//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This is the parent TargetLowering class for hardware code gen /// targets. // //===----------------------------------------------------------------------===// #include "AMDGPUISelLowering.h" #include "AMDGPU.h" #include "AMDGPUInstrInfo.h" #include "AMDGPUMachineFunction.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/KnownBits.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #include "AMDGPUGenCallingConv.inc" static cl::opt AMDGPUBypassSlowDiv( "amdgpu-bypass-slow-div", cl::desc("Skip 64-bit divide for dynamic 32-bit values"), cl::init(true)); // Find a larger type to do a load / store of a vector with. EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { unsigned StoreSize = VT.getStoreSizeInBits(); if (StoreSize <= 32) return EVT::getIntegerVT(Ctx, StoreSize); if (StoreSize % 32 == 0) return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); return VT; } unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { return DAG.computeKnownBits(Op).countMaxActiveBits(); } unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { // In order for this to be a signed 24-bit value, bit 23, must // be a sign bit. return DAG.ComputeMaxSignificantBits(Op); } AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { // Always lower memset, memcpy, and memmove intrinsics to load/store // instructions, rather then generating calls to memset, mempcy or memmove. MaxStoresPerMemset = MaxStoresPerMemsetOptSize = ~0U; MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = ~0U; MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = ~0U; // Enable ganging up loads and stores in the memcpy DAG lowering. MaxGluedStoresPerMemcpy = 16; // Lower floating point store/load to integer store/load to reduce the number // of patterns in tablegen. setOperationAction(ISD::LOAD, MVT::f32, Promote); AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v3f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); setOperationAction(ISD::LOAD, MVT::v4f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v5f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); setOperationAction(ISD::LOAD, MVT::v6f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); setOperationAction(ISD::LOAD, MVT::v7f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); setOperationAction(ISD::LOAD, MVT::v8f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v9f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v9f32, MVT::v9i32); setOperationAction(ISD::LOAD, MVT::v10f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v10f32, MVT::v10i32); setOperationAction(ISD::LOAD, MVT::v11f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v11f32, MVT::v11i32); setOperationAction(ISD::LOAD, MVT::v12f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v12f32, MVT::v12i32); setOperationAction(ISD::LOAD, MVT::v16f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); setOperationAction(ISD::LOAD, MVT::v32f32, Promote); AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); setOperationAction(ISD::LOAD, MVT::i64, Promote); AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v2i64, Promote); AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::f64, Promote); AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); setOperationAction(ISD::LOAD, MVT::v2f64, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); setOperationAction(ISD::LOAD, MVT::v3i64, Promote); AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); setOperationAction(ISD::LOAD, MVT::v4i64, Promote); AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v3f64, Promote); AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); setOperationAction(ISD::LOAD, MVT::v4f64, Promote); AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); setOperationAction(ISD::LOAD, MVT::v8i64, Promote); AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); setOperationAction(ISD::LOAD, MVT::v8f64, Promote); AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); setOperationAction(ISD::LOAD, MVT::v16i64, Promote); AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); setOperationAction(ISD::LOAD, MVT::v16f64, Promote); AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); setOperationAction(ISD::LOAD, MVT::i128, Promote); AddPromotedToType(ISD::LOAD, MVT::i128, MVT::v4i32); // TODO: Would be better to consume as directly legal setOperationAction(ISD::ATOMIC_LOAD, MVT::f32, Promote); AddPromotedToType(ISD::ATOMIC_LOAD, MVT::f32, MVT::i32); setOperationAction(ISD::ATOMIC_LOAD, MVT::f64, Promote); AddPromotedToType(ISD::ATOMIC_LOAD, MVT::f64, MVT::i64); setOperationAction(ISD::ATOMIC_LOAD, MVT::f16, Promote); AddPromotedToType(ISD::ATOMIC_LOAD, MVT::f16, MVT::i16); setOperationAction(ISD::ATOMIC_LOAD, MVT::bf16, Promote); AddPromotedToType(ISD::ATOMIC_LOAD, MVT::bf16, MVT::i16); setOperationAction(ISD::ATOMIC_STORE, MVT::f32, Promote); AddPromotedToType(ISD::ATOMIC_STORE, MVT::f32, MVT::i32); setOperationAction(ISD::ATOMIC_STORE, MVT::f64, Promote); AddPromotedToType(ISD::ATOMIC_STORE, MVT::f64, MVT::i64); setOperationAction(ISD::ATOMIC_STORE, MVT::f16, Promote); AddPromotedToType(ISD::ATOMIC_STORE, MVT::f16, MVT::i16); setOperationAction(ISD::ATOMIC_STORE, MVT::bf16, Promote); AddPromotedToType(ISD::ATOMIC_STORE, MVT::bf16, MVT::i16); // There are no 64-bit extloads. These should be done as a 32-bit extload and // an extension to 64-bit. for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i64, VT, Expand); for (MVT VT : MVT::integer_valuetypes()) { if (VT == MVT::i64) continue; for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}) { setLoadExtAction(Op, VT, MVT::i1, Promote); setLoadExtAction(Op, VT, MVT::i8, Legal); setLoadExtAction(Op, VT, MVT::i16, Legal); setLoadExtAction(Op, VT, MVT::i32, Expand); } } for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) for (auto MemVT : {MVT::v2i8, MVT::v4i8, MVT::v2i16, MVT::v3i16, MVT::v4i16}) setLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}, VT, MemVT, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8bf16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16bf16, Expand); setOperationAction(ISD::STORE, MVT::f32, Promote); AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); setOperationAction(ISD::STORE, MVT::v2f32, Promote); AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v3f32, Promote); AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); setOperationAction(ISD::STORE, MVT::v4f32, Promote); AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v5f32, Promote); AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); setOperationAction(ISD::STORE, MVT::v6f32, Promote); AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); setOperationAction(ISD::STORE, MVT::v7f32, Promote); AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); setOperationAction(ISD::STORE, MVT::v8f32, Promote); AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v9f32, Promote); AddPromotedToType(ISD::STORE, MVT::v9f32, MVT::v9i32); setOperationAction(ISD::STORE, MVT::v10f32, Promote); AddPromotedToType(ISD::STORE, MVT::v10f32, MVT::v10i32); setOperationAction(ISD::STORE, MVT::v11f32, Promote); AddPromotedToType(ISD::STORE, MVT::v11f32, MVT::v11i32); setOperationAction(ISD::STORE, MVT::v12f32, Promote); AddPromotedToType(ISD::STORE, MVT::v12f32, MVT::v12i32); setOperationAction(ISD::STORE, MVT::v16f32, Promote); AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); setOperationAction(ISD::STORE, MVT::v32f32, Promote); AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); setOperationAction(ISD::STORE, MVT::i64, Promote); AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v2i64, Promote); AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); setOperationAction(ISD::STORE, MVT::f64, Promote); AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); setOperationAction(ISD::STORE, MVT::v2f64, Promote); AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); setOperationAction(ISD::STORE, MVT::v3i64, Promote); AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); setOperationAction(ISD::STORE, MVT::v3f64, Promote); AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); setOperationAction(ISD::STORE, MVT::v4i64, Promote); AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v4f64, Promote); AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); setOperationAction(ISD::STORE, MVT::v8i64, Promote); AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); setOperationAction(ISD::STORE, MVT::v8f64, Promote); AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); setOperationAction(ISD::STORE, MVT::v16i64, Promote); AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); setOperationAction(ISD::STORE, MVT::v16f64, Promote); AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); setOperationAction(ISD::STORE, MVT::i128, Promote); AddPromotedToType(ISD::STORE, MVT::i128, MVT::v4i32); setTruncStoreAction(MVT::i64, MVT::i1, Expand); setTruncStoreAction(MVT::i64, MVT::i8, Expand); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setTruncStoreAction(MVT::i64, MVT::i32, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); setTruncStoreAction(MVT::f32, MVT::bf16, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::v2f32, MVT::v2bf16, Expand); setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); setTruncStoreAction(MVT::v3f32, MVT::v3bf16, Expand); setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); setTruncStoreAction(MVT::v4f32, MVT::v4bf16, Expand); setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); setTruncStoreAction(MVT::v8f32, MVT::v8bf16, Expand); setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); setTruncStoreAction(MVT::v16f32, MVT::v16bf16, Expand); setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); setTruncStoreAction(MVT::v32f32, MVT::v32bf16, Expand); setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); setTruncStoreAction(MVT::f64, MVT::bf16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); setTruncStoreAction(MVT::v2f64, MVT::v2bf16, Expand); setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); setTruncStoreAction(MVT::v3i32, MVT::v3i8, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i8, Expand); setTruncStoreAction(MVT::v3i64, MVT::v3i1, Expand); setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); setTruncStoreAction(MVT::v3f64, MVT::v3bf16, Expand); setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); setTruncStoreAction(MVT::v4f64, MVT::v4bf16, Expand); setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); setTruncStoreAction(MVT::v8f64, MVT::v8bf16, Expand); setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); setTruncStoreAction(MVT::v16f64, MVT::v16bf16, Expand); setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); setOperationAction(ISD::Constant, {MVT::i32, MVT::i64}, Legal); setOperationAction(ISD::ConstantFP, {MVT::f32, MVT::f64}, Legal); setOperationAction({ISD::BR_JT, ISD::BRIND}, MVT::Other, Expand); // For R600, this is totally unsupported, just custom lower to produce an // error. setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); // Library functions. These default to Expand, but we have instructions // for them. setOperationAction({ISD::FCEIL, ISD::FPOW, ISD::FABS, ISD::FFLOOR, ISD::FROUNDEVEN, ISD::FTRUNC, ISD::FMINNUM, ISD::FMAXNUM}, MVT::f32, Legal); setOperationAction(ISD::FLOG2, MVT::f32, Custom); setOperationAction(ISD::FROUND, {MVT::f32, MVT::f64}, Custom); setOperationAction( {ISD::FLOG, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10}, MVT::f32, Custom); setOperationAction(ISD::FNEARBYINT, {MVT::f16, MVT::f32, MVT::f64}, Custom); setOperationAction(ISD::FRINT, {MVT::f16, MVT::f32, MVT::f64}, Custom); setOperationAction(ISD::FREM, {MVT::f16, MVT::f32, MVT::f64}, Custom); if (Subtarget->has16BitInsts()) setOperationAction(ISD::IS_FPCLASS, {MVT::f16, MVT::f32, MVT::f64}, Legal); else { setOperationAction(ISD::IS_FPCLASS, {MVT::f32, MVT::f64}, Legal); setOperationAction({ISD::FLOG2, ISD::FEXP2}, MVT::f16, Custom); } setOperationAction({ISD::FLOG10, ISD::FLOG, ISD::FEXP, ISD::FEXP10}, MVT::f16, Custom); // FIXME: These IS_FPCLASS vector fp types are marked custom so it reaches // scalarization code. Can be removed when IS_FPCLASS expand isn't called by // default unless marked custom/legal. setOperationAction( ISD::IS_FPCLASS, {MVT::v2f16, MVT::v3f16, MVT::v4f16, MVT::v16f16, MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32, MVT::v2f64, MVT::v3f64, MVT::v4f64, MVT::v8f64, MVT::v16f64}, Custom); // Expand to fneg + fadd. setOperationAction(ISD::FSUB, MVT::f64, Expand); setOperationAction(ISD::CONCAT_VECTORS, {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32, MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, Custom); // FIXME: Why is v8f16/v8bf16 missing? setOperationAction( ISD::EXTRACT_SUBVECTOR, {MVT::v2f16, MVT::v2bf16, MVT::v2i16, MVT::v4f16, MVT::v4bf16, MVT::v4i16, MVT::v2f32, MVT::v2i32, MVT::v3f32, MVT::v3i32, MVT::v4f32, MVT::v4i32, MVT::v5f32, MVT::v5i32, MVT::v6f32, MVT::v6i32, MVT::v7f32, MVT::v7i32, MVT::v8f32, MVT::v8i32, MVT::v9f32, MVT::v9i32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, MVT::v16f16, MVT::v16bf16, MVT::v16i16, MVT::v16f32, MVT::v16i32, MVT::v32f32, MVT::v32i32, MVT::v2f64, MVT::v2i64, MVT::v3f64, MVT::v3i64, MVT::v4f64, MVT::v4i64, MVT::v8f64, MVT::v8i64, MVT::v16f64, MVT::v16i64, MVT::v32i16, MVT::v32f16, MVT::v32bf16}, Custom); setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, {MVT::f64, MVT::f32}, Custom); const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; for (MVT VT : ScalarIntVTs) { // These should use [SU]DIVREM, so set them to expand setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, VT, Expand); // GPU does not have divrem function for signed or unsigned. setOperationAction({ISD::SDIVREM, ISD::UDIVREM}, VT, Custom); // GPU does not have [S|U]MUL_LOHI functions as a single instruction. setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); setOperationAction({ISD::BSWAP, ISD::CTTZ, ISD::CTLZ}, VT, Expand); // AMDGPU uses ADDC/SUBC/ADDE/SUBE setOperationAction({ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT, Legal); } // The hardware supports 32-bit FSHR, but not FSHL. setOperationAction(ISD::FSHR, MVT::i32, Legal); // The hardware supports 32-bit ROTR, but not ROTL. setOperationAction(ISD::ROTL, {MVT::i32, MVT::i64}, Expand); setOperationAction(ISD::ROTR, MVT::i64, Expand); setOperationAction({ISD::MULHU, ISD::MULHS}, MVT::i16, Expand); setOperationAction({ISD::MUL, ISD::MULHU, ISD::MULHS}, MVT::i64, Expand); setOperationAction( {ISD::UINT_TO_FP, ISD::SINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX}, MVT::i32, Legal); setOperationAction( {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i64, Custom); for (auto VT : {MVT::i8, MVT::i16}) setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, VT, Custom); static const MVT::SimpleValueType VectorIntTypes[] = { MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32}; for (MVT VT : VectorIntTypes) { // Expand the following operations for the current type by default. setOperationAction({ISD::ADD, ISD::AND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::MUL, ISD::MULHU, ISD::MULHS, ISD::OR, ISD::SHL, ISD::SRA, ISD::SRL, ISD::ROTL, ISD::ROTR, ISD::SUB, ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::SDIVREM, ISD::UDIVREM, ISD::SELECT, ISD::VSELECT, ISD::SELECT_CC, ISD::XOR, ISD::BSWAP, ISD::CTPOP, ISD::CTTZ, ISD::CTLZ, ISD::VECTOR_SHUFFLE, ISD::SETCC}, VT, Expand); } static const MVT::SimpleValueType FloatVectorTypes[] = { MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, MVT::v9f32, MVT::v10f32, MVT::v11f32, MVT::v12f32}; for (MVT VT : FloatVectorTypes) { setOperationAction( {ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, ISD::FCEIL, ISD::FCOS, ISD::FDIV, ISD::FEXP2, ISD::FEXP, ISD::FEXP10, ISD::FLOG2, ISD::FREM, ISD::FLOG, ISD::FLOG10, ISD::FPOW, ISD::FFLOOR, ISD::FTRUNC, ISD::FMUL, ISD::FMA, ISD::FRINT, ISD::FNEARBYINT, ISD::FSQRT, ISD::FSIN, ISD::FSUB, ISD::FNEG, ISD::VSELECT, ISD::SELECT_CC, ISD::FCOPYSIGN, ISD::VECTOR_SHUFFLE, ISD::SETCC, ISD::FCANONICALIZE, ISD::FROUNDEVEN}, VT, Expand); } // This causes using an unrolled select operation rather than expansion with // bit operations. This is in general better, but the alternative using BFI // instructions may be better if the select sources are SGPRs. setOperationAction(ISD::SELECT, MVT::v2f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); setOperationAction(ISD::SELECT, MVT::v3f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); setOperationAction(ISD::SELECT, MVT::v4f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); setOperationAction(ISD::SELECT, MVT::v5f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); setOperationAction(ISD::SELECT, MVT::v6f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); setOperationAction(ISD::SELECT, MVT::v7f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); setOperationAction(ISD::SELECT, MVT::v9f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v9f32, MVT::v9i32); setOperationAction(ISD::SELECT, MVT::v10f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v10f32, MVT::v10i32); setOperationAction(ISD::SELECT, MVT::v11f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v11f32, MVT::v11i32); setOperationAction(ISD::SELECT, MVT::v12f32, Promote); AddPromotedToType(ISD::SELECT, MVT::v12f32, MVT::v12i32); setSchedulingPreference(Sched::RegPressure); setJumpIsExpensive(true); // FIXME: This is only partially true. If we have to do vector compares, any // SGPR pair can be a condition register. If we have a uniform condition, we // are better off doing SALU operations, where there is only one SCC. For now, // we don't have a way of knowing during instruction selection if a condition // will be uniform and we always use vector compares. Assume we are using // vector compares until that is fixed. setHasMultipleConditionRegisters(true); setMinCmpXchgSizeInBits(32); setSupportsUnalignedAtomics(false); PredictableSelectIsExpensive = false; // We want to find all load dependencies for long chains of stores to enable // merging into very wide vectors. The problem is with vectors with > 4 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 // vectors are a legal type, even though we have to split the loads // usually. When we can more precisely specify load legality per address // space, we should be able to make FindBetterChain/MergeConsecutiveStores // smarter so that they can figure out what to do in 2 iterations without all // N > 4 stores on the same chain. GatherAllAliasesMaxDepth = 16; // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry // about these during lowering. MaxStoresPerMemcpy = 0xffffffff; MaxStoresPerMemmove = 0xffffffff; MaxStoresPerMemset = 0xffffffff; // The expansion for 64-bit division is enormous. if (AMDGPUBypassSlowDiv) addBypassSlowDiv(64, 32); setTargetDAGCombine({ISD::BITCAST, ISD::SHL, ISD::SRA, ISD::SRL, ISD::TRUNCATE, ISD::MUL, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHU, ISD::MULHS, ISD::SELECT, ISD::SELECT_CC, ISD::STORE, ISD::FADD, ISD::FSUB, ISD::FNEG, ISD::FABS, ISD::AssertZext, ISD::AssertSext, ISD::INTRINSIC_WO_CHAIN}); setMaxAtomicSizeInBitsSupported(64); setMaxDivRemBitWidthSupported(64); setMaxLargeFPConvertBitWidthSupported(64); } bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { if (getTargetMachine().Options.NoSignedZerosFPMath) return true; const auto Flags = Op.getNode()->getFlags(); if (Flags.hasNoSignedZeros()) return true; return false; } //===----------------------------------------------------------------------===// // Target Information //===----------------------------------------------------------------------===// LLVM_READNONE static bool fnegFoldsIntoOpcode(unsigned Opc) { switch (Opc) { case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FMA: case ISD::FMAD: case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: case ISD::FMINIMUM: case ISD::FMAXIMUM: case ISD::SELECT: case ISD::FSIN: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FROUNDEVEN: case ISD::FCANONICALIZE: case AMDGPUISD::RCP: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RCP_IFLAG: case AMDGPUISD::SIN_HW: case AMDGPUISD::FMUL_LEGACY: case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: