//=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// Post-legalization lowering for instructions. /// /// This is used to offload pattern matching from the selector. /// /// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually /// a G_ZIP, G_UZP, etc. /// /// General optimization combines should be handled by either the /// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner. /// //===----------------------------------------------------------------------===// #include "AArch64GlobalISelUtils.h" #include "AArch64Subtarget.h" #include "AArch64TargetMachine.h" #include "GISel/AArch64LegalizerInfo.h" #include "MCTargetDesc/AArch64MCTargetDesc.h" #include "TargetInfo/AArch64TargetInfo.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/InstrTypes.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include #define GET_GICOMBINER_DEPS #include "AArch64GenPostLegalizeGILowering.inc" #undef GET_GICOMBINER_DEPS #define DEBUG_TYPE "aarch64-postlegalizer-lowering" using namespace llvm; using namespace MIPatternMatch; using namespace AArch64GISelUtils; namespace { #define GET_GICOMBINER_TYPES #include "AArch64GenPostLegalizeGILowering.inc" #undef GET_GICOMBINER_TYPES /// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR. /// /// Used for matching target-supported shuffles before codegen. struct ShuffleVectorPseudo { unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1) Register Dst; ///< Destination register. SmallVector SrcOps; ///< Source registers. ShuffleVectorPseudo(unsigned Opc, Register Dst, std::initializer_list SrcOps) : Opc(Opc), Dst(Dst), SrcOps(SrcOps){}; ShuffleVectorPseudo() = default; }; /// Check if a vector shuffle corresponds to a REV instruction with the /// specified blocksize. bool isREVMask(ArrayRef M, unsigned EltSize, unsigned NumElts, unsigned BlockSize) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for REV are: 16, 32, 64"); assert(EltSize != 64 && "EltSize cannot be 64 for REV mask."); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSize; if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize) return false; for (unsigned i = 0; i < NumElts; ++i) { // Ignore undef indices. if (M[i] < 0) continue; if (static_cast(M[i]) != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) return false; } return true; } /// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts. /// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult. bool isTRNMask(ArrayRef M, unsigned NumElts, unsigned &WhichResult) { if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && static_cast(M[i]) != i + WhichResult) || (M[i + 1] >= 0 && static_cast(M[i + 1]) != i + NumElts + WhichResult)) return false; } return true; } /// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector /// sources of the shuffle are different. std::optional> getExtMask(ArrayRef M, unsigned NumElts) { // Look for the first non-undef element. auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); if (FirstRealElt == M.end()) return std::nullopt; // Use APInt to handle overflow when calculating expected element. unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); // The following shuffle indices must be the successive elements after the // first real element. if (any_of( make_range(std::next(FirstRealElt), M.end()), [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; })) return std::nullopt; // The index of an EXT is the first element if it is not UNDEF. // Watch out for the beginning UNDEFs. The EXT index should be the expected // value of the first element. E.g. // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. // ExpectedElt is the last mask index plus 1. uint64_t Imm = ExpectedElt.getZExtValue(); bool ReverseExt = false; // There are two difference cases requiring to reverse input vectors. // For example, for vector <4 x i32> we have the following cases, // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) // For both cases, we finally use mask <5, 6, 7, 0>, which requires // to reverse two input vectors. if (Imm < NumElts) ReverseExt = true; else Imm -= NumElts; return std::make_pair(ReverseExt, Imm); } /// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts. /// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult. bool isUZPMask(ArrayRef M, unsigned NumElts, unsigned &WhichResult) { WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i != NumElts; ++i) { // Skip undef indices. if (M[i] < 0) continue; if (static_cast(M[i]) != 2 * i + WhichResult) return false; } return true; } /// \return true if \p M is a zip mask for a shuffle vector of \p NumElts. /// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult. bool isZipMask(ArrayRef M, unsigned NumElts, unsigned &WhichResult) { if (NumElts % 2 != 0) return false; // 0 means use ZIP1, 1 means use ZIP2. WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && static_cast(M[i]) != Idx) || (M[i + 1] >= 0 && static_cast(M[i + 1]) != Idx + NumElts)) return false; Idx += 1; } return true; } /// Helper function for matchINS. /// /// \returns a value when \p M is an ins mask for \p NumInputElements. /// /// First element of the returned pair is true when the produced /// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR. /// /// Second element is the destination lane for the G_INSERT_VECTOR_ELT. std::optional> isINSMask(ArrayRef M, int NumInputElements) { if (M.size() != static_cast(NumInputElements)) return std::nullopt; int NumLHSMatch = 0, NumRHSMatch = 0; int LastLHSMismatch = -1, LastRHSMismatch = -1; for (int Idx = 0; Idx < NumInputElements; ++Idx) { if (M[Idx] == -1) { ++NumLHSMatch; ++NumRHSMatch; continue; } M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx; M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx; } const int NumNeededToMatch = NumInputElements - 1; if (NumLHSMatch == NumNeededToMatch) return std::make_pair(true, LastLHSMismatch); if (NumRHSMatch == NumNeededToMatch) return std::make_pair(false, LastRHSMismatch); return std::nullopt; } /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a /// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc. bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(Dst); unsigned EltSize = Ty.getScalarSizeInBits(); // Element size for a rev cannot be 64. if (EltSize == 64) return false; unsigned NumElts = Ty.getNumElements(); // Try to produce G_REV64 if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) { MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src}); return true; } // TODO: Produce G_REV32 and G_REV16 once we have proper legalization support. // This should be identical to above, but with a constant 32 and constant // 16. return false; } /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with /// a G_TRN1 or G_TRN2 instruction. bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); unsigned WhichResult; ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); unsigned NumElts = MRI.getType(Dst).getNumElements(); if (!isTRNMask(ShuffleMask, NumElts, WhichResult)) return false; unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2; Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); return true; } /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with /// a G_UZP1 or G_UZP2 instruction. /// /// \param [in] MI - The shuffle vector instruction. /// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success. bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); unsigned WhichResult; ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); unsigned NumElts = MRI.getType(Dst).getNumElements(); if (!isUZPMask(ShuffleMask, NumElts, WhichResult)) return false; unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2; Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); return true; } bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); unsigned WhichResult; ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); unsigned NumElts = MRI.getType(Dst).getNumElements(); if (!isZipMask(ShuffleMask, NumElts, WhichResult)) return false; unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2; Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); return true; } /// Helper function for matchDup. bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { if (Lane != 0) return false; // Try to match a vector splat operation into a dup instruction. // We're looking for this pattern: // // %scalar:gpr(s64) = COPY $x0 // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF // %cst0:gpr(s32) = G_CONSTANT i32 0 // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32) // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32) // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, // %zerovec(<2 x s32>) // // ...into: // %splat = G_DUP %scalar // Begin matching the insert. auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT, MI.getOperand(1).getReg(), MRI); if (!InsMI) return false; // Match the undef vector operand. if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(), MRI)) return false; // Match the index constant 0. if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt())) return false; MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {InsMI->getOperand(2).getReg()}); return true; } /// Helper function for matchDup. bool matchDupFromBuildVector(int Lane, MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(Lane >= 0 && "Expected positive lane?"); // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the // lane's definition