//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "AArch64InstrInfo.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "MCTargetDesc/AArch64InstPrinter.h" #include "MCTargetDesc/AArch64MCExpr.h" #include "MCTargetDesc/AArch64MCTargetDesc.h" #include "MCTargetDesc/AArch64TargetStreamer.h" #include "TargetInfo/AArch64TargetInfo.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCLinkerOptimizationHint.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCAsmParserExtension.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/MCValue.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/AArch64TargetParser.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace llvm; namespace { enum class RegKind { Scalar, NeonVector, SVEDataVector, SVEPredicateVector, Matrix }; enum class MatrixKind { Array, Tile, Row, Col }; enum RegConstraintEqualityTy { EqualsReg, EqualsSuperReg, EqualsSubReg }; class AArch64AsmParser : public MCTargetAsmParser { private: StringRef Mnemonic; ///< Instruction mnemonic. // Map of register aliases registers via the .req directive. StringMap> RegisterReqs; class PrefixInfo { public: static PrefixInfo CreateFromInst(const MCInst &Inst, uint64_t TSFlags) { PrefixInfo Prefix; switch (Inst.getOpcode()) { case AArch64::MOVPRFX_ZZ: Prefix.Active = true; Prefix.Dst = Inst.getOperand(0).getReg(); break; case AArch64::MOVPRFX_ZPmZ_B: case AArch64::MOVPRFX_ZPmZ_H: case AArch64::MOVPRFX_ZPmZ_S: case AArch64::MOVPRFX_ZPmZ_D: Prefix.Active = true; Prefix.Predicated = true; Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask; assert(Prefix.ElementSize != AArch64::ElementSizeNone && "No destructive element size set for movprfx"); Prefix.Dst = Inst.getOperand(0).getReg(); Prefix.Pg = Inst.getOperand(2).getReg(); break; case AArch64::MOVPRFX_ZPzZ_B: case AArch64::MOVPRFX_ZPzZ_H: case AArch64::MOVPRFX_ZPzZ_S: case AArch64::MOVPRFX_ZPzZ_D: Prefix.Active = true; Prefix.Predicated = true; Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask; assert(Prefix.ElementSize != AArch64::ElementSizeNone && "No destructive element size set for movprfx"); Prefix.Dst = Inst.getOperand(0).getReg(); Prefix.Pg = Inst.getOperand(1).getReg(); break; default: break; } return Prefix; } PrefixInfo() : Active(false), Predicated(false) {} bool isActive() const { return Active; } bool isPredicated() const { return Predicated; } unsigned getElementSize() const { assert(Predicated); return ElementSize; } unsigned getDstReg() const { return Dst; } unsigned getPgReg() const { assert(Predicated); return Pg; } private: bool Active; bool Predicated; unsigned ElementSize; unsigned Dst; unsigned Pg; } NextPrefix; AArch64TargetStreamer &getTargetStreamer() { MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); return static_cast(TS); } SMLoc getLoc() const { return getParser().getTok().getLoc(); } bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands); void createSysAlias(uint16_t Encoding, OperandVector &Operands, SMLoc S); AArch64CC::CondCode parseCondCodeString(StringRef Cond); bool parseCondCode(OperandVector &Operands, bool invertCondCode); unsigned matchRegisterNameAlias(StringRef Name, RegKind Kind); bool parseRegister(OperandVector &Operands); bool parseSymbolicImmVal(const MCExpr *&ImmVal); bool parseNeonVectorList(OperandVector &Operands); bool parseOptionalMulOperand(OperandVector &Operands); bool parseKeywordOperand(OperandVector &Operands); bool parseOperand(OperandVector &Operands, bool isCondCode, bool invertCondCode); bool parseImmExpr(int64_t &Out); bool parseComma(); bool parseRegisterInRange(unsigned &Out, unsigned Base, unsigned First, unsigned Last); bool showMatchError(SMLoc Loc, unsigned ErrCode, uint64_t ErrorInfo, OperandVector &Operands); bool parseDirectiveArch(SMLoc L); bool parseDirectiveArchExtension(SMLoc L); bool parseDirectiveCPU(SMLoc L); bool parseDirectiveInst(SMLoc L); bool parseDirectiveTLSDescCall(SMLoc L); bool parseDirectiveLOH(StringRef LOH, SMLoc L); bool parseDirectiveLtorg(SMLoc L); bool parseDirectiveReq(StringRef Name, SMLoc L); bool parseDirectiveUnreq(SMLoc L); bool