_OR : RAT_ATOMIC<15, 47, "ATOMIC_OR">; defm RAT_ATOMIC_XOR : RAT_ATOMIC<16, 48, "ATOMIC_XOR">; defm RAT_ATOMIC_INC_UINT : RAT_ATOMIC<18, 50, "ATOMIC_INC_UINT">; defm RAT_ATOMIC_DEC_UINT : RAT_ATOMIC<19, 51, "ATOMIC_DEC_UINT">; } // End SubtargetPredicate = isEGorCayman //===----------------------------------------------------------------------===// // Evergreen Only instructions //===----------------------------------------------------------------------===// let SubtargetPredicate = isEG in { def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>; defm DIV_eg : DIV_Common; def MULLO_INT_eg : MULLO_INT_Common<0x8F>; def MULHI_INT_eg : MULHI_INT_Common<0x90>; def MULLO_UINT_eg : MULLO_UINT_Common<0x91>; def MULHI_UINT_eg : MULHI_UINT_Common<0x92>; def MULHI_UINT24_eg : MULHI_UINT24_Common<0xb2>; def RECIP_UINT_eg : RECIP_UINT_Common<0x94>; def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>; def EXP_IEEE_eg : EXP_IEEE_Common<0x81>; def LOG_IEEE_eg : LOG_IEEE_Common<0x83>; def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>; def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>; def : SqrtPat; def SIN_eg : SIN_Common<0x8D>; def COS_eg : COS_Common<0x8E>; def : POW_Common ; } // End SubtargetPredicate = isEG //===----------------------------------------------------------------------===// // Memory read/write instructions //===----------------------------------------------------------------------===// let usesCustomInserter = 1 in { // 32-bit store def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1, (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop), "STORE_RAW $rw_gpr, $index_gpr, $eop", [(store_global i32:$rw_gpr, i32:$index_gpr)] >; // 64-bit store def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3, (ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop), "STORE_RAW $rw_gpr.XY, $index_gpr, $eop", [(store_global v2i32:$rw_gpr, i32:$index_gpr)] >; //128-bit store def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf, (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop), "STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop", [(store_global v4i32:$rw_gpr, i32:$index_gpr)] >; def RAT_STORE_TYPED_eg: CF_MEM_RAT_STORE_TYPED<1>; } // End usesCustomInserter = 1 class VTX_READ_eg : VTX_WORD0_eg, VTX_READ { // Static fields let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let SRC_REL = 0; // XXX: We can infer this field based on the SRC_GPR. This would allow us // to store vertex addresses in any channel, not just X. let SRC_SEL_X = 0; let Inst{31-0} = Word0; } def VTX_READ_8_eg : VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr", (outs R600_TReg32_X:$dst_gpr)> { let MEGA_FETCH_COUNT = 1; let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 1; // FMT_8 } def VTX_READ_16_eg : VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr", (outs R600_TReg32_X:$dst_gpr)> { let MEGA_FETCH_COUNT = 2; let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 5; // FMT_16 } def VTX_READ_32_eg : VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr", (outs R600_TReg32_X:$dst_gpr)> { let MEGA_FETCH_COUNT = 4; let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 0xD; // COLOR_32 // This is not really necessary, but there were some GPU hangs that appeared // to be caused by ALU instructions in the next instruction group that wrote // to the $src_gpr registers of the VTX_READ. // e.g. // %t3_x = VTX_READ_PARAM_32_eg killed %t2_x, 24 // %t2_x = MOV %zero //Adding this constraint prevents this from happening. let Constraints = "$src_gpr.ptr = $dst_gpr"; } def VTX_READ_64_eg : VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr", (outs R600_Reg64:$dst_gpr)> { let MEGA_FETCH_COUNT = 8; let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 7; let DST_SEL_W = 7; let DATA_FORMAT = 0x1D; // COLOR_32_32 } def VTX_READ_128_eg : VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", (outs R600_Reg128:$dst_gpr)> { let MEGA_FETCH_COUNT = 16; let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 0x22; // COLOR_32_32_32_32 // XXX: Need to force VTX_READ_128 instructions to write to the same register // that holds its buffer address to avoid potential hangs. We can't use // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst // registers are different sizes. } //===----------------------------------------------------------------------===// // VTX Read from parameter memory space //===----------------------------------------------------------------------===// def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi8 