//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// The AMDGPU target machine contains all of the hardware specific /// information needed to emit code for SI+ GPUs. // //===----------------------------------------------------------------------===// #include "AMDGPUTargetMachine.h" #include "AMDGPU.h" #include "AMDGPUAliasAnalysis.h" #include "AMDGPUCtorDtorLowering.h" #include "AMDGPUExportClustering.h" #include "AMDGPUIGroupLP.h" #include "AMDGPUMacroFusion.h" #include "AMDGPURegBankSelect.h" #include "AMDGPUTargetObjectFile.h" #include "AMDGPUTargetTransformInfo.h" #include "AMDGPUUnifyDivergentExitNodes.h" #include "GCNIterativeScheduler.h" #include "GCNSchedStrategy.h" #include "GCNVOPDUtils.h" #include "R600.h" #include "R600MachineFunctionInfo.h" #include "R600TargetMachine.h" #include "SIMachineFunctionInfo.h" #include "SIMachineScheduler.h" #include "TargetInfo/AMDGPUTargetInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/CodeGen/GlobalISel/CSEInfo.h" #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" #include "llvm/CodeGen/GlobalISel/Legalizer.h" #include "llvm/CodeGen/GlobalISel/Localizer.h" #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" #include "llvm/CodeGen/MIRParser/MIParser.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Passes/PassBuilder.h" #include "llvm/Transforms/HipStdPar/HipStdPar.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/AlwaysInliner.h" #include "llvm/Transforms/IPO/GlobalDCE.h" #include "llvm/Transforms/IPO/Internalize.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Scalar/InferAddressSpaces.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/SimplifyLibCalls.h" #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" #include using namespace llvm; using namespace llvm::PatternMatch; namespace { class SGPRRegisterRegAlloc : public RegisterRegAllocBase { public: SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) : RegisterRegAllocBase(N, D, C) {} }; class VGPRRegisterRegAlloc : public RegisterRegAllocBase { public: VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) : RegisterRegAllocBase(N, D, C) {} }; static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) { return static_cast(TRI).isSGPRClass(&RC); } static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) { return !static_cast(TRI).isSGPRClass(&RC); } /// -{sgpr|vgpr}-regalloc=... command line option. static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } /// A dummy default pass factory indicates whether the register allocator is /// overridden on the command line. static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; static SGPRRegisterRegAlloc defaultSGPRRegAlloc("default", "pick SGPR register allocator based on -O option", useDefaultRegisterAllocator); static cl::opt> SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), cl::desc("Register allocator to use for SGPRs")); static cl::opt> VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), cl::desc("Register allocator to use for VGPRs")); static void initializeDefaultSGPRRegisterAllocatorOnce() { RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); if (!Ctor) { Ctor = SGPRRegAlloc; SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); } } static void initializeDefaultVGPRRegisterAllocatorOnce() { RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); if (!Ctor) { Ctor = VGPRRegAlloc; VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); } } static FunctionPass *createBasicSGPRRegisterAllocator() { return createBasicRegisterAllocator(onlyAllocateSGPRs); } static FunctionPass *createGreedySGPRRegisterAllocator() { return createGreedyRegisterAllocator(onlyAllocateSGPRs); } static FunctionPass *createFastSGPRRegisterAllocator() { return createFastRegisterAllocator(onlyAllocateSGPRs, false); } static FunctionPass *createBasicVGPRRegisterAllocator() { return createBasicRegisterAllocator(onlyAllocateVGPRs); } static FunctionPass *createGreedyVGPRRegisterAllocator() { return createGreedyRegisterAllocator(onlyAllocateVGPRs); } static FunctionPass *createFastVGPRRegisterAllocator() { return createFastRegisterAllocator(onlyAllocateVGPRs, true); } static SGPRRegisterRegAlloc basicRegAllocSGPR( "basic", "basic register allocator", createBasicSGPRRegisterAllocator); static SGPRRegisterRegAlloc greedyRegAllocSGPR( "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); static SGPRRegisterRegAlloc fastRegAllocSGPR( "fast", "fast register allocator", createFastSGPRRegisterAllocator); static VGPRRegisterRegAlloc basicRegAllocVGPR( "basic", "basic register allocator", createBasicVGPRRegisterAllocator); static VGPRRegisterRegAlloc greedyRegAllocVGPR( "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); static VGPRRegisterRegAlloc fastRegAllocVGPR( "fast", "fast register allocator", createFastVGPRRegisterAllocator); } static cl::opt EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, cl::desc("Run early if-conversion"), cl::init(false)); static cl::opt OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, cl::desc("Run pre-RA exec mask optimizations"), cl::init(true)); static cl::opt LowerCtorDtor("amdgpu-lower-global-ctor-dtor", cl::desc("Lower GPU ctor / dtors to globals on the device."), cl::init(true), cl::Hidden); // Option to disable vectorizer for tests. static cl::opt EnableLoadStoreVectorizer( "amdgpu-load-store-vectorizer", cl::desc("Enable load store vectorizer"), cl::init(true), cl::Hidden); // Option to control global loads scalarization static cl::opt ScalarizeGlobal( "amdgpu-scalarize-global-loads", cl::desc("Enable global load scalarization"), cl::init(true), cl::Hidden); // Option to run internalize pass. static cl::opt InternalizeSymbols( "amdgpu-internalize-symbols", cl::desc("Enable elimination of non-kernel functions and unused globals"), cl::init(false), cl::Hidden); // Option to inline all early. static cl::opt EarlyInlineAll( "amdgpu-early-inline-all", cl::desc("Inline all functions early"), cl::init(false), cl::Hidden); static cl::opt RemoveIncompatibleFunctions( "amdgpu-enable-remove-incompatible-functions", cl::Hidden, cl::desc("Enable removal of functions when they" "use features not supported by the target GPU"), cl::init(true)); static cl::opt