parseDirectiveCFINegateRAState(); bool parseDirectiveCFIBKeyFrame(); bool parseDirectiveVariantPCS(SMLoc L); bool parseDirectiveSEHAllocStack(SMLoc L); bool parseDirectiveSEHPrologEnd(SMLoc L); bool parseDirectiveSEHSaveR19R20X(SMLoc L); bool parseDirectiveSEHSaveFPLR(SMLoc L); bool parseDirectiveSEHSaveFPLRX(SMLoc L); bool parseDirectiveSEHSaveReg(SMLoc L); bool parseDirectiveSEHSaveRegX(SMLoc L); bool parseDirectiveSEHSaveRegP(SMLoc L); bool parseDirectiveSEHSaveRegPX(SMLoc L); bool parseDirectiveSEHSaveLRPair(SMLoc L); bool parseDirectiveSEHSaveFReg(SMLoc L); bool parseDirectiveSEHSaveFRegX(SMLoc L); bool parseDirectiveSEHSaveFRegP(SMLoc L); bool parseDirectiveSEHSaveFRegPX(SMLoc L); bool parseDirectiveSEHSetFP(SMLoc L); bool parseDirectiveSEHAddFP(SMLoc L); bool parseDirectiveSEHNop(SMLoc L); bool parseDirectiveSEHSaveNext(SMLoc L); bool parseDirectiveSEHEpilogStart(SMLoc L); bool parseDirectiveSEHEpilogEnd(SMLoc L); bool parseDirectiveSEHTrapFrame(SMLoc L); bool parseDirectiveSEHMachineFrame(SMLoc L); bool parseDirectiveSEHContext(SMLoc L); bool parseDirectiveSEHClearUnwoundToCall(SMLoc L); bool validateInstruction(MCInst &Inst, SMLoc &IDLoc, SmallVectorImpl &Loc); bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "AArch64GenAsmMatcher.inc" /// } OperandMatchResultTy tryParseScalarRegister(unsigned &Reg); OperandMatchResultTy tryParseVectorRegister(unsigned &Reg, StringRef &Kind, RegKind MatchKind); OperandMatchResultTy tryParseMatrixRegister(OperandVector &Operands); OperandMatchResultTy tryParseSVCR(OperandVector &Operands); OperandMatchResultTy tryParseOptionalShiftExtend(OperandVector &Operands); OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands); OperandMatchResultTy tryParseBarriernXSOperand(OperandVector &Operands); OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands); OperandMatchResultTy tryParseSysReg(OperandVector &Operands); OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands); template OperandMatchResultTy tryParsePrefetch(OperandVector &Operands); OperandMatchResultTy tryParsePSBHint(OperandVector &Operands); OperandMatchResultTy tryParseBTIHint(OperandVector &Operands); OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands); OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands); template OperandMatchResultTy tryParseFPImm(OperandVector &Operands); OperandMatchResultTy tryParseImmWithOptionalShift(OperandVector &Operands); OperandMatchResultTy tryParseGPR64sp0Operand(OperandVector &Operands); bool tryParseNeonVectorRegister(OperandVector &Operands); OperandMatchResultTy tryParseVectorIndex(OperandVector &Operands); OperandMatchResultTy tryParseGPRSeqPair(OperandVector &Operands); template OperandMatchResultTy tryParseGPROperand(OperandVector &Operands); template OperandMatchResultTy tryParseSVEDataVector(OperandVector &Operands); OperandMatchResultTy tryParseSVEPredicateVector(OperandVector &Operands); template OperandMatchResultTy tryParseVectorList(OperandVector &Operands, bool ExpectMatch = false); OperandMatchResultTy tryParseMatrixTileList(OperandVector &Operands); OperandMatchResultTy tryParseSVEPattern(OperandVector &Operands); OperandMatchResultTy tryParseGPR64x8(OperandVector &Operands); public: enum AArch64MatchResultTy { Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY, #define GET_OPERAND_DIAGNOSTIC_TYPES #include "AArch64GenAsmMatcher.inc" }; bool IsILP32; AArch64AsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, STI, MII) { IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32; MCAsmParserExtension::Initialize(Parser); MCStreamer &S = getParser().getStreamer(); if (S.getTargetStreamer() == nullptr) new AArch64TargetStreamer(S); // Alias .hword/.word/.