//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass eliminates local data store, LDS, uses from non-kernel functions. // LDS is contiguous memory allocated per kernel execution. // // Background. // // The programming model is global variables, or equivalently function local // static variables, accessible from kernels or other functions. For uses from // kernels this is straightforward - assign an integer to the kernel for the // memory required by all the variables combined, allocate them within that. // For uses from functions there are performance tradeoffs to choose between. // // This model means the GPU runtime can specify the amount of memory allocated. // If this is more than the kernel assumed, the excess can be made available // using a language specific feature, which IR represents as a variable with // no initializer. This feature is referred to here as "Dynamic LDS" and is // lowered slightly differently to the normal case. // // Consequences of this GPU feature: // - memory is limited and exceeding it halts compilation // - a global accessed by one kernel exists independent of other kernels // - a global exists independent of simultaneous execution of the same kernel // - the address of the global may be different from different kernels as they // do not alias, which permits only allocating variables they use // - if the address is allowed to differ, functions need help to find it // // Uses from kernels are implemented here by grouping them in a per-kernel // struct instance. This duplicates the variables, accurately modelling their // aliasing properties relative to a single global representation. It also // permits control over alignment via padding. // // Uses from functions are more complicated and the primary purpose of this // IR pass. Several different lowering are chosen between to meet requirements // to avoid allocating any LDS where it is not necessary, as that impacts // occupancy and may fail the compilation, while not imposing overhead on a // feature whose primary advantage over global memory is performance. The basic // design goal is to avoid one kernel imposing overhead on another. // // Implementation. // // LDS variables with constant annotation or non-undef initializer are passed // through unchanged for simplification or error diagnostics in later passes. // Non-undef initializers are not yet implemented for LDS. // // LDS variables that are always allocated at the same address can be found // by lookup at that address. Otherwise runtime information/cost is required. // // The simplest strategy possible is to group all LDS variables in a single // struct and allocate that struct in every kernel such that the original // variables are always at the same address. LDS is however a limited resource // so this strategy is unusable in practice. It is not implemented here. // // Strategy | Precise allocation | Zero runtime cost | General purpose | // --------+--------------------+-------------------+-----------------+ // Module | No | Yes | Yes | // Table | Yes | No | Yes | // Kernel | Yes | Yes | No | // Hybrid | Yes | Partial | Yes | // // "Module" spends LDS memory to save cycles. "Table" spends cycles and global // memory to save LDS. "Kernel" is as fast as kernel allocation but only works // for variables that are known reachable from a single kernel. "Hybrid" picks // between all three. When forced to choose between LDS and cycles we minimise // LDS use. // The "module" lowering implemented here finds LDS variables which are used by // non-kernel functions and creates a new struct with a field for each of those // LDS variables. Variables that are only used from kernels are excluded. // // The "table" lowering implemented here has three components. // First kernels are assigned a unique integer identifier which is available in // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer // is passed through a specific SGPR, thus works with indirect calls. // Second, each kernel allocates LDS variables independent of other kernels and // writes the addresses it chose for each variable into an array in consistent // order. If the kernel does not allocate a given variable, it writes undef to // the corresponding array location. These arrays are written to a constant // table in the order matching the kernel unique integer identifier. // Third, uses from non-kernel functions are replaced with a table lookup using // the intrinsic function to find the address of the variable. // // "Kernel" lowering is only applicable for variables that are unambiguously // reachable from exactly one kernel. For those cases, accesses to the variable // can be lowered to ConstantExpr address of a struct instance specific to that // one kernel. This is zero cost in space and in compute. It will raise a fatal // error on any variable that might be reachable from multiple kernels and is // thus most easily used as part of the hybrid lowering strategy. // // Hybrid lowering is a mixture of the above. It uses the zero cost kernel // lowering where it can. It lowers the variable accessed by the greatest // number of kernels using the module strategy as that is free for the first // variable. Any futher variables that can be lowered with the module strategy // without incurring LDS memory overhead are. The remaining ones are lowered // via table. // // Consequences // - No heuristics or user controlled magic numbers, hybrid is the right choice // - Kernels that don't use functions (or have had them all inlined) are not // affected by any lowering for kernels that do. // - Kernels that don't make indirect function calls are not affected by those // that do. // - Variables which are used by lots of kernels, e.g. those injected by a // language runtime in most kernels, are expected to have no overhead // - Implementations that instantiate templates