EnableSDWAPeephole( "amdgpu-sdwa-peephole", cl::desc("Enable SDWA peepholer"), cl::init(true)); static cl::opt EnableDPPCombine( "amdgpu-dpp-combine", cl::desc("Enable DPP combiner"), cl::init(true)); // Enable address space based alias analysis static cl::opt EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, cl::desc("Enable AMDGPU Alias Analysis"), cl::init(true)); // Option to run late CFG structurizer static cl::opt LateCFGStructurize( "amdgpu-late-structurize", cl::desc("Enable late CFG structurization"), cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), cl::Hidden); // Enable lib calls simplifications static cl::opt EnableLibCallSimplify( "amdgpu-simplify-libcall", cl::desc("Enable amdgpu library simplifications"), cl::init(true), cl::Hidden); static cl::opt EnableLowerKernelArguments( "amdgpu-ir-lower-kernel-arguments", cl::desc("Lower kernel argument loads in IR pass"), cl::init(true), cl::Hidden); static cl::opt EnableRegReassign( "amdgpu-reassign-regs", cl::desc("Enable register reassign optimizations on gfx10+"), cl::init(true), cl::Hidden); static cl::opt OptVGPRLiveRange( "amdgpu-opt-vgpr-liverange", cl::desc("Enable VGPR liverange optimizations for if-else structure"), cl::init(true), cl::Hidden); static cl::opt AMDGPUAtomicOptimizerStrategy( "amdgpu-atomic-optimizer-strategy", cl::desc("Select DPP or Iterative strategy for scan"), cl::init(ScanOptions::Iterative), cl::values( clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"), clEnumValN(ScanOptions::Iterative, "Iterative", "Use Iterative approach for scan"), clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer"))); // Enable Mode register optimization static cl::opt EnableSIModeRegisterPass( "amdgpu-mode-register", cl::desc("Enable mode register pass"), cl::init(true), cl::Hidden); // Enable GFX11.5+ s_singleuse_vdst insertion static cl::opt EnableInsertSingleUseVDST("amdgpu-enable-single-use-vdst", cl::desc("Enable s_singleuse_vdst insertion"), cl::init(false), cl::Hidden); // Enable GFX11+ s_delay_alu insertion static cl::opt EnableInsertDelayAlu("amdgpu-enable-delay-alu", cl::desc("Enable s_delay_alu insertion"), cl::init(true), cl::Hidden); // Enable GFX11+ VOPD static cl::opt EnableVOPD("amdgpu-enable-vopd", cl::desc("Enable VOPD, dual issue of VALU in wave32"), cl::init(true), cl::Hidden); // Option is used in lit tests to prevent deadcoding of patterns inspected. static cl::opt EnableDCEInRA("amdgpu-dce-in-ra", cl::init(true), cl::Hidden, cl::desc("Enable machine DCE inside regalloc")); static cl::opt EnableSetWavePriority("amdgpu-set-wave-priority", cl::desc("Adjust wave priority"), cl::init(false), cl::Hidden); static cl::opt EnableScalarIRPasses( "amdgpu-scalar-ir-passes", cl::desc("Enable scalar IR passes"), cl::init(true), cl::Hidden); static cl::opt EnableStructurizerWorkarounds( "amdgpu-enable-structurizer-workarounds", cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), cl::Hidden); static cl::opt EnableLowerModuleLDS( "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), cl::Hidden); static cl::opt EnablePreRAOptimizations( "amdgpu-enable-pre-ra-optimizations", cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), cl::Hidden); static cl::opt EnablePromoteKernelArguments( "amdgpu-enable-promote-kernel-arguments", cl::desc("Enable promotion of flat kernel pointer arguments to global"), cl::Hidden, cl::init(true)); static cl::opt EnableImageIntrinsicOptimizer( "amdgpu-enable-image-intrinsic-optimizer", cl::desc("Enable image intrinsic optimizer pass"), cl::init(true), cl::Hidden); static cl::opt EnableLoopPrefetch("amdgpu-loop-prefetch", cl::desc("Enable loop data prefetch on AMDGPU"), cl::Hidden, cl::init(false)); static cl::opt EnableMaxIlpSchedStrategy( "amdgpu-enable-max-ilp-scheduling-strategy", cl::desc("Enable scheduling strategy to maximize ILP for a single wave."), cl::Hidden, cl::init(false)); static cl::opt EnableRewritePartialRegUses( "amdgpu-enable-rewrite-partial-reg-uses", cl::desc("Enable rewrite partial reg uses pass"), cl::init(true), cl::Hidden); static cl::opt EnableHipStdPar( "amdgpu-enable-hipstdpar", cl::desc("Enable HIP Standard Parallelism Offload support"), cl::init(false), cl::Hidden); extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { // Register the target RegisterTargetMachine X(getTheR600Target()); RegisterTargetMachine Y(getTheGCNTarget()); PassRegistry *PR = PassRegistry::getPassRegistry(); initializeR600ClauseMergePassPass(*PR); initializeR600ControlFlowFinalizerPass(*PR); initializeR600PacketizerPass(*PR); initializeR600ExpandSpecialInstrsPassPass(*PR); initializeR600VectorRegMergerPass(*PR); initializeGlobalISel(*PR); initializeAMDGPUDAGToDAGISelPass(*PR); initializeGCNDPPCombinePass(*PR); initializeSILowerI1CopiesPass(*PR); initializeAMDGPUGlobalISelDivergenceLoweringPass(*PR); initializeSILowerWWMCopiesPass(*PR); initializeSILowerSGPRSpillsPass(*PR); initializeSIFixSGPRCopiesPass(*PR); initializeSIFixVGPRCopiesPass(*PR); initializeSIFoldOperandsPass(*PR); initializeSIPeepholeSDWAPass(*PR); initializeSIShrinkInstructionsPass(*PR); initializeSIOptimizeExecMaskingPreRAPass(*PR); initializeSIOptimizeVGPRLiveRangePass(*PR); initializeSILoadStoreOptimizerPass(*PR); initializeAMDGPUCtorDtorLoweringLegacyPass(*PR); initializeAMDGPUAlwaysInlinePass(*PR); initializeAMDGPUAttributorLegacyPass(*PR); initializeAMDGPUAnnotateKernelFeaturesPass(*PR); initializeAMDGPUAnnotateUniformValuesPass(*PR); initializeAMDGPUArgumentUsageInfoPass(*PR); initializeAMDGPUAtomicOptimizerPass(*PR); initializeAMDGPULowerKernelArgumentsPass(*PR); initializeAMDGPUPromoteKernelArgumentsPass(*PR); initializeAMDGPULowerKernelAttributesPass(*PR); initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); initializeAMDGPUPostLegalizerCombinerPass(*PR); initializeAMDGPUPreLegalizerCombinerPass(*PR); initializeAMDGPURegBankCombinerPass(*PR); initializeAMDGPURegBankSelectPass(*PR); initializeAMDGPUPromoteAllocaPass(*PR); initializeAMDGPUPromoteAllocaToVectorPass(*PR); initializeAMDGPUCodeGenPreparePass(*PR); initializeAMDGPULateCodeGenPreparePass(*PR); initializeAMDGPURemoveIncompatibleFunctionsPass(*PR); initializeAMDGPULowerModuleLDSLegacyPass(*PR); initializeAMDGPURewriteOutArgumentsPass(*PR); initializeAMDGPURewriteUndefForPHILegacyPass(*PR); initializeAMDGPUUnifyMetadataPass(*PR); initializeSIAnnotateControlFlowPass(*PR); initializeAMDGPUInsertSingleUseVDSTPass(*PR); initializeAMDGPUInsertDelayAluPass(*PR); initializeSIInsertHardClausesPass(*PR); initializeSIInsertWaitcntsPass(*PR); initializeSIModeRegisterPass(*PR); initializeSIWholeQuadModePass(*PR); initializeSILowerControlFlowPass(*PR); initializeSIPreEmitPeepholePass(*PR); initializeSILateBranchLoweringPass(*PR); initializeSIMemoryLegalizerPass(*PR); initializeSIOptimizeExecMaskingPass(*PR); initializeSIPreAllocateWWMRegsPass(*PR); initializeSIFormMemoryClausesPass(*PR); initializeSIPostRABundlerPass(*PR); initializeGCNCreateVOPDPass(*PR); initializeAMDGPUUnifyDivergentExitNodesPass(*PR); initializeAMDGPUAAWrapperPassPass(*PR); initializeAMDGPUExternalAAWrapperPass(*PR); initializeAMDGPUImageIntrinsicOptimizerPass(*PR); initializeAMDGPUPrintfRuntimeBindingPass(*PR); initializeAMDGPUResourceUsageAnalysisPass(*PR); initializeGCNNSAReassignPass(*PR); initializeGCNPreRAOptimizationsPass(*PR); initializeGCNPreRALongBranchRegPass(*PR); initializeGCNRewritePartialRegUsesPass(*PR); initializeGCNRegPressurePrinterPass(*PR); } static std::unique_ptr createTLOF(const Triple &TT) { return std::make_unique(); } static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { return new SIScheduleDAGMI(C); } static ScheduleDAGInstrs * createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { const GCNSubtarget &ST = C->MF->getSubtarget(); ScheduleDAGMILive *DAG = new GCNScheduleDAGMILive(C, std::make_unique(C)); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); if (ST.shouldClusterStores()) DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/false)); DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); return DAG; } static ScheduleDAGInstrs * createGCNMaxILPMachineScheduler(MachineSchedContext *C) { ScheduleDAGMILive *DAG = new GCNScheduleDAGMILive(C, std::make_unique(C)); DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/false)); return DAG; } static ScheduleDAGInstrs * createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { const GCNSubtarget &ST = C->MF->getSubtarget(); auto DAG = new GCNIterativeScheduler(C, GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); if (ST.shouldClusterStores()) DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); return DAG; } static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { return new GCNIterativeScheduler(C, GCNIterativeScheduler::SCHEDULE_MINREGFORCED); } static ScheduleDAGInstrs * createIterativeILPMachineScheduler(MachineSchedContext *C) { const GCNSubtarget &ST = C->MF->getSubtarget(); auto DAG = new GCNIterativeScheduler(C, GCNIterativeScheduler::SCHEDULE_ILP); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); if (ST.shouldClusterStores()) DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); return DAG; } static MachineSchedRegistry SISchedRegistry("si", "Run SI's custom scheduler", createSIMachineScheduler); static MachineSchedRegistry GCNMaxOccupancySchedRegistry("gcn-max-occupancy", "Run GCN scheduler to maximize occupancy", createGCNMaxOccupancyMachineScheduler); static MachineSchedRegistry GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp", createGCNMaxILPMachineScheduler); static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry( "gcn-iterative-max-occupancy-experimental", "Run GCN scheduler to maximize occupancy (experimental)", createIterativeGCNMaxOccupancyMachineScheduler); static MachineSchedRegistry GCNMinRegSchedRegistry( "gcn-iterative-minreg", "Run GCN iterative scheduler for minimal register usage (experimental)", createMinRegScheduler); static MachineSchedRegistry GCNILPSchedRegistry( "gcn-iterative-ilp", "Run GCN iterative scheduler for ILP scheduling (experimental)", createIterativeILPMachineScheduler); static StringRef computeDataLayout(const Triple &TT) { if (TT.getArch() == Triple::r600) { // 32-bit pointers. return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; } // 32-bit private, local, and region pointers. 64-bit global, constant and // flat. 160-bit non-integral fat buffer pointers that include a 128-bit // buffer descriptor and a 32-bit offset, which are indexed by 32-bit values // (address space 7), and 128-bit non-integral buffer resourcees (address // space 8) which cannot be non-trivilally accessed by LLVM memory operations // like getelementptr. return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" "-p7:160:256:256:32-p8:128:128-p9:192:256:256:32-i64:64-v16:16-v24:32-" "v32:32-v48:64-v96:" "128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-" "G1-ni:7:8:9"; } LLVM_READNONE static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { if (!GPU.empty()) return GPU; // Need to default to a target with flat support for HSA. if (TT.getArch() == Triple::amdgcn) return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; return "r600"; } static Reloc::Model getEffectiveRelocModel(std::optional RM) { // The AMDGPU toolchain only supports generating shared objects, so we // must always use PIC. return Reloc::PIC_; } AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, std::optional RM, std::optional CM, CodeGenOptLevel OptLevel) : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), FS, Options, getEffectiveRelocModel(RM), getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), TLOF(createTLOF(getTargetTriple())) { initAsmInfo(); if (TT.getArch() == Triple::amdgcn) { if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); } } bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; bool AMDGPUTargetMachine::EnableFunctionCalls = false; bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { Attribute GPUAttr = F.getFnAttribute("target-cpu"); return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); } StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { Attribute FSAttr = F.getFnAttribute("target-features"); return FSAttr.isValid() ? FSAttr.getValueAsString() : getTargetFeatureString(); } /// Predicate for Internalize pass. static bool mustPreserveGV(const GlobalValue &GV) { if (const Function *F = dyn_cast(&GV)) return F->isDeclaration() || F->getName().starts_with("__asan_") || F->getName().starts_with("__sanitizer_") || AMDGPU::isEntryFunctionCC(F->getCallingConv()); GV.removeDeadConstantUsers(); return !GV.use_empty(); } void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { AAM.registerFunctionAnalysis(); } void AMDGPUTargetMachine::registerPassBuilderCallbacks( PassBuilder &PB, bool PopulateClassToPassNames) { PB.registerPipelineParsingCallback( [this](StringRef PassName, ModulePassManager &PM, ArrayRef) { if (PassName == "amdgpu-attributor") { PM.addPass(AMDGPUAttributorPass(*this)); return true; } if (PassName == "amdgpu-unify-metadata") { PM.addPass(AMDGPUUnifyMetadataPass()); return true; } if (PassName == "amdgpu-printf-runtime-binding") { PM.addPass(AMDGPUPrintfRuntimeBindingPass()); return true; } if (PassName == "amdgpu-always-inline") { PM.addPass(AMDGPUAlwaysInlinePass()); return true; } if (PassName == "amdgpu-lower-module-lds") { PM.addPass(AMDGPULowerModuleLDSPass(*this)); return true; } if (PassName == "amdgpu-lower-ctor-dtor") { PM.addPass(AMDGPUCtorDtorLoweringPass()); return true; } return false; }); PB.registerPipelineParsingCallback( [this](StringRef PassName, FunctionPassManager &PM, ArrayRef) { if (PassName == "amdgpu-simplifylib") { PM.addPass(AMDGPUSimplifyLibCallsPass()); return true; } if (PassName == "amdgpu-image-intrinsic-opt") { PM.addPass(AMDGPUImageIntrinsicOptimizerPass(*this)); return true; } if (PassName == "amdgpu-usenative") { PM.addPass(AMDGPUUseNativeCallsPass()); return true; } if (PassName == "amdgpu-promote-alloca") { PM.addPass(AMDGPUPromoteAllocaPass(*this)); return true; } if (PassName == "amdgpu-promote-alloca-to-vector") { PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); return true; } if (PassName == "amdgpu-lower-kernel-attributes") { PM.addPass(AMDGPULowerKernelAttributesPass()); return true; } if (PassName == "amdgpu-promote-kernel-arguments") { PM.addPass(AMDGPUPromoteKernelArgumentsPass()); return true; } if (PassName == "amdgpu-unify-divergent-exit-nodes") { PM.addPass(AMDGPUUnifyDivergentExitNodesPass()); return true; } if (PassName == "amdgpu-atomic-optimizer") { PM.addPass( AMDGPUAtomicOptimizerPass(*this, AMDGPUAtomicOptimizerStrategy)); return true; } if (PassName == "amdgpu-codegenprepare") { PM.addPass(AMDGPUCodeGenPreparePass(*this)); return true; } if (PassName == "amdgpu-lower-kernel-arguments") { PM.addPass(AMDGPULowerKernelArgumentsPass(*this)); return true; } if (PassName == "amdgpu-rewrite-undef-for-phi") { PM.addPass(AMDGPURewriteUndefForPHIPass()); return true; } return false; }); PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { FAM.registerPass([&] { return AMDGPUAA(); }); }); PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { if (AAName == "amdgpu-aa") { AAM.registerFunctionAnalysis(); return true; } return false; }); PB.registerPipelineStartEPCallback( [](ModulePassManager &PM, OptimizationLevel Level) { FunctionPassManager FPM; FPM.addPass(AMDGPUUseNativeCallsPass()); if (EnableLibCallSimplify && Level != OptimizationLevel::O0) FPM.addPass(AMDGPUSimplifyLibCallsPass()); PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); if (EnableHipStdPar) PM.addPass(HipStdParAcceleratorCodeSelectionPass()); }); PB.registerPipelineEarlySimplificationEPCallback( [](ModulePassManager &PM, OptimizationLevel Level) { PM.addPass(AMDGPUPrintfRuntimeBindingPass()); if (Level == OptimizationLevel::O0) return; PM.addPass(AMDGPUUnifyMetadataPass()); if (InternalizeSymbols) { PM.addPass(InternalizePass(mustPreserveGV)); PM.addPass(GlobalDCEPass()); } if (EarlyInlineAll && !EnableFunctionCalls) PM.addPass(AMDGPUAlwaysInlinePass()); }); PB.registerCGSCCOptimizerLateEPCallback( [this](CGSCCPassManager &PM, OptimizationLevel Level) { if (Level == OptimizationLevel::O0) return; FunctionPassManager FPM; // Add promote kernel arguments pass to the opt pipeline right before // infer address spaces which is needed to do actual address space // rewriting. if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && EnablePromoteKernelArguments) FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); // Add infer address spaces pass to the opt pipeline after inlining // but before SROA to increase SROA opportunities. FPM.addPass(InferAddressSpacesPass()); // This should run after inlining to have any chance of doing // anything, and before other cleanup optimizations. FPM.addPass(AMDGPULowerKernelAttributesPass()); if (Level != OptimizationLevel::O0) { // Promote alloca to vector before SROA and loop unroll. If we // manage to eliminate allocas before unroll we may choose to unroll // less. FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); } PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); }); } int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || AddrSpace == AMDGPUAS::REGION_ADDRESS) ? -1 : 0; } bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && AMDGPU::isFlatGlobalAddrSpace(DestAS); } unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { const auto *LD = dyn_cast(V); if (!LD) return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; // It must be a generic pointer loaded. assert(V->getType()->isPointerTy() && V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); const auto *Ptr = LD->getPointerOperand(); if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; // For a generic pointer loaded from the constant memory, it could be assumed // as a global pointer since the constant memory is only populated on the // host side. As implied by the offload programming model, only global // pointers could be referenced on the host side. return AMDGPUAS::GLOBAL_ADDRESS; } std::pair AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { if (auto *II = dyn_cast(V)) { switch (II->getIntrinsicID()) { case Intrinsic::amdgcn_is_shared: return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); case Intrinsic::amdgcn_is_private: return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); default: break; } return std::pair(nullptr, -1); } // Check the global pointer predication based on // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and // the order of 'is_shared' and 'is_private' is not significant. Value *Ptr; if (match( const_cast(V), m_c_And(m_Not(m_Intrinsic(m_Value(Ptr))), m_Not(m_Intrinsic( m_Deferred(Ptr)))))) return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); return