case AMDGPUISD::FMED3: // TODO: handle llvm.amdgcn.fma.legacy return true; case ISD::BITCAST: llvm_unreachable("bitcast is special cased"); default: return false; } } static bool fnegFoldsIntoOp(const SDNode *N) { unsigned Opc = N->getOpcode(); if (Opc == ISD::BITCAST) { // TODO: Is there a benefit to checking the conditions performFNegCombine // does? We don't for the other cases. SDValue BCSrc = N->getOperand(0); if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { return BCSrc.getNumOperands() == 2 && BCSrc.getOperand(1).getValueSizeInBits() == 32; } return BCSrc.getOpcode() == ISD::SELECT && BCSrc.getValueType() == MVT::f32; } return fnegFoldsIntoOpcode(Opc); } /// \p returns true if the operation will definitely need to use a 64-bit /// encoding, and thus will use a VOP3 encoding regardless of the source /// modifiers. LLVM_READONLY static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { return (N->getNumOperands() > 2 && N->getOpcode() != ISD::SELECT) || VT == MVT::f64; } /// Return true if v_cndmask_b32 will support fabs/fneg source modifiers for the /// type for ISD::SELECT. LLVM_READONLY static bool selectSupportsSourceMods(const SDNode *N) { // TODO: Only applies if select will be vector return N->getValueType(0) == MVT::f32; } // Most FP instructions support source modifiers, but this could be refined // slightly. LLVM_READONLY static bool hasSourceMods(const SDNode *N) { if (isa(N)) return false; switch (N->getOpcode()) { case ISD::CopyToReg: case ISD::FDIV: case ISD::FREM: case ISD::INLINEASM: case ISD::INLINEASM_BR: case AMDGPUISD::DIV_SCALE: case ISD::INTRINSIC_W_CHAIN: // TODO: Should really be looking at the users of the bitcast. These are // problematic because bitcasts are used to legalize all stores to integer // types. case ISD::BITCAST: return false; case ISD::INTRINSIC_WO_CHAIN: { switch (N->getConstantOperandVal(0)) { case Intrinsic::amdgcn_interp_p1: case Intrinsic::amdgcn_interp_p2: case Intrinsic::amdgcn_interp_mov: case Intrinsic::amdgcn_interp_p1_f16: case Intrinsic::amdgcn_interp_p2_f16: return false; default: return true; } } case ISD::SELECT: return selectSupportsSourceMods(N); default: return true; } } bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold) { // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus // it is truly free to use a source modifier in all cases. If there are // multiple users but for each one will necessitate using VOP3, there will be // a code size increase. Try to avoid increasing code size unless we know it // will save on the instruction count. unsigned NumMayIncreaseSize = 0; MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); assert(!N->use_empty()); // XXX - Should this limit number of uses to check? for (const SDNode *U : N->uses()) { if (!hasSourceMods(U)) return false; if (!opMustUseVOP3Encoding(U, VT)) { if (++NumMayIncreaseSize > CostThreshold) return false; } } return true; } EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType ExtendKind) const { assert(!VT.isVector() && "only scalar expected"); // Round to the next multiple of 32-bits. unsigned Size = VT.getSizeInBits(); if (Size <= 32) return MVT::i32; return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); } MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { return MVT::i32; } bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { return true; } // The backend supports 32 and 64 bit floating point immediates. // FIXME: Why are we reporting vectors of FP immediates as legal? bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const { EVT ScalarVT = VT.getScalarType(); return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); } // We don't want to shrink f64 / f32 constants. bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { EVT ScalarVT = VT.getScalarType(); return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); } bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, ISD::LoadExtType ExtTy, EVT NewVT) const { // TODO: This may be worth removing. Check regression tests for diffs. if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) return false; unsigned NewSize = NewVT.getStoreSizeInBits(); // If we are reducing to a 32-bit load or a smaller multi-dword load, // this is always better. if (NewSize >= 32) return true; EVT OldVT = N->getValueType(0); unsigned OldSize = OldVT.getStoreSizeInBits(); MemSDNode *MN = cast(N); unsigned AS = MN->getAddressSpace(); // Do not shrink an aligned scalar load to sub-dword. // Scalar engine cannot do sub-dword loads. // TODO: Update this for GFX12 which does have scalar sub-dword loads. if (OldSize >= 32 && NewSize < 32 && MN->getAlign() >= Align(4) && (AS == AMDGPUAS::CONSTANT_ADDRESS || AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || (isa(N) && AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) return false; // Don't produce extloads from sub 32-bit types. SI doesn't have scalar // extloads, so doing one requires using a buffer_load. In cases where we // still couldn't use a scalar load, using the wider load shouldn't really // hurt anything. // If the old size already had to be an extload, there's no harm in continuing // to reduce the width. return (OldSize < 32); } bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, const SelectionDAG &DAG, const MachineMemOperand &MMO) const { assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); if (LoadTy.getScalarType() == MVT::i32) return false; unsigned LScalarSize = LoadTy.getScalarSizeInBits(); unsigned CastScalarSize = CastTy.getScalarSizeInBits(); if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) return false; unsigned Fast = 0; return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), CastTy, MMO, &Fast) && Fast; } // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also // profitable with the expansion for 64-bit since it's generally good to // speculate things. bool AMDGPUTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { return true; } bool AMDGPUTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { return true; } bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { switch (N->getOpcode()) { case ISD::EntryToken: case ISD::TokenFactor: return true; case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrID = N->getConstantOperandVal(0); return AMDGPU::isIntrinsicAlwaysUniform(IntrID); } case ISD::LOAD: if (cast(N)->getMemOperand()->getAddrSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) return true; return false; case AMDGPUISD::SETCC: // ballot-style instruction return true; } return false; } SDValue AMDGPUTargetLowering::getNegatedExpression( SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, NegatibleCost &Cost, unsigned Depth) const { switch (Op.getOpcode()) { case ISD::FMA: case ISD::FMAD: { // Negating a fma is not free if it has users without source mods. if (!allUsesHaveSourceMods(Op.getNode())) return SDValue(); break; } case AMDGPUISD::RCP: { SDValue Src = Op.getOperand(0); EVT VT = Op.getValueType(); SDLoc SL(Op); SDValue NegSrc = getNegatedExpression(Src, DAG, LegalOperations, ForCodeSize, Cost, Depth + 1); if (NegSrc) return DAG.getNode(AMDGPUISD::RCP, SL, VT, NegSrc, Op->getFlags()); return SDValue(); } default: break; } return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize, Cost, Depth); } //===---------------------------------------------------------------------===// // Target Properties //===---------------------------------------------------------------------===// bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { assert(VT.isFloatingPoint()); // Packed operations do not have a fabs modifier. return VT == MVT::f32 || VT == MVT::f64 || (Subtarget->has16BitInsts() && (VT == MVT::f16 || VT == MVT::bf16)); } bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { assert(VT.isFloatingPoint()); // Report this based on the end legalized type. VT = VT.getScalarType(); return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16 || VT == MVT::bf16; } bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AS) const { return true; } bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { // There are few operations which truly have vector input operands. Any vector // operation is going to involve operations on each component, and a // build_vector will be a copy per element, so it always makes sense to use a // build_vector input in place of the extracted element to avoid a copy into a // super register. // // We should probably only do this if all users are extracts only, but this // should be the common case. return true; } bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { // Truncate is just accessing a subregister. unsigned SrcSize = Source.getSizeInBits(); unsigned DestSize = Dest.getSizeInBits(); return DestSize < SrcSize && DestSize % 32 == 0 ; } bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { // Truncate is just accessing a subregister. unsigned SrcSize = Source->getScalarSizeInBits(); unsigned DestSize = Dest->getScalarSizeInBits(); if (DestSize== 16 && Subtarget->has16BitInsts()) return SrcSize >= 32; return DestSize < SrcSize && DestSize % 32 == 0; } bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { unsigned SrcSize = Src->getScalarSizeInBits(); unsigned DestSize = Dest->getScalarSizeInBits(); if (SrcSize == 16 && Subtarget->has16BitInsts()) return DestSize >= 32; return SrcSize == 32 && DestSize == 64; } bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { // Any register load of a 64-bit value really requires 2 32-bit moves. For all // practical purposes, the extra mov 0 to load a 64-bit is free. As used, // this will enable reducing 64-bit operations the 32-bit, which is always // good. if (Src == MVT::i16) return Dest == MVT::i32 ||Dest == MVT::i64 ; return Src == MVT::i32 && Dest == MVT::i64; } bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { // There aren't really 64-bit registers, but pairs of 32-bit ones and only a // limited number of native 64-bit operations. Shrinking an operation to fit // in a single 32-bit register should always be helpful. As currently used, // this is much less general than the name suggests, and is only used in // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is // not profitable, and may actually be harmful. return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; } bool AMDGPUTargetLowering::isDesirableToCommuteWithShift( const SDNode* N, CombineLevel Level) const { assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && "Expected shift op"); // Always commute pre-type legalization and right shifts. // We're looking for shl(or(x,y),z) patterns. if (Level < CombineLevel::AfterLegalizeTypes || N->getOpcode() != ISD::SHL || N->getOperand(0).getOpcode() != ISD::OR) return true; // If only user is a i32 right-shift, then don't destroy a BFE pattern. if (N->getValueType(0) == MVT::i32 && N->use_size() == 1 && (N->use_begin()->getOpcode() == ISD::SRA || N->use_begin()->getOpcode() == ISD::SRL)) return false; // Don't destroy or(shl(load_zext(),c), load_zext()) patterns. auto IsShiftAndLoad = [](SDValue LHS, SDValue RHS) { if (LHS.getOpcode() != ISD::SHL) return false; auto *RHSLd = dyn_cast(RHS); auto *LHS0 = dyn_cast(LHS.getOperand(0)); auto *LHS1 = dyn_cast(LHS.getOperand(1)); return LHS0 && LHS1 && RHSLd && LHS0->getExtensionType() == ISD::ZEXTLOAD && LHS1->getAPIntValue() == LHS0->getMemoryVT().getScalarSizeInBits() && RHSLd->getExtensionType() == ISD::ZEXTLOAD; }; SDValue LHS = N->getOperand(0).getOperand(0); SDValue RHS = N->getOperand(0).getOperand(1); return !(IsShiftAndLoad(LHS, RHS) || IsShiftAndLoad(RHS, LHS)); } //===---------------------------------------------------------------------===// // TargetLowering Callbacks //===---------------------------------------------------------------------===// CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) { switch (CC) { case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_LS: return CC_AMDGPU; case CallingConv::AMDGPU_CS_Chain: case CallingConv::AMDGPU_CS_ChainPreserve: return CC_AMDGPU_CS_CHAIN; case CallingConv::C: case CallingConv::Fast: case CallingConv::Cold: return CC_AMDGPU_Func; case CallingConv::AMDGPU_Gfx: return CC_SI_Gfx; case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: default: report_fatal_error("Unsupported calling convention for call"); } } CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg) { switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: llvm_unreachable("kernels should not be handled here"); case CallingConv::AMDGPU_VS: case CallingConv::AMDGPU_GS: case CallingConv::AMDGPU_PS: case CallingConv::AMDGPU_CS: case CallingConv::AMDGPU_CS_Chain: case CallingConv::AMDGPU_CS_ChainPreserve: case CallingConv::AMDGPU_HS: case CallingConv::AMDGPU_ES: case CallingConv::AMDGPU_LS: return RetCC_SI_Shader; case CallingConv::AMDGPU_Gfx: return RetCC_SI_Gfx; case CallingConv::C: case CallingConv::Fast: case CallingConv::Cold: return RetCC_AMDGPU_Func; default: report_fatal_error("Unsupported calling convention."); } } /// The SelectionDAGBuilder will automatically promote function arguments /// with illegal types. However, this does not work for the AMDGPU targets /// since the function arguments are stored in memory as these illegal types. /// In order to handle this properly we need to get the original types sizes /// from the LLVM IR Function and fixup the ISD:InputArg values before /// passing them to AnalyzeFormalArguments() /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting /// input values across multiple registers. Each item in the Ins array /// represents a single value that will be stored in registers. Ins[x].VT is /// the value type of the value that will be stored in the register, so /// whatever SDNode we lower the argument to needs to be this type. /// /// In order to correctly lower the arguments we need to know the size of each /// argument. Since Ins[x].VT gives us the size of the register that will /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type /// for the original function argument so that we can deduce the correct memory /// type to use for Ins[x]. In most cases the correct memory type will be /// Ins[x].ArgVT. However, this will not always be the case. If, for example, /// we have a kernel argument of type v8i8, this argument will be split into /// 8 parts and each part will be represented by its own item in the Ins array. /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of /// the argument before it was split. From this, we deduce that the memory type /// for each individual part is i8. We pass the memory type as LocVT to the /// calling convention analysis function and the register type (Ins[x].VT) as /// the ValVT. void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( CCState &State, const SmallVectorImpl &Ins) const { const MachineFunction &MF = State.getMachineFunction(); const Function &Fn = MF.getFunction(); LLVMContext &Ctx = Fn.getParent()->getContext(); const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(); CallingConv::ID CC = Fn.getCallingConv(); Align MaxAlign = Align(1); uint64_t ExplicitArgOffset = 0; const DataLayout &DL = Fn.getDataLayout(); unsigned InIndex = 0; for (const Argument &Arg : Fn.args()) { const bool IsByRef = Arg.hasByRefAttr(); Type *BaseArgTy = Arg.getType(); Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; Align Alignment = DL.getValueOrABITypeAlignment( IsByRef ? Arg.getParamAlign() : std::nullopt, MemArgTy); MaxAlign = std::max(Alignment, MaxAlign); uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; // We're basically throwing away everything passed into us and starting over // to get accurate in-memory offsets. The "PartOffset" is completely useless // to us as computed in Ins. // // We also need to figure out what type legalization is trying to do to get // the correct memory offsets. SmallVector ValueVTs; SmallVector Offsets; ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; ++Value) { uint64_t BasePartOffset = Offsets[Value]; EVT ArgVT = ValueVTs[Value]; EVT MemVT = ArgVT; MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); if (NumRegs == 1) { // This argument is not split, so the IR type is the memory type. if (ArgVT.isExtended()) { // We have an extended type, like i24, so we should just use the // register type. MemVT = RegisterVT; } else { MemVT = ArgVT; } } else if (ArgVT.isVector() && RegisterVT.isVector() && ArgVT.getScalarType() == RegisterVT.getScalarType()) { assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); // We have a vector value which has been split into a vector with // the same scalar type, but fewer elements. This should handle // all the floating-point vector types. MemVT = RegisterVT; } else if (ArgVT.isVector() && ArgVT.getVectorNumElements() == NumRegs) { // This arg has been split so that each element is stored in a separate // register. MemVT = ArgVT.getScalarType(); } else if (ArgVT.isExtended()) { // We have an extended type, like i65. MemVT = RegisterVT; } else { unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); if (RegisterVT.isInteger()) { MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); } else if (RegisterVT.isVector()) { assert(!RegisterVT.getScalarType().isFloatingPoint()); unsigned NumElements = RegisterVT.getVectorNumElements(); assert(MemoryBits % NumElements == 0); // This vector type has been split into another vector type with // a different elements size. EVT ScalarVT = EVT::getIntegerVT(State.getContext(), MemoryBits / NumElements); MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); } else { llvm_unreachable("cannot deduce memory type."); } } // Convert one element vectors to scalar. if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) MemVT = MemVT.getScalarType(); // Round up vec3/vec5 argument. if (MemVT.isVector() && !MemVT.isPow2VectorType()) { assert(MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements() >= 9 && MemVT.getVectorNumElements() <= 12)); MemVT = MemVT.getPow2VectorType(State.getContext()); } else if (!MemVT.isSimple() && !MemVT.isVector()) { MemVT = MemVT.getRoundIntegerType(State.getContext()); } unsigned PartOffset = 0; for (unsigned i = 0; i != NumRegs; ++i) { State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, BasePartOffset + PartOffset, MemVT.getSimpleVT(), CCValAssign::Full)); PartOffset += MemVT.getStoreSize(); } } } } SDValue AMDGPUTargetLowering::LowerReturn( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { // FIXME: Fails for r600 tests //assert(!isVarArg && Outs.empty() && OutVals.empty() && // "wave terminate should not have return values"); return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); } //===---------------------------------------------------------------------===// // Target specific lowering //===---------------------------------------------------------------------===// /// Selects the correct CCAssignFn for a given CallingConvention value. CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) { return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); } CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg) { return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); } SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const { SmallVector ArgChains; int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; // Include the original chain at the beginning of the list. When this is // used by target LowerCall hooks, this helps legalize find the // CALLSEQ_BEGIN node. ArgChains.push_back(Chain); // Add a chain value for each stack argument corresponding for (SDNode *U : DAG.getEntryNode().getNode()->uses()) { if (LoadSDNode *L = dyn_cast(U)) { if (FrameIndexSDNode *FI = dyn_cast(L->getBasePtr())) { if (FI->getIndex() < 0) { int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); int64_t InLastByte = InFirstByte; InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || (FirstByte <= InFirstByte && InFirstByte <= LastByte)) ArgChains.push_back(SDValue(L, 1)); } } } } // Build a tokenfactor for all the chains. return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); } SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals, StringRef Reason) const { SDValue Callee = CLI.Callee; SelectionDAG &DAG = CLI.DAG; const Function &Fn = DAG.getMachineFunction().getFunction(); StringRef