directly. auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, MI.getOperand(1).getReg(), MRI); if (!BuildVecMI) return false; Register Reg = BuildVecMI->getOperand(Lane + 1).getReg(); MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg}); return true; } bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); auto MaybeLane = getSplatIndex(MI); if (!MaybeLane) return false; int Lane = *MaybeLane; // If this is undef splat, generate it via "just" vdup, if possible. if (Lane < 0) Lane = 0; if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo)) return true; if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo)) return true; return false; } // Check if an EXT instruction can handle the shuffle mask when the vector // sources of the shuffle are the same. bool isSingletonExtMask(ArrayRef M, LLT Ty) { unsigned NumElts = Ty.getNumElements(); // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = M[0]; for (unsigned I = 1; I < NumElts; ++I) { // Increment the expected index. If it wraps around, just follow it // back to index zero and keep going. ++ExpectedElt; if (ExpectedElt == NumElts) ExpectedElt = 0; if (M[I] < 0) continue; // Ignore UNDEF indices. if (ExpectedElt != static_cast(M[I])) return false; } return true; } bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); Register Dst = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst); Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); auto Mask = MI.getOperand(3).getShuffleMask(); uint64_t Imm; auto ExtInfo = getExtMask(Mask, DstTy.getNumElements()); uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8; if (!ExtInfo) { if (!getOpcodeDef(V2, MRI) || !isSingletonExtMask(Mask, DstTy)) return false; Imm = Mask[0] * ExtFactor; MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm}); return true; } bool ReverseExt; std::tie(ReverseExt, Imm) = *ExtInfo; if (ReverseExt) std::swap(V1, V2); Imm *= ExtFactor; MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm}); return true; } /// Replace a G_SHUFFLE_VECTOR instruction with a pseudo. /// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR. void applyShuffleVectorPseudo(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) { MachineIRBuilder MIRBuilder(MI); MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps); MI.eraseFromParent(); } /// Replace a G_SHUFFLE_VECTOR instruction with G_EXT. /// Special-cased because the constant operand must be emitted as a G_CONSTANT /// for the imported tablegen patterns to work. void applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) { MachineIRBuilder MIRBuilder(MI); if (MatchInfo.SrcOps[2].getImm() == 0) MIRBuilder.buildCopy(MatchInfo.Dst, MatchInfo.SrcOps[0]); else { // Tablegen patterns expect an i32 G_CONSTANT as the final op. auto Cst = MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm()); MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst}); } MI.eraseFromParent(); } /// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a /// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair. /// /// e.g. /// %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0) /// /// Can be represented as /// /// %extract = G_EXTRACT_VECTOR_ELT %left, 0 /// %ins = G_INSERT_VECTOR_ELT %left, %extract, 1 /// bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); int NumElts = MRI.getType(Dst).getNumElements(); auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts); if (!DstIsLeftAndDstLane) return false; bool DstIsLeft; int DstLane; std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane; Register Left = MI.getOperand(1).getReg(); Register Right = MI.getOperand(2).getReg(); Register DstVec = DstIsLeft ? Left : Right; Register SrcVec = Left; int SrcLane = ShuffleMask[DstLane]; if (SrcLane >= NumElts) { SrcVec = Right; SrcLane -= NumElts; } MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane); return true; } void applyINS(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &Builder, std::tuple &MatchInfo) { Builder.setInstrAndDebugLoc(MI); Register Dst = MI.getOperand(0).getReg(); auto ScalarTy = MRI.getType(Dst).getElementType(); Register DstVec, SrcVec; int DstLane, SrcLane; std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo; auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane); auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst); auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane); Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst); MI.eraseFromParent(); } /// isVShiftRImm - Check if this is a valid vector for the immediate /// operand of a vector shift right operation. The value must be in the range: /// 1 <= Value <= ElementBits for a right shift. bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty, int64_t &Cnt) { assert(Ty.isVector() && "vector shift count is not a vector type"); MachineInstr *MI = MRI.getVRegDef(Reg); auto Cst = getAArch64VectorSplatScalar(*MI, MRI); if (!Cst) return false; Cnt = *Cst; int64_t ElementBits = Ty.getScalarSizeInBits(); return Cnt >= 1 && Cnt <= ElementBits; } /// Match a vector G_ASHR or G_LSHR with a valid immediate shift. bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI, int64_t &Imm) { assert(MI.getOpcode() == TargetOpcode::G_ASHR || MI.getOpcode() == TargetOpcode::G_LSHR); LLT Ty = MRI.getType(MI.getOperand(1).getReg()); if (!Ty.isVector()) return false; return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm); } void applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI, int64_t &Imm) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR); unsigned NewOpc = Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR; MachineIRBuilder MIB(MI); auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm); MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef}); MI.eraseFromParent(); } /// Determine if it is possible to modify the \p RHS and predicate \p P of a /// G_ICMP instruction such that the right-hand side is an arithmetic immediate. /// /// \returns A pair containing the updated immediate and predicate which may /// be used to optimize the instruction. /// /// \note This assumes that the comparison has been legalized. std::optional> tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P, const MachineRegisterInfo &MRI) { const auto &Ty = MRI.getType(RHS); if (Ty.isVector()) return std::nullopt; unsigned Size = Ty.getSizeInBits(); assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?"); // If the RHS is not a constant, or the RHS is already a valid arithmetic // immediate, then there is nothing to change. auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI); if (!ValAndVReg) return std::nullopt; uint64_t C = ValAndVReg->Value.getZExtValue(); if (isLegalArithImmed(C)) return std::nullopt; // We have a non-arithmetic immediate. Check if adjusting the immediate and // adjusting the predicate will result in a legal arithmetic immediate. switch (P) { default: return std::nullopt; case CmpInst::ICMP_SLT: case CmpInst::ICMP_SGE: // Check for // // x slt c => x sle c - 1 // x sge c => x sgt c - 1 // // When c is not the smallest possible negative number. if ((Size == 64 && static_cast(C) == INT64_MIN) || (Size == 32 && static_cast(C) == INT32_MIN)) return std::nullopt; P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT; C -= 1; break; case CmpInst::ICMP_ULT: case CmpInst::ICMP_UGE: // Check for // // x ult c => x ule c - 1 // x uge c => x ugt c - 1 // // When c is not zero. if (C == 0) return std::nullopt; P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; C -= 1; break; case CmpInst::ICMP_SLE: case CmpInst::ICMP_SGT: // Check for // // x sle c => x slt c + 1 // x sgt c => s sge c + 1 // // When c is not the largest possible signed integer. if ((Size == 32 && static_cast(C) == INT32_MAX) || (Size == 64 && static_cast(C) == INT64_MAX)) return std::nullopt; P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE; C += 1; break; case CmpInst::ICMP_ULE: case CmpInst::ICMP_UGT: // Check for // // x ule c => x ult c + 1 // x ugt c => s uge c + 1 // // When c is not the largest possible unsigned integer. if ((Size == 32 && static_cast(C) == UINT32_MAX) || (Size == 64 && C == UINT64_MAX)) return std::nullopt; P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; C += 1; break; } // Check if the new constant is valid, and return the updated constant and // predicate if it is. if (Size == 32) C = static_cast(C); if (!isLegalArithImmed(C)) return std::nullopt; return {{C, P}}; } /// Determine whether or not it is possible to update the RHS and predicate of /// a G_ICMP instruction such that the RHS will be selected as an arithmetic /// immediate. /// /// \p MI - The G_ICMP instruction /// \p MatchInfo - The new RHS immediate and predicate on success /// /// See tryAdjustICmpImmAndPred for valid transformations. bool matchAdjustICmpImmAndPred( MachineInstr &MI, const MachineRegisterInfo &MRI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); Register RHS = MI.getOperand(3).getReg(); auto Pred = static_cast(MI.getOperand(1).getPredicate()); if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) { MatchInfo = *MaybeNewImmAndPred; return true; } return false; } void applyAdjustICmpImmAndPred( MachineInstr &MI, std::pair &MatchInfo, MachineIRBuilder &MIB, GISelChangeObserver &Observer) { MIB.setInstrAndDebugLoc(MI); MachineOperand &RHS = MI.getOperand(3); MachineRegisterInfo &MRI = *MIB.getMRI(); auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()), MatchInfo.first); Observer.changingInstr(MI); RHS.setReg(Cst->getOperand(0).getReg()); MI.getOperand(1).setPredicate(MatchInfo.second); Observer.changedInstr(MI); } bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); Register Src1Reg = MI.getOperand(1).getReg(); const LLT SrcTy = MRI.getType(Src1Reg); const LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); auto LaneIdx = getSplatIndex(MI); if (!LaneIdx) return false; // The lane idx should be within the first source vector. if (*LaneIdx >= SrcTy.getNumElements()) return false; if (DstTy != SrcTy) return false; LLT ScalarTy = SrcTy.getElementType(); unsigned ScalarSize = ScalarTy.getSizeInBits(); unsigned Opc = 0; switch (SrcTy.getNumElements()) { case 2: if (ScalarSize == 64) Opc = AArch64::G_DUPLANE64; else if (ScalarSize == 32) Opc = AArch64::G_DUPLANE32; break; case 4: if (ScalarSize == 32) Opc = AArch64::G_DUPLANE32; else if (ScalarSize == 16) Opc = AArch64::G_DUPLANE16; break; case 8: if (ScalarSize == 8) Opc = AArch64::G_DUPLANE8; else if (ScalarSize == 16) Opc = AArch64::G_DUPLANE16; break; case 16: if (ScalarSize == 8) Opc = AArch64::G_DUPLANE8; break; default: break; } if (!Opc) return false; MatchInfo.first = Opc; MatchInfo.second = *LaneIdx; return true; } void applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); Register Src1Reg = MI.getOperand(1).getReg(); const LLT SrcTy = MRI.getType(Src1Reg); B.setInstrAndDebugLoc(MI); auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second); Register DupSrc = MI.getOperand(1).getReg(); // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source. // To do this, we can use a G_CONCAT_VECTORS to do the widening. if (SrcTy.getSizeInBits() == 64) { auto Undef = B.buildUndef(SrcTy); DupSrc = B.buildConcatVectors(SrcTy.multiplyElements(2), {Src1Reg, Undef.getReg(0)}) .getReg(0); } B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane}); MI.eraseFromParent(); } bool matchScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI) { auto &Unmerge = cast(MI); Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1); const LLT SrcTy = MRI.getType(Src1Reg); return SrcTy.isVector() && !SrcTy.isScalable() && Unmerge.getNumOperands() == (unsigned)SrcTy.getNumElements() + 1; } void applyScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) { auto &Unmerge = cast(MI); Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1); const LLT SrcTy = MRI.getType(Src1Reg); assert((SrcTy.isVector() && !SrcTy.isScalable()) && "Expected a fixed length vector"); for (int I = 0; I < SrcTy.getNumElements(); ++I) B.buildExtractVectorElementConstant(Unmerge.getReg(I), Src1Reg, I); MI.eraseFromParent(); } bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) { assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); auto Splat = getAArch64VectorSplat(MI, MRI); if (!Splat) return false; if (Splat->isReg()) return true; // Later, during selection, we'll try to match imported patterns using // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower // G_BUILD_VECTORs which could match those patterns. int64_t Cst = Splat->getCst(); return (Cst != 0 && Cst != -1); } void applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) { B.setInstrAndDebugLoc(MI); B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()}, {MI.getOperand(1).getReg()}); MI.eraseFromParent(); } /// \returns how many instructions would be saved by folding a G_ICMP's shift /// and/or extension operations. unsigned getCmpOperandFoldingProfit(Register CmpOp, MachineRegisterInfo &MRI) { // No instructions to save if there's more than one use or no uses. if (!MRI.hasOneNonDBGUse(CmpOp)) return 0; // FIXME: This is duplicated with the selector. (See: selectShiftedRegister) auto IsSupportedExtend = [&](const MachineInstr &MI) { if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG) return true; if (MI.getOpcode() != TargetOpcode::G_AND) return false; auto ValAndVReg = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!ValAndVReg) return false; uint64_t Mask = ValAndVReg->Value.getZExtValue(); return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); }; MachineInstr *Def = getDefIgnoringCopies(CmpOp, MRI); if (IsSupportedExtend(*Def)) return 1; unsigned Opc = Def->getOpcode(); if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR && Opc != TargetOpcode::G_LSHR) return 0; auto MaybeShiftAmt = getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI); if (!MaybeShiftAmt) return 0; uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue(); MachineInstr *ShiftLHS = getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI); // Check if we can fold an extend and a shift. // FIXME: This is duplicated with the selector. (See: // selectArithExtendedRegister) if (IsSupportedExtend(*ShiftLHS)) return (ShiftAmt <= 4) ? 