//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // /// \file /// /// This file contains definition for AMDGPU ISA disassembler // //===----------------------------------------------------------------------===// // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? #include "Disassembler/AMDGPUDisassembler.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIDefines.h" #include "SIRegisterInfo.h" #include "TargetInfo/AMDGPUTargetInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm-c/DisassemblerTypes.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDecoderOps.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/AMDHSAKernelDescriptor.h" using namespace llvm; #define DEBUG_TYPE "amdgpu-disassembler" #define SGPR_MAX \ (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ : AMDGPU::EncValues::SGPR_MAX_SI) using DecodeStatus = llvm::MCDisassembler::DecodeStatus; AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, MCInstrInfo const *MCII) : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { // ToDo: AMDGPUDisassembler supports only VI ISA. if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) report_fatal_error("Disassembly not yet supported for subtarget"); } inline static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand& Opnd) { Inst.addOperand(Opnd); return Opnd.isValid() ? MCDisassembler::Success : MCDisassembler::Fail; } static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, uint16_t NameIdx) { int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); if (OpIdx != -1) { auto I = MI.begin(); std::advance(I, OpIdx); MI.insert(I, Op); } return OpIdx; } static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { auto DAsm = static_cast(Decoder); // Our branches take a simm16, but we need two extra bits to account for the // factor of 4. APInt SignedOffset(18, Imm * 4, true); int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) return MCDisassembler::Success; return addOperand(Inst, MCOperand::createImm(Imm)); } static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { auto DAsm = static_cast(Decoder); int64_t Offset; if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. Offset = SignExtend64<24>(Imm); } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. Offset = Imm & 0xFFFFF; } else { // GFX9+ supports 21-bit signed offsets. Offset = SignExtend64<21>(Imm); } return addOperand(Inst, MCOperand::createImm(Offset)); } static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, const MCDisassembler *Decoder) { auto DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->decodeBoolReg(Val)); } static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, uint64_t Addr, const MCDisassembler *Decoder) { auto DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); } #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ uint64_t /*Addr*/, \ const MCDisassembler *Decoder) { \ auto DAsm = static_cast(Decoder); \ return addOperand(Inst, DAsm->DecoderName(Imm)); \ } // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is // number of register. Used by VGPR only and AGPR only operands. #define DECODE_OPERAND_REG_8(RegClass) \ static DecodeStatus Decode##RegClass##RegisterClass( \ MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ const MCDisassembler *Decoder) { \ assert(Imm < (1 << 8) && "8-bit encoding"); \ auto DAsm = static_cast(Decoder); \ return addOperand( \ Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ } #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ ImmWidth) \ static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ const MCDisassembler *Decoder) { \ assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ auto DAsm = static_cast(Decoder); \ return addOperand(Inst, \ DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ MandatoryLiteral, ImmWidth)); \ } // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to // get register class. Used by SGPR only operands. #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. // Used by AV_ register classes (AGPR or VGPR only register operands). #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ Imm | AMDGPU::EncValues::IS_VGPR, false, 0) // Decoder for Src(9-bit encoding) registers only. #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers // only. #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding // Imm{9} is acc, registers only. #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be // register from RegClass or immediate. Registers that don't belong to RegClass // will be decoded and InstPrinter will report warning. Immediate will be // decoded into constant of size ImmWidth, should match width of immediate used // by OperandType (important for floating point types). #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ false, ImmWidth) #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth) \ DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth) // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) // and decode using 'enum10' from decodeSrcOp. #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ Imm | 512, false, ImmWidth) #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ OpWidth, Imm, true, ImmWidth) // Default decoders generated by tablegen: 'DecodeRegisterClass' // when RegisterClass is used as an operand. Most often used for destination // operands. DECODE_OPERAND_REG_8(VGPR_32) DECODE_OPERAND_REG_8(VGPR_32_Lo128) DECODE_OPERAND_REG_8(VReg_64) DECODE_OPERAND_REG_8(VReg_96) DECODE_OPERAND_REG_8(VReg_128) DECODE_OPERAND_REG_8(VReg_256) DECODE_OPERAND_REG_8(VReg_288) DECODE_OPERAND_REG_8(VReg_352) DECODE_OPERAND_REG_8(VReg_384) DECODE_OPERAND_REG_8(VReg_512) DECODE_OPERAND_REG_8(VReg_1024) DECODE_OPERAND_REG_7(SReg_32, OPW32) DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) DECODE_OPERAND_REG_7(SReg_64, OPW64) DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) DECODE_OPERAND_REG_7(SReg_96, OPW96) DECODE_OPERAND_REG_7(SReg_128, OPW128) DECODE_OPERAND_REG_7(SReg_256, OPW256) DECODE_OPERAND_REG_7(SReg_512, OPW512) DECODE_OPERAND_REG_8(AGPR_32) DECODE_OPERAND_REG_8(AReg_64) DECODE_OPERAND_REG_8(AReg_128) DECODE_OPERAND_REG_8(AReg_256) DECODE_OPERAND_REG_8(AReg_512) DECODE_OPERAND_REG_8(AReg_1024) DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) // Decoders for register only source RegisterOperands that use use 9-bit Src // encoding: 'decodeOperand_'. DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) // Decoders for register or immediate RegisterOperands that use 9-bit Src // encoding: 'decodeOperand__Imm'. DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32) DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16) DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, const MCDisassembler *Decoder) { assert(isUInt<10>(Imm) && "10-bit encoding expected"); assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); bool IsHi = Imm & (1 << 9); unsigned RegIdx = Imm & 0xff; auto DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); } static DecodeStatus DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, const MCDisassembler *Decoder) { assert(isUInt<8>(Imm) && "8-bit encoding expected"); bool IsHi = Imm & (1 << 7); unsigned RegIdx = Imm & 