std::pair(nullptr, -1); } unsigned AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { switch (Kind) { case PseudoSourceValue::Stack: case PseudoSourceValue::FixedStack: return AMDGPUAS::PRIVATE_ADDRESS; case PseudoSourceValue::ConstantPool: case PseudoSourceValue::GOT: case PseudoSourceValue::JumpTable: case PseudoSourceValue::GlobalValueCallEntry: case PseudoSourceValue::ExternalSymbolCallEntry: return AMDGPUAS::CONSTANT_ADDRESS; } return AMDGPUAS::FLAT_ADDRESS; } //===----------------------------------------------------------------------===// // GCN Target Machine (SI+) //===----------------------------------------------------------------------===// GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, std::optional RM, std::optional CM, CodeGenOptLevel OL, bool JIT) : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} const TargetSubtargetInfo * GCNTargetMachine::getSubtargetImpl(const Function &F) const { StringRef GPU = getGPUName(F); StringRef FS = getFeatureString(F); SmallString<128> SubtargetKey(GPU); SubtargetKey.append(FS); auto &I = SubtargetMap[SubtargetKey]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = std::make_unique(TargetTriple, GPU, FS, *this); } I->setScalarizeGlobalBehavior(ScalarizeGlobal); return I.get(); } TargetTransformInfo GCNTargetMachine::getTargetTransformInfo(const Function &F) const { return TargetTransformInfo(GCNTTIImpl(this, F)); } //===----------------------------------------------------------------------===// // AMDGPU Pass Setup //===----------------------------------------------------------------------===// std::unique_ptr llvm::AMDGPUPassConfig::getCSEConfig() const { return getStandardCSEConfigForOpt(TM->getOptLevel()); } namespace { class GCNPassConfig final : public AMDGPUPassConfig { public: GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) : AMDGPUPassConfig(TM, PM) { // It is necessary to know the register usage of the entire call graph. We // allow calls without EnableAMDGPUFunctionCalls if they are marked // noinline, so this is always required. setRequiresCodeGenSCCOrder(true); substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); } GCNTargetMachine &getGCNTargetMachine() const { return getTM(); } ScheduleDAGInstrs * createMachineScheduler(MachineSchedContext *C) const override; ScheduleDAGInstrs * createPostMachineScheduler(MachineSchedContext *C) const override { ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive( C, std::make_unique(C), /*RemoveKillFlags=*/true); const GCNSubtarget &ST = C->MF->getSubtarget(); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); if (ST.shouldClusterStores()) DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); DAG->addMutation(createIGroupLPDAGMutation(/*IsPostRA=*/true)); if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less)) DAG->addMutation(createVOPDPairingMutation()); return DAG; } bool addPreISel() override; void addMachineSSAOptimization() override; bool addILPOpts() override; bool addInstSelector() override; bool addIRTranslator() override; void addPreLegalizeMachineIR() override; bool addLegalizeMachineIR() override; void addPreRegBankSelect() override; bool addRegBankSelect() override; void addPreGlobalInstructionSelect() override; bool addGlobalInstructionSelect() override; void addFastRegAlloc() override; void addOptimizedRegAlloc() override; FunctionPass *createSGPRAllocPass(bool Optimized); FunctionPass *createVGPRAllocPass(bool Optimized); FunctionPass *createRegAllocPass(bool Optimized) override; bool addRegAssignAndRewriteFast() override; bool addRegAssignAndRewriteOptimized() override; void addPreRegAlloc() override; bool addPreRewrite() override; void addPostRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; }; } // end anonymous namespace AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) { // Exceptions and StackMaps are not supported, so these passes will never do // anything. disablePass(&StackMapLivenessID); disablePass(&FuncletLayoutID); // Garbage collection is not supported. disablePass(&GCLoweringID); disablePass(&ShadowStackGCLoweringID); } void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { if (getOptLevel() == CodeGenOptLevel::Aggressive) addPass(createGVNPass()); else addPass(createEarlyCSEPass()); } void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { if (isPassEnabled(EnableLoopPrefetch, CodeGenOptLevel::Aggressive)) addPass(createLoopDataPrefetchPass()); addPass(createSeparateConstOffsetFromGEPPass()); // ReassociateGEPs exposes more opportunities for SLSR. See // the example in reassociate-geps-and-slsr.ll. addPass(createStraightLineStrengthReducePass()); // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or // EarlyCSE can reuse. addEarlyCSEOrGVNPass(); // Run NaryReassociate after EarlyCSE/GVN to be more effective. addPass(createNaryReassociatePass()); // NaryReassociate on GEPs creates redundant common expressions, so run // EarlyCSE after it. addPass(createEarlyCSEPass()); } void AMDGPUPassConfig::addIRPasses() { const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); Triple::ArchType Arch = TM.getTargetTriple().getArch(); if (RemoveIncompatibleFunctions && Arch == Triple::amdgcn) addPass(createAMDGPURemoveIncompatibleFunctionsPass(&TM)); // There is no reason to run these. disablePass(&StackMapLivenessID); disablePass(&FuncletLayoutID); disablePass(&PatchableFunctionID); addPass(createAMDGPUPrintfRuntimeBinding()); if (LowerCtorDtor) addPass(createAMDGPUCtorDtorLoweringLegacyPass()); if (isPassEnabled(EnableImageIntrinsicOptimizer)) addPass(createAMDGPUImageIntrinsicOptimizerPass(&TM)); // Function calls are not supported, so make sure we inline everything. addPass(createAMDGPUAlwaysInlinePass()); addPass(createAlwaysInlinerLegacyPass()); // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. if (Arch == Triple::r600) addPass(createR600OpenCLImageTypeLoweringPass()); // Replace OpenCL enqueued block function pointers with global variables. addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); // Runs before PromoteAlloca so the latter can account for function uses if (EnableLowerModuleLDS) { addPass(createAMDGPULowerModuleLDSLegacyPass(&TM)); } // AMDGPUAttributor infers