FuncName(""); if (const ExternalSymbolSDNode *G = dyn_cast(Callee)) FuncName = G->getSymbol(); else if (const GlobalAddressSDNode *G = dyn_cast(Callee)) FuncName = G->getGlobal()->getName(); DiagnosticInfoUnsupported NoCalls( Fn, Reason + FuncName, CLI.DL.getDebugLoc()); DAG.getContext()->diagnose(NoCalls); if (!CLI.IsTailCall) { for (ISD::InputArg &Arg : CLI.Ins) InVals.push_back(DAG.getUNDEF(Arg.VT)); } return DAG.getEntryNode(); } SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); } SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { const Function &Fn = DAG.getMachineFunction().getFunction(); DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", SDLoc(Op).getDebugLoc()); DAG.getContext()->diagnose(NoDynamicAlloca); auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; return DAG.getMergeValues(Ops, SDLoc()); } SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: Op->print(errs(), &DAG); llvm_unreachable("Custom lowering code for this " "instruction is not implemented yet!"); break; case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); case ISD::FREM: return LowerFREM(Op, DAG); case ISD::FCEIL: return LowerFCEIL(Op, DAG); case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); case ISD::FRINT: return LowerFRINT(Op, DAG); case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); case ISD::FROUNDEVEN: return LowerFROUNDEVEN(Op, DAG); case ISD::FROUND: return LowerFROUND(Op, DAG); case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); case ISD::FLOG2: return LowerFLOG2(Op, DAG); case ISD::FLOG: case ISD::FLOG10: return LowerFLOGCommon(Op, DAG); case ISD::FEXP: case ISD::FEXP10: return lowerFEXP(Op, DAG); case ISD::FEXP2: return lowerFEXP2(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_CTTZ(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); } return Op; } void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::SIGN_EXTEND_INREG: // Different parts of legalization seem to interpret which type of // sign_extend_inreg is the one to check for custom lowering. The extended // from type is what really matters, but some places check for custom // lowering of the result type. This results in trying to use // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do // nothing here and let the illegal result integer be handled normally. return; case ISD::FLOG2: if (SDValue Lowered = LowerFLOG2(SDValue(N, 0), DAG)) Results.push_back(Lowered); return; case ISD::FLOG: case ISD::FLOG10: if (SDValue Lowered = LowerFLOGCommon(SDValue(N, 0), DAG)) Results.push_back(Lowered); return; case ISD::FEXP2: if (SDValue Lowered = lowerFEXP2(SDValue(N, 0), DAG)) Results.push_back(Lowered); return; case ISD::FEXP: case ISD::FEXP10: if (SDValue Lowered = lowerFEXP(SDValue(N, 0), DAG)) Results.push_back(Lowered); return; case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: if (auto Lowered = lowerCTLZResults(SDValue(N, 0u), DAG)) Results.push_back(Lowered); return; default: return; } } SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, SDValue Op, SelectionDAG &DAG) const { const DataLayout &DL = DAG.getDataLayout(); GlobalAddressSDNode *G = cast(Op); const GlobalValue *GV = G->getGlobal(); if (!MFI->isModuleEntryFunction()) { if (std::optional Address = AMDGPUMachineFunction::getLDSAbsoluteAddress(*GV)) { return DAG.getConstant(*Address, SDLoc(Op), Op.getValueType()); } } if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { if (!MFI->isModuleEntryFunction() && GV->getName() != "llvm.amdgcn.module.lds") { SDLoc DL(Op); const Function &Fn = DAG.getMachineFunction().getFunction(); DiagnosticInfoUnsupported BadLDSDecl( Fn, "local memory global used by non-kernel function", DL.getDebugLoc(), DS_Warning); DAG.getContext()->diagnose(BadLDSDecl); // We currently don't have a way to correctly allocate LDS objects that // aren't directly associated with a kernel. We do force inlining of // functions that use local objects. However, if these dead functions are // not eliminated, we don't want a compile time error. Just emit a warning // and a trap, since there should be no callable path here. SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Trap, DAG.getRoot()); DAG.setRoot(OutputChain); return DAG.getUNDEF(Op.getValueType()); } // XXX: What does the value of G->getOffset() mean? assert(G->getOffset() == 0 && "Do not know what to do with an non-zero offset"); // TODO: We could emit code to handle the initialization somewhere. // We ignore the initializer for now and legalize it to allow selection. // The initializer will anyway get errored out during assembly emission. unsigned Offset = MFI->allocateLDSGlobal(DL, *cast(GV)); return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); } return SDValue(); } SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { SmallVector Args; SDLoc SL(Op); EVT VT = Op.getValueType(); if (VT.getVectorElementType().getSizeInBits() < 32) { unsigned OpBitSize = Op.getOperand(0).getValueType().getSizeInBits(); if (OpBitSize >= 32 && OpBitSize % 32 == 0) { unsigned NewNumElt = OpBitSize / 32; EVT NewEltVT = (NewNumElt == 1) ? MVT::i32 : EVT::getVectorVT(*DAG.getContext(), MVT::i32, NewNumElt); for (const SDUse &U : Op->ops()) { SDValue In = U.get(); SDValue NewIn = DAG.getNode(ISD::BITCAST, SL, NewEltVT, In); if (NewNumElt > 1) DAG.ExtractVectorElements(NewIn, Args); else Args.push_back(NewIn); } EVT NewVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NewNumElt * Op.getNumOperands()); SDValue BV = DAG.getBuildVector(NewVT, SL, Args); return DAG.getNode(ISD::BITCAST, SL, VT, BV); } } for (const SDUse &U : Op->ops()) DAG.ExtractVectorElements(U.get(), Args); return DAG.getBuildVector(Op.getValueType(), SL, Args); } SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SmallVector Args; unsigned Start = Op.getConstantOperandVal(1); EVT VT = Op.getValueType(); EVT SrcVT = Op.getOperand(0).getValueType(); if (VT.getScalarSizeInBits() == 16 && Start % 2 == 0) { unsigned NumElt = VT.getVectorNumElements(); unsigned NumSrcElt = SrcVT.getVectorNumElements(); assert(NumElt % 2 == 0 && NumSrcElt % 2 == 0 && "expect legal types"); // Extract 32-bit registers at a time. EVT NewSrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumSrcElt / 2); EVT NewVT = NumElt == 2 ? MVT::i32 : EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElt / 2); SDValue Tmp = DAG.getNode(ISD::BITCAST, SL, NewSrcVT, Op.getOperand(0)); DAG.ExtractVectorElements(Tmp, Args, Start / 2, NumElt / 2); if (NumElt == 2) Tmp = Args[0]; else Tmp = DAG.getBuildVector(NewVT, SL, Args); return DAG.getNode(ISD::BITCAST, SL, VT, Tmp); } DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, VT.getVectorNumElements()); return DAG.getBuildVector(Op.getValueType(), SL, Args); } // TODO: Handle fabs too static SDValue peekFNeg(SDValue Val) { if (Val.getOpcode() == ISD::FNEG) return Val.getOperand(0); return Val; } static SDValue peekFPSignOps(SDValue Val) { if (Val.getOpcode() == ISD::FNEG) Val = Val.getOperand(0); if (Val.getOpcode() == ISD::FABS) Val = Val.getOperand(0); if (Val.getOpcode() == ISD::FCOPYSIGN) Val = Val.getOperand(0); return Val; } SDValue AMDGPUTargetLowering::combineFMinMaxLegacyImpl( const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; ISD::CondCode CCOpcode = cast(CC)->get(); switch (CCOpcode) { case ISD::SETOEQ: case ISD::SETONE: case ISD::SETUNE: case ISD::SETNE: case ISD::SETUEQ: case ISD::SETEQ: case ISD::SETFALSE: case ISD::SETFALSE2: case ISD::SETTRUE: case ISD::SETTRUE2: case ISD::SETUO: case ISD::SETO: break; case ISD::SETULE: case ISD::SETULT: { if (LHS == True) return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); } case ISD::SETOLE: case ISD::SETOLT: case ISD::SETLE: case ISD::SETLT: { // Ordered. Assume ordered for undefined. // Only do this after legalization to avoid interfering with other combines // which might occur. if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && !DCI.isCalledByLegalizer()) return SDValue(); // We need to permute the operands to get the correct NaN behavior. The // selected operand is the second one based on the failing compare with NaN, // so permute it based on the compare type the hardware uses. if (LHS == True) return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); } case ISD::SETUGE: case ISD::SETUGT: { if (LHS == True) return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); } case ISD::SETGT: case ISD::SETGE: case ISD::SETOGE: case ISD::SETOGT: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && !DCI.isCalledByLegalizer()) return SDValue(); if (LHS == True) return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); } case ISD::SETCC_INVALID: llvm_unreachable("Invalid setcc condcode!"); } return SDValue(); } /// Generate Min/Max node SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const { if ((LHS == True && RHS == False) || (LHS == False && RHS == True)) return combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, True, False, CC, DCI); SelectionDAG &DAG = DCI.DAG; // If we can't directly match this, try to see if we can fold an fneg to // match. ConstantFPSDNode *CRHS = dyn_cast(RHS); ConstantFPSDNode *CFalse = dyn_cast(False); SDValue NegTrue = peekFNeg(True); // Undo the combine foldFreeOpFromSelect does if it helps us match the // fmin/fmax. // // select (fcmp olt (lhs, K)), (fneg lhs), -K // -> fneg (fmin_legacy lhs, K) // // TODO: Use getNegatedExpression if (LHS == NegTrue && CFalse && CRHS) { APFloat NegRHS = neg(CRHS->getValueAPF()); if (NegRHS == CFalse->getValueAPF()) { SDValue Combined = combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, NegTrue, False, CC, DCI); if (Combined) return DAG.getNode(ISD::FNEG, DL, VT, Combined); return SDValue(); } } return SDValue(); } std::pair AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); const SDValue One = DAG.getConstant(1, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); return std::pair(Lo, Hi); } SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); } SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); const SDValue One = DAG.getConstant(1, SL, MVT::i32); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); } // Split a vector type into two parts. The first part is a power of two vector. // The second part is whatever is left over, and is a scalar if it would // otherwise be a 1-vector. std::pair AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { EVT LoVT, HiVT; EVT EltVT = VT.getVectorElementType(); unsigned NumElts = VT.getVectorNumElements(); unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); HiVT = NumElts - LoNumElts == 1 ? EltVT : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); return std::pair(LoVT, HiVT); } // Split a vector value into two parts of types LoVT and HiVT. HiVT could be // scalar. std::pair AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT, SelectionDAG &DAG) const { assert(LoVT.getVectorNumElements() + (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType().getVectorNumElements() && "More vector elements requested than available!"); SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, DAG.getVectorIdxConstant(0, DL)); SDValue Hi = DAG.getNode( HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); return std::pair(Lo, Hi); } SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, SelectionDAG &DAG) const { LoadSDNode *Load = cast(Op); EVT VT = Op.getValueType(); SDLoc SL(Op); // If this is a 2 element vector, we really want to scalarize and not create // weird 1 element vectors. if (VT.getVectorNumElements() == 2) { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); return DAG.getMergeValues(Ops, SL); } SDValue BasePtr = Load->getBasePtr(); EVT MemVT = Load->getMemoryVT(); const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); EVT LoVT, HiVT; EVT LoMemVT, HiMemVT; SDValue Lo, Hi; std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); unsigned Size = LoMemVT.getStoreSize(); Align BaseAlign = Load->getAlign(); Align HiAlign = commonAlignment(BaseAlign, Size); SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, Load->getChain(), BasePtr, SrcValue, LoMemVT, BaseAlign, Load->getMemOperand()->getFlags()); SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Size)); SDValue HiLoad = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); SDValue Join; if (LoVT == HiVT) { // This is the case that the vector is power of two so was evenly split. Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); } else { Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, DAG.getVectorIdxConstant(0, SL)); Join = DAG.getNode( HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, VT, Join, HiLoad, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); } SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoLoad.getValue(1), HiLoad.getValue(1))}; return DAG.getMergeValues(Ops, SL); } SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, SelectionDAG &DAG) const { LoadSDNode *Load = cast(Op); EVT VT = Op.getValueType(); SDValue BasePtr = Load->getBasePtr(); EVT MemVT = Load->getMemoryVT(); SDLoc SL(Op); const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); Align BaseAlign = Load->getAlign(); unsigned NumElements = MemVT.getVectorNumElements(); // Widen from vec3 to vec4 when the load is at least 8-byte aligned // or 16-byte fully dereferenceable. Otherwise, split the vector load. if (NumElements != 3 || (BaseAlign < Align(8) && !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) return SplitVectorLoad(Op, DAG); assert(NumElements == 3); EVT WideVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); EVT WideMemVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); SDValue WideLoad = DAG.getExtLoad( Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); return DAG.getMergeValues( {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, DAG.getVectorIdxConstant(0, SL)), WideLoad.getValue(1)}, SL); } SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, SelectionDAG &DAG) const { StoreSDNode *Store = cast(Op); SDValue Val = Store->getValue(); EVT VT = Val.getValueType(); // If this is a 2 element vector, we really want to scalarize and not create // weird 1 element vectors. if (VT.getVectorNumElements() == 2) return scalarizeVectorStore(Store, DAG); EVT MemVT = Store->getMemoryVT(); SDValue Chain = Store->getChain(); SDValue BasePtr = Store->getBasePtr(); SDLoc SL(Op); EVT LoVT, HiVT; EVT LoMemVT, HiMemVT; SDValue Lo, Hi; std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); Align BaseAlign = Store->getAlign(); unsigned Size = LoMemVT.getStoreSize(); Align HiAlign = commonAlignment(BaseAlign, Size); SDValue LoStore = DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, Store->getMemOperand()->getFlags()); SDValue HiStore = DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); } // This is a shortcut for integer division because we have fast i32<->f32 // conversions, and fast f32 reciprocal instructions. The fractional part of a // float is enough to accurately represent up to a 24-bit signed integer. SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool Sign) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); MVT IntVT = MVT::i32; MVT FltVT = MVT::f32; unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); if (LHSSignBits < 9) return SDValue(); unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); if (RHSSignBits < 9) return SDValue(); unsigned BitSize = VT.getSizeInBits(); unsigned SignBits = std::min(LHSSignBits, RHSSignBits); unsigned DivBits = BitSize - SignBits; if (Sign) ++DivBits; ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; SDValue jq = DAG.getConstant(1, DL, IntVT); if (Sign) { // char|short jq = ia ^ ib; jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); // jq = jq >> (bitsize - 2) jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, DL, VT)); // jq = jq | 0x1 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); } // int ia = (int)LHS; SDValue ia = LHS; // int ib, (int)RHS; SDValue ib = RHS; // float fa = (float)ia; SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); // float fb = (float)ib; SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); // fq = trunc(fq); fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); // float fqneg = -fq; SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); MachineFunction &MF = DAG.getMachineFunction(); bool UseFmadFtz = false; if (Subtarget->isGCN()) { const SIMachineFunctionInfo *MFI = MF.getInfo(); UseFmadFtz = MFI->getMode().FP32Denormals != DenormalMode::getPreserveSign(); } // float fr = mad(fqneg, fb, fa); unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA : UseFmadFtz ? (unsigned)AMDGPUISD::FMAD_FTZ : (unsigned)ISD::FMAD; SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); // int iq = (int)fq; SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); // fr = fabs(fr); fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); // fb = fabs(fb); fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); // int cv = fr >= fb; SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); // jq = (cv ? jq : 0); jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); // dst = iq + jq; SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); // Rem needs compensation, it's easier to recompute it SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); // Truncate to number of bits this divide really is. if (Sign) { SDValue InRegSize = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); } else { SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); } return DAG.getMergeValues({ Div, Rem }, DL); } void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, SelectionDAG &DAG, SmallVectorImpl &Results) const { SDLoc DL(Op); EVT VT = Op.getValueType(); assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); SDValue One = DAG.getConstant(1, DL, HalfVT); SDValue Zero = DAG.getConstant(0, DL, HalfVT); //HiLo split SDValue LHS_Lo, LHS_Hi; SDValue LHS = Op.getOperand(0); std::tie(LHS_Lo, LHS_Hi) = DAG.SplitScalar(LHS, DL, HalfVT, HalfVT); SDValue RHS_Lo, RHS_Hi; SDValue RHS = Op.getOperand(1); std::tie(RHS_Lo, RHS_Hi) = DAG.SplitScalar(RHS, DL, HalfVT, HalfVT); if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), LHS_Lo, RHS_Lo); SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); return; } if (isTypeLegal(MVT::i64)) { // The algorithm here is based on ideas from "Software Integer Division", // Tom Rodeheffer, August 2008. MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *MFI = MF.getInfo(); // Compute denominator reciprocal. unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA : MFI->getMode().FP32Denormals == DenormalMode::getPreserveSign() ? (unsigned)ISD::FMAD : (unsigned)AMDGPUISD::FMAD_FTZ; SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), Cvt_Lo); SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), Mul1); SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); SDValue Rcp64 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); SDValue Zero64 = DAG.getConstant(0, DL, VT); SDValue One64 = DAG.getConstant(1, DL, VT); SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); // First round of UNR (Unsigned integer Newton-Raphson). SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); SDValue Mulhi1_Lo, Mulhi1_Hi; std::tie(Mulhi1_Lo, Mulhi1_Hi) = DAG.SplitScalar(Mulhi1, DL, HalfVT, HalfVT); SDValue Add1_Lo = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Rcp_Lo, Mulhi1_Lo, Zero1); SDValue Add1_Hi = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Rcp_Hi, Mulhi1_Hi, Add1_Lo.getValue(1)); SDValue Add1 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); // Second round of UNR. SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); SDValue Mulhi2_Lo, Mulhi2_Hi; std::tie(Mulhi2_Lo, Mulhi2_Hi) = DAG.SplitScalar(Mulhi2, DL, HalfVT, HalfVT); SDValue Add2_Lo = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Add1_Lo, Mulhi2_Lo, Zero1); SDValue Add2_Hi = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Add1_Hi, Mulhi2_Hi, Add2_Lo.getValue(1)); SDValue Add2 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); SDValue Mul3_Lo, Mul3_Hi; std::tie(Mul3_Lo, Mul3_Hi) = DAG.SplitScalar(Mul3, DL, HalfVT, HalfVT); SDValue Sub1_Lo = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, LHS_Lo, Mul3_Lo, Zero1); SDValue