0x7f; auto DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); } static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, const MCDisassembler *Decoder) { assert(isUInt<9>(Imm) && "9-bit encoding expected"); const auto *DAsm = static_cast(Decoder); bool IsVGPR = Imm & (1 << 8); if (IsVGPR) { bool IsHi = Imm & (1 << 7); unsigned RegIdx = Imm & 0x7f; return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); } return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, Imm & 0xFF, false, 16)); } static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, const MCDisassembler *Decoder) { assert(isUInt<10>(Imm) && "10-bit encoding expected"); const auto *DAsm = static_cast(Decoder); bool IsVGPR = Imm & (1 << 8); if (IsVGPR) { bool IsHi = Imm & (1 << 9); unsigned RegIdx = Imm & 0xff; return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); } return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, Imm & 0xFF, false, 16)); } static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { const auto *DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); } static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, uint64_t Addr, const void *Decoder) { const auto *DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); } static bool IsAGPROperand(const MCInst &Inst, int OpIdx, const MCRegisterInfo *MRI) { if (OpIdx < 0) return false; const MCOperand &Op = Inst.getOperand(OpIdx); if (!Op.isReg()) return false; unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); auto Reg = Sub ? Sub : Op.getReg(); return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; } static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, AMDGPUDisassembler::OpWidthTy Opw, const MCDisassembler *Decoder) { auto DAsm = static_cast(Decoder); if (!DAsm->isGFX90A()) { Imm &= 511; } else { // If atomic has both vdata and vdst their register classes are tied. // The bit is decoded along with the vdst, first operand. We need to // change register class to AGPR if vdst was AGPR. // If a DS instruction has both data0 and data1 their register classes // are also tied. unsigned Opc = Inst.getOpcode(); uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata; const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); if ((int)Inst.getNumOperands() == DataIdx) { int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); if (IsAGPROperand(Inst, DstIdx, MRI)) Imm |= 512; } if (TSFlags & SIInstrFlags::DS) { int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); if ((int)Inst.getNumOperands() == Data2Idx && IsAGPROperand(Inst, DataIdx, MRI)) Imm |= 512; } } return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); } static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { assert(Imm < (1 << 9) && "9-bit encoding"); auto DAsm = static_cast(Decoder); return addOperand( Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true)); } static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW32, Decoder); } static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW64, Decoder); } static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW96, Decoder); } static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW128, Decoder); } static DecodeStatus DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, const MCDisassembler *Decoder) { return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, Decoder); } #define DECODE_SDWA(DecName) \ DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) DECODE_SDWA(Src32) DECODE_SDWA(Src16) DECODE_SDWA(VopcDst) #include "AMDGPUGenDisassemblerTables.inc" //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// template static inline T eatBytes(ArrayRef& Bytes) { assert(Bytes.size() >= sizeof(T)); const auto Res = support::endian::read(Bytes.data()); Bytes = Bytes.slice(sizeof(T)); return Res; } static inline DecoderUInt128 eat12Bytes(ArrayRef &Bytes) { assert(Bytes.size() >= 12); uint64_t Lo = support::endian::read(Bytes.data()); Bytes = Bytes.slice(8); uint64_t Hi = support::endian::read(Bytes.data()); Bytes = Bytes.slice(4); return DecoderUInt128(Lo, Hi); } // The disassembler is greedy, so we need to check FI operand value to // not parse a dpp if the correct literal is not set. For dpp16 the // autogenerated decoder checks the dpp literal static bool isValidDPP8(const MCInst &MI) { using namespace llvm::AMDGPU::DPP; int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); assert(FiIdx != -1); if ((unsigned)FiIdx >= MI.getNumOperands()) return false; unsigned Fi = MI.getOperand(FiIdx).getImm(); return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; } DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, ArrayRef Bytes_, uint64_t Address, raw_ostream &CS) const { bool IsSDWA = false; unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); Bytes = Bytes_.slice(0, MaxInstBytesNum); DecodeStatus Res = MCDisassembler::Fail; do { // ToDo: better to switch encoding length using some bit predicate // but it is unknown yet, so try all we can // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 // encodings if (isGFX11Plus() && Bytes.size() >= 12 ) { DecoderUInt128 DecW = eat12Bytes(Bytes); Res = tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696, MI, DecW, Address, CS); if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) break; MI = MCInst(); // clear Res = tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696, MI, DecW, Address, CS); if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) break; MI = MCInst(); // clear const auto convertVOPDPP = [&]() { if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) { convertVOP3PDPPInst(MI); } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) { convertVOPCDPPInst(MI); // Special VOP3 case } else { assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); convertVOP3DPPInst(MI); // Regular VOP3 case } }; Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696, MI, DecW, Address, CS); if (Res) { convertVOPDPP(); break; } Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696, MI, DecW, Address, CS); if (Res) { convertVOPDPP(); break; } Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS); if (Res) break; } // Reinitialize Bytes Bytes = Bytes_.slice(0, MaxInstBytesNum); if (Bytes.size() >= 8) { const uint64_t QW = eatBytes(Bytes); if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); if (Res) { if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) == -1) break; if (convertDPP8Inst(MI) == MCDisassembler::Success) break; MI = MCInst(); // clear } } Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) break; MI = MCInst(); // clear Res = tryDecodeInst(DecoderTableDPP8GFX1164, DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS); if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) break; MI = MCInst(); // clear Res = tryDecodeInst(DecoderTableDPP8GFX1264, DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS); if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) break; MI = MCInst(); // clear Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664, MI, QW, Address, CS); if (Res) { if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) convertVOPCDPPInst(MI); break; } Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664, MI, QW, Address, CS); if (Res) { if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) convertVOPCDPPInst(MI); break; } Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); if (Res) { IsSDWA = true; break; } Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); if (Res) { IsSDWA = true; break; } Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); if (Res) { IsSDWA = true; break; } if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); if (Res) break; } // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and // v_mad_mixhi_f16 for FMA variants. Try to decode using this special // table first so we print the correct name. if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); if (Res) break; } } // Reinitialize Bytes as DPP64 could have eaten too much Bytes = Bytes_.slice(0, MaxInstBytesNum); // Try decode 32-bit instruction if (Bytes.size() < 4) break; const uint32_t DW = eatBytes(Bytes); Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); if (Res) break; if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); if (Res) break; } if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); if (Res) break; } Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, Address, CS); if (Res) break; if (Bytes.size() < 4) break; const uint64_t QW = ((uint64_t)eatBytes(Bytes) << 32) | DW; if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); if (Res) break; } if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); if (Res) break; } Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, Address, CS); if (Res) break; Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); } while (false); if (Res && AMDGPU::isMAC(MI.getOpcode())) { // Insert dummy unused src2_modifiers. insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::src2_modifiers); } if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) && !AMDGPU::hasGDS(STI)) { insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds); } if (Res && (MCII->get(MI.getOpcode()).TSFlags & (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::cpol); if (CPolPos != -1) { unsigned CPol = (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? AMDGPU::CPol::GLC : 0; if (MI.getNumOperands() <= (unsigned)CPolPos) { insertNamedMCOperand(MI, MCOperand::createImm(CPol), AMDGPU::OpName::cpol); } else if (CPol) { MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); } } } if (Res && (MCII->get(MI.getOpcode()).TSFlags & (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { // GFX90A lost TFE, its place is occupied by ACC. int TFEOpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); if (TFEOpIdx != -1) { auto TFEIter = MI.begin(); std::advance(TFEIter, TFEOpIdx); MI.insert(TFEIter, MCOperand::createImm(0)); } } if (Res && (MCII->get(MI.getOpcode()).TSFlags & (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { int SWZOpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); if (SWZOpIdx != -1) { auto SWZIter = MI.begin(); std::advance(SWZIter, SWZOpIdx); MI.insert(SWZIter, MCOperand::createImm(0)); } } if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { int VAddr0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; if (VAddr0Idx >= 0 && NSAArgs > 0) { unsigned NSAWords = (NSAArgs + 3) / 4; if (Bytes.size() < 4 * NSAWords) { Res = MCDisassembler::Fail; } else { for (unsigned i = 0; i < NSAArgs; ++i) { const unsigned VAddrIdx = VAddr0Idx + 1 + i; auto VAddrRCID = MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i])); } Bytes = Bytes.slice(4 * NSAWords); } } if (Res) Res = convertMIMGInst(MI); } if (Res && (MCII->get(MI.getOpcode()).TSFlags & (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))) Res = convertMIMGInst(MI); if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) Res = convertEXPInst(MI); if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) Res = convertVINTERPInst(MI); if (Res && IsSDWA) Res = convertSDWAInst(MI); int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in); if (VDstIn_Idx != -1) { int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, MCOI::OperandConstraint::TIED_TO); if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || !MI.getOperand(VDstIn_Idx).isReg() || MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { if (MI.getNumOperands() > (unsigned)VDstIn_Idx) MI.erase(&MI.getOperand(VDstIn_Idx)); insertNamedMCOperand(MI, MCOperand::createReg(MI.getOperand(Tied).getReg()), AMDGPU::OpName::vdst_in); } } int ImmLitIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; if (Res && ImmLitIdx != -1 && !IsSOPK) Res = convertFMAanyK(MI, ImmLitIdx); // if the opcode was not recognized we'll assume a Size of 4 bytes // (unless there are fewer bytes left) Size = Res ? (MaxInstBytesNum - Bytes.size()) : std::min((size_t)4, Bytes_.size()); return Res; } DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { // The MCInst still has these fields even though they are no longer encoded // in the GFX11 instruction. insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); } return MCDisassembler::Success; } DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { // The MCInst has this field that is not directly encoded in the // instruction. insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); } return MCDisassembler::Success; } DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { if (STI.hasFeature(AMDGPU::FeatureGFX9) || STI.hasFeature(AMDGPU::FeatureGFX10)) { if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) // VOPC - insert clamp insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); if (SDst != -1) { // VOPC - insert VCC register as sdst insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), AMDGPU::OpName::sdst); } else { // VOP1/2 - insert omod if present in instruction insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); } } return MCDisassembler::Success; } struct VOPModifiers { unsigned OpSel = 0; unsigned OpSelHi = 0; unsigned NegLo = 0; unsigned NegHi = 0; }; // Reconstruct values of VOP3/VOP3P operands such as op_sel. // Note that these values do not affect disassembler output, // so this is only necessary for consistency with src_modifiers. static VOPModifiers collectVOPModifiers(const MCInst &MI, bool IsVOP3P = false) { VOPModifiers Modifiers; unsigned Opc = MI.getOpcode(); const int ModOps[] = {AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers, AMDGPU::OpName::src2_modifiers}; for (int J = 0; J < 3; ++J) { int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); if (OpIdx == -1) continue; unsigned Val = MI.getOperand(OpIdx).getImm(); Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; if (IsVOP3P) { Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; } else if (J == 0) { Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; } } return Modifiers; } // MAC opcodes have special old and src2 operands. // src2 is tied to dst, while old is not tied (but assumed to be). bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { constexpr int DST_IDX = 0; auto Opcode = MI.getOpcode(); const auto &Desc = MCII->get(Opcode); auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); if (OldIdx != -1 && Desc.getOperandConstraint( OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); assert(Desc.getOperandConstraint( AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), MCOI::OperandConstraint::TIED_TO) == DST_IDX); (void)DST_IDX; return true; } return false; } // Create dummy old operand and insert dummy unused src2_modifiers void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::src2_modifiers); } // We must check FI == literal to reject not genuine dpp8 insts, and we must // first add optional MI operands to check FI DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { unsigned Opc = MI.getOpcode(); if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { convertVOP3PDPPInst(MI); } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || AMDGPU::isVOPC64DPP(Opc)) { convertVOPCDPPInst(MI); } else { if (isMacDPP(MI)) convertMacDPPInst(MI); unsigned DescNumOps = MCII->get(Opc).getNumOperands(); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { auto Mods = collectVOPModifiers(MI); insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), AMDGPU::OpName::op_sel); } else { // Insert dummy unused src modifiers. if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::src0_modifiers); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::src1_modifiers); } } return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; } DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { if (isMacDPP(MI)) convertMacDPPInst(MI); unsigned Opc = MI.getOpcode(); unsigned DescNumOps = MCII->get(Opc).getNumOperands(); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { auto Mods = collectVOPModifiers(MI); insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), AMDGPU::OpName::op_sel); } return MCDisassembler::Success; } // Note that before gfx10, the MIMG encoding provided no information about // VADDR size. Consequently, decoded instructions always show address as if it // has 1 dword, which could be not really so. DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst); int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); int VAddr0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc; int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dmask); int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::d16); const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); assert(VDataIdx != -1); if (BaseOpcode->BVH) { // Add A16 operand for intersect_ray instructions addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); return MCDisassembler::Success; } bool IsAtomic = (VDstIdx != -1); bool IsGather4 = TSFlags & SIInstrFlags::Gather4; bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; bool IsNSA = false; bool IsPartialNSA = false; unsigned AddrSize = Info->VAddrDwords; if (isGFX10Plus()) { unsigned DimIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); int A16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); const AMDGPU::MIMGDimInfo *Dim = AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); AddrSize = AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. // VIMAGE insts other than BVH never use vaddr4. IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; if (!IsNSA) { if (!IsVSample && AddrSize > 12) AddrSize = 16; } else { if (AddrSize > Info->VAddrDwords) { if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { // The NSA encoding does not contain enough operands for the // combination of base opcode / dimension. Should this be an error? return MCDisassembler::Success; } IsPartialNSA = true; } } } unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); if (D16 && AMDGPU::hasPackedD16(STI)) { DstSize = (DstSize + 1) / 2; } if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) DstSize += 1; if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) return MCDisassembler::Success; int NewOpcode = AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); if (NewOpcode == -1) return MCDisassembler::Success; // Widen the register to the correct number of enabled channels. unsigned NewVdata = AMDGPU::NoRegister; if (DstSize != Info->VDataDwords) { auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; // Get first subregister of VData unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, &MRI.getRegClass(DataRCID)); if (NewVdata == AMDGPU::NoRegister) { // It's possible to encode this such that the low register + enabled // components exceeds the register count. return MCDisassembler::Success; } } // If not using NSA on GFX10+, widen vaddr0 address register to correct size. // If using partial NSA on GFX11+ widen last address register. int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; unsigned NewVAddrSA = AMDGPU::NoRegister; if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && AddrSize != Info->VAddrDwords) { unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, &MRI.getRegClass(AddrRCID)); if (!NewVAddrSA) return MCDisassembler::Success; } MI.setOpcode(NewOpcode); if (NewVdata != AMDGPU::NoRegister) { MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); if (IsAtomic) { // Atomic operations have an additional operand (a copy of data) MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); } } if (NewVAddrSA) { MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); } else if (IsNSA) { assert(AddrSize <= Info->VAddrDwords); MI.erase(MI.begin() + VAddr0Idx + AddrSize, MI.begin() + VAddr0Idx + Info->VAddrDwords); } return MCDisassembler::Success; } // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen // decoder only adds to src_modifiers, so manually add the bits to the other // operands. DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { unsigned Opc = MI.getOpcode(); unsigned DescNumOps = MCII->get(Opc).getNumOperands(); auto Mods = collectVOPModifiers(MI, true); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), AMDGPU::OpName::op_sel); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), AMDGPU::OpName::op_sel_hi); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), AMDGPU::OpName::neg_lo); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), AMDGPU::OpName::neg_hi); return MCDisassembler::Success; } // Create dummy old operand and insert optional operands DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { unsigned Opc = MI.getOpcode(); unsigned DescNumOps = MCII->get(Opc).getNumOperands(); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::src0_modifiers); if (MI.getNumOperands() < DescNumOps && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::src1_modifiers); return MCDisassembler::Success; } DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const { assert(HasLiteral && "Should have decoded a literal"); const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); unsigned DescNumOps = Desc.getNumOperands(); insertNamedMCOperand(MI, MCOperand::createImm(Literal), AMDGPU::OpName::immDeferred); assert(DescNumOps == MI.getNumOperands()); for (unsigned I = 0; I < DescNumOps; ++I) { auto &Op = MI.getOperand(I); auto OpType = Desc.operands()[I].OperandType; bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && IsDeferredOp) Op.setImm(Literal); } return MCDisassembler::Success; } const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { return getContext().getRegisterInfo()-> getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); } inline