ADDRVTX_READ:$src_gpr)), (VTX_READ_8_eg MEMxi:$src_gpr, 3)>; def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi16 ADDRVTX_READ:$src_gpr)), (VTX_READ_16_eg MEMxi:$src_gpr, 3)>; def : EGPat<(i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)), (VTX_READ_32_eg MEMxi:$src_gpr, 3)>; def : EGPat<(v2i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)), (VTX_READ_64_eg MEMxi:$src_gpr, 3)>; def : EGPat<(v4i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)), (VTX_READ_128_eg MEMxi:$src_gpr, 3)>; //===----------------------------------------------------------------------===// // VTX Read from constant memory space //===----------------------------------------------------------------------===// def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi8 ADDRVTX_READ:$src_gpr)), (VTX_READ_8_eg MEMxi:$src_gpr, 2)>; def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi16 ADDRVTX_READ:$src_gpr)), (VTX_READ_16_eg MEMxi:$src_gpr, 2)>; def : EGPat<(i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)), (VTX_READ_32_eg MEMxi:$src_gpr, 2)>; def : EGPat<(v2i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)), (VTX_READ_64_eg MEMxi:$src_gpr, 2)>; def : EGPat<(v4i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)), (VTX_READ_128_eg MEMxi:$src_gpr, 2)>; //===----------------------------------------------------------------------===// // VTX Read from global memory space //===----------------------------------------------------------------------===// def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi8 ADDRVTX_READ:$src_gpr)), (VTX_READ_8_eg MEMxi:$src_gpr, 1)>; def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi16 ADDRVTX_READ:$src_gpr)), (VTX_READ_16_eg MEMxi:$src_gpr, 1)>; def : EGPat<(i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)), (VTX_READ_32_eg MEMxi:$src_gpr, 1)>; def : EGPat<(v2i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)), (VTX_READ_64_eg MEMxi:$src_gpr, 1)>; def : EGPat<(v4i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)), (VTX_READ_128_eg MEMxi:$src_gpr, 1)>; //===----------------------------------------------------------------------===// // Evergreen / Cayman Instructions //===----------------------------------------------------------------------===// let SubtargetPredicate = isEGorCayman in { multiclass AtomicPat { // FIXME: Add _RTN version. We need per WI scratch location to store the old value // EXTRACT_SUBREG here is dummy, we know the node has no uses def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, i32:$data)), (EXTRACT_SUBREG (inst_noret (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $data, sub0), $ptr), sub1)>; } // CMPSWAP is pattern is special // EXTRACT_SUBREG here is dummy, we know the node has no uses // FIXME: Add _RTN version. We need per WI scratch location to store the old value def : EGOrCaymanPat<(i32 (atomic_cmp_swap_global_noret i32:$ptr, i32:$cmp, i32:$data)), (EXTRACT_SUBREG (RAT_ATOMIC_CMPXCHG_INT_NORET (INSERT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $cmp, sub3), $data, sub0), $ptr), sub1)>; defm AtomicSwapPat : AtomicPat ; defm AtomicAddPat : AtomicPat ; defm AtomicSubPat : AtomicPat ; defm AtomicMinPat : AtomicPat ; defm AtomicUMinPat : AtomicPat ; defm AtomicMaxPat : AtomicPat ; defm AtomicUMaxPat : AtomicPat ; defm AtomicAndPat : AtomicPat ; defm AtomicOrPat : AtomicPat ; defm AtomicXorPat : AtomicPat ; // Should be predicated on FeatureFP64 // def FMA_64 : R600_3OP < // 0xA, "FMA_64", // [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))] // >; // BFE_UINT - bit_extract, an optimization for mask and shift // Src0 = Input // Src1 = Offset // Src2 = Width // // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width) // // Example Usage: // (Offset, Width) // // (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0 // (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8 // (16, 8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16 // (24, 8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24 def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT", [(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))], VecALU >; def BFE_INT_eg : R600_3OP <0x5, "BFE_INT", [(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))], VecALU >; // Bitfield extract patterns def : AMDGPUPat < (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask), (BFE_UINT_eg $src, $rshift, (MOV_IMM_I32 (i32 (IMMPopCount $mask)))) >; // x & ((1 << y) - 1) def : AMDGPUPat < (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width) >; // x & ~(-1 << y) def : AMDGPUPat < (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)), (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width) >; // x & (-1 >> (bitwidth - y)) def : AMDGPUPat < (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width) >; // x << (bitwidth - y) >> (bitwidth - y) def : AMDGPUPat < (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width) >; def : AMDGPUPat < (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), (BFE_INT_eg $src, (MOV_IMM_I32 (i32 0)), $width) >; def BFI_INT_eg : R600_3OP <0x06, "BFI_INT", [(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))], VecALU >; def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i1)), (BFE_INT_eg i32:$src, (i32 ZERO), (i32 ONE_INT))>; def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i8)), (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 8))>; def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i16)), (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>; // BFI patterns // Definition from ISA doc: // (y & x) | (z & ~x) def : AMDGPUPat < (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), (BFI_INT_eg $x, $y, $z) >; // 64-bit version def : AMDGPUPat < (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), (REG_SEQUENCE R600_Reg64, (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0)), (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0))), sub0, (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1)), (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1))), sub1) >; // SHA-256 Ch function // z ^ (x & (y ^ z)) def : AMDGPUPat < (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), (BFI_INT_eg $x, $y, $z) >; // 64-bit version def : AMDGPUPat < (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), (REG_SEQUENCE R600_Reg64, (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0)), (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0))), sub0, (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1)), (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1))), sub1) >; def : AMDGPUPat < (fcopysign f32:$src0, f32:$src1), (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), $src0, $src1) >; def : AMDGPUPat < (fcopysign f32:$src0, f64:$src1), (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), $src0, (i32 (EXTRACT_SUBREG R600_Reg64:$src1, sub1))) >; def : AMDGPUPat < (fcopysign f64:$src0, f64:$src1), (REG_SEQUENCE R600_Reg64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG R600_Reg64:$src0, sub1)), (i32 (EXTRACT_SUBREG R600_Reg64:$src1, sub1))), sub1) >; def : AMDGPUPat < (fcopysign f64:$src0, f32:$src1), (REG_SEQUENCE R600_Reg64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG R600_Reg64:$src0, sub1)), $src1), sub1) >; def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT", [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))], VecALU >; def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24", [(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))], VecALU >; def : UMad24Pat; def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>; def : AMDGPUPat < (fshr i32:$src0, i32:$src1, i32:$src2), (BIT_ALIGN_INT_eg $src0, $src1, $src2) >; def : ROTRPattern ; def MULADD_eg : MULADD_Common<0x14>; def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>; def FMA_eg : FMA_Common<0x7>; def ASHR_eg : ASHR_Common<0x15>; def LSHR_eg : LSHR_Common<0x16>; def LSHL_eg : LSHL_Common<0x17>; def CNDE_eg : CNDE_Common<0x19>; def CNDGT_eg : CNDGT_Common<0x1A>; def CNDGE_eg : CNDGE_Common<0x1B>; def MUL_LIT_eg : MUL_LIT_Common<0x1F>; def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>; def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24", [(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))], VecALU >; def DOT4_eg : DOT4_Common<0xBE>; defm CUBE_eg : CUBE_Common<0xC0>; def ADDC_UINT : R600_2OP_Helper <0x52, "ADDC_UINT", AMDGPUcarry>; def SUBB_UINT : R600_2OP_Helper <0x53, "SUBB_UINT", AMDGPUborrow>; def FLT32_TO_FLT16 : R600_1OP_Helper <0xA2, "FLT32_TO_FLT16", AMDGPUfp_to_f16, VecALU>; def FLT16_TO_FLT32 : R600_1OP_Helper <0xA3, "FLT16_TO_FLT32", f16_to_fp, VecALU>; def BCNT_INT : R600_1OP_Helper <0xAA, "BCNT_INT", ctpop, VecALU>; def FFBH_UINT : R600_1OP_Helper <0xAB, "FFBH_UINT", AMDGPUffbh_u32, VecALU>; def FFBL_INT : R600_1OP_Helper <0xAC, "FFBL_INT", AMDGPUffbl_b32, VecALU>; let hasSideEffects = 1 in { def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", [], VecALU>; } def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> { let Pattern = []; let Itinerary = AnyALU; } def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>; def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> { let Pattern = []; } def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>; def GROUP_BARRIER : InstR600 < (outs), (ins), " GROUP_BARRIER", [(int_r600_group_barrier)], AnyALU>, R600ALU_Word0, R600ALU_Word1_OP2 <0x54> { let dst = 0; let dst_rel = 0; let src0 = 0; let src0_rel = 0; let src0_neg = 0; let src0_abs = 0; let src1 = 0; let src1_rel = 0; let src1_neg = 0; let src1_abs = 0; let write = 0; let omod = 0; let clamp = 0; let last = 1; let bank_swizzle = 0; let pred_sel = 0; let update_exec_mask = 0; let update_pred = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; let ALUInst = 1; } //===----------------------------------------------------------------------===// // LDS Instructions //===----------------------------------------------------------------------===// class R600_LDS op, dag outs, dag ins, string asm, list pattern = []> : InstR600 , R600_ALU_LDS_Word0, R600LDS_Word1 { bits<6> offset = 0; let lds_op = op; let Word1{27} = offset{0}; let Word1{12} = offset{1}; let Word1{28} = offset{2}; let Word1{31} = offset{3}; let Word0{12} = offset{4}; let Word0{25} = offset{5}; let Inst{31-0} = Word0; let Inst{63-32} = Word1; let ALUInst = 1; let HasNativeOperands = 1; let UseNamedOperandTable = 1; } class R600_LDS_1A lds_op, string name, list pattern> : R600_LDS < lds_op, (outs R600_Reg32:$dst), (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel, LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle), " "#name#" $last OQAP, $src0$src0_rel $pred_sel", pattern > { let src1 = 0; let src1_rel = 0; let src2 = 0; let src2_rel = 0; let usesCustomInserter = 1; let LDS_1A = 1; let DisableEncoding = "$dst"; } class R600_LDS_1A1D lds_op, dag outs, string name, list pattern, string dst =""> : R600_LDS < lds_op, outs, (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel, R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel, LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle), " "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel", pattern > { field string BaseOp; let src2 = 0; let src2_rel = 0; let LDS_1A1D = 1; } class R600_LDS_1A1D_NORET lds_op, string name, list pattern> : R600_LDS_1A1D { let BaseOp = name; } class R600_LDS_1A1D_RET lds_op, string name, list pattern> : R600_LDS_1A1D { let BaseOp = name; let usesCustomInserter = 1; let DisableEncoding = "$dst"; } class R600_LDS_1A2D lds_op, dag outs, string name, list pattern, string dst =""> : R600_LDS < lds_op, outs, (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel, R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel, R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel, LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle), " "#name# "$last "#dst#"$src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel", pattern> { field string BaseOp; let LDS_1A1D = 0; let LDS_1A2D = 1; } class R600_LDS_1A2D_NORET lds_op, string name, list pattern> : R600_LDS_1A2D { let BaseOp = name; } class R600_LDS_1A2D_RET lds_op, string name, list pattern> : R600_LDS_1A2D { let BaseOp = name; let usesCustomInserter = 1; let DisableEncoding = "$dst"; } def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >; def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >; def LDS_AND : R600_LDS_1A1D_NORET <0x9, "LDS_AND", [] >; def LDS_OR : R600_LDS_1A1D_NORET <0xa, "LDS_OR", [] >; def LDS_XOR : R600_LDS_1A1D_NORET <0xb, "LDS_XOR", [] >; def LDS_WRXCHG: R600_LDS_1A1D_NORET <0xd, "LDS_WRXCHG", [] >; def LDS_CMPST: R600_LDS_1A2D_NORET <0x10, "LDS_CMPST", [] >; def LDS_MIN_INT : R600_LDS_1A1D_NORET <0x5, "LDS_MIN_INT", [] >; def LDS_MAX_INT : R600_LDS_1A1D_NORET <0x6, "LDS_MAX_INT", [] >; def LDS_MIN_UINT : R600_LDS_1A1D_NORET <0x7, "LDS_MIN_UINT", [] >; def LDS_MAX_UINT : R600_LDS_1A1D_NORET <0x8, "LDS_MAX_UINT", [] >; def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE", [(store_local (i32 R600_Reg32:$src1), R600_Reg32:$src0)] >; def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE", [(truncstorei8_local i32:$src1, i32:$src0)] >; def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE", [(truncstorei16_local i32:$src1, i32:$src0)] >; def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD", [(set i32:$dst, (atomic_load_add_local_32 i32:$src0, i32:$src1))] >; def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB", [(set i32:$dst, (atomic_load_sub_local_32 i32:$src0, i32:$src1))] >; def LDS_AND_RET : R600_LDS_1A1D_RET <0x29, "LDS_AND", [(set