Sub1_Hi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, LHS_Hi, Mul3_Hi, Sub1_Lo.getValue(1)); SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); SDValue Sub1 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, ISD::SETUGE); SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, ISD::SETUGE); SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); // TODO: Here and below portions of the code can be enclosed into if/endif. // Currently control flow is unconditional and we have 4 selects after // potential endif to substitute PHIs. // if C3 != 0 ... SDValue Sub2_Lo = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub1_Lo, RHS_Lo, Zero1); SDValue Sub2_Mi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub1_Mi, RHS_Hi, Sub1_Lo.getValue(1)); SDValue Sub2_Hi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub2_Mi, Zero, Sub2_Lo.getValue(1)); SDValue Sub2 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, ISD::SETUGE); SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, ISD::SETUGE); SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); // if (C6 != 0) SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); SDValue Sub3_Lo = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub2_Lo, RHS_Lo, Zero1); SDValue Sub3_Mi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub2_Mi, RHS_Hi, Sub2_Lo.getValue(1)); SDValue Sub3_Hi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub3_Mi, Zero, Sub3_Lo.getValue(1)); SDValue Sub3 = DAG.getBitcast(VT, DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); // endif C6 // endif C3 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); Results.push_back(Div); Results.push_back(Rem); return; } // r600 expandion. // Get Speculative values SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); SDValue DIV_Lo = Zero; const unsigned halfBitWidth = HalfVT.getSizeInBits(); for (unsigned i = 0; i < halfBitWidth; ++i) { const unsigned bitPos = halfBitWidth - i - 1; SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); // Get value of high bit SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); // Shift REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); // Add LHS high bit REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); // Update REM SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); } SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); Results.push_back(DIV); Results.push_back(REM); } SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); if (VT == MVT::i64) { SmallVector Results; LowerUDIVREM64(Op, DAG, Results); return DAG.getMergeValues(Results, DL); } if (VT == MVT::i32) { if (SDValue Res = LowerDIVREM24(Op, DAG, false)) return Res; } SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the // algorithm used here. // Initial estimate of inv(y). SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); // One round of UNR. SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); Z = DAG.getNode(ISD::ADD, DL, VT, Z, DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); // Quotient/remainder estimate. SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); SDValue R = DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); // First quotient/remainder refinement. EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue One = DAG.getConstant(1, DL, VT); SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); R = DAG.getNode(ISD::SELECT, DL, VT, Cond, DAG.getNode(ISD::SUB, DL, VT, R, Y), R); // Second quotient/remainder refinement. Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); R = DAG.getNode(ISD::SELECT, DL, VT, Cond, DAG.getNode(ISD::SUB, DL, VT, R, Y), R); return DAG.getMergeValues({Q, R}, DL); } SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Zero = DAG.getConstant(0, DL, VT); SDValue NegOne = DAG.getConstant(-1, DL, VT); if (VT == MVT::i32) { if (SDValue Res = LowerDIVREM24(Op, DAG, true)) return Res; } if (VT == MVT::i64 && DAG.ComputeNumSignBits(LHS) > 32 && DAG.ComputeNumSignBits(RHS) > 32) { EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); //HiLo split SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), LHS_Lo, RHS_Lo); SDValue Res[2] = { DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) }; return DAG.getMergeValues(Res, DL); } SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); SDValue RSign = LHSign; // Remainder sign is the same as LHS LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); SDValue Rem = Div.getValue(1); Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); SDValue Res[2] = { Div, Rem }; return DAG.getMergeValues(Res, DL); } // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT VT = Op.getValueType(); auto Flags = Op->getFlags(); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); // TODO: For f32 use FMAD instead if !hasFastFMA32? return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); } SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); // result = trunc(src) // if (src > 0.0 && src != result) // result += 1.0 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); } static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, SelectionDAG &DAG) { const unsigned FractBits = 52; const unsigned ExpBits = 11; SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, Hi, DAG.getConstant(FractBits - 32, SL, MVT::i32), DAG.getConstant(ExpBits, SL, MVT::i32)); SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, DAG.getConstant(1023, SL, MVT::i32)); return Exp; } SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); assert(Op.getValueType() == MVT::f64); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); // Extract the upper half, since this is where we will find the sign and // exponent. SDValue Hi = getHiHalf64(Src, DAG); SDValue Exp = extractF64Exponent(Hi, SL, DAG); const unsigned FractBits = 52; // Extract the sign bit. const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); // Extend back to 64-bits. SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); const SDValue FractMask = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); } SDValue AMDGPUTargetLowering::LowerFROUNDEVEN(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); assert(Op.getValueType() == MVT::f64); APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); // TODO: Should this propagate fast-math-flags? SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); } SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { // FNEARBYINT and FRINT are the same, except in their handling of FP // exceptions. Those aren't really meaningful for us, and OpenCL only has // rint, so just treat them as equivalent. return DAG.getNode(ISD::FROUNDEVEN, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); } SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { auto VT = Op.getValueType(); auto Arg = Op.getOperand(0u); return DAG.getNode(ISD::FROUNDEVEN, SDLoc(Op), VT, Arg); } // XXX - May require not supporting f32 denormals? // Don't handle v2f16. The extra instructions to scalarize and repack around the // compare and vselect end up producing worse code than scalarizing the whole // operation. SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue X = Op.getOperand(0); EVT VT = Op.getValueType(); SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); // TODO: Should this propagate fast-math-flags? SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); const SDValue One = DAG.getConstantFP(1.0, SL, VT); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); const SDValue Half = DAG.getConstantFP(0.5, SL, VT); SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); SDValue OneOrZeroFP = DAG.getNode(ISD::SELECT, SL, VT, Cmp, One, Zero); SDValue SignedOffset = DAG.getNode(ISD::FCOPYSIGN, SL, VT, OneOrZeroFP, X); return DAG.getNode(ISD::FADD, SL, VT, T, SignedOffset); } SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); // result = trunc(src); // if (src < 0.0 && src != result) // result += -1.0. SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); } /// Return true if it's known that \p Src can never be an f32 denormal value. static bool valueIsKnownNeverF32Denorm(SDValue Src) { switch (Src.getOpcode()) { case ISD::FP_EXTEND: return Src.getOperand(0).getValueType() == MVT::f16; case ISD::FP16_TO_FP: case ISD::FFREXP: return true; case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrinsicID = Src.getConstantOperandVal(0); switch (IntrinsicID) { case Intrinsic::amdgcn_frexp_mant: return true; default: return false; } } default: return false; } llvm_unreachable("covered opcode switch"); } bool AMDGPUTargetLowering::allowApproxFunc(const SelectionDAG &DAG, SDNodeFlags Flags) { if (Flags.hasApproximateFuncs()) return true; auto &Options = DAG.getTarget().Options; return Options.UnsafeFPMath || Options.ApproxFuncFPMath; } bool AMDGPUTargetLowering::needsDenormHandlingF32(const SelectionDAG &DAG, SDValue Src, SDNodeFlags Flags) { return !valueIsKnownNeverF32Denorm(Src) && DAG.getMachineFunction() .getDenormalMode(APFloat::IEEEsingle()) .Input != DenormalMode::PreserveSign; } SDValue AMDGPUTargetLowering::getIsLtSmallestNormal(SelectionDAG &DAG, SDValue Src, SDNodeFlags Flags) const { SDLoc SL(Src); EVT VT = Src.getValueType(); const fltSemantics &Semantics = SelectionDAG::EVTToAPFloatSemantics(VT); SDValue SmallestNormal = DAG.getConstantFP(APFloat::getSmallestNormalized(Semantics), SL, VT); // Want to scale denormals up, but negatives and 0 work just as well on the // scaled path. SDValue IsLtSmallestNormal = DAG.getSetCC( SL, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), Src, SmallestNormal, ISD::SETOLT); return IsLtSmallestNormal; } SDValue AMDGPUTargetLowering::getIsFinite(SelectionDAG &DAG, SDValue Src, SDNodeFlags Flags) const { SDLoc SL(Src); EVT VT = Src.getValueType(); const fltSemantics &Semantics = SelectionDAG::EVTToAPFloatSemantics(VT); SDValue Inf = DAG.getConstantFP(APFloat::getInf(Semantics), SL, VT); SDValue Fabs = DAG.getNode(ISD::FABS, SL, VT, Src, Flags); SDValue IsFinite = DAG.getSetCC( SL, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), Fabs, Inf, ISD::SETOLT); return IsFinite; } /// If denormal handling is required return the scaled input to FLOG2, and the /// check for denormal range. Otherwise, return null values. std::pair AMDGPUTargetLowering::getScaledLogInput(SelectionDAG &DAG, const SDLoc SL, SDValue Src, SDNodeFlags Flags) const { if (!needsDenormHandlingF32(DAG, Src, Flags)) return {}; MVT VT = MVT::f32; const fltSemantics &Semantics = APFloat::IEEEsingle(); SDValue SmallestNormal = DAG.getConstantFP(APFloat::getSmallestNormalized(Semantics), SL, VT); SDValue IsLtSmallestNormal = DAG.getSetCC( SL, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), Src, SmallestNormal, ISD::SETOLT); SDValue Scale32 = DAG.getConstantFP(0x1.0p+32, SL, VT); SDValue One = DAG.getConstantFP(1.0, SL, VT); SDValue ScaleFactor = DAG.getNode(ISD::SELECT, SL, VT, IsLtSmallestNormal, Scale32, One, Flags); SDValue ScaledInput = DAG.getNode(ISD::FMUL, SL, VT, Src, ScaleFactor, Flags); return {ScaledInput, IsLtSmallestNormal}; } SDValue AMDGPUTargetLowering::LowerFLOG2(SDValue Op, SelectionDAG &DAG) const { // v_log_f32 is good enough for OpenCL, except it doesn't handle denormals. // If we have to handle denormals, scale up the input and adjust the result. // scaled = x * (is_denormal ? 0x1.0p+32 : 1.0) // log2 = amdgpu_log2 - (is_denormal ? 32.0 : 0.0) SDLoc SL(Op); EVT VT = Op.getValueType(); SDValue Src = Op.getOperand(0); SDNodeFlags Flags = Op->getFlags(); if (VT == MVT::f16) { // Nothing in half is a denormal when promoted to f32. assert(!Subtarget->has16BitInsts()); SDValue Ext = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src, Flags); SDValue Log = DAG.getNode(AMDGPUISD::LOG, SL, MVT::f32, Ext, Flags); return DAG.getNode(ISD::FP_ROUND, SL, VT, Log, DAG.getTargetConstant(0, SL, MVT::i32), Flags); } auto [ScaledInput, IsLtSmallestNormal] = getScaledLogInput(DAG, SL, Src, Flags); if (!ScaledInput) return DAG.getNode(AMDGPUISD::LOG, SL, VT, Src, Flags); SDValue Log2 = DAG.getNode(AMDGPUISD::LOG, SL, VT, ScaledInput, Flags); SDValue ThirtyTwo = DAG.getConstantFP(32.0, SL, VT); SDValue Zero = DAG.getConstantFP(0.0, SL, VT); SDValue ResultOffset = DAG.getNode(ISD::SELECT, SL, VT, IsLtSmallestNormal, ThirtyTwo, Zero); return DAG.getNode(ISD::FSUB, SL, VT, Log2, ResultOffset, Flags); } static SDValue getMad(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue X, SDValue Y, SDValue C, SDNodeFlags Flags = SDNodeFlags()) { SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, X, Y, Flags); return DAG.getNode(ISD::FADD, SL, VT, Mul, C, Flags); } SDValue AMDGPUTargetLowering::LowerFLOGCommon(SDValue Op, SelectionDAG &DAG) const { SDValue X = Op.getOperand(0); EVT VT = Op.getValueType(); SDNodeFlags Flags = Op->getFlags(); SDLoc DL(Op); const bool IsLog10 = Op.getOpcode() == ISD::FLOG10; assert(IsLog10 || Op.getOpcode() == ISD::FLOG); const auto &Options = getTargetMachine().Options; if (VT == MVT::f16 || Flags.hasApproximateFuncs() || Options.ApproxFuncFPMath || Options.UnsafeFPMath) { if (VT == MVT::f16 && !Subtarget->has16BitInsts()) { // Log and multiply in f32 is good enough for f16. X = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, X, Flags); } SDValue Lowered = LowerFLOGUnsafe(X, DL, DAG, IsLog10, Flags); if (VT == MVT::f16 && !Subtarget->has16BitInsts()) { return DAG.getNode(ISD::FP_ROUND, DL, VT, Lowered, DAG.getTargetConstant(0, DL, MVT::i32), Flags); } return Lowered; } auto [ScaledInput, IsScaled] = getScaledLogInput(DAG, DL, X, Flags); if (ScaledInput) X = ScaledInput; SDValue Y = DAG.getNode(AMDGPUISD::LOG, DL, VT, X, Flags); SDValue R; if (Subtarget->hasFastFMAF32()) { // c+cc are ln(2)/ln(10) to more than 49 bits const float c_log10 = 0x1.344134p-2f; const float cc_log10 = 0x1.09f79ep-26f; // c + cc is ln(2) to more than 49 bits const float c_log = 0x1.62e42ep-1f; const float cc_log = 0x1.efa39ep-25f; SDValue C = DAG.getConstantFP(IsLog10 ? c_log10 : c_log, DL, VT); SDValue CC = DAG.getConstantFP(IsLog10 ? cc_log10 : cc_log, DL, VT); R = DAG.getNode(ISD::FMUL, DL, VT, Y, C, Flags); SDValue NegR = DAG.getNode(ISD::FNEG, DL, VT, R, Flags); SDValue FMA0 = DAG.getNode(ISD::FMA, DL, VT, Y, C, NegR, Flags); SDValue FMA1 = DAG.getNode(ISD::FMA, DL, VT, Y, CC, FMA0, Flags); R = DAG.getNode(ISD::FADD, DL, VT, R, FMA1, Flags); } else { // ch+ct is ln(2)/ln(10) to more than 36 bits const float ch_log10 = 0x1.344000p-2f; const float ct_log10 = 0x1.3509f6p-18f; // ch + ct is ln(2) to more than 36 bits const float ch_log = 0x1.62e000p-1f; const float ct_log = 0x1.0bfbe8p-15f; SDValue CH = DAG.getConstantFP(IsLog10 ? ch_log10 : ch_log, DL, VT); SDValue CT = DAG.getConstantFP(IsLog10 ? ct_log10 : ct_log, DL, VT); SDValue YAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Y); SDValue MaskConst = DAG.getConstant(0xfffff000, DL, MVT::i32); SDValue YHInt = DAG.getNode(ISD::AND, DL, MVT::i32, YAsInt, MaskConst); SDValue YH = DAG.getNode(ISD::BITCAST, DL, MVT::f32, YHInt); SDValue YT = DAG.getNode(ISD::FSUB, DL, VT, Y, YH, Flags); SDValue YTCT = DAG.getNode(ISD::FMUL, DL, VT, YT, CT, Flags); SDValue Mad0 = getMad(DAG, DL, VT, YH, CT, YTCT, Flags); SDValue Mad1 = getMad(DAG, DL, VT, YT, CH, Mad0, Flags); R = getMad(DAG, DL, VT, YH, CH, Mad1); } const bool IsFiniteOnly = (Flags.hasNoNaNs() || Options.NoNaNsFPMath) && (Flags.hasNoInfs() || Options.NoInfsFPMath); // TODO: Check if known finite from source value. if (!IsFiniteOnly) { SDValue IsFinite = getIsFinite(DAG, Y, Flags); R = DAG.getNode(ISD::SELECT, DL, VT, IsFinite, R, Y, Flags); } if (IsScaled) { SDValue Zero = DAG.getConstantFP(0.0f, DL, VT); SDValue ShiftK = DAG.getConstantFP(IsLog10 ? 0x1.344136p+3f : 0x1.62e430p+4f, DL, VT); SDValue Shift = DAG.getNode(ISD::SELECT, DL, VT, IsScaled, ShiftK, Zero, Flags); R = DAG.getNode(ISD::FSUB, DL, VT, R, Shift, Flags); } return R; } SDValue AMDGPUTargetLowering::LowerFLOG10(SDValue Op, SelectionDAG &DAG) const { return LowerFLOGCommon(Op, DAG); } // Do f32 fast math expansion for flog2 or flog10. This is accurate enough for a // promote f16 operation. SDValue AMDGPUTargetLowering::LowerFLOGUnsafe(SDValue Src, const SDLoc &SL, SelectionDAG &DAG, bool IsLog10, SDNodeFlags Flags) const { EVT VT = Src.getValueType(); unsigned LogOp = VT == MVT::f32 ? (unsigned)AMDGPUISD::LOG : (unsigned)ISD::FLOG2; double Log2BaseInverted = IsLog10 ? numbers::ln2 / numbers::ln10 : numbers::ln2; if (VT == MVT::f32) { auto [ScaledInput, IsScaled] = getScaledLogInput(DAG, SL, Src, Flags); if (ScaledInput) { SDValue LogSrc = DAG.getNode(AMDGPUISD::LOG, SL, VT, ScaledInput, Flags); SDValue ScaledResultOffset = DAG.getConstantFP(-32.0 * Log2BaseInverted, SL, VT); SDValue Zero = DAG.getConstantFP(0.0f, SL, VT); SDValue ResultOffset = DAG.getNode(ISD::SELECT, SL, VT, IsScaled, ScaledResultOffset, Zero, Flags); SDValue Log2Inv = DAG.getConstantFP(Log2BaseInverted, SL, VT); if (Subtarget->hasFastFMAF32()) return DAG.getNode(ISD::FMA, SL, VT, LogSrc, Log2Inv, ResultOffset, Flags); SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, LogSrc, Log2Inv, Flags); return DAG.getNode(ISD::FADD, SL, VT, Mul, ResultOffset); } } SDValue Log2Operand = DAG.getNode(LogOp, SL, VT, Src, Flags); SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand, Flags); } SDValue AMDGPUTargetLowering::lowerFEXP2(SDValue Op, SelectionDAG &DAG) const { // v_exp_f32 is good enough for OpenCL, except it doesn't handle denormals. // If we have to handle denormals, scale up the input and adjust the result. SDLoc SL(Op); EVT VT = Op.getValueType(); SDValue Src = Op.getOperand(0); SDNodeFlags Flags = Op->getFlags(); if (VT == MVT::f16) { // Nothing in half is a denormal when promoted to f32. assert(!Subtarget->has16BitInsts()); SDValue Ext = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src, Flags); SDValue Log = DAG.getNode(AMDGPUISD::EXP, SL, MVT::f32, Ext, Flags); return DAG.getNode(ISD::FP_ROUND, SL, VT, Log, DAG.getTargetConstant(0, SL, MVT::i32), Flags); } assert(VT == MVT::f32); if (!needsDenormHandlingF32(DAG, Src, Flags)) return DAG.getNode(AMDGPUISD::EXP, SL, MVT::f32, Src, Flags); // bool needs_scaling = x < -0x1.f80000p+6f; // v_exp_f32(x + (s ? 0x1.0p+6f : 0.0f)) * (s ? 0x1.0p-64f : 1.0f); // -nextafter(128.0, -1) SDValue RangeCheckConst = DAG.getConstantFP(-0x1.f80000p+6f, SL, VT); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue NeedsScaling = DAG.getSetCC(SL, SetCCVT, Src, RangeCheckConst, ISD::SETOLT); SDValue SixtyFour = DAG.getConstantFP(0x1.0p+6f, SL, VT); SDValue Zero = DAG.getConstantFP(0.0, SL, VT); SDValue AddOffset = DAG.getNode(ISD::SELECT, SL, VT, NeedsScaling, SixtyFour, Zero); SDValue AddInput = DAG.getNode(ISD::FADD, SL, VT, Src, AddOffset, Flags); SDValue Exp2 = DAG.getNode(AMDGPUISD::EXP, SL, VT, AddInput, Flags); SDValue TwoExpNeg64 = DAG.getConstantFP(0x1.0p-64f, SL, VT); SDValue One = DAG.getConstantFP(1.0, SL, VT); SDValue ResultScale = DAG.getNode(ISD::SELECT, SL, VT, NeedsScaling, TwoExpNeg64, One); return DAG.getNode(ISD::FMUL, SL, VT, Exp2, ResultScale, Flags); } SDValue AMDGPUTargetLowering::lowerFEXPUnsafe(SDValue X, const SDLoc &SL, SelectionDAG &DAG, SDNodeFlags Flags) const { EVT VT = X.getValueType(); const SDValue Log2E = DAG.getConstantFP(numbers::log2e, SL, VT); if (VT != MVT::f32 || !needsDenormHandlingF32(DAG, X, Flags)) { // exp2(M_LOG2E_F * f); SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, X, Log2E, Flags); return DAG.getNode(VT == MVT::f32 ? (unsigned)AMDGPUISD::EXP : (unsigned)ISD::FEXP2, SL, VT, Mul, Flags); } EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue Threshold = DAG.getConstantFP(-0x1.5d58a0p+6f, SL, VT); SDValue NeedsScaling = DAG.getSetCC(SL, SetCCVT, X, Threshold, ISD::SETOLT); SDValue ScaleOffset = DAG.getConstantFP(0x1.0p+6f, SL, VT); SDValue ScaledX = DAG.getNode(ISD::FADD, SL, VT, X, ScaleOffset, Flags); SDValue AdjustedX = DAG.getNode(ISD::SELECT, SL, VT, NeedsScaling, ScaledX, X); SDValue ExpInput = DAG.getNode(ISD::FMUL, SL, VT, AdjustedX, Log2E, Flags); SDValue Exp2 = DAG.getNode(AMDGPUISD::EXP, SL, VT, ExpInput, Flags); SDValue ResultScaleFactor = DAG.getConstantFP(0x1.969d48p-93f, SL, VT); SDValue AdjustedResult = DAG.getNode(ISD::FMUL, SL, VT, Exp2, ResultScaleFactor, Flags); return DAG.getNode(ISD::SELECT, SL, VT, NeedsScaling, AdjustedResult, Exp2, Flags); } /// Emit approx-funcs appropriate lowering for exp10. inf/nan should still be /// handled correctly. SDValue AMDGPUTargetLowering::lowerFEXP10Unsafe(SDValue X, const SDLoc &SL, SelectionDAG &DAG, SDNodeFlags Flags) const { const EVT VT = X.getValueType(); const unsigned Exp2Op = VT == MVT::f32 ? AMDGPUISD::EXP : ISD::FEXP2; if (VT != MVT::f32 || !needsDenormHandlingF32(DAG, X, Flags)) { // exp2(x * 0x1.a92000p+1f) * exp2(x * 0x1.4f0978p-11f); SDValue K0 = DAG.getConstantFP(0x1.a92000p+1f, SL, VT); SDValue K1 = DAG.getConstantFP(0x1.4f0978p-11f, SL, VT); SDValue Mul0 = DAG.getNode(ISD::FMUL, SL, VT, X, K0, Flags); SDValue Exp2_0 = DAG.getNode(Exp2Op, SL, VT, Mul0, Flags); SDValue Mul1 = DAG.getNode(ISD::FMUL, SL, VT, X, K1, Flags); SDValue Exp2_1 = DAG.getNode(Exp2Op, SL, VT, Mul1, Flags); return DAG.getNode(ISD::FMUL, SL, VT, Exp2_0, Exp2_1); } // bool s = x < -0x1.2f7030p+5f; // x += s ? 