2 : 1; LLT Ty = MRI.getType(Def->getOperand(0).getReg()); if (Ty.isVector()) return 0; unsigned ShiftSize = Ty.getSizeInBits(); if ((ShiftSize == 32 && ShiftAmt <= 31) || (ShiftSize == 64 && ShiftAmt <= 63)) return 1; return 0; } /// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP /// instruction \p MI. bool trySwapICmpOperands(MachineInstr &MI, MachineRegisterInfo &MRI) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); // Swap the operands if it would introduce a profitable folding opportunity. // (e.g. a shift + extend). // // For example: // lsl w13, w11, #1 // cmp w13, w12 // can be turned into: // cmp w12, w11, lsl #1 // Don't swap if there's a constant on the RHS, because we know we can fold // that. Register RHS = MI.getOperand(3).getReg(); auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI); if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue())) return false; Register LHS = MI.getOperand(2).getReg(); auto Pred = static_cast(MI.getOperand(1).getPredicate()); auto GetRegForProfit = [&](Register Reg) { MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg; }; // Don't have a constant on the RHS. If we swap the LHS and RHS of the // compare, would we be able to fold more instructions? Register TheLHS = GetRegForProfit(LHS); Register TheRHS = GetRegForProfit(RHS); // If the LHS is more likely to give us a folding opportunity, then swap the // LHS and RHS. return (getCmpOperandFoldingProfit(TheLHS, MRI) > getCmpOperandFoldingProfit(TheRHS, MRI)); } void applySwapICmpOperands(MachineInstr &MI, GISelChangeObserver &Observer) { auto Pred = static_cast(MI.getOperand(1).getPredicate()); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); Observer.changedInstr(MI); MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred)); MI.getOperand(2).setReg(RHS); MI.getOperand(3).setReg(LHS); Observer.changedInstr(MI); } /// \returns a function which builds a vector floating point compare instruction /// for a condition code \p CC. /// \param [in] IsZero - True if the comparison is against 0. /// \param [in] NoNans - True if the target has NoNansFPMath. std::function getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero, bool NoNans, MachineRegisterInfo &MRI) { LLT DstTy = MRI.getType(LHS); assert(DstTy.isVector() && "Expected vector types only?"); assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!"); switch (CC) { default: llvm_unreachable("Unexpected condition code!"); case AArch64CC::NE: return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) { auto FCmp = IsZero ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}) : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS}); return MIB.buildNot(DstTy, FCmp).getReg(0); }; case AArch64CC::EQ: return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) { return IsZero ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0) : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS}) .getReg(0); }; case AArch64CC::GE: return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) { return IsZero ? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0) : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS}) .getReg(0); }; case AArch64CC::GT: return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) { return IsZero ? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0) : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS}) .getReg(0); }; case AArch64CC::LS: return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) { return IsZero ? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0) : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS}) .getReg(0); }; case AArch64CC::MI: return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) { return IsZero ? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0) : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS}) .getReg(0); }; } } /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo. bool matchLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIB) { assert(MI.getOpcode() == TargetOpcode::G_FCMP); const auto &ST = MI.getMF()->getSubtarget(); Register Dst = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst); if (!DstTy.isVector() || !ST.hasNEON()) return false; Register LHS = MI.getOperand(2).getReg(); unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits(); if (EltSize == 16 && !ST.hasFullFP16()) return false; if (EltSize != 16 && EltSize != 32 && EltSize != 64) return false; return true; } /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo. void applyLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIB) { assert(MI.getOpcode() == TargetOpcode::G_FCMP); const auto &ST = MI.getMF()->getSubtarget(); const auto &CmpMI = cast(MI); Register