per-kernel where those templates // use LDS are expected to hit the "Kernel" lowering strategy // - The runtime properties impose a cost in compiler implementation complexity // // Dynamic LDS implementation // Dynamic LDS is lowered similarly to the "table" strategy above and uses the // same intrinsic to identify which kernel is at the root of the dynamic call // graph. This relies on the specified behaviour that all dynamic LDS variables // alias one another, i.e. are at the same address, with respect to a given // kernel. Therefore this pass creates new dynamic LDS variables for each kernel // that allocates any dynamic LDS and builds a table of addresses out of those. // The AMDGPUPromoteAlloca pass skips kernels that use dynamic LDS. // The corresponding optimisation for "kernel" lowering where the table lookup // is elided is not implemented. // // // Implementation notes / limitations // A single LDS global variable represents an instance per kernel that can reach // said variables. This pass essentially specialises said variables per kernel. // Handling ConstantExpr during the pass complicated this significantly so now // all ConstantExpr uses of LDS variables are expanded to instructions. This // may need amending when implementing non-undef initialisers. // // Lowering is split between this IR pass and the back end. This pass chooses // where given variables should be allocated and marks them with metadata, // MD_absolute_symbol. The backend places the variables in coincidentally the // same location and raises a fatal error if something has gone awry. This works // in practice because the only pass between this one and the backend that // changes LDS is PromoteAlloca and the changes it makes do not conflict. // // Addresses are written to constant global arrays based on the same metadata. // // The backend lowers LDS variables in the order of traversal of the function. // This is at odds with the deterministic layout required. The workaround is to // allocate the fixed-address variables immediately upon starting the function // where they can be placed as intended. This requires a means of mapping from // the function to the variables that it allocates. For the module scope lds, // this is via metadata indicating whether the variable is not required. If a // pass deletes that metadata, a fatal error on disagreement with the absolute // symbol metadata will occur. For kernel scope and dynamic, this is by _name_ // correspondence between the function and the variable. It requires the // kernel to have a name (which is only a limitation for tests in practice) and // for nothing to rename the corresponding symbols. This is a hazard if the pass // is run multiple times during debugging. Alternative schemes considered all // involve bespoke metadata. // // If the name correspondence can be replaced, multiple distinct kernels that // have the same memory layout can map to the same kernel id (as the address // itself is handled by the absolute symbol metadata) and that will allow more // uses of the "kernel" style faster lowering and reduce the size of the lookup // tables. // // There is a test that checks this does not fire for a graphics shader. This // lowering is expected to work for graphics if the isKernel test is changed. // // The current markUsedByKernel is sufficient for PromoteAlloca but is elided // before codegen. Replacing this with an equivalent intrinsic which lasts until // shortly after the machine function lowering of LDS would help break the name // mapping. The other part needed is probably to amend PromoteAlloca to embed // the LDS variables it creates in the same struct created here. That avoids the // current hazard where a PromoteAlloca LDS variable might be allocated before // the kernel scope (and thus error on the address check). Given a new invariant // that no LDS variables exist outside of the structs managed here, and an // intrinsic that lasts until after the LDS frame lowering, it should be // possible to drop the name mapping and fold equivalent memory layouts. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUTargetMachine.h" #include "Utils/AMDGPUBaseInfo.h" #include "Utils/AMDGPUMemoryUtils.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetOperations.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/ReplaceConstant.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/OptimizedStructLayout.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include #define DEBUG_TYPE "amdgpu-lower-module-lds" using namespace llvm; using namespace AMDGPU; namespace { cl::opt SuperAlignLDSGlobals( "amdgpu-super-align-lds-globals", cl::desc("Increase alignment of LDS if it is not on align boundary"), cl::init(true), cl::Hidden); enum class LoweringKind { module, table, kernel, hybrid }; cl::opt LoweringKindLoc( "amdgpu-lower-module-lds-strategy", cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden, cl::init(LoweringKind::hybrid), cl::values( clEnumValN(LoweringKind::table, "table", "Lower via table lookup"), clEnumValN(LoweringKind::module, "module", "Lower via module struct"), clEnumValN( LoweringKind::kernel, "kernel", "Lower variables reachable from one kernel, otherwise abort"), clEnumValN(LoweringKind::hybrid, "hybrid", "Lower via mixture of above strategies"))); template std::vector sortByName(std::vector &&V) { llvm::sort(V.begin(), V.end(), [](const auto *L, const auto *R) { return L->getName() < R->getName(); }); return {std::move(V)}; } class AMDGPULowerModuleLDS { const AMDGPUTargetMachine &TM; static void removeLocalVarsFromUsedLists(Module &M, const DenseSet &LocalVars) { // The verifier rejects used lists containing an inttoptr of a constant // so remove the variables from these lists before replaceAllUsesWith SmallPtrSet LocalVarsSet; for (GlobalVariable *LocalVar : LocalVars) LocalVarsSet.insert(cast(LocalVar->stripPointerCasts())); removeFromUsedLists( M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); }); for (GlobalVariable *LocalVar : LocalVars) LocalVar->removeDeadConstantUsers(); } static void markUsedByKernel(Function *Func, GlobalVariable *SGV) { // The llvm.amdgcn.module.lds instance is implicitly used by all kernels // that might call a function which accesses a field within it. This is // presently approximated to 'all kernels' if there are any such functions // in the module. This implicit use is redefined as an explicit use here so // that later passes, specifically PromoteAlloca, account for the required // memory without any knowledge of this transform. // An operand bundle on llvm.donothing works because the call instruction // survives until after the last pass that needs to account for LDS. It is // better than inline asm as the latter survives until the end of codegen. A // totally robust solution would be a function with the same semantics as // llvm.donothing that takes a pointer to the instance and is lowered to a // no-op after LDS is allocated, but that is not presently necessary. // This intrinsic is eliminated shortly before instruction selection. It // does not suffice to indicate to ISel that a given global which is not // immediately used by the kernel must still be allocated by it. An // equivalent target specific intrinsic which lasts until immediately after // codegen would suffice for that, but one would still need to ensure that // the variables are allocated in the anticipated order. BasicBlock *Entry = &Func->getEntryBlock(); IRBuilder<> Builder(Entry, Entry->getFirstNonPHIIt()); Function *Decl = Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {}); Value *UseInstance[1] = { Builder.CreateConstInBoundsGEP1_32(SGV->getValueType(), SGV, 0)}; Builder.CreateCall( Decl, {}, {OperandBundleDefT("ExplicitUse", UseInstance)}); } public: AMDGPULowerModuleLDS(const AMDGPUTargetMachine &TM_) : TM(TM_) {} struct LDSVariableReplacement { GlobalVariable *SGV = nullptr; DenseMap LDSVarsToConstantGEP; }; // remap from lds global to a constantexpr gep to where it has been moved to // for each kernel // an array with an element for each kernel containing where the corresponding // variable was remapped to static Constant *getAddressesOfVariablesInKernel( LLVMContext &Ctx, ArrayRef Variables, const DenseMap &LDSVarsToConstantGEP) { // Create a ConstantArray containing the address of each Variable within the // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel // does not allocate it // TODO: Drop the ptrtoint conversion Type *I32 = Type::getInt32Ty(Ctx); ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size()); SmallVector Elements; for (GlobalVariable *GV : Variables) { auto ConstantGepIt = LDSVarsToConstantGEP.find(GV); if (ConstantGepIt != LDSVarsToConstantGEP.end()) { auto elt = ConstantExpr::getPtrToInt(ConstantGepIt->second, I32); Elements.push_back(elt); } else { Elements.push_back(PoisonValue::get(I32)); } } return ConstantArray::get(KernelOffsetsType, Elements); } static GlobalVariable *buildLookupTable( Module &M, ArrayRef Variables, ArrayRef kernels, DenseMap &KernelToReplacement) { if (Variables.empty()) { return nullptr; } LLVMContext &Ctx = M.getContext(); const size_t NumberVariables = Variables.size(); const size_t NumberKernels = kernels.size(); ArrayType *KernelOffsetsType = ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables); ArrayType *AllKernelsOffsetsType = ArrayType::get(KernelOffsetsType, NumberKernels); Constant *Missing = PoisonValue::get(KernelOffsetsType); std::vector overallConstantExprElts(NumberKernels); for (size_t i = 0; i < NumberKernels; i++) { auto Replacement = KernelToReplacement.find(kernels[i]); overallConstantExprElts[i] = (Replacement == KernelToReplacement.end()) ? Missing : getAddressesOfVariablesInKernel( Ctx, Variables, Replacement->second.LDSVarsToConstantGEP); } Constant *init = ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts); return new GlobalVariable( M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init, "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS); } void replaceUseWithTableLookup(Module &M, IRBuilder<> &Builder, GlobalVariable *LookupTable, GlobalVariable *GV, Use &U, Value *OptionalIndex) { // Table is a constant array of the same length as OrderedKernels LLVMContext &Ctx = M.getContext(); Type *I32 = Type::getInt32Ty(Ctx); auto *I = cast(U.getUser()); Value *tableKernelIndex = getTableLookupKernelIndex(M, I->getFunction()); if (auto *Phi = dyn_cast(I)) { BasicBlock *BB = Phi->getIncomingBlock(U); Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt()))); } else { Builder.SetInsertPoint(I); } SmallVector GEPIdx = { ConstantInt::get(I32, 0), tableKernelIndex, }; if (OptionalIndex) GEPIdx.push_back(OptionalIndex); Value *Address = Builder.CreateInBoundsGEP( LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName()); Value *loaded = Builder.CreateLoad(I32, Address); Value *replacement = Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName()); U.set(replacement); } void replaceUsesInInstructionsWithTableLookup( Module &M, ArrayRef ModuleScopeVariables, GlobalVariable *LookupTable) { LLVMContext &Ctx = M.getContext(); IRBuilder<> Builder(Ctx); Type *I32 = Type::getInt32Ty(Ctx); for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) { auto *GV = ModuleScopeVariables[Index]; for (Use &U : make_early_inc_range(GV->uses())) { auto *I = dyn_cast(U.getUser()); if (!I) continue; replaceUseWithTableLookup(M, Builder, LookupTable, GV, U, ConstantInt::get(I32, Index)); } } } static DenseSet kernelsThatIndirectlyAccessAnyOfPassedVariables( Module &M, LDSUsesInfoTy &LDSUsesInfo, DenseSet const &VariableSet) { DenseSet KernelSet; if (VariableSet.empty()) return KernelSet; for (Function &Func : M.functions()) { if (Func.isDeclaration() || !isKernelLDS(&Func)) continue; for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) { if (VariableSet.contains(GV)) { KernelSet.insert(&Func); break; } } } return KernelSet; } static GlobalVariable * chooseBestVariableForModuleStrategy(const DataLayout &DL, VariableFunctionMap &LDSVars) { // Find the global variable with the most indirect uses from kernels struct CandidateTy { GlobalVariable *GV = nullptr; size_t UserCount = 0; size_t Size = 0; CandidateTy() = default; CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize) : GV(GV), UserCount(UserCount), Size(AllocSize) {} bool operator<(const CandidateTy &Other) const { // Fewer users makes module scope variable less attractive if (UserCount < Other.UserCount) { return true; } if (UserCount > Other.UserCount) { return false; } // Bigger makes module scope variable less attractive if (Size < Other.Size) { return false; } if (Size > Other.Size) { return true; } // Arbitrary but consistent return GV->getName() < Other.GV->getName(); } }; CandidateTy MostUsed; for (auto &K : LDSVars) { GlobalVariable *GV = K.first; if (K.second.size() <= 1) { // A variable reachable by only one kernel is best lowered with kernel // strategy continue; } CandidateTy Candidate( GV, K.second.size(), DL.getTypeAllocSize(GV->getValueType()).getFixedValue()); if (MostUsed < Candidate) MostUsed = Candidate; } return MostUsed.GV; } static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV, uint32_t Address) { // Write the specified address into metadata where it can be retrieved by // the assembler. Format is a half open range, [Address Address+1) LLVMContext &Ctx = M->getContext(); auto *IntTy = M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS); auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address)); auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1)); GV->setMetadata(LLVMContext::MD_absolute_symbol, MDNode::get(Ctx, {MinC, MaxC})); } DenseMap tableKernelIndexCache; Value *getTableLookupKernelIndex(Module &M, Function *F) { // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which // lowers to a read from a live in register. Emit it once in the entry // block to spare deduplicating it later. auto [It, Inserted] = tableKernelIndexCache.try_emplace(F); if (Inserted) { Function *Decl = Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {}); auto InsertAt = F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); IRBuilder<> Builder(&*InsertAt); It->second = Builder.CreateCall(Decl, {}); } return It->second; } static std::vector assignLDSKernelIDToEachKernel( Module *M, DenseSet const &KernelsThatAllocateTableLDS, DenseSet const &KernelsThatIndirectlyAllocateDynamicLDS) { // Associate kernels in the set with an arbitrary but reproducible order and // annotate them with that order in metadata. This metadata is recognised by // the backend and lowered to a SGPR which can be read from using // amdgcn_lds_kernel_id. std::vector OrderedKernels; if (!KernelsThatAllocateTableLDS.empty() || !KernelsThatIndirectlyAllocateDynamicLDS.empty()) { for (Function &Func : M->functions()) { if (Func.isDeclaration()) continue; if (!isKernelLDS(&Func)) continue; if (KernelsThatAllocateTableLDS.contains(&Func) || KernelsThatIndirectlyAllocateDynamicLDS.contains(&Func)) { assert(Func.hasName()); // else fatal error earlier OrderedKernels.push_back(&Func); } } // Put them in an arbitrary but reproducible order OrderedKernels = sortByName(std::move(OrderedKernels)); // Annotate the kernels with their order in this vector LLVMContext &Ctx = M->getContext(); IRBuilder<> Builder(Ctx); if (OrderedKernels.size() > UINT32_MAX) { // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels"); } for (size_t i = 0; i < OrderedKernels.size(); i++) { Metadata *AttrMDArgs[1] = { ConstantAsMetadata::get(Builder.getInt32(i)), }; OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id", MDNode::get(Ctx, AttrMDArgs)); } } return OrderedKernels; } static void partitionVariablesIntoIndirectStrategies( Module &M, LDSUsesInfoTy const &LDSUsesInfo, VariableFunctionMap &LDSToKernelsThatNeedToAccessItIndirectly, DenseSet &ModuleScopeVariables, DenseSet &TableLookupVariables, DenseSet &KernelAccessVariables, DenseSet &DynamicVariables) { GlobalVariable *HybridModuleRoot = LoweringKindLoc != LoweringKind::hybrid ? nullptr : chooseBestVariableForModuleStrategy( M.getDataLayout(), LDSToKernelsThatNeedToAccessItIndirectly); DenseSet const EmptySet; DenseSet const &HybridModuleRootKernels = HybridModuleRoot ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot] : EmptySet; for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) { // Each iteration of this loop assigns exactly one global variable to // exactly one of the implementation strategies. GlobalVariable *GV = K.first; assert(AMDGPU::isLDSVariableToLower(*GV)); assert(K.second.size() != 0); if (AMDGPU::isDynamicLDS(*GV)) { DynamicVariables.insert(GV); continue; } switch (LoweringKindLoc) { case LoweringKind::module: ModuleScopeVariables.insert(GV); break; case LoweringKind::table: TableLookupVariables.insert(GV); break; case LoweringKind::kernel: if (K.second.size() == 1) { KernelAccessVariables.insert(GV); } else { report_fatal_error( "cannot lower LDS '" + GV->getName() + "' to kernel access as it is reachable from multiple kernels"); } break; case LoweringKind::hybrid: { if (GV == HybridModuleRoot) { assert(K.second.size() != 1); ModuleScopeVariables.insert(GV); } else if (K.second.size() == 1) { KernelAccessVariables.insert(GV); } else if (set_is_subset(K.second, HybridModuleRootKernels)) { ModuleScopeVariables.insert(GV); } else { TableLookupVariables.insert(GV); } break; } } } // All LDS variables accessed indirectly have now been partitioned into // the distinct lowering strategies. assert(ModuleScopeVariables.size() + TableLookupVariables.size() + KernelAccessVariables.size() + DynamicVariables.size() == LDSToKernelsThatNeedToAccessItIndirectly.size()); } static