MCOperand AMDGPUDisassembler::errOperand(unsigned V, const Twine& ErrMsg) const { *CommentStream << "Error: " + ErrMsg; // ToDo: add support for error operands to MCInst.h // return MCOperand::createError(V); return MCOperand(); } inline MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); } inline MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, unsigned Val) const { const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; if (Val >= RegCl.getNumRegs()) return errOperand(Val, Twine(getRegClassName(RegClassID)) + ": unknown register " + Twine(Val)); return createRegOperand(RegCl.getRegister(Val)); } inline MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, unsigned Val) const { // ToDo: SI/CI have 104 SGPRs, VI - 102 // Valery: here we accepting as much as we can, let assembler sort it out int shift = 0; switch (SRegClassID) { case AMDGPU::SGPR_32RegClassID: case AMDGPU::TTMP_32RegClassID: break; case AMDGPU::SGPR_64RegClassID: case AMDGPU::TTMP_64RegClassID: shift = 1; break; case AMDGPU::SGPR_96RegClassID: case AMDGPU::TTMP_96RegClassID: case AMDGPU::SGPR_128RegClassID: case AMDGPU::TTMP_128RegClassID: // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in // this bundle? case AMDGPU::SGPR_256RegClassID: case AMDGPU::TTMP_256RegClassID: // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in // this bundle? case AMDGPU::SGPR_288RegClassID: case AMDGPU::TTMP_288RegClassID: case AMDGPU::SGPR_320RegClassID: case AMDGPU::TTMP_320RegClassID: case AMDGPU::SGPR_352RegClassID: case AMDGPU::TTMP_352RegClassID: case AMDGPU::SGPR_384RegClassID: case AMDGPU::TTMP_384RegClassID: case AMDGPU::SGPR_512RegClassID: case AMDGPU::TTMP_512RegClassID: shift = 2; break; // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in // this bundle? default: llvm_unreachable("unhandled register class"); } if (Val % (1 << shift)) { *CommentStream << "Warning: " << getRegClassName(SRegClassID) << ": scalar reg isn't aligned " << Val; } return createRegOperand(SRegClassID, Val >> shift); } MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, bool IsHi) const { unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0); return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16); } // Decode Literals for insts which always have a literal in the encoding MCOperand AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { if (HasLiteral) { assert( AMDGPU::hasVOPD(STI) && "Should only decode multiple kimm with VOPD, check VSrc operand types"); if (Literal != Val) return errOperand(Val, "More than one unique literal is illegal"); } HasLiteral = true; Literal = Val; return MCOperand::createImm(Literal); } MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { // For now all literal constants are supposed to be unsigned integer // ToDo: deal with signed/unsigned 64-bit integer constants // ToDo: deal with float/double constants if (!HasLiteral) { if (Bytes.size() < 4) { return errOperand(0, "cannot read literal, inst bytes left " + Twine(Bytes.size())); } HasLiteral = true; Literal = Literal64 = eatBytes(Bytes); if (ExtendFP64) Literal64 <<= 32; } return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); } MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { using namespace AMDGPU::EncValues; assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? (static_cast(Imm) - INLINE_INTEGER_C_MIN) : (INLINE_INTEGER_C_POSITIVE_MAX - static_cast(Imm))); // Cast prevents negative overflow. } static int64_t getInlineImmVal32(unsigned Imm) { switch (Imm) { case 240: return llvm::bit_cast(0.5f); case 241: return llvm::bit_cast(-0.5f); case 242: return llvm::bit_cast(1.0f); case 243: return llvm::bit_cast(-1.0f); case 244: return llvm::bit_cast(2.0f); case 245: return llvm::bit_cast(-2.0f); case 246: return llvm::bit_cast(4.0f); case 247: return llvm::bit_cast(-4.0f); case 248: // 1 / (2 * PI) return 0x3e22f983; default: llvm_unreachable("invalid fp inline imm"); } } static int64_t getInlineImmVal64(unsigned Imm) { switch (Imm) { case 240: return llvm::bit_cast(0.5); case 241: return llvm::bit_cast(-0.5); case 242: return llvm::bit_cast(1.0); case 243: return llvm::bit_cast(-1.0); case 244: return llvm::bit_cast(2.0); case 245: return llvm::bit_cast(-2.0); case 246: return llvm::bit_cast(4.0); case 247: return llvm::bit_cast(-4.0); case 248: // 1 / (2 * PI) return 0x3fc45f306dc9c882; default: llvm_unreachable("invalid fp inline imm"); } } static int64_t getInlineImmVal16(unsigned Imm) { switch (Imm) { case 240: return 0x3800; case 241: return 0xB800; case 242: return 0x3C00; case 243: return 0xBC00; case 244: return 0x4000; case 245: return 0xC000; case 246: return 0x4400; case 247: return 0xC400; case 248: // 1 / (2 * PI) return 0x3118; default: llvm_unreachable("invalid fp inline imm"); } } MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); // ToDo: case 248: 1/(2*PI) - is allowed only on VI // ImmWidth 0 is a default case where operand should not allow immediates. // Imm value is still decoded into 32 bit immediate operand, inst printer will // use it to print verbose error message. switch (ImmWidth) { case 0: case 32: return MCOperand::createImm(getInlineImmVal32(Imm)); case 64: return MCOperand::createImm(getInlineImmVal64(Imm)); case 16: return MCOperand::createImm(getInlineImmVal16(Imm)); default: llvm_unreachable("implement me"); } } unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { using namespace AMDGPU; assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); switch (Width) { default: // fall case OPW32: case OPW16: case OPWV216: return VGPR_32RegClassID; case OPW64: case OPWV232: return VReg_64RegClassID; case OPW96: return VReg_96RegClassID; case OPW128: return VReg_128RegClassID; case OPW160: return VReg_160RegClassID; case OPW256: return VReg_256RegClassID; case OPW288: return VReg_288RegClassID; case OPW320: return VReg_320RegClassID; case OPW352: return VReg_352RegClassID; case OPW384: return VReg_384RegClassID; case OPW512: return VReg_512RegClassID; case OPW1024: return VReg_1024RegClassID; } } unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { using namespace AMDGPU; assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); switch (Width) { default: // fall case OPW32: case OPW16: case OPWV216: return AGPR_32RegClassID; case OPW64: case OPWV232: return AReg_64RegClassID; case OPW96: return AReg_96RegClassID; case OPW128: return AReg_128RegClassID; case OPW160: return AReg_160RegClassID; case OPW256: return AReg_256RegClassID; case OPW288: return AReg_288RegClassID; case OPW320: return AReg_320RegClassID; case OPW352: return AReg_352RegClassID; case OPW384: return AReg_384RegClassID; case OPW512: return AReg_512RegClassID; case OPW1024: return AReg_1024RegClassID; } } unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { using namespace AMDGPU; assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); switch (Width) { default: // fall case OPW32: case OPW16: case OPWV216: return SGPR_32RegClassID; case OPW64: case OPWV232: return SGPR_64RegClassID; case OPW96: return SGPR_96RegClassID; case OPW128: return SGPR_128RegClassID; case OPW160: return SGPR_160RegClassID; case