Dst = CmpMI.getReg(0); CmpInst::Predicate Pred = CmpMI.getCond(); Register LHS = CmpMI.getLHSReg(); Register RHS = CmpMI.getRHSReg(); LLT DstTy = MRI.getType(Dst); auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI); // Compares against 0 have special target-specific pseudos. bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0; bool Invert = false; AArch64CC::CondCode CC, CC2 = AArch64CC::AL; if (Pred == CmpInst::Predicate::FCMP_ORD && IsZero) { // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't // NaN, so equivalent to a == a and doesn't need the two comparisons an // "ord" normally would. RHS = LHS; IsZero = false; CC = AArch64CC::EQ; } else changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert); // Instead of having an apply function, just build here to simplify things. MIB.setInstrAndDebugLoc(MI); const bool NoNans = ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath; auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI); Register CmpRes; if (CC2 == AArch64CC::AL) CmpRes = Cmp(MIB); else { auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI); auto Cmp2Dst = Cmp2(MIB); auto Cmp1Dst = Cmp(MIB); CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0); } if (Invert) CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0); MRI.replaceRegWith(Dst, CmpRes); MI.eraseFromParent(); } bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI, Register &SrcReg) { assert(MI.getOpcode() == TargetOpcode::G_STORE); Register DstReg = MI.getOperand(0).getReg(); if (MRI.getType(DstReg).isVector()) return false; // Match a store of a truncate. if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg)))) return false; // Only form truncstores for value types of max 64b. return MRI.getType(SrcReg).getSizeInBits() <= 64; } void applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, GISelChangeObserver &Observer, Register &SrcReg) { assert(MI.getOpcode() == TargetOpcode::G_STORE); Observer.changingInstr(MI); MI.getOperand(0).setReg(SrcReg); Observer.changedInstr(MI); } // Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to // form in the first place for combine opportunities, so any remaining ones // at this stage need be lowered back. bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); return DstTy.isVector(); } void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, GISelChangeObserver &Observer) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); B.setInstrAndDebugLoc(MI); LegalizerHelper Helper(*MI.getMF(), Observer, B); Helper.lower(MI, 0, /* Unused hint type */ LLT()); } /// Combine , unused = unmerge(G_EXT <2*N x t> v, undef, N) /// => unused, = unmerge v bool matchUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI, Register &MatchInfo) { auto &Unmerge = cast(MI); if (Unmerge.getNumDefs() != 2) return false; if (!MRI.use_nodbg_empty(Unmerge.getReg(1))) return false; LLT DstTy = MRI.getType(Unmerge.getReg(0)); if (!DstTy.isVector()) return false; MachineInstr *Ext = getOpcodeDef(AArch64::G_EXT, Unmerge.getSourceReg(), MRI); if (!Ext) return false; Register ExtSrc1 = Ext->getOperand(1).getReg(); Register ExtSrc2 = Ext->getOperand(2).getReg(); auto LowestVal = getIConstantVRegValWithLookThrough(Ext->getOperand(3).getReg(), MRI); if (!LowestVal || LowestVal->Value.getZExtValue() != DstTy.getSizeInBytes()) return false; if (!getOpcodeDef(ExtSrc2, MRI)) return false; MatchInfo = ExtSrc1; return true; } void applyUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, GISelChangeObserver &Observer, Register &SrcReg) { Observer.changingInstr(MI); // Swap dst registers. Register Dst1 = MI.getOperand(0).getReg(); MI.getOperand(0).setReg(MI.getOperand(1).getReg()); MI.getOperand(1).setReg(Dst1); MI.getOperand(2).setReg(SrcReg); Observer.changedInstr(MI); } // Match mul({z/s}ext , {z/s}ext) => {u/s}mull OR // Match v2s64 mul instructions, which will then be scalarised later on // Doing these two matches in one function to ensure that the order of matching // will always be the same. // Try lowering MUL to MULL before trying to scalarize if needed. bool matchExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI) { // Get the instructions that defined the source operand LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI); MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI); if (DstTy.isVector()) { // If the source operands were EXTENDED before, then {U/S}MULL can be used unsigned I1Opc = I1->getOpcode(); unsigned I2Opc = I2->getOpcode(); if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) || (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) && (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() == MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) && (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() == MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) { return