//===- AMDGPUAttributor.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This pass uses Attributor framework to deduce AMDGPU attributes. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO/Attributor.h" #define DEBUG_TYPE "amdgpu-attributor" using namespace llvm; enum ImplicitArgumentMask { NOT_IMPLICIT_INPUT = 0, // SGPRs DISPATCH_PTR = 1 << 0, QUEUE_PTR = 1 << 1, DISPATCH_ID = 1 << 2, IMPLICIT_ARG_PTR = 1 << 3, WORKGROUP_ID_X = 1 << 4, WORKGROUP_ID_Y = 1 << 5, WORKGROUP_ID_Z = 1 << 6, // VGPRS: WORKITEM_ID_X = 1 << 7, WORKITEM_ID_Y = 1 << 8, WORKITEM_ID_Z = 1 << 9, ALL_ARGUMENT_MASK = (1 << 10) - 1 }; static constexpr std::pair ImplicitAttrs[] = { {DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, {QUEUE_PTR, "amdgpu-no-queue-ptr"}, {DISPATCH_ID, "amdgpu-no-dispatch-id"}, {IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, {WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, {WORKGROUP_ID_Y, "amdgpu-no-workgroup-id-y"}, {WORKGROUP_ID_Z, "amdgpu-no-workgroup-id-z"}, {WORKITEM_ID_X, "amdgpu-no-workitem-id-x"}, {WORKITEM_ID_Y, "amdgpu-no-workitem-id-y"}, {WORKITEM_ID_Z, "amdgpu-no-workitem-id-z"} }; // We do not need to note the x workitem or workgroup id because they are always // initialized. // // TODO: We should not add the attributes if the known compile time workgroup // size is 1 for y/z. static ImplicitArgumentMask intrinsicToAttrMask(Intrinsic::ID ID, bool &NonKernelOnly, bool &IsQueuePtr) { switch (ID) { case Intrinsic::amdgcn_workitem_id_x: NonKernelOnly = true; return WORKITEM_ID_X; case Intrinsic::amdgcn_workgroup_id_x: NonKernelOnly = true; return WORKGROUP_ID_X; case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::r600_read_tidig_y: return WORKITEM_ID_Y; case Intrinsic::amdgcn_workitem_id_z: case Intrinsic::r600_read_tidig_z: return WORKITEM_ID_Z; case Intrinsic::amdgcn_workgroup_id_y: case Intrinsic::r600_read_tgid_y: return WORKGROUP_ID_Y; case Intrinsic::amdgcn_workgroup_id_z: case Intrinsic::r600_read_tgid_z: return WORKGROUP_ID_Z; case Intrinsic::amdgcn_dispatch_ptr: return DISPATCH_PTR; case Intrinsic::amdgcn_dispatch_id: return DISPATCH_ID; case Intrinsic::amdgcn_implicitarg_ptr: return IMPLICIT_ARG_PTR; case Intrinsic::amdgcn_queue_ptr: case Intrinsic::amdgcn_is_shared: case Intrinsic::amdgcn_is_private: // TODO: Does not require queue ptr on gfx9+ case Intrinsic::trap: case Intrinsic::debugtrap: IsQueuePtr = true; return QUEUE_PTR; default: return NOT_IMPLICIT_INPUT; } } static bool castRequiresQueuePtr(unsigned SrcAS) { return SrcAS == AMDGPUAS::LOCAL_ADDRESS || SrcAS == AMDGPUAS::PRIVATE_ADDRESS; } static bool isDSAddress(const Constant *C) { const GlobalValue *GV = dyn_cast(C); if (!GV) return false; unsigned AS = GV->getAddressSpace(); return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS; } /// Returns true if the function requires the implicit argument be passed /// regardless of the function contents. static bool funcRequiresImplicitArgPtr(const Function &F) { // Sanitizers require the hostcall buffer passed in the implicit arguments. return F.hasFnAttribute(Attribute::SanitizeAddress) || F.hasFnAttribute(Attribute::SanitizeThread) || F.hasFnAttribute(Attribute::SanitizeMemory) || F.hasFnAttribute(Attribute::SanitizeHWAddress) || F.hasFnAttribute(Attribute::SanitizeMemTag); } namespace { class AMDGPUInformationCache : public InformationCache { public: AMDGPUInformationCache(const Module &M, AnalysisGetter &AG, BumpPtrAllocator &Allocator, SetVector *CGSCC, TargetMachine &TM) : InformationCache(M, AG, Allocator, CGSCC), TM(TM) {} TargetMachine &TM; enum ConstantStatus { DS_GLOBAL = 1 << 0, ADDR_SPACE_CAST = 1 << 1 }; /// Check if the subtarget has aperture regs. bool hasApertureRegs(Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.hasApertureRegs(); } std::pair getFlatWorkGroupSizes(const Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.getFlatWorkGroupSizes(F); } std::pair getMaximumFlatWorkGroupRange(const Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return {ST.getMinFlatWorkGroupSize(), ST.getMaxFlatWorkGroupSize()}; } private: /// Check if the ConstantExpr \p CE requires queue ptr attribute. static bool visitConstExpr(const ConstantExpr *CE) { if (CE->getOpcode() == Instruction::AddrSpaceCast) { unsigned SrcAS = CE->getOperand(0)->getType()->getPointerAddressSpace(); return castRequiresQueuePtr(SrcAS); } return false; } /// Get the constant access bitmap for \p C. uint8_t getConstantAccess(const Constant *C) { auto It = ConstantStatus.find(C); if (It != ConstantStatus.end()) return It->second; uint8_t Result = 0; if (isDSAddress(C)) Result = DS_GLOBAL; if (const auto *CE = dyn_cast(C)) if (visitConstExpr(CE)) Result |= ADDR_SPACE_CAST; for (const Use &U : C->operands()) { const auto *OpC = dyn_cast(U); if (!OpC) continue; Result |= getConstantAccess(OpC); } return Result; } public: /// Returns true if \p Fn needs a queue ptr attribute because of \p C. bool needsQueuePtr(const Constant *C, Function &Fn) { bool IsNonEntryFunc = !AMDGPU::isEntryFunctionCC(Fn.getCallingConv()); bool HasAperture = hasApertureRegs(Fn); // No need to explore the constants. if (!IsNonEntryFunc && HasAperture) return false; uint8_t Access = getConstantAccess(C); // We need to trap on DS globals in non-entry functions. if (IsNonEntryFunc && (Access & DS_GLOBAL)) return true; return !HasAperture && (Access & ADDR_SPACE_CAST); } private: /// Used to determine if the Constant needs a queue ptr attribute. DenseMap ConstantStatus; }; struct AAAMDAttributes : public StateWrapper< BitIntegerState, AbstractAttribute> { using Base = StateWrapper, AbstractAttribute>; AAAMDAttributes(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Create an abstract attribute view for the position \p IRP. static AAAMDAttributes &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName(). const std::string getName() const override { return "AAAMDAttributes"; } /// See AbstractAttribute::getIdAddr(). const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAAMDAttributes. static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; const char AAAMDAttributes::ID = 0; struct AAUniformWorkGroupSize : public StateWrapper { using Base = StateWrapper; AAUniformWorkGroupSize(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Create an abstract attribute view for the position \p IRP. static AAUniformWorkGroupSize &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName(). const std::string getName() const override { return "AAUniformWorkGroupSize"; } /// See AbstractAttribute::getIdAddr(). const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAAMDAttributes. static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; const char AAUniformWorkGroupSize::ID = 0; struct AAUniformWorkGroupSizeFunction : public AAUniformWorkGroupSize { AAUniformWorkGroupSizeFunction(const IRPosition &IRP, Attributor &A) : AAUniformWorkGroupSize(IRP, A) {} void initialize(Attributor &A) override { Function *F = getAssociatedFunction(); CallingConv::ID CC = F->getCallingConv(); if (CC != CallingConv::AMDGPU_KERNEL) return; bool InitialValue = false; if (F->hasFnAttribute("uniform-work-group-size")) InitialValue = F->getFnAttribute("uniform-work-group-size") .getValueAsString() .equals("true"); if (InitialValue) indicateOptimisticFixpoint(); else indicatePessimisticFixpoint(); } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Change = ChangeStatus::UNCHANGED; auto CheckCallSite = [&](AbstractCallSite CS) { Function *Caller = CS.getInstruction()->getFunction(); LLVM_DEBUG(dbgs() << "[AAUniformWorkGroupSize] Call " << Caller->getName() << "->" << getAssociatedFunction()->getName() << "\n"); const auto &CallerInfo = A.getAAFor( *this, IRPosition::function(*Caller), DepClassTy::REQUIRED); Change = Change | clampStateAndIndicateChange(this->getState(), CallerInfo.getState()); return true; }; bool AllCallSitesKnown = true; if (!A.checkForAllCallSites(CheckCallSite, *this, true, AllCallSitesKnown)) return indicatePessimisticFixpoint(); return Change; } ChangeStatus manifest(Attributor &A) override { SmallVector AttrList; LLVMContext &Ctx = getAssociatedFunction()->getContext(); AttrList.push_back(Attribute::get(Ctx, "uniform-work-group-size", getAssumed() ? "true" : "false")); return IRAttributeManifest::manifestAttrs(A, getIRPosition(), AttrList, /* ForceReplace */ true); } bool isValidState() const override { // This state is always valid, even when the state is false. return true; } const std::string getAsStr() const override { return "AMDWorkGroupSize[" + std::to_string(getAssumed()) + "]"; } /// See AbstractAttribute::trackStatistics() void trackStatistics() const override {} }; AAUniformWorkGroupSize & AAUniformWorkGroupSize::createForPosition(const IRPosition &IRP, Attributor &A) { if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION) return *new (A.Allocator) AAUniformWorkGroupSizeFunction(IRP, A); llvm_unreachable( "AAUniformWorkGroupSize is only valid for function position"); } struct AAAMDAttributesFunction : public AAAMDAttributes { AAAMDAttributesFunction(const IRPosition &IRP, Attributor &A) : AAAMDAttributes(IRP, A) {} void initialize(Attributor &A) override { Function *F = getAssociatedFunction(); // If the function requires the implicit arg pointer due to sanitizers, // assume it's needed even if explicitly marked as not requiring it. const bool NeedsImplicit = funcRequiresImplicitArgPtr(*F); if (NeedsImplicit) removeAssumedBits(IMPLICIT_ARG_PTR); for (auto Attr : ImplicitAttrs) { if (NeedsImplicit && Attr.first == IMPLICIT_ARG_PTR) continue; if (F->hasFnAttribute(Attr.second)) addKnownBits(Attr.first); } if (F->isDeclaration()) return; // Ignore functions with graphics calling conventions, these are currently // not allowed to have kernel arguments. if (AMDGPU::isGraphics(F->getCallingConv())) { indicatePessimisticFixpoint(); return; } } ChangeStatus updateImpl(Attributor &A) override { Function *F = getAssociatedFunction(); // The current assumed state used to determine a change. auto OrigAssumed = getAssumed(); // Check for Intrinsics and propagate attributes. const AACallEdges &AAEdges = A.getAAFor( *this, this->getIRPosition(), DepClassTy::REQUIRED); if (AAEdges.hasNonAsmUnknownCallee()) return indicatePessimisticFixpoint(); bool IsNonEntryFunc = !AMDGPU::isEntryFunctionCC(F->getCallingConv()); auto &InfoCache = static_cast(A.getInfoCache()); bool NeedsQueuePtr = false; for (Function *Callee : AAEdges.getOptimisticEdges()) { Intrinsic::ID IID = Callee->getIntrinsicID(); if (IID == Intrinsic::not_intrinsic) { const AAAMDAttributes &AAAMD = A.getAAFor( *this, IRPosition::function(*Callee), DepClassTy::REQUIRED); *this &= AAAMD; continue; } bool NonKernelOnly = false; ImplicitArgumentMask AttrMask = intrinsicToAttrMask(IID, NonKernelOnly, NeedsQueuePtr); if (AttrMask != NOT_IMPLICIT_INPUT) { if ((IsNonEntryFunc || !NonKernelOnly)) removeAssumedBits(AttrMask); } } // If we found that we need amdgpu-queue-ptr, nothing else to do. if (NeedsQueuePtr) { removeAssumedBits(QUEUE_PTR); return getAssumed() != OrigAssumed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; } auto CheckAddrSpaceCasts = [&](Instruction &I) { unsigned SrcAS = static_cast(I).getSrcAddressSpace(); if (castRequiresQueuePtr(SrcAS)) { NeedsQueuePtr = true; return false; } return true; }; bool HasApertureRegs = InfoCache.hasApertureRegs(*F); // `checkForAllInstructions` is much more cheaper than going through all // instructions, try it first. // amdgpu-queue-ptr is not needed if aperture regs is present. if (!HasApertureRegs) { bool UsedAssumedInformation = false; A.checkForAllInstructions(CheckAddrSpaceCasts, *this, {Instruction::AddrSpaceCast}, UsedAssumedInformation); } // If we found that we need amdgpu-queue-ptr, nothing else to do. if (NeedsQueuePtr) { removeAssumedBits(QUEUE_PTR); return getAssumed() != OrigAssumed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; } if (!IsNonEntryFunc && HasApertureRegs) { return getAssumed() != OrigAssumed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; } for (BasicBlock &BB : *F) { for (Instruction &I : BB) { for (const Use &U : I.operands()) { if (const auto *C = dyn_cast(U)) { if (InfoCache.needsQueuePtr(C, *F)) { removeAssumedBits(QUEUE_PTR); return getAssumed() != OrigAssumed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; } } } } } return getAssumed() != OrigAssumed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; } ChangeStatus manifest(Attributor &A) override { SmallVector AttrList; LLVMContext &Ctx = getAssociatedFunction()->getContext(); for (auto Attr : ImplicitAttrs) { if (isKnown(Attr.first)) AttrList.push_back(Attribute::get(Ctx, Attr.second)); } return IRAttributeManifest::manifestAttrs(A, getIRPosition(), AttrList, /* ForceReplace */ true); } const std::string getAsStr() const override { std::string Str; raw_string_ostream OS(Str); OS << "AMDInfo["; for (auto Attr : ImplicitAttrs) OS << ' ' << Attr.second; OS << " ]"; return OS.str(); } /// See AbstractAttribute::trackStatistics() void trackStatistics() const override {} }; AAAMDAttributes &AAAMDAttributes::createForPosition(const IRPosition &IRP, Attributor &A) { if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION) return *new (A.Allocator) AAAMDAttributesFunction(IRP, A); llvm_unreachable("AAAMDAttributes is only valid for function position"); } /// Propagate amdgpu-flat-work-group-size attribute. struct AAAMDFlatWorkGroupSize : public StateWrapper { using Base = StateWrapper; AAAMDFlatWorkGroupSize(const IRPosition &IRP, Attributor &A) : Base(IRP, 32) {} /// See AbstractAttribute::getState(...). IntegerRangeState &getState() override { return *this; } const IntegerRangeState &getState() const override { return *this; } void initialize(Attributor &A) override { Function *F = getAssociatedFunction(); auto &InfoCache = static_cast(A.getInfoCache()); unsigned MinGroupSize, MaxGroupSize; std::tie(MinGroupSize, MaxGroupSize) = InfoCache.getFlatWorkGroupSizes(*F); intersectKnown( ConstantRange(APInt(32, MinGroupSize), APInt(32, MaxGroupSize + 1))); if (AMDGPU::isEntryFunctionCC(F->getCallingConv())) indicatePessimisticFixpoint(); } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Change = ChangeStatus::UNCHANGED; auto CheckCallSite = [&](AbstractCallSite CS) { Function *Caller = CS.getInstruction()->getFunction(); LLVM_DEBUG(dbgs() << "[AAAMDFlatWorkGroupSize] Call " << Caller->getName() << "->" << getAssociatedFunction()->getName() << '\n'); const auto &CallerInfo = A.getAAFor( *this, IRPosition::function(*Caller), DepClassTy::REQUIRED); Change |= clampStateAndIndicateChange(this->getState(), CallerInfo.getState()); return true; }; bool AllCallSitesKnown = true; if (!A.checkForAllCallSites(CheckCallSite, *this, true, AllCallSitesKnown)) return indicatePessimisticFixpoint(); return Change; } ChangeStatus manifest(Attributor &A) override { SmallVector AttrList; Function *F = getAssociatedFunction(); LLVMContext &Ctx = F->getContext(); auto &InfoCache = static_cast(A.getInfoCache()); unsigned Min, Max; std::tie(Min, Max) = InfoCache.getMaximumFlatWorkGroupRange(*F); // Don't add the attribute if it's the implied default. if (getAssumed().getLower() == Min && getAssumed().getUpper() - 1 == Max) return ChangeStatus::UNCHANGED; SmallString<10> Buffer; raw_svector_ostream OS(Buffer); OS << getAssumed().getLower() << ',' << getAssumed().getUpper() - 1; AttrList.push_back( Attribute::get(Ctx, "amdgpu-flat-work-group-size", OS.str())); return IRAttributeManifest::manifestAttrs(A, getIRPosition(), AttrList, /* ForceReplace */ true); } const std::string getAsStr() const override { std::string Str; raw_string_ostream OS(Str); OS << "AMDFlatWorkGroupSize["; OS << getAssumed().getLower() << ',' << getAssumed().getUpper() - 1; OS << ']'; return OS.str(); } /// See AbstractAttribute::trackStatistics() void trackStatistics() const override {} /// Create an abstract attribute view for the position \p IRP. static AAAMDFlatWorkGroupSize &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAAMDFlatWorkGroupSize"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAAMDFlatWorkGroupSize static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; const char AAAMDFlatWorkGroupSize::ID = 0; AAAMDFlatWorkGroupSize & AAAMDFlatWorkGroupSize::createForPosition(const IRPosition &IRP, Attributor &A) { if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION) return *new (A.Allocator) AAAMDFlatWorkGroupSize(IRP, A); llvm_unreachable( "AAAMDFlatWorkGroupSize is only valid for function position"); } class AMDGPUAttributor : public ModulePass { public: AMDGPUAttributor() : ModulePass(ID) {} /// doInitialization - Virtual method overridden by subclasses to do /// any necessary initialization before any pass is run. bool doInitialization(Module &) override { auto *TPC = getAnalysisIfAvailable(); if (!TPC) report_fatal_error("TargetMachine is required"); TM = &TPC->getTM(); return false; } bool runOnModule(Module &M) override { SetVector Functions; AnalysisGetter AG; for (Function &F : M) { if (!F.isIntrinsic()) Functions.insert(&F); } CallGraphUpdater CGUpdater; BumpPtrAllocator Allocator; AMDGPUInformationCache InfoCache(M, AG, Allocator, nullptr, *TM); DenseSet Allowed( {&AAAMDAttributes::ID, &AAUniformWorkGroupSize::ID, &AAAMDFlatWorkGroupSize::ID, &AACallEdges::ID}); Attributor A(Functions, InfoCache, CGUpdater, &Allowed); for (Function &F : M) { if (!F.isIntrinsic()) { A.getOrCreateAAFor(IRPosition::function(F)); A.getOrCreateAAFor(IRPosition::function(F)); if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) { A.getOrCreateAAFor(IRPosition::function(F)); } } } ChangeStatus Change = A.run(); return Change == ChangeStatus::CHANGED; } StringRef getPassName() const override { return "AMDGPU Attributor"; } TargetMachine *TM; static char ID; }; } // namespace char AMDGPUAttributor::ID = 0; Pass *llvm::createAMDGPUAttributorPass() { return new AMDGPUAttributor(); } INITIALIZE_PASS(AMDGPUAttributor, DEBUG_TYPE, "AMDGPU Attributor", false, false)