//=== lib/CodeGen/GlobalISel/AMDGPURegBankCombiner.cpp ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass does combining of machine instructions at the generic MI level, // after register banks are known. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPULegalizerInfo.h" #include "AMDGPURegisterBankInfo.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/Target/TargetMachine.h" #define GET_GICOMBINER_DEPS #include "AMDGPUGenPreLegalizeGICombiner.inc" #undef GET_GICOMBINER_DEPS #define DEBUG_TYPE "amdgpu-regbank-combiner" using namespace llvm; using namespace MIPatternMatch; namespace { #define GET_GICOMBINER_TYPES #include "AMDGPUGenRegBankGICombiner.inc" #undef GET_GICOMBINER_TYPES class AMDGPURegBankCombinerImpl : public Combiner { protected: const AMDGPURegBankCombinerImplRuleConfig &RuleConfig; const GCNSubtarget &STI; const RegisterBankInfo &RBI; const TargetRegisterInfo &TRI; const SIInstrInfo &TII; // TODO: Make CombinerHelper methods const. mutable CombinerHelper Helper; public: AMDGPURegBankCombinerImpl( MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, GISelKnownBits &KB, GISelCSEInfo *CSEInfo, const AMDGPURegBankCombinerImplRuleConfig &RuleConfig, const GCNSubtarget &STI, MachineDominatorTree *MDT, const LegalizerInfo *LI); static const char *getName() { return "AMDGPURegBankCombinerImpl"; } bool tryCombineAll(MachineInstr &I) const override; bool isVgprRegBank(Register Reg) const; Register getAsVgpr(Register Reg) const; struct MinMaxMedOpc { unsigned Min, Max, Med; }; struct Med3MatchInfo { unsigned Opc; Register Val0, Val1, Val2; }; MinMaxMedOpc getMinMaxPair(unsigned Opc) const; template bool matchMed(MachineInstr &MI, MachineRegisterInfo &MRI, MinMaxMedOpc MMMOpc, Register &Val, CstTy &K0, CstTy &K1) const; bool matchIntMinMaxToMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo) const; bool matchFPMinMaxToMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo) const; bool matchFPMinMaxToClamp(MachineInstr &MI, Register &Reg) const; bool matchFPMed3ToClamp(MachineInstr &MI, Register &Reg) const; void applyMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo) const; void applyClamp(MachineInstr &MI, Register &Reg) const; private: SIModeRegisterDefaults getMode() const; bool getIEEE() const; bool getDX10Clamp() const; bool isFminnumIeee(const MachineInstr &MI) const; bool isFCst(MachineInstr *MI) const; bool isClampZeroToOne(MachineInstr *K0, MachineInstr *K1) const; #define GET_GICOMBINER_CLASS_MEMBERS #define AMDGPUSubtarget GCNSubtarget #include "AMDGPUGenRegBankGICombiner.inc" #undef GET_GICOMBINER_CLASS_MEMBERS #undef AMDGPUSubtarget }; #define GET_GICOMBINER_IMPL #define AMDGPUSubtarget GCNSubtarget #include "AMDGPUGenRegBankGICombiner.inc" #undef AMDGPUSubtarget #undef GET_GICOMBINER_IMPL AMDGPURegBankCombinerImpl::AMDGPURegBankCombinerImpl( MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, GISelKnownBits &KB, GISelCSEInfo *CSEInfo, const AMDGPURegBankCombinerImplRuleConfig &RuleConfig, const GCNSubtarget &STI, MachineDominatorTree *MDT, const LegalizerInfo *LI) : Combiner(MF, CInfo, TPC, &KB, CSEInfo), RuleConfig(RuleConfig), STI(STI), RBI(*STI.getRegBankInfo()), TRI(*STI.getRegisterInfo()), TII(*STI.getInstrInfo()), Helper(Observer, B, /*IsPreLegalize*/ false, &KB, MDT, LI), #define GET_GICOMBINER_CONSTRUCTOR_INITS #include "AMDGPUGenRegBankGICombiner.inc" #undef GET_GICOMBINER_CONSTRUCTOR_INITS { } bool AMDGPURegBankCombinerImpl::isVgprRegBank(Register Reg) const { return RBI.getRegBank(Reg, MRI, TRI)->getID() == AMDGPU::VGPRRegBankID; } Register AMDGPURegBankCombinerImpl::getAsVgpr(Register Reg) const { if (isVgprRegBank(Reg)) return Reg; // Search for existing copy of Reg to vgpr. for (MachineInstr &Use : MRI.use_instructions(Reg)) { Register Def = Use.getOperand(0).getReg(); if (Use.getOpcode() == AMDGPU::COPY && isVgprRegBank(Def)) return Def; } // Copy Reg to vgpr. Register VgprReg = B.buildCopy(MRI.getType(Reg), Reg).getReg(0); MRI.setRegBank(VgprReg, RBI.getRegBank(AMDGPU::VGPRRegBankID)); return VgprReg; } AMDGPURegBankCombinerImpl::MinMaxMedOpc AMDGPURegBankCombinerImpl::getMinMaxPair(unsigned Opc) const { switch (Opc) { default: llvm_unreachable("Unsupported opcode"); case AMDGPU::G_SMAX: case AMDGPU::G_SMIN: return {AMDGPU::G_SMIN, AMDGPU::G_SMAX, AMDGPU::G_AMDGPU_SMED3}; case AMDGPU::G_UMAX: case AMDGPU::G_UMIN: return {AMDGPU::G_UMIN, AMDGPU::G_UMAX, AMDGPU::G_AMDGPU_UMED3}; case AMDGPU::G_FMAXNUM: case AMDGPU::G_FMINNUM: return {AMDGPU::G_FMINNUM, AMDGPU::G_FMAXNUM, AMDGPU::G_AMDGPU_FMED3}; case AMDGPU::G_FMAXNUM_IEEE: case AMDGPU::G_FMINNUM_IEEE: return {AMDGPU::G_FMINNUM_IEEE, AMDGPU::G_FMAXNUM_IEEE, AMDGPU::G_AMDGPU_FMED3}; } } template bool AMDGPURegBankCombinerImpl::matchMed(MachineInstr &MI, MachineRegisterInfo &MRI, MinMaxMedOpc MMMOpc, Register &Val, CstTy &K0, CstTy &K1) const { // 4 operand commutes of: min(max(Val, K0), K1). // Find K1 from outer instr: min(max(...), K1) or min(K1, max(...)). // Find K0 and Val from inner instr: max(K0, Val) or max(Val, K0). // 4 operand commutes of: max(min(Val, K1), K0). // Find K0 from outer instr: max(min(...), K0) or max(K0, min(...)). // Find K1 and Val from inner instr: min(K1, Val) or min(Val, K1). return mi_match( MI, MRI, m_any_of( m_CommutativeBinOp( MMMOpc.Min, m_CommutativeBinOp(MMMOpc.Max, m_Reg(Val), m_Cst(K0)), m_Cst(K1)), m_CommutativeBinOp( MMMOpc.Max, m_CommutativeBinOp(MMMOpc.Min, m_Reg(Val), m_Cst(K1)), m_Cst(K0)))); } bool AMDGPURegBankCombinerImpl::matchIntMinMaxToMed3( MachineInstr &MI, Med3MatchInfo &MatchInfo) const { Register Dst = MI.getOperand(0).getReg(); if (!isVgprRegBank(Dst)) return false; // med3 for i16 is only available on gfx9+, and not available for v2i16. LLT Ty = MRI.getType(Dst); if ((Ty != LLT::scalar(16) || !STI.hasMed3_16()) && Ty != LLT::scalar(32)) return false; MinMaxMedOpc OpcodeTriple = getMinMaxPair(MI.getOpcode()); Register Val; std::optional K0, K1; // Match min(max(Val, K0), K1) or max(min(Val, K1), K0). Then see if K0 <= K1. if (!matchMed(MI, MRI, OpcodeTriple, Val, K0, K1)) return false; if (OpcodeTriple.Med == AMDGPU::G_AMDGPU_SMED3 && K0->Value.sgt(K1->Value)) return false; if (OpcodeTriple.Med == AMDGPU::G_AMDGPU_UMED3 && K0->Value.ugt(K1->Value)) return false; MatchInfo = {OpcodeTriple.Med, Val, K0->VReg, K1->VReg}; return true; } // fmed3(NaN, K0, K1) = min(min(NaN, K0), K1) // ieee = true : min/max(SNaN, K) = QNaN, min/max(QNaN, K) = K // ieee = false : min/max(NaN, K) = K // clamp(NaN) = dx10_clamp ? 