lack of llvm.amdgcn.lds.kernel.id calls, so run // after their introduction if (TM.getOptLevel() > CodeGenOptLevel::None) addPass(createAMDGPUAttributorLegacyPass()); if (TM.getOptLevel() > CodeGenOptLevel::None) addPass(createInferAddressSpacesPass()); // Run atomic optimizer before Atomic Expand if ((TM.getTargetTriple().getArch() == Triple::amdgcn) && (TM.getOptLevel() >= CodeGenOptLevel::Less) && (AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) { addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy)); } addPass(createAtomicExpandPass()); if (TM.getOptLevel() > CodeGenOptLevel::None) { addPass(createAMDGPUPromoteAlloca()); if (isPassEnabled(EnableScalarIRPasses)) addStraightLineScalarOptimizationPasses(); if (EnableAMDGPUAliasAnalysis) { addPass(createAMDGPUAAWrapperPass()); addPass(createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { if (auto *WrapperPass = P.getAnalysisIfAvailable()) AAR.addAAResult(WrapperPass->getResult()); })); } if (TM.getTargetTriple().getArch() == Triple::amdgcn) { // TODO: May want to move later or split into an early and late one. addPass(createAMDGPUCodeGenPreparePass()); } // Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may // have expanded. if (TM.getOptLevel() > CodeGenOptLevel::Less) addPass(createLICMPass()); } TargetPassConfig::addIRPasses(); // EarlyCSE is not always strong enough to clean up what LSR produces. For // example, GVN can combine // // %0 = add %a, %b // %1 = add %b, %a // // and // // %0 = shl nsw %a, 2 // %1 = shl %a, 2 // // but EarlyCSE can do neither of them. if (isPassEnabled(EnableScalarIRPasses)) addEarlyCSEOrGVNPass(); } void AMDGPUPassConfig::addCodeGenPrepare() { if (TM->getTargetTriple().getArch() == Triple::amdgcn) { // FIXME: This pass adds 2 hacky attributes that can be replaced with an // analysis, and should be removed. addPass(createAMDGPUAnnotateKernelFeaturesPass()); } if (TM->getTargetTriple().getArch() == Triple::amdgcn && EnableLowerKernelArguments) addPass(createAMDGPULowerKernelArgumentsPass()); TargetPassConfig::addCodeGenPrepare(); if (isPassEnabled(EnableLoadStoreVectorizer)) addPass(createLoadStoreVectorizerPass()); // LowerSwitch pass may introduce unreachable blocks that can // cause unexpected behavior for subsequent passes. Placing it // here seems better that these blocks would get cleaned up by // UnreachableBlockElim inserted next in the pass flow. addPass(createLowerSwitchPass()); } bool AMDGPUPassConfig::addPreISel() { if (TM->getOptLevel() > CodeGenOptLevel::None) addPass(createFlattenCFGPass()); return false; } bool AMDGPUPassConfig::addInstSelector() { addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); return false; } bool AMDGPUPassConfig::addGCPasses() { // Do nothing. GC is not supported. return false; } llvm::ScheduleDAGInstrs * AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { const GCNSubtarget &ST = C->MF->getSubtarget(); ScheduleDAGMILive *DAG = createGenericSchedLive(C); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); if (ST.shouldClusterStores()) DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); return DAG; } MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo( BumpPtrAllocator &Allocator, const Function &F, const TargetSubtargetInfo *STI) const { return R600MachineFunctionInfo::create( Allocator, F, static_cast(STI)); } //===----------------------------------------------------------------------===// // GCN Pass Setup //===----------------------------------------------------------------------===// ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( MachineSchedContext *C) const { const GCNSubtarget &ST = C->MF->getSubtarget(); if (ST.enableSIScheduler()) return createSIMachineScheduler(C); if (EnableMaxIlpSchedStrategy) return createGCNMaxILPMachineScheduler(C); return createGCNMaxOccupancyMachineScheduler(C); } bool GCNPassConfig::addPreISel() { AMDGPUPassConfig::addPreISel(); if (TM->getOptLevel() > CodeGenOptLevel::None) addPass(createAMDGPULateCodeGenPreparePass()); if (TM->getOptLevel() > CodeGenOptLevel::None) addPass(createSinkingPass()); // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit // regions formed by them. addPass(&AMDGPUUnifyDivergentExitNodesID); if (!LateCFGStructurize) { if (EnableStructurizerWorkarounds) { addPass(createFixIrreduciblePass()); addPass(createUnifyLoopExitsPass()); } addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions } addPass(createAMDGPUAnnotateUniformValues()); if (!LateCFGStructurize) { addPass(createSIAnnotateControlFlowPass()); // TODO: Move this right after structurizeCFG to avoid extra divergence // analysis. This depends on stopping SIAnnotateControlFlow from making // control flow modifications. addPass(createAMDGPURewriteUndefForPHILegacyPass()); } addPass(createLCSSAPass()); if (TM->getOptLevel() > CodeGenOptLevel::Less) addPass(&AMDGPUPerfHintAnalysisID); return false; } void GCNPassConfig::addMachineSSAOptimization() { TargetPassConfig::addMachineSSAOptimization(); // We want to fold operands after PeepholeOptimizer has run (or as part of // it), because it will eliminate extra copies making it easier to fold the // real source operand. We want to eliminate dead instructions after, so that // we see fewer uses of the copies. We then need to clean up the dead // instructions leftover after the operands are folded as well. // // XXX - Can we get away without running DeadMachineInstructionElim again? addPass(&SIFoldOperandsID); if (EnableDPPCombine) addPass(&GCNDPPCombineID); addPass(&SILoadStoreOptimizerID); if (isPassEnabled(EnableSDWAPeephole)) { addPass(&SIPeepholeSDWAID); addPass(&EarlyMachineLICMID); addPass(&MachineCSEID); addPass(&SIFoldOperandsID); } addPass(&DeadMachineInstructionElimID); addPass(createSIShrinkInstructionsPass()); } bool GCNPassConfig::addILPOpts() { if (EnableEarlyIfConversion) addPass(&EarlyIfConverterID); TargetPassConfig::addILPOpts(); return false; } bool GCNPassConfig::addInstSelector() { AMDGPUPassConfig::addInstSelector(); addPass(&SIFixSGPRCopiesID); addPass(createSILowerI1CopiesPass()); return false; } bool GCNPassConfig::addIRTranslator() { addPass(new IRTranslator(getOptLevel())); return false; } void GCNPassConfig::addPreLegalizeMachineIR() { bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); addPass(new