OPW256: return SGPR_256RegClassID; case OPW288: return SGPR_288RegClassID; case OPW320: return SGPR_320RegClassID; case OPW352: return SGPR_352RegClassID; case OPW384: return SGPR_384RegClassID; case OPW512: return SGPR_512RegClassID; } } unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { using namespace AMDGPU; assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); switch (Width) { default: // fall case OPW32: case OPW16: case OPWV216: return TTMP_32RegClassID; case OPW64: case OPWV232: return TTMP_64RegClassID; case OPW128: return TTMP_128RegClassID; case OPW256: return TTMP_256RegClassID; case OPW288: return TTMP_288RegClassID; case OPW320: return TTMP_320RegClassID; case OPW352: return TTMP_352RegClassID; case OPW384: return TTMP_384RegClassID; case OPW512: return TTMP_512RegClassID; } } int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { using namespace AMDGPU::EncValues; unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; } MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, bool MandatoryLiteral, unsigned ImmWidth, bool IsFP) const { using namespace AMDGPU::EncValues; assert(Val < 1024); // enum10 bool IsAGPR = Val & 512; Val &= 511; if (VGPR_MIN <= Val && Val <= VGPR_MAX) { return createRegOperand(IsAGPR ? getAgprClassId(Width) : getVgprClassId(Width), Val - VGPR_MIN); } return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, IsFP); } MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val, bool MandatoryLiteral, unsigned ImmWidth, bool IsFP) const { // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been // decoded earlier. assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); using namespace AMDGPU::EncValues; if (Val <= SGPR_MAX) { // "SGPR_MIN <= Val" is always true and causes compilation warning. static_assert(SGPR_MIN == 0); return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); } int TTmpIdx = getTTmpIdx(Val); if (TTmpIdx >= 0) { return createSRegOperand(getTtmpClassId(Width), TTmpIdx); } if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) return decodeIntImmed(Val); if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) return decodeFPImmed(ImmWidth, Val); if (Val == LITERAL_CONST) { if (MandatoryLiteral) // Keep a sentinel value for deferred setting return MCOperand::createImm(LITERAL_CONST); else return decodeLiteralConstant(IsFP && ImmWidth == 64); } switch (Width) { case OPW32: case OPW16: case OPWV216: return decodeSpecialReg32(Val); case OPW64: case OPWV232: return decodeSpecialReg64(Val); default: llvm_unreachable("unexpected immediate type"); } } // Bit 0 of DstY isn't stored in the instruction, because it's always the // opposite of bit 0 of DstX. MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, unsigned Val) const { int VDstXInd = AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); assert(VDstXInd != -1); assert(Inst.getOperand(VDstXInd).isReg()); unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); Val |= ~XDstReg & 1; auto Width = llvm::AMDGPUDisassembler::OPW32; return createRegOperand(getVgprClassId(Width), Val); } MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { using namespace AMDGPU; switch (Val) { // clang-format off case 102: return createRegOperand(FLAT_SCR_LO); case 103: return createRegOperand(FLAT_SCR_HI); case 104: return createRegOperand(XNACK_MASK_LO); case 105: return createRegOperand(XNACK_MASK_HI); case 106: return createRegOperand(VCC_LO); case 107: return createRegOperand(VCC_HI); case 108: return createRegOperand(TBA_LO); case 109: return createRegOperand(TBA_HI); case 110: return createRegOperand(TMA_LO); case 111: return createRegOperand(TMA_HI); case 124: return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); case 125: return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); case 126: return createRegOperand(EXEC_LO); case 127: return createRegOperand(EXEC_HI); case 235: return createRegOperand(SRC_SHARED_BASE_LO); case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); case 251: return createRegOperand(SRC_VCCZ); case 252: return createRegOperand(SRC_EXECZ); case 253: return createRegOperand(SRC_SCC); case 254: return createRegOperand(LDS_DIRECT); default: break; // clang-format on } return errOperand(Val, "unknown operand encoding " + Twine(Val)); } MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { using namespace AMDGPU; switch (Val) { case 102: return createRegOperand(FLAT_SCR); case 104: return createRegOperand(XNACK_MASK); case 106: return createRegOperand(VCC); case 108: return createRegOperand(TBA); case 110: return createRegOperand(TMA); case 124: if (isGFX11Plus()) return createRegOperand(SGPR_NULL); break; case 125: if (!isGFX11Plus()) return createRegOperand(SGPR_NULL); break; case 126: return createRegOperand(EXEC); case 235: return createRegOperand(SRC_SHARED_BASE); case 236: return createRegOperand(SRC_SHARED_LIMIT); case 237: return createRegOperand(SRC_PRIVATE_BASE); case 238: return createRegOperand(SRC_PRIVATE_LIMIT); case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); case 251: return createRegOperand(SRC_VCCZ); case 252: return createRegOperand(SRC_EXECZ); case 253: return createRegOperand(SRC_SCC); default: break; } return errOperand(Val, "unknown operand encoding " + Twine(Val)); } MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val, unsigned ImmWidth) const { using namespace AMDGPU::SDWA; using namespace AMDGPU::EncValues; if (STI.hasFeature(AMDGPU::FeatureGFX9) || STI.hasFeature(AMDGPU::FeatureGFX10)) { // XXX: cast to int is needed to avoid stupid warning: // compare with unsigned is always true if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && Val <= SDWA9EncValues::SRC_VGPR_MAX) { return createRegOperand(getVgprClassId(Width), Val - SDWA9EncValues::SRC_VGPR_MIN); } if (SDWA9EncValues::SRC_SGPR_MIN <= Val && Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { return createSRegOperand(getSgprClassId(Width), Val - SDWA9EncValues::SRC_SGPR_MIN); } if (SDWA9EncValues::SRC_TTMP_MIN <= Val && Val <= SDWA9EncValues::SRC_TTMP_MAX) { return createSRegOperand(getTtmpClassId(Width), Val - SDWA9EncValues::SRC_TTMP_MIN); } const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) return decodeIntImmed(SVal); if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) return decodeFPImmed(ImmWidth, SVal); return decodeSpecialReg32(SVal); } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { return createRegOperand(getVgprClassId(Width), Val); } llvm_unreachable("unsupported target"); } MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { return decodeSDWASrc(OPW16, Val, 16); } MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { return decodeSDWASrc(OPW32, Val, 32); } MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { using namespace AMDGPU::SDWA; assert((STI.hasFeature(AMDGPU::FeatureGFX9) || STI.hasFeature(AMDGPU::FeatureGFX10)) && "SDWAVopcDst should be present only on GFX9+"); bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; int TTmpIdx = getTTmpIdx(Val); if (TTmpIdx >= 0) { auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); return createSRegOperand(TTmpClsId, TTmpIdx); } else if (Val > SGPR_MAX) { return