0.0 : NaN // Consider values of min(max(Val, K0), K1) and max(min(Val, K1), K0) as input. // Other operand commutes (see matchMed) give same result since min and max are // commutative. // Try to replace fp min(max(Val, K0), K1) or max(min(Val, K1), K0), KO<=K1 // with fmed3(Val, K0, K1) or clamp(Val). Clamp requires K0 = 0.0 and K1 = 1.0. // Val = SNaN only for ieee = true // fmed3(SNaN, K0, K1) = min(min(SNaN, K0), K1) = min(QNaN, K1) = K1 // min(max(SNaN, K0), K1) = min(QNaN, K1) = K1 // max(min(SNaN, K1), K0) = max(K1, K0) = K1 // Val = NaN,ieee = false or Val = QNaN,ieee = true // fmed3(NaN, K0, K1) = min(min(NaN, K0), K1) = min(K0, K1) = K0 // min(max(NaN, K0), K1) = min(K0, K1) = K0 (can clamp when dx10_clamp = true) // max(min(NaN, K1), K0) = max(K1, K0) = K1 != K0 bool AMDGPURegBankCombinerImpl::matchFPMinMaxToMed3( MachineInstr &MI, Med3MatchInfo &MatchInfo) const { Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); // med3 for f16 is only available on gfx9+, and not available for v2f16. if ((Ty != LLT::scalar(16) || !STI.hasMed3_16()) && Ty != LLT::scalar(32)) return false; auto OpcodeTriple = getMinMaxPair(MI.getOpcode()); Register Val; std::optional K0, K1; // Match min(max(Val, K0), K1) or max(min(Val, K1), K0). Then see if K0 <= K1. if (!matchMed(MI, MRI, OpcodeTriple, Val, K0, K1)) return false; if (K0->Value > K1->Value) return false; // For IEEE=false perform combine only when it's safe to assume that there are // no NaN inputs. Most often MI is marked with nnan fast math flag. // For IEEE=true consider NaN inputs. fmed3(NaN, K0, K1) is equivalent to // min(min(NaN, K0), K1). Safe to fold for min(max(Val, K0), K1) since inner // nodes(max/min) have same behavior when one input is NaN and other isn't. // Don't consider max(min(SNaN, K1), K0) since there is no isKnownNeverQNaN, // also post-legalizer inputs to min/max are fcanonicalized (never SNaN). if ((getIEEE() && isFminnumIeee(MI)) || isKnownNeverNaN(Dst, MRI)) { // Don't fold single use constant that can't be inlined. if ((!MRI.hasOneNonDBGUse(K0->VReg) || TII.isInlineConstant(K0->Value)) && (!MRI.hasOneNonDBGUse(K1->VReg) || TII.isInlineConstant(K1->Value))) { MatchInfo = {OpcodeTriple.Med, Val, K0->VReg, K1->VReg}; return true; } } return false; } bool AMDGPURegBankCombinerImpl::matchFPMinMaxToClamp(MachineInstr &MI, Register &Reg) const { // Clamp is available on all types after regbankselect (f16, f32, f64, v2f16). auto OpcodeTriple = getMinMaxPair(MI.getOpcode()); Register Val; std::optional K0, K1; // Match min(max(Val, K0), K1) or max(min(Val, K1), K0). if (!matchMed(MI, MRI, OpcodeTriple, Val, K0, K1)) return false; if (!K0->Value.isExactlyValue(0.0) || !K1->Value.isExactlyValue(1.0)) return false; // For IEEE=false perform combine only when it's safe to assume that there are // no NaN inputs. Most often MI is marked with nnan fast math flag. // For IEEE=true consider NaN inputs. Only min(max(QNaN, 0.0), 1.0) evaluates // to 0.0 requires dx10_clamp = true. if ((getIEEE() && getDX10Clamp() && isFminnumIeee(MI) && isKnownNeverSNaN(Val, MRI)) || isKnownNeverNaN(MI.getOperand(0).getReg(), MRI)) { Reg = Val; return true; } return false; } // Replacing fmed3(NaN, 0.0, 1.0) with clamp. Requires dx10_clamp = true. // Val = SNaN only for ieee = true. It is important which operand is NaN. // min(min(SNaN, 0.0), 1.0) = min(QNaN, 1.0) = 1.0 // min(min(SNaN, 1.0), 0.0) = min(QNaN, 0.0) = 0.0 // min(min(0.0, 1.0), SNaN) = min(0.0, SNaN) = QNaN // Val = NaN,ieee = false or Val = QNaN,ieee = true // min(min(NaN, 0.0), 1.0) = min(0.0, 1.0) = 0.0 // min(min(NaN, 1.0), 0.0) = min(1.0, 0.0) = 0.0 // min(min(0.0, 1.0), NaN) = min(0.0, NaN) = 0.0 bool AMDGPURegBankCombinerImpl::matchFPMed3ToClamp(MachineInstr &MI, Register &Reg) const { // In llvm-ir, clamp is often represented as an intrinsic call to // @llvm.amdgcn.fmed3.f32(%Val, 0.0, 1.0). Check for other operand orders. MachineInstr *Src0 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI); MachineInstr *Src1 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI); MachineInstr *Src2 = getDefIgnoringCopies(MI.getOperand(3).getReg(), MRI); if (isFCst(Src0) && !isFCst(Src1)) std::swap(Src0, Src1); if (isFCst(Src1) && !isFCst(Src2)) std::swap(Src1, Src2); if (isFCst(Src0) && !isFCst(Src1)) std::swap(Src0, Src1); if (!isClampZeroToOne(Src1, Src2)) return false; Register Val = Src0->getOperand(0).getReg(); auto isOp3Zero = [&]() { MachineInstr *Op3 = getDefIgnoringCopies(MI.getOperand(4).getReg(), MRI); if (Op3->getOpcode() == TargetOpcode::G_FCONSTANT) return Op3->getOperand(1).getFPImm()->isExactlyValue(0.0); return false; }; // For IEEE=false perform combine only when it's safe to assume that there are // no NaN inputs. Most often MI is marked with nnan fast math flag. // For IEEE=true consider NaN inputs. Requires dx10_clamp = true. Safe to fold // when Val could be QNaN. If Val can also be SNaN third input should be 0.0. if (isKnownNeverNaN(MI.getOperand(0).getReg(), MRI) || (getIEEE() && getDX10Clamp() && (isKnownNeverSNaN(Val, MRI) || isOp3Zero()))) { Reg = Val; return true; } return false; } void AMDGPURegBankCombinerImpl::applyClamp(MachineInstr &MI, Register &Reg) const { B.buildInstr(AMDGPU::G_AMDGPU_CLAMP, {MI.getOperand(0)}, {Reg}, MI.getFlags()); MI.eraseFromParent(); } void AMDGPURegBankCombinerImpl::applyMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo) const { B.buildInstr(MatchInfo.Opc, {MI.getOperand(0)}, {getAsVgpr(MatchInfo.Val0), getAsVgpr(MatchInfo.Val1), getAsVgpr(MatchInfo.Val2)}, MI.getFlags()); MI.eraseFromParent(); } SIModeRegisterDefaults AMDGPURegBankCombinerImpl::getMode() const { return MF.getInfo()->getMode(); } bool AMDGPURegBankCombinerImpl::getIEEE() const { return getMode().IEEE; } bool AMDGPURegBankCombinerImpl::getDX10Clamp() const { return getMode().DX10Clamp; } bool AMDGPURegBankCombinerImpl::isFminnumIeee(const MachineInstr &MI) const { return MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE; } bool AMDGPURegBankCombinerImpl::isFCst(MachineInstr *MI) const { return MI->getOpcode() == AMDGPU::G_FCONSTANT; } bool AMDGPURegBankCombinerImpl::isClampZeroToOne(MachineInstr *K0, MachineInstr *K1) const { if (isFCst(K0) && isFCst(K1)) { const ConstantFP *KO_FPImm = K0->getOperand(1).getFPImm(); const ConstantFP *K1_FPImm = K1->getOperand(1).getFPImm(); return (KO_FPImm->isExactlyValue(0.0) && K1_FPImm->isExactlyValue(1.0)) || (KO_FPImm->isExactlyValue(1.0) && K1_FPImm->isExactlyValue(0.0)); } return false; } // Pass boilerplate // ================ class AMDGPURegBankCombiner : public MachineFunctionPass { public: static char ID; AMDGPURegBankCombiner(bool IsOptNone = false); StringRef getPassName() const override { return "AMDGPURegBankCombiner"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; private: bool IsOptNone; AMDGPURegBankCombinerImplRuleConfig RuleConfig; }; } // end anonymous namespace void AMDGPURegBankCombiner::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); getSelectionDAGFallbackAnalysisUsage(AU); AU.addRequired(); AU.addPreserved(); if (!IsOptNone) { AU.addRequired(); AU.addPreserved(); } MachineFunctionPass::getAnalysisUsage(AU); } AMDGPURegBankCombiner::AMDGPURegBankCombiner(bool IsOptNone) : MachineFunctionPass(ID), IsOptNone(IsOptNone) { initializeAMDGPURegBankCombinerPass(*PassRegistry::getPassRegistry()); if (!RuleConfig.parseCommandLineOption()) report_fatal_error("Invalid rule identifier"); } bool AMDGPURegBankCombiner::runOnMachineFunction(MachineFunction &MF) { if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; auto *TPC = &getAnalysis(); const Function &F = MF.getFunction(); bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOptLevel::None && !skipFunction(F); const GCNSubtarget &ST = MF.getSubtarget(); GISelKnownBits *KB = &getAnalysis().get(MF); const auto *LI = ST.getLegalizerInfo(); MachineDominatorTree *MDT = IsOptNone ? nullptr : &getAnalysis().getDomTree(); CombinerInfo CInfo(/*AllowIllegalOps*/ false, /*ShouldLegalizeIllegal*/ true, LI, EnableOpt, F.hasOptSize(), F.hasMinSize()); AMDGPURegBankCombinerImpl Impl(MF, CInfo, TPC, *KB, /*CSEInfo*/ nullptr, RuleConfig, ST, MDT, LI); return Impl.combineMachineInstrs(); } char AMDGPURegBankCombiner::ID = 0; INITIALIZE_PASS_BEGIN(AMDGPURegBankCombiner, DEBUG_TYPE, "Combine AMDGPU machine instrs after regbankselect", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis) INITIALIZE_PASS_END(AMDGPURegBankCombiner, DEBUG_TYPE, "Combine AMDGPU machine instrs after regbankselect", false, false) namespace llvm { FunctionPass *createAMDGPURegBankCombiner(bool IsOptNone) { return new AMDGPURegBankCombiner(IsOptNone); } } // end namespace llvm