Localizer()); } bool GCNPassConfig::addLegalizeMachineIR() { addPass(new Legalizer()); return false; } void GCNPassConfig::addPreRegBankSelect() { bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); addPass(createAMDGPUGlobalISelDivergenceLoweringPass()); } bool GCNPassConfig::addRegBankSelect() { addPass(new AMDGPURegBankSelect()); return false; } void GCNPassConfig::addPreGlobalInstructionSelect() { bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; addPass(createAMDGPURegBankCombiner(IsOptNone)); } bool GCNPassConfig::addGlobalInstructionSelect() { addPass(new InstructionSelect(getOptLevel())); return false; } void GCNPassConfig::addPreRegAlloc() { if (LateCFGStructurize) { addPass(createAMDGPUMachineCFGStructurizerPass()); } } void GCNPassConfig::addFastRegAlloc() { // FIXME: We have to disable the verifier here because of PHIElimination + // TwoAddressInstructions disabling it. // This must be run immediately after phi elimination and before // TwoAddressInstructions, otherwise the processing of the tied operand of // SI_ELSE will introduce a copy of the tied operand source after the else. insertPass(&PHIEliminationID, &SILowerControlFlowID); insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); TargetPassConfig::addFastRegAlloc(); } void GCNPassConfig::addOptimizedRegAlloc() { // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation // instructions that cause scheduling barriers. insertPass(&MachineSchedulerID, &SIWholeQuadModeID); if (OptExecMaskPreRA) insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); if (EnableRewritePartialRegUses) insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID); if (isPassEnabled(EnablePreRAOptimizations)) insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); // This is not an essential optimization and it has a noticeable impact on // compilation time, so we only enable it from O2. if (TM->getOptLevel() > CodeGenOptLevel::Less) insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); // FIXME: when an instruction has a Killed operand, and the instruction is // inside a bundle, seems only the BUNDLE instruction appears as the Kills of // the register in LiveVariables, this would trigger a failure in verifier, // we should fix it and enable the verifier. if (OptVGPRLiveRange) insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); // This must be run immediately after phi elimination and before // TwoAddressInstructions, otherwise the processing of the tied operand of // SI_ELSE will introduce a copy of the tied operand source after the else. insertPass(&PHIEliminationID, &SILowerControlFlowID); if (EnableDCEInRA) insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); TargetPassConfig::addOptimizedRegAlloc(); } bool GCNPassConfig::addPreRewrite() { addPass(&SILowerWWMCopiesID); if (EnableRegReassign) addPass(&GCNNSAReassignID); return true; } FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { // Initialize the global default. llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, initializeDefaultSGPRRegisterAllocatorOnce); RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); if (Ctor != useDefaultRegisterAllocator) return Ctor(); if (Optimized) return createGreedyRegisterAllocator(onlyAllocateSGPRs); return createFastRegisterAllocator(onlyAllocateSGPRs, false); } FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { // Initialize the global default. llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, initializeDefaultVGPRRegisterAllocatorOnce); RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); if (Ctor != useDefaultRegisterAllocator) return Ctor(); if (Optimized) return createGreedyVGPRRegisterAllocator(); return createFastVGPRRegisterAllocator(); } FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { llvm_unreachable("should not be used"); } static const char RegAllocOptNotSupportedMessage[] = "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; bool GCNPassConfig::addRegAssignAndRewriteFast() { if (!usingDefaultRegAlloc()) report_fatal_error(RegAllocOptNotSupportedMessage); addPass(&GCNPreRALongBranchRegID); addPass(createSGPRAllocPass(false)); // Equivalent of PEI for SGPRs. addPass(&SILowerSGPRSpillsID); addPass(&SIPreAllocateWWMRegsID); addPass(createVGPRAllocPass(false)); addPass(&SILowerWWMCopiesID); return true; } bool GCNPassConfig::addRegAssignAndRewriteOptimized() { if (!usingDefaultRegAlloc()) report_fatal_error(RegAllocOptNotSupportedMessage); addPass(&GCNPreRALongBranchRegID); addPass(createSGPRAllocPass(true)); // Commit allocated register changes. This is mostly necessary because too // many things rely on the use lists of the physical registers, such as the // verifier. This is only necessary with allocators which use LiveIntervals, // since FastRegAlloc does the replacements itself. addPass(createVirtRegRewriter(false)); // Equivalent of PEI for SGPRs. addPass(&SILowerSGPRSpillsID); addPass(&SIPreAllocateWWMRegsID); addPass(createVGPRAllocPass(true)); addPreRewrite(); addPass(&VirtRegRewriterID); return true; } void GCNPassConfig::addPostRegAlloc() { addPass(&SIFixVGPRCopiesID); if (getOptLevel() > CodeGenOptLevel::None) addPass(&SIOptimizeExecMaskingID); TargetPassConfig::addPostRegAlloc(); } void GCNPassConfig::addPreSched2() { if (TM->getOptLevel() > CodeGenOptLevel::None) addPass(createSIShrinkInstructionsPass()); addPass(&SIPostRABundlerID); } void GCNPassConfig::addPreEmitPass() { if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less)) addPass(&GCNCreateVOPDID); addPass(createSIMemoryLegalizerPass()); addPass(createSIInsertWaitcntsPass()); addPass(createSIModeRegisterPass()); if (getOptLevel() > CodeGenOptLevel::None) addPass(&SIInsertHardClausesID); addPass(&SILateBranchLoweringPassID); if (isPassEnabled(EnableSetWavePriority, CodeGenOptLevel::Less)) addPass(createAMDGPUSetWavePriorityPass()); if (getOptLevel() > CodeGenOptLevel::None) addPass(&SIPreEmitPeepholeID); // The hazard recognizer that runs as part of the post-ra scheduler does not // guarantee to be able handle all hazards correctly. This is because if there // are multiple scheduling regions in a basic block, the regions are scheduled // bottom up, so when we begin