GlobalVariable *lowerModuleScopeStructVariables( Module &M, DenseSet const &ModuleScopeVariables, DenseSet const &KernelsThatAllocateModuleLDS) { // Create a struct to hold the ModuleScopeVariables // Replace all uses of those variables from non-kernel functions with the // new struct instance Replace only the uses from kernel functions that will // allocate this instance. That is a space optimisation - kernels that use a // subset of the module scope struct and do not need to allocate it for // indirect calls will only allocate the subset they use (they do so as part // of the per-kernel lowering). if (ModuleScopeVariables.empty()) { return nullptr; } LLVMContext &Ctx = M.getContext(); LDSVariableReplacement ModuleScopeReplacement = createLDSVariableReplacement(M, "llvm.amdgcn.module.lds", ModuleScopeVariables); appendToCompilerUsed(M, {static_cast( ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast(ModuleScopeReplacement.SGV), PointerType::getUnqual(Ctx)))}); // module.lds will be allocated at zero in any kernel that allocates it recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0); // historic removeLocalVarsFromUsedLists(M, ModuleScopeVariables); // Replace all uses of module scope variable from non-kernel functions replaceLDSVariablesWithStruct( M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) { Instruction *I = dyn_cast(U.getUser()); if (!I) { return false; } Function *F = I->getFunction(); return !isKernelLDS(F); }); // Replace uses of module scope variable from kernel functions that // allocate the module scope variable, otherwise leave them unchanged // Record on each kernel whether the module scope global is used by it for (Function &Func : M.functions()) { if (Func.isDeclaration() || !isKernelLDS(&Func)) continue; if (KernelsThatAllocateModuleLDS.contains(&Func)) { replaceLDSVariablesWithStruct( M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) { Instruction *I = dyn_cast(U.getUser()); if (!I) { return false; } Function *F = I->getFunction(); return F == &Func; }); markUsedByKernel(&Func, ModuleScopeReplacement.SGV); } } return ModuleScopeReplacement.SGV; } static DenseMap lowerKernelScopeStructVariables( Module &M, LDSUsesInfoTy &LDSUsesInfo, DenseSet const &ModuleScopeVariables, DenseSet const &KernelsThatAllocateModuleLDS, GlobalVariable *MaybeModuleScopeStruct) { // Create a struct for each kernel for the non-module-scope variables. DenseMap KernelToReplacement; for (Function &Func : M.functions()) { if (Func.isDeclaration() || !isKernelLDS(&Func)) continue; DenseSet KernelUsedVariables; // Allocating variables that are used directly in this struct to get // alignment aware allocation and predictable frame size. for (auto &v : LDSUsesInfo.direct_access[&Func]) { if (!AMDGPU::isDynamicLDS(*v)) { KernelUsedVariables.insert(v); } } // Allocating variables that are accessed indirectly so that a lookup of // this struct instance can find them from nested functions. for (auto &v : LDSUsesInfo.indirect_access[&Func]) { if (!AMDGPU::isDynamicLDS(*v)) { KernelUsedVariables.insert(v); } } // Variables allocated in module lds must all resolve to that struct, // not to the per-kernel instance. if (KernelsThatAllocateModuleLDS.contains(&Func)) { for (GlobalVariable *v : ModuleScopeVariables) { KernelUsedVariables.erase(v); } } if (KernelUsedVariables.empty()) { // Either used no LDS, or the LDS it used was all in the module struct // or dynamically sized continue; } // The association between kernel function and LDS struct is done by // symbol name, which only works if the function in question has a // name This is not expected to be a problem in practice as kernels // are called by name making anonymous ones (which are named by the // backend) difficult to use. This does mean that llvm test cases need // to name the kernels. if (!Func.hasName()) { report_fatal_error("Anonymous kernels cannot use LDS variables"); } std::string VarName = (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str(); auto Replacement = createLDSVariableReplacement(M, VarName, KernelUsedVariables); // If any indirect uses, create a direct use to ensure allocation // TODO: Simpler to unconditionally mark used but that regresses // codegen in test/CodeGen/AMDGPU/noclobber-barrier.ll auto Accesses = LDSUsesInfo.indirect_access.find(&Func); if ((Accesses != LDSUsesInfo.indirect_access.end()) && !Accesses->second.empty()) markUsedByKernel(&Func, Replacement.SGV); // remove preserves existing codegen removeLocalVarsFromUsedLists(M, KernelUsedVariables); KernelToReplacement[&Func] = Replacement; // Rewrite uses within kernel to the new struct replaceLDSVariablesWithStruct( M, KernelUsedVariables, Replacement, [&Func](Use &U) { Instruction *I = dyn_cast(U.getUser()); return I && I->getFunction() == &Func; }); } return KernelToReplacement; } static GlobalVariable * buildRepresentativeDynamicLDSInstance(Module &M, LDSUsesInfoTy &LDSUsesInfo, Function *func) { // Create a dynamic lds variable with a name associated with the passed // function that has the maximum alignment of any dynamic lds variable // reachable from this kernel. Dynamic LDS is allocated after the static LDS // allocation, possibly after alignment padding. The representative variable // created here has the maximum alignment of any other dynamic variable // reachable by that kernel. All dynamic LDS variables are allocated at the // same address in each kernel in order to provide the documented aliasing // semantics. Setting the alignment here allows this IR pass to accurately // predict the exact constant at which it will be allocated. assert(isKernelLDS(func)); LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); Align MaxDynamicAlignment(1); auto UpdateMaxAlignment = [&MaxDynamicAlignment, &DL](GlobalVariable *GV) { if (AMDGPU::isDynamicLDS(*GV)) { MaxDynamicAlignment = std::max(MaxDynamicAlignment, AMDGPU::getAlign(DL, GV)); } }; for (GlobalVariable *GV : LDSUsesInfo.indirect_access[func]) { UpdateMaxAlignment(GV); } for (GlobalVariable *GV : LDSUsesInfo.direct_access[func]) { UpdateMaxAlignment(GV); } assert(func->hasName()); // Checked by caller auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0); GlobalVariable *N = new GlobalVariable( M, emptyCharArray, false, GlobalValue::ExternalLinkage, nullptr, Twine("llvm.amdgcn." + func->getName() + ".dynlds"), nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false); N->setAlignment(MaxDynamicAlignment); assert(AMDGPU::isDynamicLDS(*N)); return N; } DenseMap lowerDynamicLDSVariables( Module &M, LDSUsesInfoTy &LDSUsesInfo, DenseSet const &KernelsThatIndirectlyAllocateDynamicLDS, DenseSet const &DynamicVariables, std::vector const &OrderedKernels) { DenseMap KernelToCreatedDynamicLDS; if (!KernelsThatIndirectlyAllocateDynamicLDS.empty()) { LLVMContext &Ctx = M.getContext(); IRBuilder<> Builder(Ctx); Type *I32 = Type::getInt32Ty(Ctx); std::vector newDynamicLDS; // Table is built in the same order as OrderedKernels for (auto &func : OrderedKernels) { if (KernelsThatIndirectlyAllocateDynamicLDS.contains(func)) { assert(isKernelLDS(func)); if (!func->hasName()) { report_fatal_error("Anonymous kernels cannot use LDS variables"); } GlobalVariable *N = buildRepresentativeDynamicLDSInstance(M, LDSUsesInfo, func); KernelToCreatedDynamicLDS[func] = N; markUsedByKernel(func, N); auto emptyCharArray = ArrayType::get(Type::getInt8Ty(Ctx), 0); auto GEP = ConstantExpr::getGetElementPtr( emptyCharArray, N, ConstantInt::get(I32, 0), true); newDynamicLDS.push_back(ConstantExpr::getPtrToInt(GEP, I32)); } else { newDynamicLDS.push_back(PoisonValue::get(I32)); } } assert(OrderedKernels.size() == newDynamicLDS.size()); ArrayType *t = ArrayType::get(I32, newDynamicLDS.size()); Constant *init = ConstantArray::get(t, newDynamicLDS); GlobalVariable *table = new GlobalVariable( M, t, true, GlobalValue::InternalLinkage, init, "llvm.amdgcn.dynlds.offset.table", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::CONSTANT_ADDRESS); for (GlobalVariable *GV : DynamicVariables) { for (Use &U : make_early_inc_range(GV->uses())) { auto *I = dyn_cast(U.getUser()); if (!I) continue; if (isKernelLDS(I->getFunction())) continue; replaceUseWithTableLookup(M, Builder, table, GV, U, nullptr); } } } return KernelToCreatedDynamicLDS; } bool runOnModule(Module &M) { CallGraph CG = CallGraph(M); bool Changed = superAlignLDSGlobals(M); Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M); Changed = true; // todo: narrow this down // For each kernel, what variables does it access directly or through // callees LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M); // For each variable accessed through callees, which kernels access it VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly; for (auto &K : LDSUsesInfo.indirect_access) { Function *F = K.first; assert(isKernelLDS(F)); for (GlobalVariable *GV : K.second) { LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F); } } // Partition variables accessed indirectly into the different strategies DenseSet ModuleScopeVariables; DenseSet TableLookupVariables; DenseSet KernelAccessVariables; DenseSet DynamicVariables; partitionVariablesIntoIndirectStrategies( M, LDSUsesInfo, LDSToKernelsThatNeedToAccessItIndirectly, ModuleScopeVariables, TableLookupVariables, KernelAccessVariables, DynamicVariables); // If the kernel accesses a variable that is going to be stored in the // module instance through a call then that kernel needs to allocate the // module instance const DenseSet KernelsThatAllocateModuleLDS = kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, ModuleScopeVariables); const DenseSet KernelsThatAllocateTableLDS = kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, TableLookupVariables); const DenseSet KernelsThatIndirectlyAllocateDynamicLDS = kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, DynamicVariables); GlobalVariable *MaybeModuleScopeStruct = lowerModuleScopeStructVariables( M, ModuleScopeVariables, KernelsThatAllocateModuleLDS); DenseMap KernelToReplacement = lowerKernelScopeStructVariables(M, LDSUsesInfo, ModuleScopeVariables, KernelsThatAllocateModuleLDS, MaybeModuleScopeStruct); // Lower zero cost accesses to the kernel instances just created for (auto &GV : KernelAccessVariables) { auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV]; assert(funcs.size() == 1); // Only one kernel can access it LDSVariableReplacement Replacement = KernelToReplacement[*(funcs.begin())]; DenseSet Vec; Vec.insert(GV); replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) { return isa(U.getUser()); }); } // The ith element of this vector is kernel id i std::vector OrderedKernels = assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS, KernelsThatIndirectlyAllocateDynamicLDS); if (!KernelsThatAllocateTableLDS.empty()) { LLVMContext &Ctx = M.getContext(); IRBuilder<> Builder(Ctx); // The order must be consistent between lookup table and accesses to // lookup table auto TableLookupVariablesOrdered = sortByName(std::vector(TableLookupVariables.begin(), TableLookupVariables.end())); GlobalVariable *LookupTable = buildLookupTable( M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement); replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered, LookupTable); // Strip amdgpu-no-lds-kernel-id from all functions reachable from the // kernel. We may have inferred this wasn't used prior to the pass. // // TODO: We could filter out subgraphs that do not access LDS globals. for (Function *F : KernelsThatAllocateTableLDS) removeFnAttrFromReachable(CG, F, {"amdgpu-no-lds-kernel-id"}); } DenseMap KernelToCreatedDynamicLDS = lowerDynamicLDSVariables(M, LDSUsesInfo, KernelsThatIndirectlyAllocateDynamicLDS, DynamicVariables, OrderedKernels); // All