0x1.0p+5f : 0.0f; // exp10 = exp2(x * 0x1.a92000p+1f) * // exp2(x * 0x1.4f0978p-11f) * // (s ? 0x1.9f623ep-107f : 1.0f); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue Threshold = DAG.getConstantFP(-0x1.2f7030p+5f, SL, VT); SDValue NeedsScaling = DAG.getSetCC(SL, SetCCVT, X, Threshold, ISD::SETOLT); SDValue ScaleOffset = DAG.getConstantFP(0x1.0p+5f, SL, VT); SDValue ScaledX = DAG.getNode(ISD::FADD, SL, VT, X, ScaleOffset, Flags); SDValue AdjustedX = DAG.getNode(ISD::SELECT, SL, VT, NeedsScaling, ScaledX, X); SDValue K0 = DAG.getConstantFP(0x1.a92000p+1f, SL, VT); SDValue K1 = DAG.getConstantFP(0x1.4f0978p-11f, SL, VT); SDValue Mul0 = DAG.getNode(ISD::FMUL, SL, VT, AdjustedX, K0, Flags); SDValue Exp2_0 = DAG.getNode(Exp2Op, SL, VT, Mul0, Flags); SDValue Mul1 = DAG.getNode(ISD::FMUL, SL, VT, AdjustedX, K1, Flags); SDValue Exp2_1 = DAG.getNode(Exp2Op, SL, VT, Mul1, Flags); SDValue MulExps = DAG.getNode(ISD::FMUL, SL, VT, Exp2_0, Exp2_1, Flags); SDValue ResultScaleFactor = DAG.getConstantFP(0x1.9f623ep-107f, SL, VT); SDValue AdjustedResult = DAG.getNode(ISD::FMUL, SL, VT, MulExps, ResultScaleFactor, Flags); return DAG.getNode(ISD::SELECT, SL, VT, NeedsScaling, AdjustedResult, MulExps, Flags); } SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc SL(Op); SDValue X = Op.getOperand(0); SDNodeFlags Flags = Op->getFlags(); const bool IsExp10 = Op.getOpcode() == ISD::FEXP10; if (VT.getScalarType() == MVT::f16) { // v_exp_f16 (fmul x, log2e) if (allowApproxFunc(DAG, Flags)) // TODO: Does this really require fast? return lowerFEXPUnsafe(X, SL, DAG, Flags); if (VT.isVector()) return SDValue(); // exp(f16 x) -> // fptrunc (v_exp_f32 (fmul (fpext x), log2e)) // Nothing in half is a denormal when promoted to f32. SDValue Ext = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, X, Flags); SDValue Lowered = lowerFEXPUnsafe(Ext, SL, DAG, Flags); return DAG.getNode(ISD::FP_ROUND, SL, VT, Lowered, DAG.getTargetConstant(0, SL, MVT::i32), Flags); } assert(VT == MVT::f32); // TODO: Interpret allowApproxFunc as ignoring DAZ. This is currently copying // library behavior. Also, is known-not-daz source sufficient? if (allowApproxFunc(DAG, Flags)) { return IsExp10 ? lowerFEXP10Unsafe(X, SL, DAG, Flags) : lowerFEXPUnsafe(X, SL, DAG, Flags); } // Algorithm: // // e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64) // // x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer // n = 64*m + j, 0 <= j < 64 // // e^x = 2^((64*m + j + f)/64) // = (2^m) * (2^(j/64)) * 2^(f/64) // = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64)) // // f = x*(64/ln(2)) - n // r = f*(ln(2)/64) = x - n*(ln(2)/64) // // e^x = (2^m) * (2^(j/64)) * e^r // // (2^(j/64)) is precomputed // // e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! // e^r = 1 + q // // q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! // // e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) ) SDNodeFlags FlagsNoContract = Flags; FlagsNoContract.setAllowContract(false); SDValue PH, PL; if (Subtarget->hasFastFMAF32()) { const float c_exp = numbers::log2ef; const float cc_exp = 0x1.4ae0bep-26f; // c+cc are 49 bits const float c_exp10 = 0x1.a934f0p+1f; const float cc_exp10 = 0x1.2f346ep-24f; SDValue C = DAG.getConstantFP(IsExp10 ? c_exp10 : c_exp, SL, VT); SDValue CC = DAG.getConstantFP(IsExp10 ? cc_exp10 : cc_exp, SL, VT); PH = DAG.getNode(ISD::FMUL, SL, VT, X, C, Flags); SDValue NegPH = DAG.getNode(ISD::FNEG, SL, VT, PH, Flags); SDValue FMA0 = DAG.getNode(ISD::FMA, SL, VT, X, C, NegPH, Flags); PL = DAG.getNode(ISD::FMA, SL, VT, X, CC, FMA0, Flags); } else { const float ch_exp = 0x1.714000p+0f; const float cl_exp = 0x1.47652ap-12f; // ch + cl are 36 bits const float ch_exp10 = 0x1.a92000p+1f; const float cl_exp10 = 0x1.4f0978p-11f; SDValue CH = DAG.getConstantFP(IsExp10 ? ch_exp10 : ch_exp, SL, VT); SDValue CL = DAG.getConstantFP(IsExp10 ? cl_exp10 : cl_exp, SL, VT); SDValue XAsInt = DAG.getNode(ISD::BITCAST, SL, MVT::i32, X); SDValue MaskConst = DAG.getConstant(0xfffff000, SL, MVT::i32); SDValue XHAsInt = DAG.getNode(ISD::AND, SL, MVT::i32, XAsInt, MaskConst); SDValue XH = DAG.getNode(ISD::BITCAST, SL, VT, XHAsInt); SDValue XL = DAG.getNode(ISD::FSUB, SL, VT, X, XH, Flags); PH = DAG.getNode(ISD::FMUL, SL, VT, XH, CH, Flags); SDValue XLCL = DAG.getNode(ISD::FMUL, SL, VT, XL, CL, Flags); SDValue Mad0 = getMad(DAG, SL, VT, XL, CH, XLCL, Flags); PL = getMad(DAG, SL, VT, XH, CL, Mad0, Flags); } SDValue E = DAG.getNode(ISD::FROUNDEVEN, SL, VT, PH, Flags); // It is unsafe to contract this fsub into the PH multiply. SDValue PHSubE = DAG.getNode(ISD::FSUB, SL, VT, PH, E, FlagsNoContract); SDValue A = DAG.getNode(ISD::FADD, SL, VT, PHSubE, PL, Flags); SDValue IntE = DAG.getNode(ISD::FP_TO_SINT, SL, MVT::i32, E); SDValue Exp2 = DAG.getNode(AMDGPUISD::EXP, SL, VT, A, Flags); SDValue R = DAG.getNode(ISD::FLDEXP, SL, VT, Exp2, IntE, Flags); SDValue UnderflowCheckConst = DAG.getConstantFP(IsExp10 ? -0x1.66d3e8p+5f : -0x1.9d1da0p+6f, SL, VT); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue Zero = DAG.getConstantFP(0.0, SL, VT); SDValue Underflow = DAG.getSetCC(SL, SetCCVT, X, UnderflowCheckConst, ISD::SETOLT); R = DAG.getNode(ISD::SELECT, SL, VT, Underflow, Zero, R); const auto &Options = getTargetMachine().Options; if (!Flags.hasNoInfs() && !Options.NoInfsFPMath) { SDValue OverflowCheckConst = DAG.getConstantFP(IsExp10 ? 0x1.344136p+5f : 0x1.62e430p+6f, SL, VT); SDValue Overflow = DAG.getSetCC(SL, SetCCVT, X, OverflowCheckConst, ISD::SETOGT); SDValue Inf = DAG.getConstantFP(APFloat::getInf(APFloat::IEEEsingle()), SL, VT); R = DAG.getNode(ISD::SELECT, SL, VT, Overflow, Inf, R); } return R; } static bool isCtlzOpc(unsigned Opc) { return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; } static bool isCttzOpc(unsigned Opc) { return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; } SDValue AMDGPUTargetLowering::lowerCTLZResults(SDValue Op, SelectionDAG &DAG) const { auto SL = SDLoc(Op); auto Opc = Op.getOpcode(); auto Arg = Op.getOperand(0u); auto ResultVT = Op.getValueType(); if (ResultVT != MVT::i8 && ResultVT != MVT::i16) return {}; assert(isCtlzOpc(Opc)); assert(ResultVT == Arg.getValueType()); const uint64_t NumBits = ResultVT.getFixedSizeInBits(); SDValue NumExtBits = DAG.getConstant(32u - NumBits, SL, MVT::i32); SDValue NewOp; if (Opc == ISD::CTLZ_ZERO_UNDEF) { NewOp = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Arg); NewOp = DAG.getNode(ISD::SHL, SL, MVT::i32, NewOp, NumExtBits); NewOp = DAG.getNode(Opc, SL, MVT::i32, NewOp); } else { NewOp = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Arg); NewOp = DAG.getNode(Opc, SL, MVT::i32, NewOp); NewOp = DAG.getNode(ISD::SUB, SL, MVT::i32, NewOp, NumExtBits); } return DAG.getNode(ISD::TRUNCATE, SL, ResultVT, NewOp); } SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); bool Ctlz = isCtlzOpc(Op.getOpcode()); unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; bool Is64BitScalar = !Src->isDivergent() && Src.getValueType() == MVT::i64; if (Src.getValueType() == MVT::i32 || Is64BitScalar) { // (ctlz hi:lo) -> (umin (ffbh src), 32) // (cttz hi:lo) -> (umin (ffbl src), 32) // (ctlz_zero_undef src) -> (ffbh src) // (cttz_zero_undef src) -> (ffbl src) // 64-bit scalar version produce 32-bit result // (ctlz hi:lo) -> (umin (S_FLBIT_I32_B64 src), 64) // (cttz hi:lo) -> (umin (S_FF1_I32_B64 src), 64) // (ctlz_zero_undef src) -> (S_FLBIT_I32_B64 src) // (cttz_zero_undef src) -> (S_FF1_I32_B64 src) SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); if (!ZeroUndef) { const SDValue ConstVal = DAG.getConstant( Op.getValueType().getScalarSizeInBits(), SL, MVT::i32); NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, ConstVal); } return DAG.getNode(ISD::ZERO_EXTEND, SL, Src.getValueType(), NewOpr); } SDValue Lo, Hi; std::tie(Lo, Hi) = split64BitValue(Src, DAG); SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); if (Ctlz) OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); else OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); SDValue NewOpr; NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); if (!ZeroUndef) { const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); } return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); } SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, bool Signed) const { // The regular method converting a 64-bit integer to float roughly consists of // 2 steps: normalization and rounding. In fact, after normalization, the // conversion from a 64-bit integer to a float is essentially the same as the // one from a 32-bit integer. The only difference is that it has more // trailing bits to be rounded. To leverage the native 32-bit conversion, a // 64-bit integer could be preprocessed and fit into a 32-bit integer then // converted into the correct float number. The basic steps for the unsigned // conversion are illustrated in the following pseudo code: // // f32 uitofp(i64 u) { // i32 hi, lo = split(u); // // Only count the leading zeros in hi as we have native support of the // // conversion from i32 to f32. If hi is all 0s, the conversion is // // reduced to a 32-bit one automatically. // i32 shamt = clz(hi); // Return 32 if hi is all 0s. // u <<= shamt; // hi, lo = split(u); // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. // // convert it as a 32-bit integer and scale the result back. // return uitofp(hi) * 2^(32 - shamt); // } // // The signed one follows the same principle but uses 'ffbh_i32' to count its // sign bits instead. If 'ffbh_i32' is not available, its absolute value is // converted instead followed by negation based its sign bit. SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue Lo, Hi; std::tie(Lo, Hi) = split64BitValue(Src, DAG); SDValue Sign; SDValue ShAmt; if (Signed && Subtarget->isGCN()) { // We also need to consider the sign bit in Lo if Hi has just sign bits, // i.e. Hi is 0 or -1. However, that only needs to take the MSB into // account. That is, the maximal shift is // - 32 if Lo and Hi have opposite signs; // - 33 if Lo and Hi have the same sign. // // Or, MaxShAmt = 33 + OppositeSign, where // // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is // - -1 if Lo and Hi have opposite signs; and // - 0 otherwise. // // All in all, ShAmt is calculated as // // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. // // or // // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). // // to reduce the critical path. SDValue OppositeSign = DAG.getNode( ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), DAG.getConstant(31, SL, MVT::i32)); SDValue MaxShAmt = DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), OppositeSign); // Count the leading sign bits. ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); // Different from unsigned conversion, the shift should be one bit less to // preserve the sign bit. ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, DAG.getConstant(1, SL, MVT::i32)); ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); } else { if (Signed) { // Without 'ffbh_i32', only leading zeros could be counted. Take the // absolute value first. Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, DAG.getConstant(63, SL, MVT::i64)); SDValue Abs = DAG.getNode(ISD::XOR, SL, MVT::i64, DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); std::tie(Lo, Hi) = split64BitValue(Abs, DAG); } // Count the leading zeros. ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); // The shift amount for signed integers is [0, 32]. } // Normalize the given 64-bit integer. SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); // Split it again. std::tie(Lo, Hi) = split64BitValue(Norm, DAG); // Calculate the adjust bit for rounding. // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, DAG.getConstant(1, SL, MVT::i32), Lo); // Get the 32-bit normalized integer. Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); // Convert the normalized 32-bit integer into f32. unsigned Opc = (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); // Finally, need to scale back the converted floating number as the original // 64-bit integer is converted as a 32-bit one. ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), ShAmt); // On GCN, use LDEXP directly. if (Subtarget->isGCN()) return DAG.getNode(ISD::FLDEXP, SL, MVT::f32, FVal, ShAmt); // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent // part directly to emulate the multiplication of 2^ShAmt. That 8-bit // exponent is enough to avoid overflowing into the sign bit. SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, DAG.getConstant(23, SL, MVT::i32)); SDValue IVal = DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); if (Signed) { // Set the sign bit. Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), DAG.getConstant(31, SL, MVT::i32)); IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); } return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); } SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, bool Signed) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); SDValue Lo, Hi; std::tie(Lo, Hi) = split64BitValue(Src, DAG); SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, SL, MVT::f64, Hi); SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); SDValue LdExp = DAG.getNode(ISD::FLDEXP, SL, MVT::f64, CvtHi, DAG.getConstant(32, SL, MVT::i32)); // TODO: Should this propagate fast-math-flags? return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); } SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { // TODO: Factor out code common with LowerSINT_TO_FP. EVT DestVT = Op.getValueType(); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); if (SrcVT == MVT::i16) { if (DestVT == MVT::f16) return Op; SDLoc DL(Op); // Promote src to i32 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); } if (DestVT == MVT::bf16) { SDLoc SL(Op); SDValue ToF32 = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f32, Src); SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SL, /*isTarget=*/true); return DAG.getNode(ISD::FP_ROUND, SL, MVT::bf16, ToF32, FPRoundFlag); } if (SrcVT != MVT::i64) return Op; if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { SDLoc DL(Op); SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op), /*isTarget=*/true); SDValue FPRound = DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); return FPRound; } if (DestVT == MVT::f32) return LowerINT_TO_FP32(Op, DAG, false); assert(DestVT == MVT::f64); return LowerINT_TO_FP64(Op, DAG, false); } SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { EVT DestVT = Op.getValueType(); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); if (SrcVT == MVT::i16) { if (DestVT == MVT::f16) return Op; SDLoc DL(Op); // Promote src to i32 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); } if (DestVT == MVT::bf16) { SDLoc SL(Op); SDValue ToF32 = DAG.getNode(ISD::SINT_TO_FP, SL, MVT::f32, Src); SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SL, /*isTarget=*/true); return DAG.getNode(ISD::FP_ROUND, SL, MVT::bf16, ToF32, FPRoundFlag); } if (SrcVT != MVT::i64) return Op; // TODO: Factor out code common with LowerUINT_TO_FP. if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { SDLoc DL(Op); SDValue Src = Op.getOperand(0); SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op), /*isTarget=*/true); SDValue FPRound = DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); return FPRound; } if (DestVT == MVT::f32) return LowerINT_TO_FP32(Op, DAG, true); assert(DestVT == MVT::f64); return LowerINT_TO_FP64(Op, DAG, true); } SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, bool Signed) const { SDLoc SL(Op); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); // The basic idea of converting a floating point number into a pair of 32-bit // integers is illustrated as follows: // // tf := trunc(val); // hif := floor(tf * 2^-32); // lof := tf - hif * 2^32; // lof is always positive due to floor. // hi := fptoi(hif); // lo := fptoi(lof); // SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); SDValue Sign; if (Signed && SrcVT == MVT::f32) { // However, a 32-bit floating point number has only 23 bits mantissa and // it's not enough to hold all the significant bits of `lof` if val is // negative. To avoid the loss of precision, We need to take the absolute // value after truncating and flip the result back based on the original // signedness. Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), DAG.getConstant(31, SL, MVT::i32)); Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); } SDValue K0, K1; if (SrcVT == MVT::f64) { K0 = DAG.getConstantFP( llvm::bit_cast(UINT64_C(/*2^-32*/ 0x3df0000000000000)), SL, SrcVT); K1 = DAG.getConstantFP( llvm::bit_cast(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), SL, SrcVT); } else { K0 = DAG.getConstantFP( llvm::bit_cast(UINT32_C(/*2^-32*/ 0x2f800000)), SL, SrcVT); K1 = DAG.getConstantFP( llvm::bit_cast(UINT32_C(/*-2^32*/ 0xcf800000)), SL, SrcVT); } // TODO: Should this propagate fast-math-flags? SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, MVT::i32, FloorMul); SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); if (Signed && SrcVT == MVT::f32) { assert(Sign); // Flip the result based on the signedness, which is either all 0s or 1s. Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); // r := xor(r, sign) - sign; Result = DAG.getNode(ISD::SUB, SL, MVT::i64, DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); } return Result; } SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue N0 = Op.getOperand(0); // Convert to target node to get known bits if (N0.getValueType() == MVT::f32) return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); if (getTargetMachine().Options.UnsafeFPMath) { // There is a generic expand for FP_TO_FP16 with unsafe fast math. return SDValue(); } assert(N0.getSimpleValueType() == MVT::f64); // f64 -> f16 conversion using round-to-nearest-even rounding mode. const unsigned ExpMask = 0x7ff; const unsigned ExpBiasf64 = 1023; const unsigned ExpBiasf16 = 15; SDValue Zero = DAG.getConstant(0, DL, MVT::i32); SDValue One = DAG.getConstant(1, DL, MVT::i32); SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, DAG.getConstant(32, DL, MVT::i64)); UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); U = DAG.getZExtOrTrunc(U, DL, MVT::i32); SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, DAG.getConstant(20, DL, MVT::i64)); E = DAG.getNode(ISD::AND, DL, MVT::i32, E, DAG.getConstant(ExpMask, DL, MVT::i32)); // Subtract the fp64 exponent bias (1023) to get the real exponent and // add the f16 bias (15) to get the biased exponent for the f16 format. E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, DAG.getConstant(8, DL, MVT::i32)); M = DAG.getNode(ISD::AND, DL, MVT::i32, M, DAG.getConstant(0xffe, DL, MVT::i32)); SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, DAG.getConstant(0x1ff, DL, MVT::i32)); MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); // (M != 0 ? 