//=== lib/CodeGen/GlobalISel/AArch64PreLegalizerCombiner.cpp --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass does combining of machine instructions at the generic MI level, // before the legalizer. // //===----------------------------------------------------------------------===// #include "AArch64GlobalISelUtils.h" #include "AArch64TargetMachine.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Instructions.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "aarch64-prelegalizer-combiner" using namespace llvm; using namespace MIPatternMatch; /// Return true if a G_FCONSTANT instruction is known to be better-represented /// as a G_CONSTANT. static bool matchFConstantToConstant(MachineInstr &MI, MachineRegisterInfo &MRI) { assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); Register DstReg = MI.getOperand(0).getReg(); const unsigned DstSize = MRI.getType(DstReg).getSizeInBits(); if (DstSize != 32 && DstSize != 64) return false; // When we're storing a value, it doesn't matter what register bank it's on. // Since not all floating point constants can be materialized using a fmov, // it makes more sense to just use a GPR. return all_of(MRI.use_nodbg_instructions(DstReg), [](const MachineInstr &Use) { return Use.mayStore(); }); } /// Change a G_FCONSTANT into a G_CONSTANT. static void applyFConstantToConstant(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); MachineIRBuilder MIB(MI); const APFloat &ImmValAPF = MI.getOperand(1).getFPImm()->getValueAPF(); MIB.buildConstant(MI.getOperand(0).getReg(), ImmValAPF.bitcastToAPInt()); MI.eraseFromParent(); } /// Try to match a G_ICMP of a G_TRUNC with zero, in which the truncated bits /// are sign bits. In this case, we can transform the G_ICMP to directly compare /// the wide value with a zero. static bool matchICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, GISelKnownBits *KB, Register &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ICMP && KB); auto Pred = (CmpInst::Predicate)MI.getOperand(1).getPredicate(); if (!ICmpInst::isEquality(Pred)) return false; Register LHS = MI.getOperand(2).getReg(); LLT LHSTy = MRI.getType(LHS); if (!LHSTy.isScalar()) return false; Register RHS = MI.getOperand(3).getReg(); Register WideReg; if (!mi_match(LHS, MRI, m_GTrunc(m_Reg(WideReg))) || !mi_match(RHS, MRI, m_SpecificICst(0))) return false; LLT WideTy = MRI.getType(WideReg); if (KB->computeNumSignBits(WideReg) <= WideTy.getSizeInBits() - LHSTy.getSizeInBits()) return false; MatchInfo = WideReg; return true; } static bool applyICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &Builder, GISelChangeObserver &Observer, Register &WideReg) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); LLT WideTy = MRI.getType(WideReg); // We're going to directly use the wide register as the LHS, and then use an // equivalent size zero for RHS. Builder.setInstrAndDebugLoc(MI); auto WideZero = Builder.buildConstant(WideTy, 0); Observer.changingInstr(MI); MI.getOperand(2).setReg(WideReg); MI.getOperand(3).setReg(WideZero.getReg(0)); Observer.changedInstr(MI); return true; } /// \returns true if it is possible to fold a constant into a G_GLOBAL_VALUE. /// /// e.g. /// /// %g = G_GLOBAL_VALUE @x -> %g = G_GLOBAL_VALUE @x + cst static bool matchFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE); MachineFunction &MF = *MI.getMF(); auto &GlobalOp = MI.getOperand(1); auto *GV = GlobalOp.getGlobal(); if (GV->isThreadLocal()) return false; // Don't allow anything that could represent offsets etc. if (MF.getSubtarget().ClassifyGlobalReference( GV, MF.getTarget()) != AArch64II::MO_NO_FLAG) return false; // Look for a G_GLOBAL_VALUE only used by G_PTR_ADDs against constants: // // %g = G_GLOBAL_VALUE @x // %ptr1 = G_PTR_ADD %g, cst1 // %ptr2 = G_PTR_ADD %g, cst2 // ... // %ptrN = G_PTR_ADD %g, cstN // // Identify the *smallest* constant. We want to be able to form this: // // %offset_g = G_GLOBAL_VALUE @x + min_cst // %g = G_PTR_ADD %offset_g, -min_cst // %ptr1 = G_PTR_ADD %g, cst1 // ... Register Dst = MI.getOperand(0).getReg(); uint64_t MinOffset = -1ull; for (auto &UseInstr : MRI.use_nodbg_instructions(Dst)) { if (UseInstr.getOpcode() != TargetOpcode::G_PTR_ADD) return false; auto Cst = getIConstantVRegValWithLookThrough( UseInstr.getOperand(2).getReg(), MRI); if (!Cst) return false; MinOffset = std::min(MinOffset, Cst->Value.getZExtValue()); } // Require that the new offset is larger than the existing one to avoid // infinite loops. uint64_t CurrOffset = GlobalOp.getOffset(); uint64_t NewOffset = MinOffset + CurrOffset; if (NewOffset <= CurrOffset) return false; // Check whether folding this offset is legal. It must not go out of bounds of // the referenced object to avoid violating the code model, and must be // smaller than 2^20 because this is the largest offset expressible in all // object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF // stores an immediate signed 21 bit offset.) // // This check also prevents us from folding negative offsets, which will end // up being treated in the same way as large positive ones. They could also // cause code model violations, and aren't really common enough to matter. if (NewOffset >= (1 << 20)) return false; Type *T = GV->getValueType(); if (!T->isSized() || NewOffset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) return false; MatchInfo = std::make_pair(NewOffset, MinOffset); return true; } static bool applyFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, GISelChangeObserver &Observer, std::pair &MatchInfo) { // Change: // // %g = G_GLOBAL_VALUE @x // %ptr1 = G_PTR_ADD %g, cst1 // %ptr2 = G_PTR_ADD %g, cst2 // ... // %ptrN = G_PTR_ADD %g, cstN // // To: // // %offset_g = G_GLOBAL_VALUE @x + min_cst // %g = G_PTR_ADD %offset_g, -min_cst // %ptr1 = G_PTR_ADD %g, cst1 // ... // %ptrN = G_PTR_ADD %g, cstN // // Then, the original G_PTR_ADDs should be folded later on so that they look // like this: // // %ptrN = G_PTR_ADD %offset_g, cstN - min_cst uint64_t Offset, MinOffset; std::tie(Offset, MinOffset) = MatchInfo; B.setInstrAndDebugLoc(MI); Observer.changingInstr(MI); auto &GlobalOp = MI.getOperand(1); auto *GV = GlobalOp.getGlobal(); GlobalOp.ChangeToGA(GV, Offset, GlobalOp.getTargetFlags()); Register Dst = MI.getOperand(0).getReg(); Register NewGVDst = MRI.cloneVirtualRegister(Dst); MI.getOperand(0).setReg(NewGVDst); Observer.changedInstr(MI); B.buildPtrAdd( Dst, NewGVDst, B.buildConstant(LLT::scalar(64), -static_cast(MinOffset))); return true; } static bool tryToSimplifyUADDO(MachineInstr &MI, MachineIRBuilder &B, CombinerHelper &Helper, GISelChangeObserver &Observer) { // Try simplify G_UADDO with 8 or 16 bit operands to wide G_ADD and TBNZ if // result is only used in the no-overflow case. It is restricted to cases // where we know that the high-bits of the operands are 0. If there's an // overflow, then the the 9th or 17th bit must be set, which can be checked // using TBNZ. // // Change (for UADDOs on 8 and 16 bits): // // %z0 = G_ASSERT_ZEXT _ // %op0 = G_TRUNC %z0 // %z1 = G_ASSERT_ZEXT _ // %op1 = G_TRUNC %z1 // %val, %cond = G_UADDO %op0, %op1 // G_BRCOND %cond, %error.bb // // error.bb: // (no successors and no uses of %val) // // To: // // %z0 = G_ASSERT_ZEXT _ // %z1 = G_ASSERT_ZEXT _ // %add = G_ADD %z0, %z1 // %val = G_TRUNC %add // %bit = G_AND %add, 1 << scalar-size-in-bits(%op1) // %cond = G_ICMP NE, %bit, 0 // G_BRCOND %cond, %error.bb auto &MRI = *B.getMRI(); MachineOperand *DefOp0 = MRI.getOneDef(MI.getOperand(2).getReg()); MachineOperand *DefOp1 = MRI.getOneDef(MI.getOperand(3).getReg()); Register Op0Wide; Register Op1Wide; if (!mi_match(DefOp0->getParent(), MRI, m_GTrunc(m_Reg(Op0Wide))) || !mi_match(DefOp1->getParent(), MRI, m_GTrunc(m_Reg(Op1Wide)))) return false; LLT WideTy0 = MRI.getType(Op0Wide); LLT WideTy1 = MRI.getType(Op1Wide); Register ResVal = MI.getOperand(0).getReg(); LLT OpTy = MRI.getType(ResVal); MachineInstr *Op0WideDef = MRI.getVRegDef(Op0Wide); MachineInstr *Op1WideDef = MRI.getVRegDef(Op1Wide); unsigned OpTySize = OpTy.getScalarSizeInBits(); // First check that the G_TRUNC feeding the G_UADDO are no-ops, because the // inputs have been zero-extended. if (Op0WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT || Op1WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT || OpTySize != Op0WideDef->getOperand(2).getImm() || OpTySize != Op1WideDef->getOperand(2).getImm()) return false; // Only scalar UADDO with either 8 or 16 bit operands are handled. if (!WideTy0.isScalar() || !WideTy1.isScalar() || WideTy0 != WideTy1 || OpTySize >= WideTy0.getScalarSizeInBits() || (OpTySize != 8 && OpTySize != 16)) return false; // The overflow-status result must be used by a branch only. Register ResStatus = MI.getOperand(1).getReg(); if (!MRI.hasOneNonDBGUse(ResStatus)) return false; MachineInstr *CondUser = &*MRI.use_instr_nodbg_begin(ResStatus); if (CondUser->getOpcode() != TargetOpcode::G_BRCOND) return false; // Make sure the computed result is only used in the no-overflow blocks. MachineBasicBlock *CurrentMBB = MI.getParent(); MachineBasicBlock *FailMBB = CondUser->getOperand(1).getMBB(); if (!FailMBB->succ_empty() || CondUser->getParent() != CurrentMBB) return false; if (any_of(MRI.use_nodbg_instructions(ResVal), [&MI, FailMBB, CurrentMBB](MachineInstr &I) { return &MI != &I && (I.getParent() == FailMBB || I.getParent() == CurrentMBB); })) return false; // Remove G_ADDO. B.setInstrAndDebugLoc(*MI.getNextNode()); MI.eraseFromParent(); // Emit wide add. Register AddDst = MRI.cloneVirtualRegister(Op0Wide); B.buildInstr(TargetOpcode::G_ADD, {AddDst}, {Op0Wide, Op1Wide}); // Emit check of the 9th or 17th bit and update users (the branch). This will // later be folded to TBNZ. Register CondBit = MRI.cloneVirtualRegister(Op0Wide); B.buildAnd( CondBit, AddDst, B.buildConstant(LLT::scalar(32), OpTySize == 8 ? 1 << 8 : 1 << 16)); B.buildICmp(CmpInst::ICMP_NE, ResStatus, CondBit, B.buildConstant(LLT::scalar(32), 0)); // Update ZEXts users of the result value. Because all uses are in the // no-overflow case, we know that the top bits are 0 and we can ignore ZExts. B.buildZExtOrTrunc(ResVal, AddDst); for (MachineOperand &U : make_early_inc_range(MRI.use_operands(ResVal))) { Register WideReg; if (mi_match(U.getParent(), MRI, m_GZExt(m_Reg(WideReg)))) { auto OldR = U.getParent()->getOperand(0).getReg(); Observer.erasingInstr(*U.getParent()); U.getParent()->eraseFromParent(); Helper.replaceRegWith(MRI, OldR, AddDst); } } return true; } class AArch64PreLegalizerCombinerHelperState { protected: CombinerHelper &Helper; public: AArch64PreLegalizerCombinerHelperState(CombinerHelper &Helper) : Helper(Helper) {} }; #define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS #include "AArch64GenPreLegalizeGICombiner.inc" #undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS namespace { #define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H #include "AArch64GenPreLegalizeGICombiner.inc" #undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H class AArch64PreLegalizerCombinerInfo : public CombinerInfo { GISelKnownBits *KB; MachineDominatorTree *MDT; AArch64GenPreLegalizerCombinerHelperRuleConfig GeneratedRuleCfg; public: AArch64PreLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize, GISelKnownBits *KB, MachineDominatorTree *MDT) : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false, /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize), KB(KB), MDT(MDT) { if (!GeneratedRuleCfg.parseCommandLineOption()) report_fatal_error("Invalid rule identifier"); } virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI, MachineIRBuilder &B) const override; }; bool AArch64PreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer, MachineInstr &MI, MachineIRBuilder &B) const { CombinerHelper Helper(Observer, B, KB, MDT); AArch64GenPreLegalizerCombinerHelper Generated(GeneratedRuleCfg, Helper); if (Generated.tryCombineAll(Observer, MI, B)) return true; unsigned Opc = MI.getOpcode(); switch (Opc) { case TargetOpcode::G_CONCAT_VECTORS: return Helper.tryCombineConcatVectors(MI); case TargetOpcode::G_SHUFFLE_VECTOR: return Helper.tryCombineShuffleVector(MI); case TargetOpcode::G_UADDO: return tryToSimplifyUADDO(MI, B, Helper, Observer); case TargetOpcode::G_MEMCPY_INLINE: return Helper.tryEmitMemcpyInline(MI); case TargetOpcode::G_MEMCPY: case TargetOpcode::G_MEMMOVE: case TargetOpcode::G_MEMSET: { // If we're at -O0 set a maxlen of 32 to inline, otherwise let the other // heuristics decide. unsigned MaxLen = EnableOpt ? 0 : 32; // Try to inline memcpy type calls if optimizations are enabled. if (Helper.tryCombineMemCpyFamily(MI, MaxLen)) return true; if (Opc == TargetOpcode::G_MEMSET) return llvm::AArch64GISelUtils::tryEmitBZero(MI, B, EnableMinSize); return false; } } return false; } #define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP #include "AArch64GenPreLegalizeGICombiner.inc" #undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP // Pass boilerplate // ================ class AArch64PreLegalizerCombiner : public MachineFunctionPass { public: static char ID; AArch64PreLegalizerCombiner(); StringRef getPassName() const override { return "AArch64PreLegalizerCombiner"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; } // end anonymous namespace void AArch64PreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); getSelectionDAGFallbackAnalysisUsage(AU); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } AArch64PreLegalizerCombiner::AArch64PreLegalizerCombiner() : MachineFunctionPass(ID) { initializeAArch64PreLegalizerCombinerPass(*PassRegistry::getPassRegistry()); } bool AArch64PreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) { if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; auto &TPC = getAnalysis(); // Enable CSE. GISelCSEAnalysisWrapper &Wrapper = getAnalysis().getCSEWrapper(); auto *CSEInfo = &Wrapper.get(TPC.getCSEConfig()); const Function &F = MF.getFunction(); bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F); GISelKnownBits *KB = &getAnalysis().get(MF); MachineDominatorTree *MDT = &getAnalysis(); AArch64PreLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(), F.hasMinSize(), KB, MDT); Combiner C(PCInfo, &TPC); return C.combineMachineInstrs(MF, CSEInfo); } char AArch64PreLegalizerCombiner::ID = 0; INITIALIZE_PASS_BEGIN(AArch64PreLegalizerCombiner, DEBUG_TYPE, "Combine AArch64 machine instrs before legalization", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis) INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) INITIALIZE_PASS_END(AArch64PreLegalizerCombiner, DEBUG_TYPE, "Combine AArch64 machine instrs before legalization", false, false) namespace llvm { FunctionPass *createAArch64PreLegalizerCombiner() { return new AArch64PreLegalizerCombiner(); } } // end namespace llvm