to schedule a region we don't know what // instructions were emitted directly before it. // // Here we add a stand-alone hazard recognizer pass which can handle all // cases. addPass(&PostRAHazardRecognizerID); if (isPassEnabled(EnableInsertSingleUseVDST, CodeGenOptLevel::Less)) addPass(&AMDGPUInsertSingleUseVDSTID); if (isPassEnabled(EnableInsertDelayAlu, CodeGenOptLevel::Less)) addPass(&AMDGPUInsertDelayAluID); addPass(&BranchRelaxationPassID); } TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { return new GCNPassConfig(*this, PM); } void GCNTargetMachine::registerMachineRegisterInfoCallback( MachineFunction &MF) const { SIMachineFunctionInfo *MFI = MF.getInfo(); MF.getRegInfo().addDelegate(MFI); } MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo( BumpPtrAllocator &Allocator, const Function &F, const TargetSubtargetInfo *STI) const { return SIMachineFunctionInfo::create( Allocator, F, static_cast(STI)); } yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { return new yaml::SIMachineFunctionInfo(); } yaml::MachineFunctionInfo * GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { const SIMachineFunctionInfo *MFI = MF.getInfo(); return new yaml::SIMachineFunctionInfo( *MFI, *MF.getSubtarget().getRegisterInfo(), MF); } bool GCNTargetMachine::parseMachineFunctionInfo( const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) const { const yaml::SIMachineFunctionInfo &YamlMFI = static_cast(MFI_); MachineFunction &MF = PFS.MF; SIMachineFunctionInfo *MFI = MF.getInfo(); const GCNSubtarget &ST = MF.getSubtarget(); if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) return true; if (MFI->Occupancy == 0) { // Fixup the subtarget dependent default value. MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); } auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { Register TempReg; if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { SourceRange = RegName.SourceRange; return true; } RegVal = TempReg; return false; }; auto parseOptionalRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { return !RegName.Value.empty() && parseRegister(RegName, RegVal); }; if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) return true; if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy)) return true; if (parseOptionalRegister(YamlMFI.LongBranchReservedReg, MFI->LongBranchReservedReg)) return true; auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { // Create a diagnostic for a the register string literal. const MemoryBuffer &Buffer = *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, RegName.Value.size(), SourceMgr::DK_Error, "incorrect register class for field", RegName.Value, std::nullopt, std::nullopt); SourceRange = RegName.SourceRange; return true; }; if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) return true; if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); } if (MFI->FrameOffsetReg != AMDGPU::FP_REG && !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); } if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); } for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { Register ParsedReg; if (parseRegister(YamlReg, ParsedReg)) return true; MFI->reserveWWMRegister(ParsedReg); } auto parseAndCheckArgument = [&](const std::optional &A, const TargetRegisterClass &RC, ArgDescriptor &Arg, unsigned UserSGPRs, unsigned SystemSGPRs) { // Skip parsing if it's not present. if (!A) return false; if (A->IsRegister) { Register Reg; if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { SourceRange = A->RegisterName.SourceRange; return true; } if (!RC.contains(Reg)) return diagnoseRegisterClass(A->RegisterName); Arg = ArgDescriptor::createRegister(Reg); } else Arg = ArgDescriptor::createStack(A->StackOffset); // Check and apply the optional mask. if (A->Mask) Arg = ArgDescriptor::createArg(Arg, *A->Mask); MFI->NumUserSGPRs += UserSGPRs; MFI->NumSystemSGPRs += SystemSGPRs; return false; }; if (YamlMFI.ArgInfo && (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, AMDGPU::SGPR_128RegClass, MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 2, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, MFI->ArgInfo.QueuePtr, 2, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, AMDGPU::SReg_64RegClass, MFI->ArgInfo.KernargSegmentPtr, 2, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 2, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, AMDGPU::SReg_64RegClass, MFI->ArgInfo.FlatScratchInit, 2, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, AMDGPU::SGPR_32RegClass, MFI->ArgInfo.PrivateSegmentSize, 0, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId, AMDGPU::SGPR_32RegClass, MFI->ArgInfo.LDSKernelId, 0, 1) || parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 0, 1) || parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 0, 1) || parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 0, 1) || parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupInfo, 0, 1) || parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, AMDGPU::SGPR_32RegClass, MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, AMDGPU::SReg_64RegClass, MFI->ArgInfo.ImplicitArgPtr, 0, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, AMDGPU::SReg_64RegClass, MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, AMDGPU::VGPR_32RegClass, MFI->ArgInfo.WorkItemIDX, 0, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, AMDGPU::VGPR_32RegClass, MFI->ArgInfo.WorkItemIDY, 0, 0) || parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, AMDGPU::VGPR_32RegClass, MFI->ArgInfo.WorkItemIDZ, 0, 0))) return true; if (ST.hasIEEEMode()) MFI->Mode.IEEE = YamlMFI.Mode.IEEE; if (ST.hasDX10ClampMode()) MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; // FIXME: Move proper support for denormal-fp-math into base MachineFunction MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals ? DenormalMode::IEEE : DenormalMode::PreserveSign; MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals ? DenormalMode::IEEE : DenormalMode::PreserveSign; MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals ? DenormalMode::IEEE : DenormalMode::PreserveSign; MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals ? DenormalMode::IEEE : DenormalMode::PreserveSign; return false; }