0x0200 : 0) | 0x7c00; SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); // N = M | (E << 12); SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, DAG.getNode(ISD::SHL, DL, MVT::i32, E, DAG.getConstant(12, DL, MVT::i32))); // B = clamp(1-E, 0, 13); SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, One, E); SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, DAG.getConstant(13, DL, MVT::i32)); SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, DAG.getConstant(0x1000, DL, MVT::i32)); SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, DAG.getConstant(0x7, DL, MVT::i32)); V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, DAG.getConstant(2, DL, MVT::i32)); SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), One, Zero, ISD::SETEQ); SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), One, Zero, ISD::SETGT); V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), I, V, ISD::SETEQ); // Extract the sign bit. SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, DAG.getConstant(16, DL, MVT::i32)); Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, DAG.getConstant(0x8000, DL, MVT::i32)); V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); } SDValue AMDGPUTargetLowering::LowerFP_TO_INT(const SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); unsigned OpOpcode = Op.getOpcode(); EVT SrcVT = Src.getValueType(); EVT DestVT = Op.getValueType(); // Will be selected natively if (SrcVT == MVT::f16 && DestVT == MVT::i16) return Op; if (SrcVT == MVT::bf16) { SDLoc DL(Op); SDValue PromotedSrc = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); return DAG.getNode(Op.getOpcode(), DL, DestVT, PromotedSrc); } // Promote i16 to i32 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { SDLoc DL(Op); SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); } if (DestVT != MVT::i64) return Op; if (SrcVT == MVT::f16 || (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { SDLoc DL(Op); SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); unsigned Ext = OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); } if (SrcVT == MVT::f32 || SrcVT == MVT::f64) return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); return SDValue(); } SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const { EVT ExtraVT = cast(Op.getOperand(1))->getVT(); MVT VT = Op.getSimpleValueType(); MVT ScalarVT = VT.getScalarType(); assert(VT.isVector()); SDValue Src = Op.getOperand(0); SDLoc DL(Op); // TODO: Don't scalarize on Evergreen? unsigned NElts = VT.getVectorNumElements(); SmallVector Args; DAG.ExtractVectorElements(Src, Args, 0, NElts); SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); for (unsigned I = 0; I < NElts; ++I) Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); return DAG.getBuildVector(VT, DL, Args); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// static bool isU24(SDValue Op, SelectionDAG &DAG) { return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; } static bool isI24(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated // as unsigned 24-bit values. AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; } static SDValue simplifyMul24(SDNode *Node24, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); unsigned NewOpcode = Node24->getOpcode(); if (IsIntrin) { unsigned IID = Node24->getConstantOperandVal(0); switch (IID) { case Intrinsic::amdgcn_mul_i24: NewOpcode = AMDGPUISD::MUL_I24; break; case Intrinsic::amdgcn_mul_u24: NewOpcode = AMDGPUISD::MUL_U24; break; case Intrinsic::amdgcn_mulhi_i24: NewOpcode = AMDGPUISD::MULHI_I24; break; case Intrinsic::amdgcn_mulhi_u24: NewOpcode = AMDGPUISD::MULHI_U24; break; default: llvm_unreachable("Expected 24-bit mul intrinsic"); } } APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); // First try to simplify using SimplifyMultipleUseDemandedBits which allows // the operands to have other uses, but will only perform simplifications that // involve bypassing some nodes for this user. SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); if (DemandedLHS || DemandedRHS) return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), DemandedLHS ? DemandedLHS : LHS, DemandedRHS ? DemandedRHS : RHS); // Now try SimplifyDemandedBits which can simplify the nodes used by our // operands if this node is the only user. if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) return SDValue(Node24, 0); if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) return SDValue(Node24, 0); return SDValue(); } template static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, uint32_t Width, const SDLoc &DL) { if (Width + Offset < 32) { uint32_t Shl = static_cast(Src0) << (32 - Offset - Width); IntTy Result = static_cast(Shl) >> (32 - Width); return DAG.getConstant(Result, DL, MVT::i32); } return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); } static bool hasVolatileUser(SDNode *Val) { for (SDNode *U : Val->uses()) { if (MemSDNode *M = dyn_cast(U)) { if (M->isVolatile()) return true; } } return false; } bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { // i32 vectors are the canonical memory type. if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) return false; if (!VT.isByteSized()) return false; unsigned Size = VT.getStoreSize(); if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) return false; if (Size == 3 || (Size > 4 && (Size % 4 != 0))) return false; return true; } // Replace load of an illegal type with a store of a bitcast to a friendlier // type. SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!DCI.isBeforeLegalize()) return SDValue(); LoadSDNode *LN = cast(N); if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) return SDValue(); SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; EVT VT = LN->getMemoryVT(); unsigned Size = VT.getStoreSize(); Align Alignment = LN->getAlign(); if (Alignment < Size && isTypeLegal(VT)) { unsigned IsFast; unsigned AS = LN->getAddressSpace(); // Expand unaligned loads earlier than legalization. Due to visitation order // problems during legalization, the emitted instructions to pack and unpack // the bytes again are not eliminated in the case of an unaligned copy. if (!allowsMisalignedMemoryAccesses( VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { if (VT.isVector()) return SplitVectorLoad(SDValue(LN, 0), DAG); SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); return DAG.getMergeValues(Ops, SDLoc(N)); } if (!IsFast) return SDValue(); } if (!shouldCombineMemoryType(VT)) return SDValue(); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue NewLoad = DAG.getLoad(NewVT, SL, LN->getChain(), LN->getBasePtr(), LN->getMemOperand()); SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); DCI.CombineTo(N, BC, NewLoad.getValue(1)); return SDValue(N, 0); } // Replace store of an illegal type with a store of a bitcast to a friendlier // type. SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!DCI.isBeforeLegalize()) return SDValue(); StoreSDNode *SN = cast(N); if (!SN->isSimple() || !ISD::isNormalStore(SN)) return SDValue(); EVT VT = SN->getMemoryVT(); unsigned Size = VT.getStoreSize(); SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; Align Alignment = SN->getAlign(); if (Alignment < Size && isTypeLegal(VT)) { unsigned IsFast; unsigned AS = SN->getAddressSpace(); // Expand unaligned stores earlier than legalization. Due to visitation // order problems during legalization, the emitted instructions to pack and // unpack the bytes again are not eliminated in the case of an unaligned // copy. if (!allowsMisalignedMemoryAccesses( VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { if (VT.isVector()) return SplitVectorStore(SDValue(SN, 0), DAG); return expandUnalignedStore(SN, DAG); } if (!IsFast) return SDValue(); } if (!shouldCombineMemoryType(VT)) return SDValue(); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue Val = SN->getValue(); //DCI.AddToWorklist(Val.getNode()); bool OtherUses = !Val.hasOneUse(); SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); if (OtherUses) { SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); DAG.ReplaceAllUsesOfValueWith(Val, CastBack); } return DAG.getStore(SN->getChain(), SL, CastVal, SN->getBasePtr(), SN->getMemOperand()); } // FIXME: This should go in generic DAG combiner with an isTruncateFree check, // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU // issues. SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); // (vt2 (assertzext (truncate vt0:x), vt1)) -> // (vt2 (truncate (assertzext vt0:x, vt1))) if (N0.getOpcode() == ISD::TRUNCATE) { SDValue N1 = N->getOperand(1); EVT ExtVT = cast(N1)->getVT(); SDLoc SL(N); SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); if (SrcVT.bitsGE(ExtVT)) { SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); } } return SDValue(); } SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( SDNode *N, DAGCombinerInfo &DCI) const { unsigned IID = N->getConstantOperandVal(0); switch (IID) { case Intrinsic::amdgcn_mul_i24: case Intrinsic::amdgcn_mul_u24: case Intrinsic::amdgcn_mulhi_i24: case Intrinsic::amdgcn_mulhi_u24: return simplifyMul24(N, DCI); case Intrinsic::amdgcn_fract: case Intrinsic::amdgcn_rsq: case Intrinsic::amdgcn_rcp_legacy: case Intrinsic::amdgcn_rsq_legacy: case Intrinsic::amdgcn_rsq_clamp: { // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted SDValue Src = N->getOperand(1); return Src.isUndef() ? Src : SDValue(); } case Intrinsic::amdgcn_frexp_exp: { // frexp_exp (fneg x) -> frexp_exp x // frexp_exp (fabs x) -> frexp_exp x // frexp_exp (fneg (fabs x)) -> frexp_exp x SDValue Src = N->getOperand(1); SDValue PeekSign = peekFPSignOps(Src); if (PeekSign == Src) return SDValue(); return SDValue(DCI.DAG.UpdateNodeOperands(N, N->getOperand(0), PeekSign), 0); } default: return SDValue(); } } /// Split the 64-bit value \p LHS into two 32-bit components, and perform the /// binary operation \p Opc to it with the corresponding constant operands. SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, uint32_t ValLo, uint32_t ValHi) const { SelectionDAG &DAG = DCI.DAG; SDValue Lo, Hi; std::tie(Lo, Hi) = split64BitValue(LHS, DAG); SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); // Re-visit the ands. It's possible we eliminated one of them and it could // simplify the vector. DCI.AddToWorklist(Lo.getNode()); DCI.AddToWorklist(Hi.getNode()); SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); ConstantSDNode *RHS = dyn_cast(N->getOperand(1)); if (!RHS) return SDValue(); SDValue LHS = N->getOperand(0); unsigned RHSVal = RHS->getZExtValue(); if (!RHSVal) return LHS; SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; switch (LHS->getOpcode()) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: { SDValue X = LHS->getOperand(0); if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { // Prefer build_vector as the canonical form if packed types are legal. // (shl ([asz]ext i16:x), 16 -> build_vector 0, x SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); } // shl (ext x) => zext (shl x), if shift does not overflow int if (VT != MVT::i64) break; KnownBits Known = DAG.computeKnownBits(X); unsigned LZ = Known.countMinLeadingZeros(); if (LZ < RHSVal) break; EVT XVT = X.getValueType(); SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); return DAG.getZExtOrTrunc(Shl, SL, VT); } } if (VT != MVT::i64) return SDValue(); // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) // On some subtargets, 64-bit shift is a quarter rate instruction. In the // common case, splitting this into a move and a 32-bit shift is faster and // the same code size. if (RHSVal < 32) return SDValue(); SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i64) return SDValue(); const ConstantSDNode *RHS = dyn_cast(N->getOperand(1)); if (!RHS) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned RHSVal = RHS->getZExtValue(); // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) if (RHSVal == 32) { SDValue Hi = getHiHalf64(N->getOperand(0), DAG); SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, DAG.getConstant(31, SL, MVT::i32)); SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); } // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) if (RHSVal == 63) { SDValue Hi = getHiHalf64(N->getOperand(0), DAG); SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, DAG.getConstant(31, SL, MVT::i32)); SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); } return SDValue(); } SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, DAGCombinerInfo &DCI) const { auto *RHS = dyn_cast(N->getOperand(1)); if (!RHS) return SDValue(); EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); unsigned ShiftAmt = RHS->getZExtValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) // this improves the ability to match BFE patterns in isel. if (LHS.getOpcode() == ISD::AND) { if (auto *Mask = dyn_cast(LHS.getOperand(1))) { unsigned MaskIdx, MaskLen; if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) && MaskIdx == ShiftAmt) { return DAG.getNode( ISD::AND, SL, VT, DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); } } } if (VT != MVT::i64) return SDValue(); if (ShiftAmt < 32) return SDValue(); // srl i64:x, C for C >= 32 // => // build_pair (srl hi_32(x), C - 32), 0 SDValue Zero = DAG.getConstant(0, SL, MVT::i32); SDValue Hi = getHiHalf64(LHS, DAG); SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); } SDValue AMDGPUTargetLowering::performTruncateCombine( SDNode *N, DAGCombinerInfo &DCI) const { SDLoc SL(N); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue Src = N->getOperand(0); // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { SDValue Vec = Src.getOperand(0); if (Vec.getOpcode() == ISD::BUILD_VECTOR) { SDValue Elt0 = Vec.getOperand(0); EVT EltVT = Elt0.getValueType(); if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { if (EltVT.isFloatingPoint()) { Elt0 = DAG.getNode(ISD::BITCAST, SL, EltVT.changeTypeToInteger(), Elt0); } return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); } } } // Equivalent of above for accessing the high element of a vector as an // integer operation. // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { if (auto K = isConstOrConstSplat(Src.getOperand(1))) { if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { SDValue BV = stripBitcast(Src.getOperand(0)); if (BV.getOpcode() == ISD::BUILD_VECTOR && BV.getValueType().getVectorNumElements() == 2) { SDValue SrcElt = BV.getOperand(1); EVT SrcEltVT = SrcElt.getValueType(); if (SrcEltVT.isFloatingPoint()) { SrcElt = DAG.getNode(ISD::BITCAST, SL, SrcEltVT.changeTypeToInteger(), SrcElt); } return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); } } } } // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. // // i16 (trunc (srl i64:x, K)), K <= 16 -> // i16 (trunc (srl (i32 (trunc x), K))) if (VT.getScalarSizeInBits() < 32) { EVT SrcVT = Src.getValueType(); if (SrcVT.getScalarSizeInBits() > 32 && (Src.getOpcode() == ISD::SRL || Src.getOpcode() == ISD::SRA || Src.getOpcode() == ISD::SHL)) { SDValue Amt = Src.getOperand(1); KnownBits Known = DAG.computeKnownBits(Amt); // - For left shifts, do the transform as long as the shift // amount is still legal for i32, so when ShiftAmt < 32 (<= 31) // - For right shift, do it if ShiftAmt <= (32 - Size) to avoid // losing information stored in the high bits when truncating. const unsigned MaxCstSize = (Src.getOpcode() == ISD::SHL) ? 31 : (32 - VT.getScalarSizeInBits()); if (Known.getMaxValue().ule(MaxCstSize)) { EVT MidVT = VT.isVector() ? EVT::getVectorVT(*DAG.getContext(), MVT::i32, VT.getVectorNumElements()) : MVT::i32; EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, Src.getOperand(0)); DCI.AddToWorklist(Trunc.getNode()); if (Amt.getValueType() != NewShiftVT) { Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); DCI.AddToWorklist(Amt.getNode()); } SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, Trunc, Amt); return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); } } } return SDValue(); } // We need to specifically handle i64 mul here to avoid unnecessary conversion // instructions. If we only match on the legalized i64 mul expansion, // SimplifyDemandedBits will be unable to remove them because there will be // multiple uses due to the separate mul + mulh[su]. static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, SDValue N0, SDValue N1, unsigned Size, bool Signed) { if (Size <= 32) { unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); } unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); } /// If \p V is an add of a constant 1, returns the other operand. Otherwise /// return SDValue(). static SDValue getAddOneOp(const SDNode *V) { if (V->getOpcode() != ISD::ADD) return SDValue(); return isOneConstant(V->getOperand(1)) ? V->getOperand(0) : SDValue(); } SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, DAGCombinerInfo &DCI) const { assert(N->getOpcode() == ISD::MUL); EVT VT = N->getValueType(0); // Don't generate 24-bit multiplies on values that are in SGPRs, since // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs // unnecessarily). isDivergent() is used as an approximation of whether the // value is in an SGPR. if (!N->isDivergent()) return SDValue(); unsigned Size = VT.getSizeInBits(); if (VT.isVector() || Size > 64) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // Undo InstCombine canonicalize X * (Y + 1) -> X * Y + X to enable mad // matching. // mul x, (add y, 1) -> add (mul x, y), x auto IsFoldableAdd = [](SDValue V) -> SDValue { SDValue AddOp = getAddOneOp(V.getNode()); if (!AddOp) return SDValue(); if (V.hasOneUse() || all_of(V->uses(), [](const SDNode *U) -> bool { return U->getOpcode() == ISD::MUL; })) return AddOp; return SDValue(); }; // FIXME: The selection pattern is not properly checking for commuted // operands, so we have to place the mul in the LHS if (SDValue MulOper = IsFoldableAdd(N0)) { SDValue MulVal = DAG.getNode(N->getOpcode(), DL, VT, N1, MulOper); return DAG.getNode(ISD::ADD, DL, VT, MulVal, N1); } if (SDValue MulOper = IsFoldableAdd(N1)) { SDValue MulVal = DAG.getNode(N->getOpcode(), DL, VT, N0, MulOper); return DAG.getNode(ISD::ADD, DL, VT, MulVal, N0); } // There are i16 integer mul/mad. if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) return SDValue(); // SimplifyDemandedBits has the annoying habit of turning useful zero_extends // in the source into any_extends if the result of the mul is truncated. Since // we can assume the high bits are whatever we want, use the underlying value // to avoid the unknown high bits from interfering. if (N0.getOpcode() == ISD::ANY_EXTEND) N0 = N0.getOperand(0); if (N1.getOpcode() == ISD::ANY_EXTEND) N1 = N1.getOperand(0); SDValue Mul; if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); Mul = getMul24(DAG, DL, N0, N1, Size, false); } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); Mul = getMul24(DAG, DL, N0, N1, Size, true); } else { return SDValue(); } // We need to use sext even for MUL_U24, because MUL_U24 is used // for signed multiply of 8 and 16-bit types. return DAG.getSExtOrTrunc(Mul, DL, VT); } SDValue AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i32) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); bool Signed = N->getOpcode() == ISD::SMUL_LOHI; SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // SimplifyDemandedBits has the annoying habit of turning useful zero_extends // in the source into any_extends if the result of the mul is truncated. Since // we can assume the high bits are whatever we want, use the underlying value // to avoid the unknown high bits from interfering. if (N0.getOpcode() == ISD::ANY_EXTEND) N0 = N0.getOperand(0); if (N1.getOpcode() == ISD::ANY_EXTEND) N1 = N1.getOperand(0); // Try to use two fast 24-bit multiplies (one for each half of the result) // instead of one slow extending multiply. unsigned LoOpcode = 0; unsigned HiOpcode = 0; if (Signed) { if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); LoOpcode = AMDGPUISD::MUL_I24; HiOpcode = AMDGPUISD::MULHI_I24; } } else { if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); LoOpcode = AMDGPUISD::MUL_U24; HiOpcode = AMDGPUISD::MULHI_U24; } } if (!LoOpcode) return SDValue(); SDValue Lo = DAG.getNode(LoOpcode, DL, MVT::i32, N0, N1); SDValue Hi = DAG.getNode(HiOpcode, DL, MVT::i32, N0, N1); DCI.CombineTo(N, Lo, Hi); return SDValue(N, 0); } SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); if (!Subtarget->hasMulI24() || VT.isVector()) return SDValue(); // Don't generate 24-bit multiplies on values that are in SGPRs, since // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs // unnecessarily). isDivergent() is used as an approximation of whether the // value is in an SGPR. // This doesn't apply if no s_mul_hi is available (since we'll end up with