//===-- AMDGPUAnnotateUniformValues.cpp - ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass adds amdgpu.uniform metadata to IR values so this information /// can be used during instruction selection. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/InitializePasses.h" #define DEBUG_TYPE "amdgpu-annotate-uniform" using namespace llvm; namespace { class AMDGPUAnnotateUniformValues : public FunctionPass, public InstVisitor { LegacyDivergenceAnalysis *DA; MemorySSA *MSSA; AliasAnalysis *AA; DenseMap noClobberClones; bool isEntryFunc; public: static char ID; AMDGPUAnnotateUniformValues() : FunctionPass(ID) { } bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "AMDGPU Annotate Uniform Values"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } void visitBranchInst(BranchInst &I); void visitLoadInst(LoadInst &I); bool isClobberedInFunction(LoadInst * Load); }; } // End anonymous namespace INITIALIZE_PASS_BEGIN(AMDGPUAnnotateUniformValues, DEBUG_TYPE, "Add AMDGPU uniform metadata", false, false) INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(AMDGPUAnnotateUniformValues, DEBUG_TYPE, "Add AMDGPU uniform metadata", false, false) char AMDGPUAnnotateUniformValues::ID = 0; static void setUniformMetadata(Instruction *I) { I->setMetadata("amdgpu.uniform", MDNode::get(I->getContext(), {})); } static void setNoClobberMetadata(Instruction *I) { I->setMetadata("amdgpu.noclobber", MDNode::get(I->getContext(), {})); } bool AMDGPUAnnotateUniformValues::isClobberedInFunction(LoadInst *Load) { MemorySSAWalker *Walker = MSSA->getWalker(); SmallVector WorkList{Walker->getClobberingMemoryAccess(Load)}; SmallSet Visited; MemoryLocation Loc(MemoryLocation::get(Load)); const auto isReallyAClobber = [this, Load](MemoryDef *Def) -> bool { Instruction *DefInst = Def->getMemoryInst(); LLVM_DEBUG(dbgs() << " Def: " << *DefInst << '\n'); if (isa(DefInst)) return false; if (const IntrinsicInst *II = dyn_cast(DefInst)) { switch (II->getIntrinsicID()) { case Intrinsic::amdgcn_s_barrier: case Intrinsic::amdgcn_wave_barrier: return false; default: break; } } // Ignore atomics not aliasing with the original load, any atomic is a // universal MemoryDef from MSSA's point of view too, just like a fence. const auto checkNoAlias = [this, Load](auto I) -> bool { return I && AA->isNoAlias(I->getPointerOperand(), Load->getPointerOperand()); }; if (checkNoAlias(dyn_cast(DefInst)) || checkNoAlias(dyn_cast(DefInst))) return false; return true; }; LLVM_DEBUG(dbgs() << "Checking clobbering of: " << *Load << '\n'); // Start with a nearest dominating clobbering access, it will be either // live on entry (nothing to do, load is not clobbered), MemoryDef, or // MemoryPhi if several MemoryDefs can define this memory state. In that // case add all Defs to WorkList and continue going up and checking all // the definitions of this memory location until the root. When all the // defs are exhausted and came to the entry state we have no clobber. // Along the scan ignore barriers and fences which are considered clobbers // by the MemorySSA, but not really writing anything into the memory. while (!WorkList.empty()) { MemoryAccess *MA = WorkList.pop_back_val(); if (!Visited.insert(MA).second) continue; if (MSSA->isLiveOnEntryDef(MA)) continue; if (MemoryDef *Def = dyn_cast(MA)) { if (isReallyAClobber(Def)) { LLVM_DEBUG(dbgs() << " -> load is clobbered\n"); return true; } WorkList.push_back( Walker->getClobberingMemoryAccess(Def->getDefiningAccess(), Loc)); continue; } const MemoryPhi *Phi = cast(MA); for (auto &Use : Phi->incoming_values()) WorkList.push_back(cast(&Use)); } LLVM_DEBUG(dbgs() << " -> no clobber\n"); return false; } void AMDGPUAnnotateUniformValues::visitBranchInst(BranchInst &I) { if (DA->isUniform(&I)) setUniformMetadata(&I); } void AMDGPUAnnotateUniformValues::visitLoadInst(LoadInst &I) { Value *Ptr = I.getPointerOperand(); if (!DA->isUniform(Ptr)) return; // We're tracking up to the Function boundaries, and cannot go beyond because // of FunctionPass restrictions. We can ensure that is memory not clobbered // for memory operations that are live in to entry points only. Instruction *PtrI = dyn_cast(Ptr); if (!isEntryFunc) { if (PtrI) setUniformMetadata(PtrI); return; } bool NotClobbered = false; bool GlobalLoad = I.getPointerAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; if (PtrI) NotClobbered = GlobalLoad && !isClobberedInFunction(&I); else if (isa(Ptr) || isa(Ptr)) { if (GlobalLoad && !isClobberedInFunction(&I)) { NotClobbered = true; // Lookup for the existing GEP if (noClobberClones.count(Ptr)) { PtrI = noClobberClones[Ptr]; } else { // Create GEP of the Value Function *F = I.getParent()->getParent(); Value *Idx = Constant::getIntegerValue( Type::getInt32Ty(Ptr->getContext()), APInt(64, 0)); // Insert GEP at the entry to make it dominate all uses PtrI = GetElementPtrInst::Create(I.getType(), Ptr, ArrayRef(Idx), Twine(""), F->getEntryBlock().getFirstNonPHI()); } I.replaceUsesOfWith(Ptr, PtrI); } } if (PtrI) { setUniformMetadata(PtrI); if (NotClobbered) setNoClobberMetadata(PtrI); } } bool AMDGPUAnnotateUniformValues::doInitialization(Module &M) { return false; } bool AMDGPUAnnotateUniformValues::runOnFunction(Function &F) { if (skipFunction(F)) return false; DA = &getAnalysis(); MSSA = &getAnalysis().getMSSA(); AA = &getAnalysis().getAAResults(); isEntryFunc = AMDGPU::isEntryFunctionCC(F.getCallingConv()); visit(F); noClobberClones.clear(); return true; } FunctionPass * llvm::createAMDGPUAnnotateUniformValues() { return new AMDGPUAnnotateUniformValues(); }