i32:$dst, (atomic_load_and_local_32 i32:$src0, i32:$src1))] >; def LDS_OR_RET : R600_LDS_1A1D_RET <0x2a, "LDS_OR", [(set i32:$dst, (atomic_load_or_local_32 i32:$src0, i32:$src1))] >; def LDS_XOR_RET : R600_LDS_1A1D_RET <0x2b, "LDS_XOR", [(set i32:$dst, (atomic_load_xor_local_32 i32:$src0, i32:$src1))] >; def LDS_MIN_INT_RET : R600_LDS_1A1D_RET <0x25, "LDS_MIN_INT", [(set i32:$dst, (atomic_load_min_local_32 i32:$src0, i32:$src1))] >; def LDS_MAX_INT_RET : R600_LDS_1A1D_RET <0x26, "LDS_MAX_INT", [(set i32:$dst, (atomic_load_max_local_32 i32:$src0, i32:$src1))] >; def LDS_MIN_UINT_RET : R600_LDS_1A1D_RET <0x27, "LDS_MIN_UINT", [(set i32:$dst, (atomic_load_umin_local_32 i32:$src0, i32:$src1))] >; def LDS_MAX_UINT_RET : R600_LDS_1A1D_RET <0x28, "LDS_MAX_UINT", [(set i32:$dst, (atomic_load_umax_local_32 i32:$src0, i32:$src1))] >; def LDS_WRXCHG_RET : R600_LDS_1A1D_RET <0x2d, "LDS_WRXCHG", [(set i32:$dst, (atomic_swap_local_32 i32:$src0, i32:$src1))] >; def LDS_CMPST_RET : R600_LDS_1A2D_RET <0x30, "LDS_CMPST", [(set i32:$dst, (atomic_cmp_swap_local_32 i32:$src0, i32:$src1, i32:$src2))] >; def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET", [(set (i32 R600_Reg32:$dst), (load_local R600_Reg32:$src0))] >; def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET", [(set i32:$dst, (sextloadi8_local i32:$src0))] >; def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET", [(set i32:$dst, (az_extloadi8_local i32:$src0))] >; def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET", [(set i32:$dst, (sextloadi16_local i32:$src0))] >; def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET", [(set i32:$dst, (az_extloadi16_local i32:$src0))] >; // TRUNC is used for the FLT_TO_INT instructions to work around a // perceived problem where the rounding modes are applied differently // depending on the instruction and the slot they are in. // See: // https://bugs.freedesktop.org/show_bug.cgi?id=50232 // Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c // // XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes, // which do not need to be truncated since the fp values are 0.0f or 1.0f. // We should look into handling these cases separately. def : EGOrCaymanPat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>; def : EGOrCaymanPat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>; // SHA-256 Ma patterns // ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y def : AMDGPUPat < (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))), (BFI_INT_eg (XOR_INT i32:$x, i32:$y), i32:$z, i32:$y) >; def : AMDGPUPat < (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))), (REG_SEQUENCE R600_Reg64, (BFI_INT_eg (XOR_INT (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0))), (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0))), sub0, (BFI_INT_eg (XOR_INT (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1))), (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1)), (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1))), sub1) >; def EG_ExportSwz : ExportSwzInst { let Word1{19-16} = 0; // BURST_COUNT let Word1{20} = 0; // VALID_PIXEL_MODE let Word1{21} = eop; let Word1{29-22} = inst; let Word1{30} = 0; // MARK let Word1{31} = 1; // BARRIER } defm : ExportPattern; def EG_ExportBuf : ExportBufInst { let Word1{19-16} = 0; // BURST_COUNT let Word1{20} = 0; // VALID_PIXEL_MODE let Word1{21} = eop; let Word1{29-22} = inst; let Word1{30} = 0; // MARK let Word1{31} = 1; // BARRIER } defm : SteamOutputExportPattern; def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT), "TEX $COUNT @$ADDR"> { let POP_COUNT = 0; } def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT), "VTX $COUNT @$ADDR"> { let POP_COUNT = 0; } def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR), "LOOP_START_DX10 @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR), "LOOP_BREAK @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR), "CONTINUE @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "JUMP @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_PUSH_EG : CF_CLAUSE_EG<11, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "PUSH @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "ELSE @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> { let ADDR = 0; let COUNT = 0; let POP_COUNT = 0; } def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "POP @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_END_EG : CF_CLAUSE_EG<0, (ins), "CF_END"> { let COUNT = 0; let POP_COUNT = 0; let ADDR = 0; let END_OF_PROGRAM = 1; } } // End Predicates = [isEGorCayman]