//=== lib/CodeGen/GlobalISel/AMDGPUPostLegalizerCombiner.cpp --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass does combining of machine instructions at the generic MI level, // after the legalizer. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUCombinerHelper.h" #include "AMDGPULegalizerInfo.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/Target/TargetMachine.h" #define GET_GICOMBINER_DEPS #include "AMDGPUGenPreLegalizeGICombiner.inc" #undef GET_GICOMBINER_DEPS #define DEBUG_TYPE "amdgpu-postlegalizer-combiner" using namespace llvm; using namespace MIPatternMatch; namespace { #define GET_GICOMBINER_TYPES #include "AMDGPUGenPostLegalizeGICombiner.inc" #undef GET_GICOMBINER_TYPES class AMDGPUPostLegalizerCombinerImpl : public Combiner { protected: const AMDGPUPostLegalizerCombinerImplRuleConfig &RuleConfig; const GCNSubtarget &STI; const SIInstrInfo &TII; // TODO: Make CombinerHelper methods const. mutable AMDGPUCombinerHelper Helper; public: AMDGPUPostLegalizerCombinerImpl( MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, GISelKnownBits &KB, GISelCSEInfo *CSEInfo, const AMDGPUPostLegalizerCombinerImplRuleConfig &RuleConfig, const GCNSubtarget &STI, MachineDominatorTree *MDT, const LegalizerInfo *LI); static const char *getName() { return "AMDGPUPostLegalizerCombinerImpl"; } bool tryCombineAllImpl(MachineInstr &I) const; bool tryCombineAll(MachineInstr &I) const override; struct FMinFMaxLegacyInfo { Register LHS; Register RHS; CmpInst::Predicate Pred; }; // TODO: Make sure fmin_legacy/fmax_legacy don't canonicalize bool matchFMinFMaxLegacy(MachineInstr &MI, MachineInstr &FCmp, FMinFMaxLegacyInfo &Info) const; void applySelectFCmpToFMinFMaxLegacy(MachineInstr &MI, const FMinFMaxLegacyInfo &Info) const; bool matchUCharToFloat(MachineInstr &MI) const; void applyUCharToFloat(MachineInstr &MI) const; bool matchRcpSqrtToRsq(MachineInstr &MI, std::function &MatchInfo) const; bool matchFDivSqrtToRsqF16(MachineInstr &MI) const; void applyFDivSqrtToRsqF16(MachineInstr &MI, const Register &X) const; // FIXME: Should be able to have 2 separate matchdatas rather than custom // struct boilerplate. struct CvtF32UByteMatchInfo { Register CvtVal; unsigned ShiftOffset; }; bool matchCvtF32UByteN(MachineInstr &MI, CvtF32UByteMatchInfo &MatchInfo) const; void applyCvtF32UByteN(MachineInstr &MI, const CvtF32UByteMatchInfo &MatchInfo) const; bool matchRemoveFcanonicalize(MachineInstr &MI, Register &Reg) const; // Combine unsigned buffer load and signed extension instructions to generate // signed buffer load instructions. bool matchCombineSignExtendInReg( MachineInstr &MI, std::pair &MatchInfo) const; void applyCombineSignExtendInReg( MachineInstr &MI, std::pair &MatchInfo) const; // Find the s_mul_u64 instructions where the higher bits are either // zero-extended or sign-extended. // Replace the s_mul_u64 instructions with S_MUL_I64_I32_PSEUDO if the higher // 33 bits are sign extended and with S_MUL_U64_U32_PSEUDO if the higher 32 // bits are zero extended. bool matchCombine_s_mul_u64(MachineInstr &MI, unsigned &NewOpcode) const; private: #define GET_GICOMBINER_CLASS_MEMBERS #define AMDGPUSubtarget GCNSubtarget #include "AMDGPUGenPostLegalizeGICombiner.inc" #undef GET_GICOMBINER_CLASS_MEMBERS #undef AMDGPUSubtarget }; #define GET_GICOMBINER_IMPL #define AMDGPUSubtarget GCNSubtarget #include "AMDGPUGenPostLegalizeGICombiner.inc" #undef AMDGPUSubtarget #undef GET_GICOMBINER_IMPL AMDGPUPostLegalizerCombinerImpl::AMDGPUPostLegalizerCombinerImpl( MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, GISelKnownBits &KB, GISelCSEInfo *CSEInfo, const AMDGPUPostLegalizerCombinerImplRuleConfig &RuleConfig, const GCNSubtarget &STI, MachineDominatorTree *MDT, const LegalizerInfo *LI) : Combiner(MF, CInfo, TPC, &KB, CSEInfo), RuleConfig(RuleConfig), STI(STI), TII(*STI.getInstrInfo()), Helper(Observer, B, /*IsPreLegalize*/ false, &KB, MDT, LI), #define GET_GICOMBINER_CONSTRUCTOR_INITS #include "AMDGPUGenPostLegalizeGICombiner.inc" #undef GET_GICOMBINER_CONSTRUCTOR_INITS { } bool AMDGPUPostLegalizerCombinerImpl::tryCombineAll(MachineInstr &MI) const { if (tryCombineAllImpl(MI)) return true; switch (MI.getOpcode()) { case TargetOpcode::G_SHL: case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: // On some subtargets, 64-bit shift is a quarter rate instruction. In the // common case, splitting this into a move and a 32-bit shift is faster and // the same code size. return Helper.tryCombineShiftToUnmerge(MI, 32); } return false; } bool AMDGPUPostLegalizerCombinerImpl::matchFMinFMaxLegacy( MachineInstr &MI, MachineInstr &FCmp, FMinFMaxLegacyInfo &Info) const { if (!MRI.hasOneNonDBGUse(FCmp.getOperand(0).getReg())) return false; Info.Pred = static_cast(FCmp.getOperand(1).getPredicate()); Info.LHS = FCmp.getOperand(2).getReg(); Info.RHS = FCmp.getOperand(3).getReg(); Register True = MI.getOperand(2).getReg(); Register False = MI.getOperand(3).getReg(); // TODO: Handle case where the the selected value is an fneg and the compared // constant is the negation of the selected value. if ((Info.LHS != True || Info.RHS != False) && (Info.LHS != False || Info.RHS != True)) return false; // Invert the predicate if necessary so that the apply function can assume // that the select operands are the same as the fcmp operands. // (select (fcmp P, L, R), R, L) -> (select (fcmp !P, L, R), L, R) if (Info.LHS != True) Info.Pred = CmpInst::getInversePredicate(Info.Pred); // Only match =/> not ==/!= etc. return Info.Pred != CmpInst::getSwappedPredicate(Info.Pred); } void AMDGPUPostLegalizerCombinerImpl::applySelectFCmpToFMinFMaxLegacy( MachineInstr &MI, const FMinFMaxLegacyInfo &Info) const { unsigned Opc = (Info.Pred & CmpInst::FCMP_OGT) ? AMDGPU::G_AMDGPU_FMAX_LEGACY : AMDGPU::G_AMDGPU_FMIN_LEGACY; Register X = Info.LHS; Register Y = Info.RHS; if (Info.Pred == CmpInst::getUnorderedPredicate(Info.Pred)) { // We need to permute the operands to get the correct NaN behavior. The // selected operand is the second one based on the failing compare with NaN, // so permute it based on the compare type the hardware uses. std::swap(X, Y); } B.buildInstr(Opc, {MI.getOperand(0)}, {X, Y}, MI.getFlags()); MI.eraseFromParent(); } bool AMDGPUPostLegalizerCombinerImpl::matchUCharToFloat( MachineInstr &MI) const { Register DstReg = MI.getOperand(0).getReg(); // TODO: We could try to match extracting the higher bytes, which would be // easier if i8 vectors weren't promoted to i32 vectors, particularly after // types are legalized. v4i8 -> v4f32 is probably the only case to worry // about in practice. LLT Ty = MRI.getType(DstReg); if (Ty == LLT::scalar(32) || Ty == LLT::scalar(16)) { Register SrcReg = MI.getOperand(1).getReg(); unsigned SrcSize = MRI.getType(SrcReg).getSizeInBits(); assert(SrcSize == 16 || SrcSize == 32 || SrcSize == 64); const APInt Mask = APInt::getHighBitsSet(SrcSize, SrcSize - 8); return Helper.getKnownBits()->maskedValueIsZero(SrcReg, Mask); } return false; } void AMDGPUPostLegalizerCombinerImpl::applyUCharToFloat( MachineInstr &MI) const { const LLT S32 = LLT::scalar(32); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); if (SrcTy != S32) SrcReg = B.buildAnyExtOrTrunc(S32, SrcReg).getReg(0); if (Ty == S32) { B.buildInstr(AMDGPU::G_AMDGPU_CVT_F32_UBYTE0, {DstReg}, {SrcReg}, MI.getFlags()); } else { auto Cvt0 = B.buildInstr(AMDGPU::G_AMDGPU_CVT_F32_UBYTE0, {S32}, {SrcReg}, MI.getFlags()); B.buildFPTrunc(DstReg, Cvt0, MI.getFlags()); } MI.eraseFromParent(); } bool AMDGPUPostLegalizerCombinerImpl::matchRcpSqrtToRsq( MachineInstr &MI, std::function &MatchInfo) const { auto getRcpSrc = [=](const MachineInstr &MI) -> MachineInstr * { if (!MI.getFlag(MachineInstr::FmContract)) return nullptr; if (auto *GI = dyn_cast(&MI)) { if (GI->is(Intrinsic::amdgcn_rcp)) return MRI.getVRegDef(MI.getOperand(2).getReg()); } return nullptr; }; auto getSqrtSrc = [=](const MachineInstr &MI) -> MachineInstr * { if (!MI.getFlag(MachineInstr::FmContract)) return nullptr; MachineInstr *SqrtSrcMI = nullptr; auto Match = mi_match(MI.getOperand(0).getReg(), MRI, m_GFSqrt(m_MInstr(SqrtSrcMI))); (void)Match; return SqrtSrcMI; }; MachineInstr *RcpSrcMI = nullptr, *SqrtSrcMI = nullptr; // rcp(sqrt(x)) if ((RcpSrcMI = getRcpSrc(MI)) && (SqrtSrcMI = getSqrtSrc(*RcpSrcMI))) { MatchInfo = [SqrtSrcMI, &MI](MachineIRBuilder &B) { B.buildIntrinsic(Intrinsic::amdgcn_rsq, {MI.getOperand(0)}) .addUse(SqrtSrcMI->getOperand(0).getReg()) .setMIFlags(MI.getFlags()); }; return true; } // sqrt(rcp(x)) if ((SqrtSrcMI = getSqrtSrc(MI)) && (RcpSrcMI = getRcpSrc(*SqrtSrcMI))) { MatchInfo = [RcpSrcMI, &MI](MachineIRBuilder &B) { B.buildIntrinsic(Intrinsic::amdgcn_rsq, {MI.getOperand(0)}) .addUse(RcpSrcMI->getOperand(0).getReg()) .setMIFlags(MI.getFlags()); }; return true; } return false; } bool AMDGPUPostLegalizerCombinerImpl::matchFDivSqrtToRsqF16( MachineInstr &MI) const { Register Sqrt = MI.getOperand(2).getReg(); return MRI.hasOneNonDBGUse(Sqrt); } void AMDGPUPostLegalizerCombinerImpl::applyFDivSqrtToRsqF16( MachineInstr &MI, const Register &X) const { Register Dst = MI.getOperand(0).getReg(); Register Y = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); uint32_t Flags = MI.getFlags(); Register RSQ = B.buildIntrinsic(Intrinsic::amdgcn_rsq, {DstTy}) .addUse(X) .setMIFlags(Flags) .getReg(0); B.buildFMul(Dst, RSQ, Y, Flags); MI.eraseFromParent(); } bool