a // valu op anyway) if (Subtarget->hasSMulHi() && !N->isDivergent()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (!isI24(N0, DAG) || !isI24(N1, DAG)) return SDValue(); N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); DCI.AddToWorklist(Mulhi.getNode()); return DAG.getSExtOrTrunc(Mulhi, DL, VT); } SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) return SDValue(); // Don't generate 24-bit multiplies on values that are in SGPRs, since // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs // unnecessarily). isDivergent() is used as an approximation of whether the // value is in an SGPR. // This doesn't apply if no s_mul_hi is available (since we'll end up with a // valu op anyway) if (Subtarget->hasSMulHi() && !N->isDivergent()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); if (!isU24(N0, DAG) || !isU24(N1, DAG)) return SDValue(); N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); DCI.AddToWorklist(Mulhi.getNode()); return DAG.getZExtOrTrunc(Mulhi, DL, VT); } SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, SDValue Op, const SDLoc &DL, unsigned Opc) const { EVT VT = Op.getValueType(); EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && LegalVT != MVT::i16)) return SDValue(); if (VT != MVT::i32) Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); if (VT != MVT::i32) FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); return FFBX; } // The native instructions return -1 on 0 input. Optimize out a select that // produces -1 on 0. // // TODO: If zero is not undef, we could also do this if the output is compared // against the bitwidth. // // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, SDValue LHS, SDValue RHS, DAGCombinerInfo &DCI) const { if (!isNullConstant(Cond.getOperand(1))) return SDValue(); SelectionDAG &DAG = DCI.DAG; ISD::CondCode CCOpcode = cast(Cond.getOperand(2))->get(); SDValue CmpLHS = Cond.getOperand(0); // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x if (CCOpcode == ISD::SETEQ && (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && RHS.getOperand(0) == CmpLHS && isAllOnesConstant(LHS)) { unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; return getFFBX_U32(DAG, CmpLHS, SL, Opc); } // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x if (CCOpcode == ISD::SETNE && (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && LHS.getOperand(0) == CmpLHS && isAllOnesConstant(RHS)) { unsigned Opc = isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; return getFFBX_U32(DAG, CmpLHS, SL, Opc); } return SDValue(); } static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, unsigned Op, const SDLoc &SL, SDValue Cond, SDValue N1, SDValue N2) { SelectionDAG &DAG = DCI.DAG; EVT VT = N1.getValueType(); SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, N1.getOperand(0), N2.getOperand(0)); DCI.AddToWorklist(NewSelect.getNode()); return DAG.getNode(Op, SL, VT, NewSelect); } // Pull a free FP operation out of a select so it may fold into uses. // // select c, (fneg x), (fneg y) -> fneg (select c, x, y) // select c, (fneg x), k -> fneg (select c, x, (fneg k)) // // select c, (fabs x), (fabs y) -> fabs (select c, x, y) // select c, (fabs x), +k -> fabs (select c, x, k) SDValue AMDGPUTargetLowering::foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, SDValue N) const { SelectionDAG &DAG = DCI.DAG; SDValue Cond = N.getOperand(0); SDValue LHS = N.getOperand(1); SDValue RHS = N.getOperand(2); EVT VT = N.getValueType(); if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N.getNode())) return SDValue(); return distributeOpThroughSelect(DCI, LHS.getOpcode(), SDLoc(N), Cond, LHS, RHS); } bool Inv = false; if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { std::swap(LHS, RHS); Inv = true; } // TODO: Support vector constants. ConstantFPSDNode *CRHS = dyn_cast(RHS); if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS && !selectSupportsSourceMods(N.getNode())) { SDLoc SL(N); // If one side is an fneg/fabs and the other is a constant, we can push the // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. SDValue NewLHS = LHS.getOperand(0); SDValue NewRHS = RHS; // Careful: if the neg can be folded up, don't try to pull it back down. bool ShouldFoldNeg = true; if (NewLHS.hasOneUse()) { unsigned Opc = NewLHS.getOpcode(); if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(NewLHS.getNode())) ShouldFoldNeg = false; if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) ShouldFoldNeg = false; } if (ShouldFoldNeg) { if (LHS.getOpcode() == ISD::FABS && CRHS->isNegative()) return SDValue(); // We're going to be forced to use a source modifier anyway, there's no // point to pulling the negate out unless we can get a size reduction by // negating the constant. // // TODO: Generalize to use getCheaperNegatedExpression which doesn't know // about cheaper constants. if (NewLHS.getOpcode() == ISD::FABS && getConstantNegateCost(CRHS) != NegatibleCost::Cheaper) return SDValue(); if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N.getNode())) return SDValue(); if (LHS.getOpcode() == ISD::FNEG) NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); if (Inv) std::swap(NewLHS, NewRHS); SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, NewLHS, NewRHS); DCI.AddToWorklist(NewSelect.getNode()); return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); } } return SDValue(); } SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) return Folded; SDValue Cond = N->getOperand(0); if (Cond.getOpcode() != ISD::SETCC) return SDValue(); EVT VT = N->getValueType(0); SDValue LHS = Cond.getOperand(0); SDValue RHS = Cond.getOperand(1); SDValue CC = Cond.getOperand(2); SDValue True = N->getOperand(1); SDValue False = N->getOperand(2); if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. SelectionDAG &DAG = DCI.DAG; if (DAG.isConstantValueOfAnyType(True) && !DAG.isConstantValueOfAnyType(False)) { // Swap cmp + select pair to move constant to false input. // This will allow using VOPC cndmasks more often. // select (setcc x, y), k, x -> select (setccinv x, y), x, k SDLoc SL(N); ISD::CondCode NewCC = getSetCCInverse(cast(CC)->get(), LHS.getValueType()); SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); } if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { SDValue MinMax = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); // Revisit this node so we can catch min3/max3/med3 patterns. //DCI.AddToWorklist(MinMax.getNode()); return MinMax; } } // There's no reason to not do this if the condition has other uses. return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); } static bool isInv2Pi(const APFloat &APF) { static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); return APF.bitwiseIsEqual(KF16) || APF.bitwiseIsEqual(KF32) || APF.bitwiseIsEqual(KF64); } // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an // additional cost to negate them. TargetLowering::NegatibleCost AMDGPUTargetLowering::getConstantNegateCost(const ConstantFPSDNode *C) const { if (C->isZero()) return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; return NegatibleCost::Neutral; } bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) return getConstantNegateCost(C) == NegatibleCost::Expensive; return false; } bool AMDGPUTargetLowering::isConstantCheaperToNegate(SDValue N) const { if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) return getConstantNegateCost(C) == NegatibleCost::Cheaper; return false; } static unsigned inverseMinMax(unsigned Opc) { switch (Opc) { case ISD::FMAXNUM: return ISD::FMINNUM; case ISD::FMINNUM: return ISD::FMAXNUM; case ISD::FMAXNUM_IEEE: return ISD::FMINNUM_IEEE; case ISD::FMINNUM_IEEE: return ISD::FMAXNUM_IEEE; case ISD::FMAXIMUM: return ISD::FMINIMUM; case ISD::FMINIMUM: return ISD::FMAXIMUM; case AMDGPUISD::FMAX_LEGACY: return AMDGPUISD::FMIN_LEGACY; case AMDGPUISD::FMIN_LEGACY: return AMDGPUISD::FMAX_LEGACY; default: llvm_unreachable("invalid min/max opcode"); } } /// \return true if it's profitable to try to push an fneg into its source /// instruction. bool AMDGPUTargetLowering::shouldFoldFNegIntoSrc(SDNode *N, SDValue N0) { // If the input has multiple uses and we can either fold the negate down, or // the other uses cannot, give up. This both prevents unprofitable // transformations and infinite loops: we won't repeatedly try to fold around // a negate that has no 'good' form. if (N0.hasOneUse()) { // This may be able to fold into the source, but at a code size cost. Don't // fold if the fold into the user is free. if (allUsesHaveSourceMods(N, 0)) return false; } else { if (fnegFoldsIntoOp(N0.getNode()) && (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) return false; } return true; } SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); unsigned Opc = N0.getOpcode(); if (!shouldFoldFNegIntoSrc(N, N0)) return SDValue(); SDLoc SL(N); switch (Opc) { case ISD::FADD: { if (!mayIgnoreSignedZero(N0)) return SDValue(); // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) SDValue LHS = N0.getOperand(0); SDValue RHS = N0.getOperand(1); if (LHS.getOpcode() != ISD::FNEG) LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); else LHS = LHS.getOperand(0); if (RHS.getOpcode() != ISD::FNEG) RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); else RHS = RHS.getOperand(0); SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); if (Res.getOpcode() != ISD::FADD) return SDValue(); // Op got folded away. if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case ISD::FMUL: case AMDGPUISD::FMUL_LEGACY: { // (fneg (fmul x, y)) -> (fmul x, (fneg y)) // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) SDValue LHS = N0.getOperand(0); SDValue RHS = N0.getOperand(1); if (LHS.getOpcode() == ISD::FNEG) LHS = LHS.getOperand(0); else if (RHS.getOpcode() == ISD::FNEG) RHS = RHS.getOperand(0); else RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); if (Res.getOpcode() != Opc) return SDValue(); // Op got folded away. if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case ISD::FMA: case ISD::FMAD: { // TODO: handle llvm.amdgcn.fma.legacy if (!mayIgnoreSignedZero(N0)) return SDValue(); // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) SDValue LHS = N0.getOperand(0); SDValue MHS = N0.getOperand(1); SDValue RHS = N0.getOperand(2); if (LHS.getOpcode() == ISD::FNEG) LHS = LHS.getOperand(0); else if (MHS.getOpcode() == ISD::FNEG) MHS = MHS.getOperand(0); else MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); if (RHS.getOpcode() != ISD::FNEG) RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); else RHS = RHS.getOperand(0); SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); if (Res.getOpcode() != Opc) return SDValue(); // Op got folded away. if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::FMAXNUM_IEEE: case ISD::FMINNUM_IEEE: case ISD::FMINIMUM: case ISD::FMAXIMUM: case AMDGPUISD::FMAX_LEGACY: case AMDGPUISD::FMIN_LEGACY: { // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) SDValue LHS = N0.getOperand(0); SDValue RHS = N0.getOperand(1); // 0 doesn't have a negated inline immediate. // TODO: This constant check should be generalized to other operations. if (isConstantCostlierToNegate(RHS)) return SDValue(); SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); unsigned Opposite = inverseMinMax(Opc); SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); if (Res.getOpcode() != Opposite) return SDValue(); // Op got folded away. if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); return Res; } case AMDGPUISD::FMED3: { SDValue Ops[3]; for (unsigned I = 0; I < 3; ++I) Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); if (Res.getOpcode() != AMDGPUISD::FMED3) return SDValue(); // Op got folded away. if (!N0.hasOneUse()) { SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); DAG.ReplaceAllUsesWith(N0, Neg); for (SDNode *U : Neg->uses()) DCI.AddToWorklist(U); } return Res; } case ISD::FP_EXTEND: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: // XXX - Should fround be handled? case ISD::FROUNDEVEN: case ISD::FSIN: case ISD::FCANONICALIZE: case AMDGPUISD::RCP: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RCP_IFLAG: case AMDGPUISD::SIN_HW: { SDValue CvtSrc = N0.getOperand(0); if (CvtSrc.getOpcode() == ISD::FNEG) { // (fneg (fp_extend (fneg x))) -> (fp_extend x) // (fneg (rcp (fneg x))) -> (rcp x) return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); } if (!N0.hasOneUse()) return SDValue(); // (fneg (fp_extend x)) -> (fp_extend (fneg x)) // (fneg (rcp x)) -> (rcp (fneg x)) SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); } case ISD::FP_ROUND: { SDValue CvtSrc = N0.getOperand(0); if (CvtSrc.getOpcode() == ISD::FNEG) { // (fneg (fp_round (fneg x))) -> (fp_round x) return DAG.getNode(ISD::FP_ROUND, SL, VT, CvtSrc.getOperand(0), N0.getOperand(1)); } if (!N0.hasOneUse()) return SDValue(); // (fneg (fp_round x)) -> (fp_round (fneg x)) SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); } case ISD::FP16_TO_FP: { // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal // f16, but legalization of f16 fneg ends up pulling it out of the source. // Put the fneg back as a legal source operation that can be matched later. SDLoc SL(N); SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, DAG.getConstant(0x8000, SL, SrcVT)); return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); } case ISD::SELECT: { // fneg (select c, a, b) -> select c, (fneg a), (fneg b) // TODO: Invert conditions of foldFreeOpFromSelect return SDValue(); } case ISD::BITCAST: { SDLoc SL(N); SDValue BCSrc = N0.getOperand(0); if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { SDValue HighBits = BCSrc.getOperand(BCSrc.getNumOperands() - 1); if (HighBits.getValueType().getSizeInBits() != 32 || !fnegFoldsIntoOp(HighBits.getNode())) return SDValue(); // f64 fneg only really needs to operate on the high half of of the // register, so try to force it to an f32 operation to help make use of // source modifiers. // // // fneg (f64 (bitcast (build_vector x, y))) -> // f64 (bitcast (build_vector (bitcast i32:x to f32), // (fneg (bitcast i32:y to f32))) SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::f32, HighBits); SDValue NegHi = DAG.getNode(ISD::FNEG, SL, MVT::f32, CastHi); SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, HighBits.getValueType(), NegHi); SmallVector Ops(BCSrc->op_begin(), BCSrc->op_end()); Ops.back() = CastBack; DCI.AddToWorklist(NegHi.getNode()); SDValue Build = DAG.getNode(ISD::BUILD_VECTOR, SL, BCSrc.getValueType(), Ops); SDValue Result = DAG.getNode(ISD::BITCAST, SL, VT, Build); if (!N0.hasOneUse()) DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Result)); return Result; } if (BCSrc.getOpcode() == ISD::SELECT && VT == MVT::f32 && BCSrc.hasOneUse()) { // fneg (bitcast (f32 (select cond, i32:lhs, i32:rhs))) -> // select cond, (bitcast i32:lhs to f32), (bitcast i32:rhs to f32) // TODO: Cast back result for multiple uses is beneficial in some cases. SDValue LHS = DAG.getNode(ISD::BITCAST, SL, MVT::f32, BCSrc.getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, SL, MVT::f32, BCSrc.getOperand(2)); SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, MVT::f32, LHS); SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, MVT::f32, RHS); return DAG.getNode(ISD::SELECT, SL, MVT::f32, BCSrc.getOperand(0), NegLHS, NegRHS); } return SDValue(); } default: return SDValue(); } } SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); if (!N0.hasOneUse()) return SDValue(); switch (N0.getOpcode()) { case ISD::FP16_TO_FP: { assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); SDLoc SL(N); SDValue Src = N0.getOperand(0); EVT SrcVT = Src.getValueType(); // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, DAG.getConstant(0x7fff, SL, SrcVT)); return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); } default: return SDValue(); } } SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const { const auto *CFP = dyn_cast(N->getOperand(0)); if (!CFP) return SDValue(); // XXX - Should this flush denormals? const APFloat &Val = CFP->getValueAPF(); APFloat One(Val.getSemantics(), "1.0"); return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); } SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); switch(N->getOpcode()) { default: break; case ISD::BITCAST: { EVT DestVT = N->getValueType(0); // Push casts through vector builds. This helps avoid emitting a large // number of copies when materializing floating point vector constants. // // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) if (DestVT.isVector()) { SDValue Src = N->getOperand(0); if (Src.getOpcode() == ISD::BUILD_VECTOR && (DCI.getDAGCombineLevel() < AfterLegalizeDAG || isOperationLegal(ISD::BUILD_VECTOR, DestVT))) { EVT SrcVT = Src.getValueType(); unsigned NElts = DestVT.getVectorNumElements(); if (SrcVT.getVectorNumElements() == NElts) { EVT DestEltVT = DestVT.getVectorElementType(); SmallVector CastedElts; SDLoc SL(N); for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { SDValue Elt = Src.getOperand(I); CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); } return DAG.getBuildVector(DestVT, SL, CastedElts); } } } if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) break; // Fold bitcasts of constants. // // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) // TODO: Generalize and move to DAGCombiner SDValue Src = N->getOperand(0); if (ConstantSDNode *C = dyn_cast(Src)) { SDLoc SL(N); uint64_t CVal = C->getZExtValue(); SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, DAG.getConstant(Lo_32(CVal), SL, MVT::i32), DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); } if (ConstantFPSDNode *C = dyn_cast(Src)) { const APInt &Val = C->getValueAPF().bitcastToAPInt(); SDLoc SL(N); uint64_t CVal = Val.getZExtValue(); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, DAG.getConstant(Lo_32(CVal), SL, MVT::i32), DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); } break; } case ISD::SHL: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performShlCombine(N, DCI); } case ISD::SRL: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performSrlCombine(N, DCI); } case ISD::SRA: { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) break; return performSraCombine(N, DCI); } case ISD::TRUNCATE: return performTruncateCombine(N, DCI); case ISD::MUL: return performMulCombine(N, DCI); case AMDGPUISD::MUL_U24: case AMDGPUISD::MUL_I24: { if (SDValue Simplified = simplifyMul24(N, DCI)) return Simplified; break; } case AMDGPUISD::MULHI_I24: case AMDGPUISD::MULHI_U24: return simplifyMul24(N, DCI); case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: return performMulLoHiCombine(N, DCI); case ISD::MULHS: return performMulhsCombine(N, DCI); case ISD::MULHU: return performMulhuCombine(N, DCI); case ISD::SELECT: return performSelectCombine(N, DCI); case ISD::FNEG: return performFNegCombine(N, DCI); case ISD::FABS: return performFAbsCombine(N, DCI); case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { assert(!N->getValueType(0).isVector() && "Vector handling of BFE not implemented"); ConstantSDNode *Width = dyn_cast(N->getOperand(2)); if (!Width) break; uint32_t WidthVal = Width->getZExtValue() & 0x1f; if (WidthVal == 0) return DAG.getConstant(0, DL, MVT::i32); ConstantSDNode *Offset = dyn_cast(N->getOperand(1)); if (!Offset) break; SDValue BitsFrom = N->getOperand(0); uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; if (OffsetVal == 0) { // This is already sign / zero extended, so try to fold away extra BFEs. unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); if (OpSignBits >= SignBits) return BitsFrom; EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); if (Signed) { // This is a sign_extend_inreg. Replace it to take advantage of existing // DAG Combines. If not eliminated, we will match back to BFE during // selection. // TODO: The sext_inreg of extended types ends, although we can could // handle them in a single BFE. return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, DAG.getValueType(SmallVT)); } return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); } if (ConstantSDNode *CVal = dyn_cast(BitsFrom)) { if (Signed) { return constantFoldBFE(DAG, CVal->getSExtValue(), OffsetVal, WidthVal, DL); } return constantFoldBFE(DAG, CVal->getZExtValue(), OffsetVal, WidthVal, DL); } if ((OffsetVal + WidthVal) >= 32 && !