kernel frames have been allocated. Calculate and record the // addresses. { const DataLayout &DL = M.getDataLayout(); for (Function &Func : M.functions()) { if (Func.isDeclaration() || !isKernelLDS(&Func)) continue; // All three of these are optional. The first variable is allocated at // zero. They are allocated by AMDGPUMachineFunction as one block. // Layout: //{ // module.lds // alignment padding // kernel instance // alignment padding // dynamic lds variables //} const bool AllocateModuleScopeStruct = MaybeModuleScopeStruct && KernelsThatAllocateModuleLDS.contains(&Func); auto Replacement = KernelToReplacement.find(&Func); const bool AllocateKernelScopeStruct = Replacement != KernelToReplacement.end(); const bool AllocateDynamicVariable = KernelToCreatedDynamicLDS.contains(&Func); uint32_t Offset = 0; if (AllocateModuleScopeStruct) { // Allocated at zero, recorded once on construction, not once per // kernel Offset += DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType()); } if (AllocateKernelScopeStruct) { GlobalVariable *KernelStruct = Replacement->second.SGV; Offset = alignTo(Offset, AMDGPU::getAlign(DL, KernelStruct)); recordLDSAbsoluteAddress(&M, KernelStruct, Offset); Offset += DL.getTypeAllocSize(KernelStruct->getValueType()); } // If there is dynamic allocation, the alignment needed is included in // the static frame size. There may be no reference to the dynamic // variable in the kernel itself, so without including it here, that // alignment padding could be missed. if (AllocateDynamicVariable) { GlobalVariable *DynamicVariable = KernelToCreatedDynamicLDS[&Func]; Offset = alignTo(Offset, AMDGPU::getAlign(DL, DynamicVariable)); recordLDSAbsoluteAddress(&M, DynamicVariable, Offset); } if (Offset != 0) { (void)TM; // TODO: Account for target maximum LDS std::string Buffer; raw_string_ostream SS{Buffer}; SS << format("%u", Offset); // Instead of explicitly marking kernels that access dynamic variables // using special case metadata, annotate with min-lds == max-lds, i.e. // that there is no more space available for allocating more static // LDS variables. That is the right condition to prevent allocating // more variables which would collide with the addresses assigned to // dynamic variables. if (AllocateDynamicVariable) SS << format(",%u", Offset); Func.addFnAttr("amdgpu-lds-size", Buffer); } } } for (auto &GV : make_early_inc_range(M.globals())) if (AMDGPU::isLDSVariableToLower(GV)) { // probably want to remove from used lists GV.removeDeadConstantUsers(); if (GV.use_empty()) GV.eraseFromParent(); } return Changed; } private: // Increase the alignment of LDS globals if necessary to maximise the chance // that we can use aligned LDS instructions to access them. static bool superAlignLDSGlobals(Module &M) { const DataLayout &DL = M.getDataLayout(); bool Changed = false; if (!SuperAlignLDSGlobals) { return Changed; } for (auto &GV : M.globals()) { if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) { // Only changing alignment of LDS variables continue; } if (!GV.hasInitializer()) { // cuda/hip extern __shared__ variable, leave alignment alone continue; } Align Alignment = AMDGPU::getAlign(DL, &GV); TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType()); if (GVSize > 8) { // We might want to use a b96 or b128 load/store Alignment = std::max(Alignment, Align(16)); } else if (GVSize > 4) { // We might want to use a b64 load/store Alignment = std::max(Alignment, Align(8)); } else if (GVSize > 2) { // We might want to use a b32 load/store Alignment = std::max(Alignment, Align(4)); } else if (GVSize > 1) { // We might want to use a b16 load/store Alignment = std::max(Alignment, Align(2)); } if (Alignment != AMDGPU::getAlign(DL, &GV)) { Changed = true; GV.setAlignment(Alignment); } } return Changed; } static LDSVariableReplacement createLDSVariableReplacement( Module &M, std::string VarName, DenseSet const &LDSVarsToTransform) { // Create a struct instance containing LDSVarsToTransform and map from those // variables to ConstantExprGEP // Variables may be introduced to meet alignment requirements. No aliasing // metadata is useful for these as they have no uses. Erased before return. LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); assert(!LDSVarsToTransform.empty()); SmallVector LayoutFields; LayoutFields.reserve(LDSVarsToTransform.size()); { // The order of fields in this struct depends on the order of // variables in the argument which varies when changing how they // are identified, leading to spurious test breakage. auto Sorted = sortByName(std::vector( LDSVarsToTransform.begin(), LDSVarsToTransform.end())); for (GlobalVariable *GV : Sorted) { OptimizedStructLayoutField F(GV, DL.getTypeAllocSize(GV->getValueType()), AMDGPU::getAlign(DL, GV)); LayoutFields.emplace_back(F); } } performOptimizedStructLayout(LayoutFields); std::vector LocalVars; BitVector IsPaddingField; LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large IsPaddingField.reserve(LDSVarsToTransform.size()); { uint64_t CurrentOffset = 0; for (auto &F : LayoutFields) { GlobalVariable *FGV = static_cast(const_cast(F.Id)); Align DataAlign = F.Alignment; uint64_t DataAlignV = DataAlign.value(); if (uint64_t Rem = CurrentOffset % DataAlignV) { uint64_t Padding = DataAlignV - Rem; // Append an array of padding bytes to meet alignment requested // Note (o + (a - (o % a)) ) % a == 0 // (offset + Padding ) % align == 0 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding); LocalVars.push_back(new GlobalVariable( M, ATy, false, GlobalValue::InternalLinkage, PoisonValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false)); IsPaddingField.push_back(true); CurrentOffset += Padding; } LocalVars.push_back(FGV); IsPaddingField.push_back(false); CurrentOffset += F.Size; } } std::vector