AMDGPUPostLegalizerCombinerImpl::matchCvtF32UByteN( MachineInstr &MI, CvtF32UByteMatchInfo &MatchInfo) const { Register SrcReg = MI.getOperand(1).getReg(); // Look through G_ZEXT. bool IsShr = mi_match(SrcReg, MRI, m_GZExt(m_Reg(SrcReg))); Register Src0; int64_t ShiftAmt; IsShr = mi_match(SrcReg, MRI, m_GLShr(m_Reg(Src0), m_ICst(ShiftAmt))); if (IsShr || mi_match(SrcReg, MRI, m_GShl(m_Reg(Src0), m_ICst(ShiftAmt)))) { const unsigned Offset = MI.getOpcode() - AMDGPU::G_AMDGPU_CVT_F32_UBYTE0; unsigned ShiftOffset = 8 * Offset; if (IsShr) ShiftOffset += ShiftAmt; else ShiftOffset -= ShiftAmt; MatchInfo.CvtVal = Src0; MatchInfo.ShiftOffset = ShiftOffset; return ShiftOffset < 32 && ShiftOffset >= 8 && (ShiftOffset % 8) == 0; } // TODO: Simplify demanded bits. return false; } void AMDGPUPostLegalizerCombinerImpl::applyCvtF32UByteN( MachineInstr &MI, const CvtF32UByteMatchInfo &MatchInfo) const { unsigned NewOpc = AMDGPU::G_AMDGPU_CVT_F32_UBYTE0 + MatchInfo.ShiftOffset / 8; const LLT S32 = LLT::scalar(32); Register CvtSrc = MatchInfo.CvtVal; LLT SrcTy = MRI.getType(MatchInfo.CvtVal); if (SrcTy != S32) { assert(SrcTy.isScalar() && SrcTy.getSizeInBits() >= 8); CvtSrc = B.buildAnyExt(S32, CvtSrc).getReg(0); } assert(MI.getOpcode() != NewOpc); B.buildInstr(NewOpc, {MI.getOperand(0)}, {CvtSrc}, MI.getFlags()); MI.eraseFromParent(); } bool AMDGPUPostLegalizerCombinerImpl::matchRemoveFcanonicalize( MachineInstr &MI, Register &Reg) const { const SITargetLowering *TLI = static_cast( MF.getSubtarget().getTargetLowering()); Reg = MI.getOperand(1).getReg(); return TLI->isCanonicalized(Reg, MF); } // The buffer_load_{i8, i16} intrinsics are intially lowered as buffer_load_{u8, // u16} instructions. Here, the buffer_load_{u8, u16} instructions are combined // with sign extension instrucions in order to generate buffer_load_{i8, i16} // instructions. // Identify buffer_load_{u8, u16}. bool AMDGPUPostLegalizerCombinerImpl::matchCombineSignExtendInReg( MachineInstr &MI, std::pair &MatchData) const { Register LoadReg = MI.getOperand(1).getReg(); if (!MRI.hasOneNonDBGUse(LoadReg)) return false; // Check if the first operand of the sign extension is a subword buffer load // instruction. MachineInstr *LoadMI = MRI.getVRegDef(LoadReg); int64_t Width = MI.getOperand(2).getImm(); switch (LoadMI->getOpcode()) { case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: MatchData = {LoadMI, AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE}; return Width == 8; case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: MatchData = {LoadMI, AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT}; return Width == 16; case AMDGPU::G_AMDGPU_S_BUFFER_LOAD_UBYTE: MatchData = {LoadMI, AMDGPU::G_AMDGPU_S_BUFFER_LOAD_SBYTE}; return Width == 8; case AMDGPU::G_AMDGPU_S_BUFFER_LOAD_USHORT: MatchData = {LoadMI, AMDGPU::G_AMDGPU_S_BUFFER_LOAD_SSHORT}; return Width == 16; } return false; } // Combine buffer_load_{u8, u16} and the sign extension instruction to generate // buffer_load_{i8, i16}. void AMDGPUPostLegalizerCombinerImpl::applyCombineSignExtendInReg( MachineInstr &MI, std::pair &MatchData) const { auto [LoadMI, NewOpcode] = MatchData; LoadMI->setDesc(TII.get(NewOpcode)); // Update the destination register of the load with the destination register // of the sign extension. Register SignExtendInsnDst = MI.getOperand(0).getReg(); LoadMI->getOperand(0).setReg(SignExtendInsnDst); // Remove the sign extension. MI.eraseFromParent(); } bool AMDGPUPostLegalizerCombinerImpl::matchCombine_s_mul_u64( MachineInstr &MI, unsigned &NewOpcode) const { Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); if (MRI.getType(Src0) != LLT::scalar(64)) return false; if (KB->getKnownBits(Src1).countMinLeadingZeros() >= 32 && KB->getKnownBits(Src0).countMinLeadingZeros() >= 32) { NewOpcode = AMDGPU::G_AMDGPU_S_MUL_U64_U32; return true; } if (KB->computeNumSignBits(Src1) >= 33 && KB->computeNumSignBits(Src0) >= 33) { NewOpcode = AMDGPU::G_AMDGPU_S_MUL_I64_I32; return true; } return false; } // Pass boilerplate // ================ class AMDGPUPostLegalizerCombiner : public MachineFunctionPass { public: static char ID; AMDGPUPostLegalizerCombiner(bool IsOptNone = false); StringRef getPassName() const override { return "AMDGPUPostLegalizerCombiner"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; private: bool IsOptNone; AMDGPUPostLegalizerCombinerImplRuleConfig RuleConfig; }; } // end anonymous namespace void AMDGPUPostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); getSelectionDAGFallbackAnalysisUsage(AU); AU.addRequired(); AU.addPreserved(); if (!IsOptNone) { AU.addRequired(); AU.addPreserved(); } MachineFunctionPass::getAnalysisUsage(AU); } AMDGPUPostLegalizerCombiner::AMDGPUPostLegalizerCombiner(bool IsOptNone) : MachineFunctionPass(ID), IsOptNone(IsOptNone) { initializeAMDGPUPostLegalizerCombinerPass(*PassRegistry::getPassRegistry()); if (!RuleConfig.parseCommandLineOption()) report_fatal_error("Invalid rule identifier"); } bool AMDGPUPostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) { if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; auto *TPC = &getAnalysis(); const Function &F = MF.getFunction(); bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOptLevel::None && !skipFunction(F); const GCNSubtarget &ST = MF.getSubtarget(); const AMDGPULegalizerInfo *LI = static_cast(ST.getLegalizerInfo()); GISelKnownBits *KB = &getAnalysis().get(MF); MachineDominatorTree *MDT = IsOptNone ? nullptr : &getAnalysis().getDomTree(); CombinerInfo CInfo(/*AllowIllegalOps*/ false, /*ShouldLegalizeIllegal*/ true, LI, EnableOpt, F.hasOptSize(), F.hasMinSize()); AMDGPUPostLegalizerCombinerImpl Impl(MF, CInfo, TPC, *KB, /*CSEInfo*/ nullptr, RuleConfig, ST, MDT, LI); return Impl.combineMachineInstrs(); } char AMDGPUPostLegalizerCombiner::ID = 0; INITIALIZE_PASS_BEGIN(AMDGPUPostLegalizerCombiner, DEBUG_TYPE, "Combine AMDGPU machine instrs after legalization", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis) INITIALIZE_PASS_END(AMDGPUPostLegalizerCombiner, DEBUG_TYPE, "Combine AMDGPU machine instrs after legalization", false, false) namespace llvm { FunctionPass *createAMDGPUPostLegalizeCombiner(bool IsOptNone) { return new AMDGPUPostLegalizerCombiner(IsOptNone); } } // end namespace llvm