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, BitsFrom, ShiftVal); } if (BitsFrom.hasOneUse()) { APInt Demanded = APInt::getBitsSet(32, OffsetVal, OffsetVal + WidthVal); KnownBits Known; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { DCI.CommitTargetLoweringOpt(TLO); } } break; } case ISD::LOAD: return performLoadCombine(N, DCI); case ISD::STORE: return performStoreCombine(N, DCI); case AMDGPUISD::RCP: case AMDGPUISD::RCP_IFLAG: return performRcpCombine(N, DCI); case ISD::AssertZext: case ISD::AssertSext: return performAssertSZExtCombine(N, DCI); case ISD::INTRINSIC_WO_CHAIN: return performIntrinsicWOChainCombine(N, DCI); case AMDGPUISD::FMAD_FTZ: { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); EVT VT = N->getValueType(0); // FMAD_FTZ is a FMAD + flush denormals to zero. // We flush the inputs, the intermediate step, and the output. ConstantFPSDNode *N0CFP = dyn_cast(N0); ConstantFPSDNode *N1CFP = dyn_cast(N1); ConstantFPSDNode *N2CFP = dyn_cast(N2); if (N0CFP && N1CFP && N2CFP) { const auto FTZ = [](const APFloat &V) { if (V.isDenormal()) { APFloat Zero(V.getSemantics(), 0); return V.isNegative() ? -Zero : Zero; } return V; }; APFloat V0 = FTZ(N0CFP->getValueAPF()); APFloat V1 = FTZ(N1CFP->getValueAPF()); APFloat V2 = FTZ(N2CFP->getValueAPF()); V0.multiply(V1, APFloat::rmNearestTiesToEven); V0 = FTZ(V0); V0.add(V2, APFloat::rmNearestTiesToEven); return DAG.getConstantFP(FTZ(V0), DL, VT); } break; } } return SDValue(); } //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT, const SDLoc &SL, bool RawReg) const { MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); Register VReg; if (!MRI.isLiveIn(Reg)) { VReg = MRI.createVirtualRegister(RC); MRI.addLiveIn(Reg, VReg); } else { VReg = MRI.getLiveInVirtReg(Reg); } if (RawReg) return DAG.getRegister(VReg, VT); return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); } // This may be called multiple times, and nothing prevents creating multiple // objects at the same offset. See if we already defined this object. static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, int64_t Offset) { for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { if (MFI.getObjectOffset(I) == Offset) { assert(MFI.getObjectSize(I) == Size); return I; } } return MFI.CreateFixedObject(Size, Offset, true); } SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, EVT VT, const SDLoc &SL, int64_t Offset) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, SDValue ArgVal, int64_t Offset) const { MachineFunction &MF = DAG.getMachineFunction(); MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); const SIMachineFunctionInfo *Info = MF.getInfo(); SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); // Stores to the argument stack area are relative to the stack pointer. SDValue SP = DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), MachineMemOperand::MODereferenceable); return Store; } SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, const TargetRegisterClass *RC, EVT VT, const SDLoc &SL, const ArgDescriptor &Arg) const { assert(Arg && "Attempting to load missing argument"); SDValue V = Arg.isRegister() ? CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); if (!Arg.isMasked()) return V; unsigned Mask = Arg.getMask(); unsigned Shift = llvm::countr_zero(Mask); V = DAG.getNode(ISD::SRL, SL, VT, V, DAG.getShiftAmountConstant(Shift, VT, SL)); return DAG.getNode(ISD::AND, SL, VT, V, DAG.getConstant(Mask >> Shift, SL, VT)); } uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( uint64_t ExplicitKernArgSize, const ImplicitParameter Param) const { unsigned ExplicitArgOffset = Subtarget->getExplicitKernelArgOffset(); const Align Alignment = Subtarget->getAlignmentForImplicitArgPtr(); uint64_t ArgOffset = alignTo(ExplicitKernArgSize, Alignment) + ExplicitArgOffset; switch (Param) { case FIRST_IMPLICIT: return ArgOffset; case PRIVATE_BASE: return ArgOffset + AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET; case SHARED_BASE: return ArgOffset + AMDGPU::ImplicitArg::SHARED_BASE_OFFSET; case QUEUE_PTR: return ArgOffset + AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET; } llvm_unreachable("unexpected implicit parameter type"); } uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( const MachineFunction &MF, const ImplicitParameter Param) const { const AMDGPUMachineFunction *MFI = MF.getInfo(); return getImplicitParameterOffset(MFI->getExplicitKernArgSize(), Param); } #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((AMDGPUISD::NodeType)Opcode) { case AMDGPUISD::FIRST_NUMBER: break; // AMDIL DAG nodes NODE_NAME_CASE(UMUL); NODE_NAME_CASE(BRANCH_COND); // AMDGPU DAG nodes NODE_NAME_CASE(IF) NODE_NAME_CASE(ELSE) NODE_NAME_CASE(LOOP) NODE_NAME_CASE(CALL) NODE_NAME_CASE(TC_RETURN) NODE_NAME_CASE(TC_RETURN_GFX) NODE_NAME_CASE(TC_RETURN_CHAIN) NODE_NAME_CASE(TRAP) NODE_NAME_CASE(RET_GLUE) NODE_NAME_CASE(WAVE_ADDRESS) NODE_NAME_CASE(RETURN_TO_EPILOG) NODE_NAME_CASE(ENDPGM) NODE_NAME_CASE(ENDPGM_TRAP) NODE_NAME_CASE(SIMULATED_TRAP) NODE_NAME_CASE(DWORDADDR) NODE_NAME_CASE(FRACT) NODE_NAME_CASE(SETCC) NODE_NAME_CASE(SETREG) NODE_NAME_CASE(DENORM_MODE) NODE_NAME_CASE(FMA_W_CHAIN) NODE_NAME_CASE(FMUL_W_CHAIN) NODE_NAME_CASE(CLAMP) NODE_NAME_CASE(COS_HW) NODE_NAME_CASE(SIN_HW) NODE_NAME_CASE(FMAX_LEGACY) NODE_NAME_CASE(FMIN_LEGACY) NODE_NAME_CASE(FMAX3) NODE_NAME_CASE(SMAX3) NODE_NAME_CASE(UMAX3) NODE_NAME_CASE(FMIN3) NODE_NAME_CASE(SMIN3) NODE_NAME_CASE(UMIN3) NODE_NAME_CASE(FMED3) NODE_NAME_CASE(SMED3) NODE_NAME_CASE(UMED3) NODE_NAME_CASE(FMAXIMUM3) NODE_NAME_CASE(FMINIMUM3) NODE_NAME_CASE(FDOT2) NODE_NAME_CASE(URECIP) NODE_NAME_CASE(DIV_SCALE) NODE_NAME_CASE(DIV_FMAS) NODE_NAME_CASE(DIV_FIXUP) NODE_NAME_CASE(FMAD_FTZ) NODE_NAME_CASE(RCP) NODE_NAME_CASE(RSQ) NODE_NAME_CASE(RCP_LEGACY) NODE_NAME_CASE(RCP_IFLAG) NODE_NAME_CASE(LOG) NODE_NAME_CASE(EXP) NODE_NAME_CASE(FMUL_LEGACY) NODE_NAME_CASE(RSQ_CLAMP) NODE_NAME_CASE(FP_CLASS) NODE_NAME_CASE(DOT4) NODE_NAME_CASE(CARRY) NODE_NAME_CASE(BORROW) NODE_NAME_CASE(BFE_U32) NODE_NAME_CASE(BFE_I32) NODE_NAME_CASE(BFI) NODE_NAME_CASE(BFM) NODE_NAME_CASE(FFBH_U32) NODE_NAME_CASE(FFBH_I32) NODE_NAME_CASE(FFBL_B32) NODE_NAME_CASE(MUL_U24) NODE_NAME_CASE(MUL_I24) NODE_NAME_CASE(MULHI_U24) NODE_NAME_CASE(MULHI_I24) NODE_NAME_CASE(MAD_U24) NODE_NAME_CASE(MAD_I24) NODE_NAME_CASE(MAD_I64_I32) NODE_NAME_CASE(MAD_U64_U32) NODE_NAME_CASE(PERM) NODE_NAME_CASE(TEXTURE_FETCH) NODE_NAME_CASE(R600_EXPORT) NODE_NAME_CASE(CONST_ADDRESS) NODE_NAME_CASE(REGISTER_LOAD) NODE_NAME_CASE(REGISTER_STORE) NODE_NAME_CASE(SAMPLE) NODE_NAME_CASE(SAMPLEB) NODE_NAME_CASE(SAMPLED) NODE_NAME_CASE(SAMPLEL) NODE_NAME_CASE(CVT_F32_UBYTE0) NODE_NAME_CASE(CVT_F32_UBYTE1) NODE_NAME_CASE(CVT_F32_UBYTE2) NODE_NAME_CASE(CVT_F32_UBYTE3) NODE_NAME_CASE(CVT_PKRTZ_F16_F32) NODE_NAME_CASE(CVT_PKNORM_I16_F32) NODE_NAME_CASE(CVT_PKNORM_U16_F32) NODE_NAME_CASE(CVT_PK_I16_I32) NODE_NAME_CASE(CVT_PK_U16_U32) NODE_NAME_CASE(FP_TO_FP16) NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) NODE_NAME_CASE(CONST_DATA_PTR) NODE_NAME_CASE(PC_ADD_REL_OFFSET) NODE_NAME_CASE(LDS) NODE_NAME_CASE(FPTRUNC_ROUND_UPWARD) NODE_NAME_CASE(FPTRUNC_ROUND_DOWNWARD) NODE_NAME_CASE(DUMMY_CHAIN) case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; NODE_NAME_CASE(LOAD_D16_HI) NODE_NAME_CASE(LOAD_D16_LO) NODE_NAME_CASE(LOAD_D16_HI_I8) NODE_NAME_CASE(LOAD_D16_HI_U8) NODE_NAME_CASE(LOAD_D16_LO_I8) NODE_NAME_CASE(LOAD_D16_LO_U8) NODE_NAME_CASE(STORE_MSKOR) NODE_NAME_CASE(LOAD_CONSTANT) NODE_NAME_CASE(TBUFFER_STORE_FORMAT) NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) NODE_NAME_CASE(DS_ORDERED_COUNT) NODE_NAME_CASE(ATOMIC_CMP_SWAP) NODE_NAME_CASE(BUFFER_LOAD) NODE_NAME_CASE(BUFFER_LOAD_UBYTE) NODE_NAME_CASE(BUFFER_LOAD_USHORT) NODE_NAME_CASE(BUFFER_LOAD_BYTE) NODE_NAME_CASE(BUFFER_LOAD_SHORT) NODE_NAME_CASE(BUFFER_LOAD_TFE) NODE_NAME_CASE(BUFFER_LOAD_UBYTE_TFE) NODE_NAME_CASE(BUFFER_LOAD_USHORT_TFE) NODE_NAME_CASE(BUFFER_LOAD_BYTE_TFE) NODE_NAME_CASE(BUFFER_LOAD_SHORT_TFE) NODE_NAME_CASE(BUFFER_LOAD_FORMAT) NODE_NAME_CASE(BUFFER_LOAD_FORMAT_TFE) NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) NODE_NAME_CASE(SBUFFER_LOAD) NODE_NAME_CASE(SBUFFER_LOAD_BYTE) NODE_NAME_CASE(SBUFFER_LOAD_UBYTE) NODE_NAME_CASE(SBUFFER_LOAD_SHORT) NODE_NAME_CASE(SBUFFER_LOAD_USHORT) NODE_NAME_CASE(BUFFER_STORE) NODE_NAME_CASE(BUFFER_STORE_BYTE) NODE_NAME_CASE(BUFFER_STORE_SHORT) NODE_NAME_CASE(BUFFER_STORE_FORMAT) NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) NODE_NAME_CASE(BUFFER_ATOMIC_ADD) NODE_NAME_CASE(BUFFER_ATOMIC_SUB) NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) NODE_NAME_CASE(BUFFER_ATOMIC_AND) NODE_NAME_CASE(BUFFER_ATOMIC_OR) NODE_NAME_CASE(BUFFER_ATOMIC_XOR) NODE_NAME_CASE(BUFFER_ATOMIC_INC) NODE_NAME_CASE(BUFFER_ATOMIC_DEC) NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) NODE_NAME_CASE(BUFFER_ATOMIC_FADD) NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) NODE_NAME_CASE(BUFFER_ATOMIC_COND_SUB_U32) case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; } return nullptr; } SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const { EVT VT = Operand.getValueType(); if (VT == MVT::f32) { RefinementSteps = 0; return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); } // TODO: There is also f64 rsq instruction, but the documentation is less // clear on its precision. return SDValue(); } SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const { EVT VT = Operand.getValueType(); if (VT == MVT::f32) { // Reciprocal, < 1 ulp error. // // This reciprocal approximation converges to < 0.5 ulp error with one // newton rhapson performed with two fused multiple adds (FMAs). RefinementSteps = 0; return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); } // TODO: There is also f64 rcp instruction, but the documentation is less // clear on its precision. return SDValue(); } static unsigned workitemIntrinsicDim(unsigned ID) { switch (ID) { case Intrinsic::amdgcn_workitem_id_x: return 0; case Intrinsic::amdgcn_workitem_id_y: return 1; case Intrinsic::amdgcn_workitem_id_z: return 2; default: llvm_unreachable("not a workitem intrinsic"); } } void AMDGPUTargetLowering::computeKnownBitsForTargetNode( const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { Known.resetAll(); // Don't know anything. unsigned Opc = Op.getOpcode(); switch (Opc) { default: break; case AMDGPUISD::CARRY: case AMDGPUISD::BORROW: { Known.Zero = APInt::getHighBitsSet(32, 31); break; } case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { ConstantSDNode *CWidth = dyn_cast(Op.getOperand(2)); if (!CWidth) return; uint32_t Width = CWidth->getZExtValue() & 0x1f; if (Opc == AMDGPUISD::BFE_U32) Known.Zero = APInt::getHighBitsSet(32, 32 - Width); break; } case AMDGPUISD::FP_TO_FP16: { unsigned BitWidth = Known.getBitWidth(); // High bits are zero. Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); break; } case AMDGPUISD::MUL_U24: case AMDGPUISD::MUL_I24: { KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); unsigned TrailZ = LHSKnown.countMinTrailingZeros() + RHSKnown.countMinTrailingZeros(); Known.Zero.setLowBits(std::min(TrailZ, 32u)); // Skip extra check if all bits are known zeros. if (TrailZ >= 32) break; // Truncate to 24 bits. LHSKnown = LHSKnown.trunc(24); RHSKnown = RHSKnown.trunc(24); if (Opc == AMDGPUISD::MUL_I24) { unsigned LHSValBits = LHSKnown.countMaxSignificantBits(); unsigned RHSValBits = RHSKnown.countMaxSignificantBits(); unsigned MaxValBits = LHSValBits + RHSValBits; if (MaxValBits > 32) break; unsigned SignBits = 32 - MaxValBits + 1; bool LHSNegative = LHSKnown.isNegative(); bool LHSNonNegative = LHSKnown.isNonNegative(); bool LHSPositive = LHSKnown.isStrictlyPositive(); bool RHSNegative = RHSKnown.isNegative(); bool RHSNonNegative = RHSKnown.isNonNegative(); bool RHSPositive = RHSKnown.isStrictlyPositive(); if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) Known.Zero.setHighBits(SignBits); else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) Known.One.setHighBits(SignBits); } else { unsigned LHSValBits = LHSKnown.countMaxActiveBits(); unsigned RHSValBits = RHSKnown.countMaxActiveBits(); unsigned MaxValBits = LHSValBits + RHSValBits; if (MaxValBits >= 32) break; Known.Zero.setBitsFrom(MaxValBits); } break; } case AMDGPUISD::PERM: { ConstantSDNode *CMask = dyn_cast(Op.getOperand(2)); if (!CMask) return; KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); unsigned Sel = CMask->getZExtValue(); for (unsigned I = 0; I < 32; I += 8) { unsigned SelBits = Sel & 0xff; if (SelBits < 4) { SelBits *= 8; Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; } else if (SelBits < 7) { SelBits = (SelBits & 3) * 8; Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; } else if (SelBits == 0x0c) { Known.Zero |= 0xFFull << I; } else if (SelBits > 0x0c) { Known.One |= 0xFFull << I; } Sel >>= 8; } break; } case AMDGPUISD::BUFFER_LOAD_UBYTE: { Known.Zero.setHighBits(24); break; } case AMDGPUISD::BUFFER_LOAD_USHORT: { Known.Zero.setHighBits(16); break; } case AMDGPUISD::LDS: { auto GA = cast(Op.getOperand(0).getNode()); Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); Known.Zero.setHighBits(16); Known.Zero.setLowBits(Log2(Alignment)); break; } case AMDGPUISD::SMIN3: case AMDGPUISD::SMAX3: case AMDGPUISD::SMED3: case AMDGPUISD::UMIN3: case AMDGPUISD::UMAX3: case AMDGPUISD::UMED3: { KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(2), Depth + 1); if (Known2.isUnknown()) break; KnownBits Known1 = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); if (Known1.isUnknown()) break; KnownBits Known0 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); if (Known0.isUnknown()) break; // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; Known.One = Known0.One & Known1.One & Known2.One; break; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = Op.getConstantOperandVal(0); switch (IID) { case Intrinsic::amdgcn_workitem_id_x: case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::amdgcn_workitem_id_z: { unsigned MaxValue = Subtarget->getMaxWorkitemID( DAG.getMachineFunction().getFunction(), workitemIntrinsicDim(IID)); Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); break; } default: break; } } } } unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { case AMDGPUISD::BFE_I32: { ConstantSDNode *Width = dyn_cast(Op.getOperand(2)); if (!Width) return 1; unsigned SignBits = 32 - Width->getZExtValue() + 1; if (!isNullConstant(Op.getOperand(1))) return SignBits; // TODO: Could probably figure something out with non-0 offsets. unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); return std::max(SignBits, Op0SignBits); } case AMDGPUISD::BFE_U32: { ConstantSDNode *Width = dyn_cast(Op.getOperand(2)); return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; } case AMDGPUISD::CARRY: case AMDGPUISD::BORROW: return 31; case AMDGPUISD::BUFFER_LOAD_BYTE: return 25; case AMDGPUISD::BUFFER_LOAD_SHORT: return 17; case AMDGPUISD::BUFFER_LOAD_UBYTE: return 24; case AMDGPUISD::BUFFER_LOAD_USHORT: return 16; case AMDGPUISD::FP_TO_FP16: return 16; case AMDGPUISD::SMIN3: case AMDGPUISD::SMAX3: case AMDGPUISD::SMED3: case AMDGPUISD::UMIN3: case AMDGPUISD::UMAX3: case AMDGPUISD::UMED3: { unsigned Tmp2 = DAG.ComputeNumSignBits(Op.getOperand(2), Depth + 1); if (Tmp2 == 1) return 1; // Early out. unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth + 1); if (Tmp1 == 1) return 1; // Early out. unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); if (Tmp0 == 1) return 1; // Early out. return std::min({Tmp0, Tmp1, Tmp2}); } default: return 1; } } unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth) const { const MachineInstr *MI = MRI.getVRegDef(R); if (!MI) return 1; // TODO: Check range metadata on MMO. switch (MI->getOpcode()) { case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: return 25; case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: return 17; case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: return 24; case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: return 16; case AMDGPU::G_AMDGPU_SMED3: case AMDGPU::G_AMDGPU_UMED3: { auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); unsigned Tmp2 = Analysis.computeNumSignBits(Src2, DemandedElts, Depth + 1); if (Tmp2 == 1) return 1; unsigned Tmp1 = Analysis.computeNumSignBits(Src1, DemandedElts, Depth + 1); if (Tmp1 == 1) return 1; unsigned Tmp0 = Analysis.computeNumSignBits(Src0, DemandedElts, Depth + 1); if (Tmp0 == 1) return 1; return std::min({Tmp0, Tmp1, Tmp2}); } default: return 1; } } bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN, unsigned Depth) const { unsigned Opcode = Op.getOpcode(); switch (Opcode) { case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: { if (SNaN) return true; // TODO: Can check no nans on one of the operands for each one, but which // one? return false; } case AMDGPUISD::FMUL_LEGACY: case AMDGPUISD::CVT_PKRTZ_F16_F32: { if (SNaN) return true; return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); } case AMDGPUISD::FMED3: case AMDGPUISD::FMIN3: case AMDGPUISD::FMAX3: case AMDGPUISD::FMINIMUM3: case AMDGPUISD::FMAXIMUM3: case AMDGPUISD::FMAD_FTZ: { if (SNaN) return true; return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); } case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: return true; case AMDGPUISD::RCP: case AMDGPUISD::RSQ: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RSQ_CLAMP: { if (SNaN) return true; // TODO: Need is known positive check. return false; } case ISD::FLDEXP: case AMDGPUISD::FRACT: { if (SNaN) return true; return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); } case AMDGPUISD::DIV_SCALE: case AMDGPUISD::DIV_FMAS: case AMDGPUISD::DIV_FIXUP: // TODO: Refine on operands. return SNaN; case AMDGPUISD::SIN_HW: case AMDGPUISD::COS_HW: { // TODO: Need check for infinity return SNaN; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IntrinsicID = Op.getConstantOperandVal(0); // TODO: Handle more intrinsics switch (IntrinsicID) { case Intrinsic::amdgcn_cubeid: return true; case Intrinsic::amdgcn_frexp_mant: { if (SNaN) return true; return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); } case Intrinsic::amdgcn_cvt_pkrtz: { if (SNaN) return true; return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); } case Intrinsic::amdgcn_rcp: case Intrinsic::amdgcn_rsq: case Intrinsic::amdgcn_rcp_legacy: case Intrinsic::amdgcn_rsq_legacy: case Intrinsic::amdgcn_rsq_clamp: { if (SNaN) return true; // TODO: Need is known positive check. return false; } case Intrinsic::amdgcn_trig_preop: case Intrinsic::amdgcn_fdot2: // TODO: Refine on operand return SNaN; case Intrinsic::amdgcn_fma_legacy: if (SNaN) return true; return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); default: return false; } } default: return false; } } bool AMDGPUTargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, Register N0, Register N1) const { return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks } TargetLowering::AtomicExpansionKind AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { switch (RMW->getOperation()) { case AtomicRMWInst::Nand: case AtomicRMWInst::FAdd: case AtomicRMWInst::FSub: case AtomicRMWInst::FMax: case AtomicRMWInst::FMin: return AtomicExpansionKind::CmpXChg; case AtomicRMWInst::Xchg: { const DataLayout &DL = RMW->getFunction()->getDataLayout(); unsigned ValSize = DL.getTypeSizeInBits(RMW->getType()); if (ValSize == 32 || ValSize == 64) return AtomicExpansionKind::None; return AtomicExpansionKind::CmpXChg; } default: { if (auto *IntTy = dyn_cast(RMW->getType())) { unsigned Size = IntTy->getBitWidth(); if (Size == 32 || Size == 64) return AtomicExpansionKind::None; } return AtomicExpansionKind::CmpXChg; } } } /// Whether it is profitable to sink the operands of an /// Instruction I to the basic block of I. /// This helps using several modifiers (like abs and neg) more often. bool AMDGPUTargetLowering::shouldSinkOperands( Instruction *I, SmallVectorImpl &Ops) const { using namespace PatternMatch; for (auto &Op : I->operands()) { // Ensure we are not already sinking this operand. if (any_of(Ops, [&](Use *U) { return U->get() == Op.get(); })) continue; if (match(&Op, m_FAbs(m_Value())) || match(&Op, m_FNeg(m_Value()))) Ops.push_back(&Op); } return !Ops.empty(); }