LocalVarTypes; LocalVarTypes.reserve(LocalVars.size()); std::transform( LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes), [](const GlobalVariable *V) -> Type * { return V->getValueType(); }); StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t"); Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]); GlobalVariable *SGV = new GlobalVariable( M, LDSTy, false, GlobalValue::InternalLinkage, PoisonValue::get(LDSTy), VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false); SGV->setAlignment(StructAlign); DenseMap Map; Type *I32 = Type::getInt32Ty(Ctx); for (size_t I = 0; I < LocalVars.size(); I++) { GlobalVariable *GV = LocalVars[I]; Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)}; Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true); if (IsPaddingField[I]) { assert(GV->use_empty()); GV->eraseFromParent(); } else { Map[GV] = GEP; } } assert(Map.size() == LDSVarsToTransform.size()); return {SGV, std::move(Map)}; } template static void replaceLDSVariablesWithStruct( Module &M, DenseSet const &LDSVarsToTransformArg, const LDSVariableReplacement &Replacement, PredicateTy Predicate) { LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); // A hack... we need to insert the aliasing info in a predictable order for // lit tests. Would like to have them in a stable order already, ideally the // same order they get allocated, which might mean an ordered set container auto LDSVarsToTransform = sortByName(std::vector( LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end())); // Create alias.scope and their lists. Each field in the new structure // does not alias with all other fields. SmallVector AliasScopes; SmallVector NoAliasList; const size_t NumberVars = LDSVarsToTransform.size(); if (NumberVars > 1) { MDBuilder MDB(Ctx); AliasScopes.reserve(NumberVars); MDNode *Domain = MDB.createAnonymousAliasScopeDomain(); for (size_t I = 0; I < NumberVars; I++) { MDNode *Scope = MDB.createAnonymousAliasScope(Domain); AliasScopes.push_back(Scope); } NoAliasList.append(&AliasScopes[1], AliasScopes.end()); } // Replace uses of ith variable with a constantexpr to the corresponding // field of the instance that will be allocated by AMDGPUMachineFunction for (size_t I = 0; I < NumberVars; I++) { GlobalVariable *GV = LDSVarsToTransform[I]; Constant *GEP = Replacement.LDSVarsToConstantGEP.at(GV); GV->replaceUsesWithIf(GEP, Predicate); APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0); GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff); uint64_t Offset = APOff.getZExtValue(); Align A = commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset); if (I) NoAliasList[I - 1] = AliasScopes[I - 1]; MDNode *NoAlias = NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList); MDNode *AliasScope = AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]}); refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias); } } static void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL, MDNode *AliasScope, MDNode *NoAlias, unsigned MaxDepth = 5) { if (!MaxDepth || (A == 1 && !AliasScope)) return; for (User *U : Ptr->users()) { if (auto *I = dyn_cast(U)) { if (AliasScope && I->mayReadOrWriteMemory()) { MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope); AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope) : AliasScope); I->setMetadata(LLVMContext::MD_alias_scope, AS); MDNode *NA = I->getMetadata(LLVMContext::MD_noalias); NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias); I->setMetadata(LLVMContext::MD_noalias, NA); } } if (auto *LI = dyn_cast(U)) { LI->setAlignment(std::max(A, LI->getAlign())); continue; } if (auto *SI = dyn_cast(U)) { if (SI->getPointerOperand() == Ptr) SI->setAlignment(std::max(A, SI->getAlign())); continue; } if (auto *AI = dyn_cast(U)) { // None of atomicrmw operations can work on pointers, but let's // check it anyway in case it will or we will process ConstantExpr. if (AI->getPointerOperand() == Ptr) AI->setAlignment(std::max(A, AI->getAlign())); continue; } if (auto *AI = dyn_cast(U)) { if (AI->getPointerOperand() == Ptr) AI->setAlignment(std::max(A, AI->getAlign())); continue; } if (auto *GEP = dyn_cast(U)) { unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); APInt Off(BitWidth, 0); if (GEP->getPointerOperand() == Ptr) { Align GA; if (GEP->accumulateConstantOffset(DL, Off)) GA = commonAlignment(A, Off.getLimitedValue()); refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias, MaxDepth - 1); } continue; } if (auto *I = dyn_cast(U)) { if (I->getOpcode() == Instruction::BitCast || I->getOpcode() == Instruction::AddrSpaceCast) refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1); } } } }; class AMDGPULowerModuleLDSLegacy : public ModulePass { public: const AMDGPUTargetMachine *TM; static char ID; AMDGPULowerModuleLDSLegacy(const AMDGPUTargetMachine *TM_ = nullptr) : ModulePass(ID), TM(TM_) { initializeAMDGPULowerModuleLDSLegacyPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { if (!TM) AU.addRequired(); } bool runOnModule(Module &M) override { if (!TM) { auto &TPC = getAnalysis(); TM = &TPC.getTM(); } return AMDGPULowerModuleLDS(*TM).runOnModule(M); } }; } // namespace char AMDGPULowerModuleLDSLegacy::ID = 0; char &llvm::AMDGPULowerModuleLDSLegacyPassID = AMDGPULowerModuleLDSLegacy::ID; INITIALIZE_PASS_BEGIN(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE, "Lower uses of LDS variables from non-kernel functions", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(AMDGPULowerModuleLDSLegacy, DEBUG_TYPE, "Lower uses of LDS variables from non-kernel functions", false, false) ModulePass * llvm::createAMDGPULowerModuleLDSLegacyPass(const AMDGPUTargetMachine *TM) { return new AMDGPULowerModuleLDSLegacy(TM); } PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M, ModuleAnalysisManager &) { return AMDGPULowerModuleLDS(TM).runOnModule(M) ? PreservedAnalyses::none() : PreservedAnalyses::all(); }