//===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// \brief Analyzes if a function potentially memory bound and if a kernel /// kernel may benefit from limiting number of waves to reduce cache thrashing. /// //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUPerfHintAnalysis.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "amdgpu-perf-hint" static cl::opt MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden, cl::desc("Function mem bound threshold in %")); static cl::opt LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden, cl::desc("Kernel limit wave threshold in %")); static cl::opt IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden, cl::desc("Indirect access memory instruction weight")); static cl::opt LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden, cl::desc("Large stride memory access weight")); static cl::opt LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden, cl::desc("Large stride memory access threshold")); STATISTIC(NumMemBound, "Number of functions marked as memory bound"); STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave"); char llvm::AMDGPUPerfHintAnalysis::ID = 0; char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID; INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE, "Analysis if a function is memory bound", true, true) namespace { struct AMDGPUPerfHint { friend AMDGPUPerfHintAnalysis; public: AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_, const TargetLowering *TLI_) : FIM(FIM_), DL(nullptr), TLI(TLI_) {} bool runOnFunction(Function &F); private: struct MemAccessInfo { const Value *V = nullptr; const Value *Base = nullptr; int64_t Offset = 0; MemAccessInfo() = default; bool isLargeStride(MemAccessInfo &Reference) const; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) Printable print() const { return Printable([this](raw_ostream &OS) { OS << "Value: " << *V << '\n' << "Base: " << *Base << " Offset: " << Offset << '\n'; }); } #endif }; MemAccessInfo makeMemAccessInfo(Instruction *) const; MemAccessInfo LastAccess; // Last memory access info AMDGPUPerfHintAnalysis::FuncInfoMap &FIM; const DataLayout *DL; const TargetLowering *TLI; AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F); static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F); static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F); bool isIndirectAccess(const Instruction *Inst) const; /// Check if the instruction is large stride. /// The purpose is to identify memory access pattern like: /// x = a[i]; /// y = a[i+1000]; /// z = a[i+2000]; /// In the above example, the second and third memory access will be marked /// large stride memory access. bool isLargeStride(const Instruction *Inst); bool isGlobalAddr(const Value *V) const; bool isLocalAddr(const Value *V) const; bool isGlobalLoadUsedInBB(const Instruction &) const; }; static std::pair getMemoryInstrPtrAndType( const Instruction *Inst) { if (auto LI = dyn_cast(Inst)) return {LI->getPointerOperand(), LI->getType()}; if (auto SI = dyn_cast(Inst)) return {SI->getPointerOperand(), SI->getValueOperand()->getType()}; if (auto AI = dyn_cast(Inst)) return {AI->getPointerOperand(), AI->getCompareOperand()->getType()}; if (auto AI = dyn_cast(Inst)) return {AI->getPointerOperand(), AI->getValOperand()->getType()}; if (auto MI = dyn_cast(Inst)) return {MI->getRawDest(), Type::getInt8Ty(MI->getContext())}; return {nullptr, nullptr}; } bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const { LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n'); SmallSet WorkSet; SmallSet Visited; if (const Value *MO = getMemoryInstrPtrAndType(Inst).first) { if (isGlobalAddr(MO)) WorkSet.insert(MO); } while (!WorkSet.empty()) { const Value *V = *WorkSet.begin(); WorkSet.erase(*WorkSet.begin()); if (!Visited.insert(V).second) continue; LLVM_DEBUG(dbgs() << " check: " << *V << '\n'); if (auto LD = dyn_cast(V)) { auto M = LD->getPointerOperand(); if (isGlobalAddr(M)) { LLVM_DEBUG(dbgs() << " is IA\n"); return true; } continue; } if (auto GEP = dyn_cast(V)) { auto P = GEP->getPointerOperand(); WorkSet.insert(P); for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I) WorkSet.insert(GEP->getOperand(I)); continue; } if (auto U = dyn_cast(V)) { WorkSet.insert(U->getOperand(0)); continue; } if (auto BO = dyn_cast(V)) { WorkSet.insert(BO->getOperand(0)); WorkSet.insert(BO->getOperand(1)); continue; } if (auto S = dyn_cast(V)) { WorkSet.insert(S->getFalseValue()); WorkSet.insert(S->getTrueValue()); continue; } if (auto E = dyn_cast(V)) { WorkSet.insert(E->getVectorOperand()); continue; } LLVM_DEBUG(dbgs() << " dropped\n"); } LLVM_DEBUG(dbgs() << " is not IA\n"); return false; } // Returns true if the global load `I` is used in its own basic block. bool AMDGPUPerfHint::isGlobalLoadUsedInBB(const Instruction &I) const { const auto *Ld = dyn_cast(&I); if (!Ld) return false; if (!isGlobalAddr(Ld->getPointerOperand())) return false; for (const User *Usr : Ld->users()) { if (const Instruction *UsrInst = dyn_cast(Usr)) { if (UsrInst->getParent() == I.getParent()) return true; } } return false; } AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) { AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F]; LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n'); for (auto &B : F) { LastAccess = MemAccessInfo(); unsigned UsedGlobalLoadsInBB = 0; for (auto &I : B) { if (const Type *Ty = getMemoryInstrPtrAndType(&I).second) { unsigned Size = divideCeil(Ty->getPrimitiveSizeInBits(), 32); // TODO: Check if the global load and its user are close to each other // instead (Or do this analysis in GCNSchedStrategy?). if (isGlobalLoadUsedInBB(I)) UsedGlobalLoadsInBB += Size; if (isIndirectAccess(&I)) FI.IAMInstCost += Size; if (isLargeStride(&I)) FI.LSMInstCost += Size; FI.MemInstCost += Size; FI.InstCost += Size; continue; } if (auto *CB = dyn_cast(&I)) { Function *Callee = CB->getCalledFunction(); if (!Callee || Callee->isDeclaration()) { ++FI.InstCost; continue; } if (&F == Callee) // Handle immediate recursion continue; auto Loc = FIM.find(Callee); if (Loc == FIM.end()) continue; FI.MemInstCost += Loc->second.MemInstCost; FI.InstCost += Loc->second.InstCost; FI.IAMInstCost += Loc->second.IAMInstCost; FI.LSMInstCost += Loc->second.LSMInstCost; } else if (auto *GEP = dyn_cast(&I)) { TargetLoweringBase::AddrMode AM; auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL); AM.BaseGV = dyn_cast_or_null(const_cast(Ptr)); AM.HasBaseReg = !AM.BaseGV; if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(), GEP->getPointerAddressSpace())) // Offset will likely be folded into load or store continue; ++FI.InstCost; } else { ++FI.InstCost; } } if (!FI.HasDenseGlobalMemAcc) { unsigned GlobalMemAccPercentage = UsedGlobalLoadsInBB * 100 / B.size(); if (GlobalMemAccPercentage > 50) { LLVM_DEBUG(dbgs() << "[HasDenseGlobalMemAcc] Set to true since " << B.getName() << " has " << GlobalMemAccPercentage << "% global memory access\n"); FI.HasDenseGlobalMemAcc = true; } } } return &FI; } bool AMDGPUPerfHint::runOnFunction(Function &F) { const Module &M = *F.getParent(); DL = &M.getDataLayout(); if (F.hasFnAttribute("amdgpu-wave-limiter") && F.hasFnAttribute("amdgpu-memory-bound")) return false; const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F); LLVM_DEBUG(dbgs() << F.getName() << " MemInst cost: " << Info->MemInstCost << '\n' << " IAMInst cost: " << Info->IAMInstCost << '\n' << " LSMInst cost: " << Info->LSMInstCost << '\n' << " TotalInst cost: " << Info->InstCost << '\n'); bool Changed = false; if (isMemBound(*Info)) { LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n"); NumMemBound++; F.addFnAttr("amdgpu-memory-bound", "true"); Changed = true; } if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(*Info)) { LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n"); NumLimitWave++; F.addFnAttr("amdgpu-wave-limiter", "true"); Changed = true; } return Changed; } bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { // Reverting optimal scheduling in favour of occupancy with basic block(s) // having dense global memory access can potentially hurt performance. if (FI.HasDenseGlobalMemAcc) return true; return FI.MemInstCost * 100 / FI.InstCost > MemBoundThresh; } bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { return ((FI.MemInstCost + FI.IAMInstCost * IAWeight + FI.LSMInstCost * LSWeight) * 100 / FI.InstCost) > LimitWaveThresh; } bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const { if (auto PT = dyn_cast(V->getType())) { unsigned As = PT->getAddressSpace(); // Flat likely points to global too. return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS; } return false; } bool AMDGPUPerfHint::isLocalAddr(const Value *V) const { if (auto PT = dyn_cast(V->getType())) return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; return false; } bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) { LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n'); MemAccessInfo MAI = makeMemAccessInfo(const_cast(Inst)); bool IsLargeStride = MAI.isLargeStride(LastAccess); if (MAI.Base) LastAccess = std::move(MAI); return IsLargeStride; } AMDGPUPerfHint::MemAccessInfo AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const { MemAccessInfo MAI; const Value *MO = getMemoryInstrPtrAndType(Inst).first; LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n'); // Do not treat local-addr memory access as large stride. if (isLocalAddr(MO)) return MAI; MAI.V = MO; MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL); return MAI; } bool AMDGPUPerfHint::MemAccessInfo::isLargeStride( MemAccessInfo &Reference) const { if (!Base || !Reference.Base || Base != Reference.Base) return false; uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset : Reference.Offset - Offset; bool Result = Diff > LargeStrideThresh; LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n" << print() << "<=>\n" << Reference.print() << "Result:" << Result << '\n'); return Result; } } // namespace bool AMDGPUPerfHintAnalysis::runOnSCC(CallGraphSCC &SCC) { auto *TPC = getAnalysisIfAvailable(); if (!TPC) return false; const TargetMachine &TM = TPC->getTM(); bool Changed = false; for (CallGraphNode *I : SCC) { Function *F = I->getFunction(); if (!F || F->isDeclaration()) continue; const TargetSubtargetInfo *ST = TM.getSubtargetImpl(*F); AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering()); if (Analyzer.runOnFunction(*F)) Changed = true; } return Changed; } bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const { auto FI = FIM.find(F); if (FI == FIM.end()) return false; return AMDGPUPerfHint::isMemBound(FI->second); } bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const { auto FI = FIM.find(F); if (FI == FIM.end()) return false; return AMDGPUPerfHint::needLimitWave(FI->second); }