IsWave64 ? decodeSpecialReg64(Val) : decodeSpecialReg32(Val); } else { return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); } } else { return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); } } MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) ? decodeSrcOp(OPW64, Val) : decodeSrcOp(OPW32, Val); } MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { return decodeSrcOp(OPW32, Val); } bool AMDGPUDisassembler::isVI() const { return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); } bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } bool AMDGPUDisassembler::isGFX90A() const { return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); } bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } bool AMDGPUDisassembler::isGFX10Plus() const { return AMDGPU::isGFX10Plus(STI); } bool AMDGPUDisassembler::isGFX11() const { return STI.hasFeature(AMDGPU::FeatureGFX11); } bool AMDGPUDisassembler::isGFX11Plus() const { return AMDGPU::isGFX11Plus(STI); } bool AMDGPUDisassembler::isGFX12Plus() const { return AMDGPU::isGFX12Plus(STI); } bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); } bool AMDGPUDisassembler::hasKernargPreload() const { return AMDGPU::hasKernargPreload(STI); } //===----------------------------------------------------------------------===// // AMDGPU specific symbol handling //===----------------------------------------------------------------------===// #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ do { \ KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ } while (0) #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ do { \ KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ << GET_FIELD(MASK) << '\n'; \ } while (0) // NOLINTNEXTLINE(readability-identifier-naming) MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { using namespace amdhsa; StringRef Indent = "\t"; // We cannot accurately backward compute #VGPRs used from // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we // simply calculate the inverse of what the assembler does. uint32_t GranulatedWorkitemVGPRCount = GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; // We cannot backward compute values used to calculate // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following // directives can't be computed: // .amdhsa_reserve_vcc // .amdhsa_reserve_flat_scratch // .amdhsa_reserve_xnack_mask // They take their respective default values if not specified in the assembly. // // GRANULATED_WAVEFRONT_SGPR_COUNT // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) // // We compute the inverse as though all directives apart from NEXT_FREE_SGPR // are set to 0. So while disassembling we consider that: // // GRANULATED_WAVEFRONT_SGPR_COUNT // = f(NEXT_FREE_SGPR + 0 + 0 + 0) // // The disassembler cannot recover the original values of those 3 directives. uint32_t GranulatedWavefrontSGPRCount = GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); if (isGFX10Plus() && GranulatedWavefrontSGPRCount) return MCDisassembler::Fail; uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; if (!hasArchitectedFlatScratch()) KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) return MCDisassembler::Fail; PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) return MCDisassembler::Fail; if (!isGFX12Plus()) PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) return MCDisassembler::Fail; if (!isGFX12Plus()) PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) return MCDisassembler::Fail; if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) return MCDisassembler::Fail; if (isGFX9Plus()) PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); if (!isGFX9Plus()) if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0) return MCDisassembler::Fail; if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1) return MCDisassembler::Fail; if (!isGFX10Plus()) if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2) return MCDisassembler::Fail; if (isGFX10Plus()) { PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); } if (isGFX12Plus()) PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); return MCDisassembler::Success; } // NOLINTNEXTLINE(readability-identifier-naming) MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { using namespace amdhsa; StringRef Indent = "\t"; if (hasArchitectedFlatScratch()) PRINT_DIRECTIVE(".amdhsa_enable_private_segment", COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); else PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) return MCDisassembler::Fail; if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) return MCDisassembler::Fail; if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) return MCDisassembler::Fail; PRINT_DIRECTIVE( ".amdhsa_exception_fp_ieee_invalid_op", COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); PRINT_DIRECTIVE( ".amdhsa_exception_fp_ieee_div_zero", COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) return MCDisassembler::Fail; return MCDisassembler::Success; } // NOLINTNEXTLINE(readability-identifier-naming) MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { using namespace amdhsa; StringRef Indent = "\t"; if (isGFX90A()) { KdStream << Indent << ".amdhsa_accum_offset " << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 << '\n'; if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) return MCDisassembler::Fail; PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) return MCDisassembler::Fail; } else if (isGFX10Plus()) { // Bits [0-3]. if (!isGFX12Plus()) { if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); } else { PRINT_PSEUDO_DIRECTIVE_COMMENT( "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); } } else { if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0) return MCDisassembler::Fail; } // Bits [4-11]. if (isGFX11()) { PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE); PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START); PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END); } else if (isGFX12Plus()) { PRINT_PSEUDO_DIRECTIVE_COMMENT( "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE); } else { if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1) return MCDisassembler::Fail; } // Bits [12]. if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2) return MCDisassembler::Fail; // Bits [13]. if (isGFX12Plus()) { PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN", COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN); } else { if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3) return MCDisassembler::Fail; } // Bits [14-30]. if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4) return MCDisassembler::Fail; // Bits [31]. if (isGFX11Plus()) { PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP); } else { if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5) return MCDisassembler::Fail; } } else if (FourByteBuffer) { return MCDisassembler::Fail; } return MCDisassembler::Success; } #undef PRINT_PSEUDO_DIRECTIVE_COMMENT #undef PRINT_DIRECTIVE #undef GET_FIELD MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptorDirective( DataExtractor::Cursor &Cursor, ArrayRef Bytes, raw_string_ostream &KdStream) const { #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ do { \ KdStream << Indent << DIRECTIVE " " \ << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ } while (0) uint16_t TwoByteBuffer = 0; uint32_t FourByteBuffer = 0; StringRef ReservedBytes; StringRef Indent = "\t"; assert(Bytes.size() == 64); DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); switch (Cursor.tell()) { case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: FourByteBuffer = DE.getU32(Cursor); KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer << '\n'; return MCDisassembler::Success; case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: FourByteBuffer = DE.getU32(Cursor); KdStream << Indent << ".amdhsa_private_segment_fixed_size " << FourByteBuffer << '\n'; return MCDisassembler::Success; case amdhsa::KERNARG_SIZE_OFFSET: FourByteBuffer = DE.getU32(Cursor); KdStream << Indent << ".amdhsa_kernarg_size " << FourByteBuffer << '\n'; return MCDisassembler::Success; case amdhsa::RESERVED0_OFFSET: // 4 reserved bytes, must be 0. ReservedBytes = DE.getBytes(Cursor, 4); for (int I = 0; I < 4; ++I) { if (ReservedBytes[I] != 0) { return MCDisassembler::Fail; } } return MCDisassembler::Success; case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: // KERNEL_CODE_ENTRY_BYTE_OFFSET // So far no directive controls this for Code Object V3, so simply skip for // disassembly. DE.skip(Cursor, 8); return MCDisassembler::Success; case amdhsa::RESERVED1_OFFSET: // 20 reserved bytes, must be 0. ReservedBytes = DE.getBytes(Cursor, 20); for (int I = 0; I < 20; ++I) { if (ReservedBytes[I] != 0) { return MCDisassembler::Fail; } } return MCDisassembler::Success; case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: FourByteBuffer = DE.getU32(Cursor); return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: FourByteBuffer = DE.getU32(Cursor); return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: FourByteBuffer = DE.getU32(Cursor); return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: using namespace amdhsa; TwoByteBuffer = DE.getU16(Cursor); if (!hasArchitectedFlatScratch()) PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); if (!hasArchitectedFlatScratch()) PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) return MCDisassembler::Fail; // Reserved for GFX9 if (isGFX9() && (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { return MCDisassembler::Fail; } else if (isGFX10Plus()) { PRINT_DIRECTIVE(".amdhsa_wavefront_size32", KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); } if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) return MCDisassembler::Fail; return MCDisassembler::Success; case amdhsa::KERNARG_PRELOAD_OFFSET: using namespace amdhsa; TwoByteBuffer = DE.getU16(Cursor); if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", KERNARG_PRELOAD_SPEC_LENGTH); } if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", KERNARG_PRELOAD_SPEC_OFFSET); } return MCDisassembler::Success; case amdhsa::RESERVED3_OFFSET: // 4 bytes from here are reserved, must be 0. ReservedBytes = DE.getBytes(Cursor, 4); for (int I = 0; I < 4; ++I) { if (ReservedBytes[I] != 0) return MCDisassembler::Fail; } return MCDisassembler::Success; default: llvm_unreachable("Unhandled index. Case statements cover everything."); return MCDisassembler::Fail; } #undef PRINT_DIRECTIVE } MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( StringRef KdName, ArrayRef Bytes, uint64_t KdAddress) const { // CP microcode requires the kernel descriptor to be 64 aligned. if (Bytes.size() != 64 || KdAddress % 64 != 0) return MCDisassembler::Fail; // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 // requires us to know the setting of .amdhsa_wavefront_size32 in order to // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong // order. Workaround this by first looking up .amdhsa_wavefront_size32 here // when required. if (isGFX10Plus()) { uint16_t KernelCodeProperties = support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], llvm::endianness::little); EnableWavefrontSize32 = AMDHSA_BITS_GET(KernelCodeProperties, amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); } std::string Kd; raw_string_ostream KdStream(Kd); KdStream << ".amdhsa_kernel " << KdName << '\n'; DataExtractor::Cursor C(0); while (C && C.tell() < Bytes.size()) { MCDisassembler::DecodeStatus Status = decodeKernelDescriptorDirective(C, Bytes, KdStream); cantFail(C.takeError()); if (Status == MCDisassembler::Fail) return MCDisassembler::Fail; } KdStream << ".end_amdhsa_kernel\n"; outs() << KdStream.str(); return MCDisassembler::Success; } std::optional AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream) const { // Right now only kernel descriptor needs to be handled. // We ignore all other symbols for target specific handling. // TODO: // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code // Object V2 and V3 when symbols are marked protected. // amd_kernel_code_t for Code Object V2. if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { Size = 256; return MCDisassembler::Fail; } // Code Object V3 kernel descriptors. StringRef Name = Symbol.Name; if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { Size = 64; // Size = 64 regardless of success or failure. return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); } return std::nullopt; } //===----------------------------------------------------------------------===// // AMDGPUSymbolizer //===----------------------------------------------------------------------===// // Try to find symbol name for specified label bool AMDGPUSymbolizer::tryAddingSymbolicOperand( MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, uint64_t /*OpSize*/, uint64_t /*InstSize*/) { if (!IsBranch) { return false; } auto *Symbols = static_cast(DisInfo); if (!Symbols) return false; auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { return Val.Addr == static_cast(Value) && Val.Type == ELF::STT_NOTYPE; }); if (Result != Symbols->end()) { auto *Sym = Ctx.getOrCreateSymbol(Result->Name); const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); Inst.addOperand(MCOperand::createExpr(Add)); return true; } // Add to list of referenced addresses, so caller can synthesize a label. ReferencedAddresses.push_back(static_cast(Value)); return false; } void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, int64_t Value, uint64_t Address) { llvm_unreachable("unimplemented"); } //===----------------------------------------------------------------------===// // Initialization //===----------------------------------------------------------------------===// static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, LLVMOpInfoCallback /*GetOpInfo*/, LLVMSymbolLookupCallback /*SymbolLookUp*/, void *DisInfo, MCContext *Ctx, std::unique_ptr &&RelInfo) { return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); } static MCDisassembler *createAMDGPUDisassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx) { return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); } extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), createAMDGPUDisassembler); TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), createAMDGPUSymbolizer); }