true; } // If result type is v2s64, scalarise the instruction else if (DstTy == LLT::fixed_vector(2, 64)) { return true; } } return false; } void applyExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, GISelChangeObserver &Observer) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL instruction"); // Get the instructions that defined the source operand LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI); MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI); // If the source operands were EXTENDED before, then {U/S}MULL can be used unsigned I1Opc = I1->getOpcode(); unsigned I2Opc = I2->getOpcode(); if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) || (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) && (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() == MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) && (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() == MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) { B.setInstrAndDebugLoc(MI); B.buildInstr(I1->getOpcode() == TargetOpcode::G_ZEXT ? AArch64::G_UMULL : AArch64::G_SMULL, {MI.getOperand(0).getReg()}, {I1->getOperand(1).getReg(), I2->getOperand(1).getReg()}); MI.eraseFromParent(); } // If result type is v2s64, scalarise the instruction else if (DstTy == LLT::fixed_vector(2, 64)) { LegalizerHelper Helper(*MI.getMF(), Observer, B); B.setInstrAndDebugLoc(MI); Helper.fewerElementsVector( MI, 0, DstTy.changeElementCount( DstTy.getElementCount().divideCoefficientBy(2))); } } class AArch64PostLegalizerLoweringImpl : public Combiner { protected: // TODO: Make CombinerHelper methods const. mutable CombinerHelper Helper; const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig; const AArch64Subtarget &STI; public: AArch64PostLegalizerLoweringImpl( MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, GISelCSEInfo *CSEInfo, const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig, const AArch64Subtarget &STI); static const char *getName() { return "AArch6400PreLegalizerCombiner"; } bool tryCombineAll(MachineInstr &I) const override; private: #define GET_GICOMBINER_CLASS_MEMBERS #include "AArch64GenPostLegalizeGILowering.inc" #undef GET_GICOMBINER_CLASS_MEMBERS }; #define GET_GICOMBINER_IMPL #include "AArch64GenPostLegalizeGILowering.inc" #undef GET_GICOMBINER_IMPL AArch64PostLegalizerLoweringImpl::AArch64PostLegalizerLoweringImpl( MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC, GISelCSEInfo *CSEInfo, const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig, const AArch64Subtarget &STI) : Combiner(MF, CInfo, TPC, /*KB*/ nullptr, CSEInfo), Helper(Observer, B, /*IsPreLegalize*/ true), RuleConfig(RuleConfig), STI(STI), #define GET_GICOMBINER_CONSTRUCTOR_INITS #include "AArch64GenPostLegalizeGILowering.inc" #undef GET_GICOMBINER_CONSTRUCTOR_INITS { } class AArch64PostLegalizerLowering : public MachineFunctionPass { public: static char ID; AArch64PostLegalizerLowering(); StringRef getPassName() const override { return "AArch64PostLegalizerLowering"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; private: AArch64PostLegalizerLoweringImplRuleConfig RuleConfig; }; } // end anonymous namespace void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); getSelectionDAGFallbackAnalysisUsage(AU); MachineFunctionPass::getAnalysisUsage(AU); } AArch64PostLegalizerLowering::AArch64PostLegalizerLowering() : MachineFunctionPass(ID) { initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry()); if (!RuleConfig.parseCommandLineOption()) report_fatal_error("Invalid rule identifier"); } bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) { if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; assert(MF.getProperties().hasProperty( MachineFunctionProperties::Property::Legalized) && "Expected a legalized function?"); auto *TPC = &getAnalysis(); const Function &F = MF.getFunction(); const AArch64Subtarget &ST = MF.getSubtarget(); CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false, /*LegalizerInfo*/ nullptr, /*OptEnabled=*/true, F.hasOptSize(), F.hasMinSize()); AArch64PostLegalizerLoweringImpl Impl(MF, CInfo, TPC, /*CSEInfo*/ nullptr, RuleConfig, ST); return Impl.combineMachineInstrs(); } char AArch64PostLegalizerLowering::ID = 0; INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE, "Lower AArch64 MachineInstrs after legalization", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE, "Lower AArch64 MachineInstrs after legalization", false, false) namespace llvm { FunctionPass *createAArch64PostLegalizerLowering() { return new AArch64PostLegalizerLowering(); } } // end namespace llvm