[dx]word to the target-independent // .2byte/.4byte/.8byte directives as they have the same form and // semantics: /// ::= (.hword | .word | .dword | .xword ) [ expression (, expression)* ] Parser.addAliasForDirective(".hword", ".2byte"); Parser.addAliasForDirective(".word", ".4byte"); Parser.addAliasForDirective(".dword", ".8byte"); Parser.addAliasForDirective(".xword", ".8byte"); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); } bool regsEqual(const MCParsedAsmOperand &Op1, const MCParsedAsmOperand &Op2) const override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseDirective(AsmToken DirectiveID) override; unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; static bool classifySymbolRef(const MCExpr *Expr, AArch64MCExpr::VariantKind &ELFRefKind, MCSymbolRefExpr::VariantKind &DarwinRefKind, int64_t &Addend); }; /// AArch64Operand - Instances of this class represent a parsed AArch64 machine /// instruction. class AArch64Operand : public MCParsedAsmOperand { private: enum KindTy { k_Immediate, k_ShiftedImm, k_CondCode, k_Register, k_MatrixRegister, k_MatrixTileList, k_SVCR, k_VectorList, k_VectorIndex, k_Token, k_SysReg, k_SysCR, k_Prefetch, k_ShiftExtend, k_FPImm, k_Barrier, k_PSBHint, k_BTIHint, } Kind; SMLoc StartLoc, EndLoc; struct TokOp { const char *Data; unsigned Length; bool IsSuffix; // Is the operand actually a suffix on the mnemonic. }; // Separate shift/extend operand. struct ShiftExtendOp { AArch64_AM::ShiftExtendType Type; unsigned Amount; bool HasExplicitAmount; }; struct RegOp { unsigned RegNum; RegKind Kind; int ElementWidth; // The register may be allowed as a different register class, // e.g. for GPR64as32 or GPR32as64. RegConstraintEqualityTy EqualityTy; // In some cases the shift/extend needs to be explicitly parsed together // with the register, rather than as a separate operand. This is needed // for addressing modes where the instruction as a whole dictates the // scaling/extend, rather than specific bits in the instruction. // By parsing them as a single operand, we avoid the need to pass an // extra operand in all CodeGen patterns (because all operands need to // have an associated value), and we avoid the need to update TableGen to // accept operands that have no associated bits in the instruction. // // An added benefit of parsing them together is that the assembler // can give a sensible diagnostic if the scaling is not correct. // // The default is 'lsl #0' (HasExplicitAmount = false) if no // ShiftExtend is specified. ShiftExtendOp ShiftExtend; }; struct MatrixRegOp { unsigned RegNum; unsigned ElementWidth; MatrixKind Kind; }; struct MatrixTileListOp { unsigned RegMask = 0; }; struct VectorListOp { unsigned RegNum; unsigned Count; unsigned NumElements; unsigned ElementWidth; RegKind RegisterKind; }; struct VectorIndexOp { int Val; }; struct ImmOp { const MCExpr *Val; }; struct ShiftedImmOp { const MCExpr *Val; unsigned ShiftAmount; }; struct CondCodeOp { AArch64CC::CondCode Code; }; struct FPImmOp { uint64_t Val; // APFloat value bitcasted to uint64_t. bool IsExact; // describes whether parsed value was exact. }; struct BarrierOp { const char *Data; unsigned Length; unsigned Val; // Not the enum since not all values have names. bool HasnXSModifier; }; struct SysRegOp { const char *Data; unsigned Length; uint32_t MRSReg; uint32_t MSRReg; uint32_t PStateField; }; struct SysCRImmOp { unsigned Val; }; struct PrefetchOp { const char *Data; unsigned Length; unsigned Val; }; struct PSBHintOp { const char *Data; unsigned Length; unsigned Val; }; struct BTIHintOp { const char *Data; unsigned Length; unsigned Val; }; struct SVCROp { const char *Data; unsigned Length; unsigned PStateField; }; union { struct TokOp Tok; struct RegOp Reg; struct MatrixRegOp MatrixReg; struct MatrixTileListOp MatrixTileList; struct VectorListOp VectorList; struct VectorIndexOp VectorIndex; struct ImmOp Imm; struct ShiftedImmOp ShiftedImm; struct CondCodeOp CondCode; struct FPImmOp FPImm; struct BarrierOp Barrier; struct SysRegOp SysReg; struct SysCRImmOp SysCRImm; struct PrefetchOp Prefetch; struct PSBHintOp PSBHint; struct BTIHintOp BTIHint; struct ShiftExtendOp ShiftExtend; struct SVCROp SVCR; }; // Keep the MCContext around as the MCExprs may need manipulated during // the add<>Operands() calls. MCContext &Ctx; public: AArch64Operand(KindTy K, MCContext &Ctx) : Kind(K), Ctx(Ctx) {} AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; switch (Kind) { case k_Token: Tok = o.Tok; break; case k_Immediate: Imm = o.Imm; break; case k_ShiftedImm: ShiftedImm = o.ShiftedImm; break; case k_CondCode: CondCode = o.CondCode; break; case k_FPImm: FPImm = o.FPImm; break; case k_Barrier: Barrier = o.Barrier; break; case k_Register: Reg = o.Reg; break; case k_MatrixRegister: MatrixReg = o.MatrixReg; break; case k_MatrixTileList: MatrixTileList = o.MatrixTileList; break; case k_VectorList: VectorList = o.VectorList; break; case k_VectorIndex: VectorIndex = o.VectorIndex; break; case k_SysReg: SysReg = o.SysReg; break; case k_SysCR: SysCRImm = o.SysCRImm; break; case k_Prefetch: Prefetch = o.Prefetch; break; case k_PSBHint: PSBHint = o.PSBHint; break; case k_BTIHint: BTIHint = o.BTIHint; break; case k_ShiftExtend: ShiftExtend = o.ShiftExtend; break; case k_SVCR: SVCR = o.SVCR; break; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const override { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const override { return EndLoc; } StringRef getToken() const { assert(Kind == k_Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } bool isTokenSuffix() const { assert(Kind == k_Token && "Invalid access!"); return Tok.IsSuffix; } const MCExpr *getImm() const { assert(Kind == k_Immediate && "Invalid access!"); return Imm.Val; } const MCExpr *getShiftedImmVal() const { assert(Kind == k_ShiftedImm && "Invalid access!"); return ShiftedImm.Val; } unsigned getShiftedImmShift() const { assert(Kind == k_ShiftedImm && "Invalid access!"); return ShiftedImm.ShiftAmount; } AArch64CC::CondCode getCondCode() const { assert(Kind == k_CondCode && "Invalid access!"); return CondCode.Code; } APFloat getFPImm() const { assert (Kind == k_FPImm && "Invalid access!"); return APFloat(APFloat::IEEEdouble(), APInt(64, FPImm.Val, true)); } bool getFPImmIsExact() const { assert (Kind == k_FPImm && "Invalid access!"); return FPImm.IsExact; } unsigned getBarrier() const { assert(Kind == k_Barrier && "Invalid access!"); return Barrier.Val; } StringRef getBarrierName() const { assert(Kind == k_Barrier && "Invalid access!"); return StringRef(Barrier.Data, Barrier.Length); } bool getBarriernXSModifier() const { assert(Kind == k_Barrier && "Invalid access!"); return Barrier.HasnXSModifier; } unsigned getReg() const override { assert(Kind == k_Register && "Invalid access!"); return Reg.RegNum; } unsigned getMatrixReg() const { assert(Kind == k_MatrixRegister && "Invalid access!"); return MatrixReg.RegNum; } unsigned getMatrixElementWidth() const { assert(Kind == k_MatrixRegister && "Invalid access!"); return MatrixReg.ElementWidth; } MatrixKind getMatrixKind() const { assert(Kind == k_MatrixRegister && "Invalid access!"); return MatrixReg.Kind; } unsigned getMatrixTileListRegMask() const { assert(isMatrixTileList() && "Invalid access!"); return MatrixTileList.RegMask; } RegConstraintEqualityTy getRegEqualityTy() const { assert(Kind == k_Register && "Invalid access!"); return Reg.EqualityTy; } unsigned getVectorListStart() const { assert(Kind == k_VectorList && "Invalid access!"); return VectorList.RegNum; } unsigned getVectorListCount() const { assert(Kind == k_VectorList && "Invalid access!"); return VectorList.Count; } int getVectorIndex() const { assert(Kind == k_VectorIndex && "Invalid access!"); return VectorIndex.Val; } StringRef getSysReg() const { assert(Kind == k_SysReg && "Invalid access!"); return StringRef(SysReg.Data, SysReg.Length); } unsigned getSysCR() const { assert(Kind == k_SysCR && "Invalid access!"); return SysCRImm.Val; } unsigned getPrefetch() const { assert(Kind == k_Prefetch && "Invalid access!"); return Prefetch.Val; } unsigned getPSBHint() const { assert(Kind == k_PSBHint && "Invalid access!"); return PSBHint.Val; } StringRef getPSBHintName() const { assert(Kind == k_PSBHint && "Invalid access!"); return StringRef(PSBHint.Data, PSBHint.Length); } unsigned getBTIHint() const { assert(Kind == k_BTIHint && "Invalid access!"); return BTIHint.Val; } StringRef getBTIHintName() const { assert(Kind == k_BTIHint && "Invalid access!"); return StringRef(BTIHint.Data, BTIHint.Length); } StringRef getSVCR() const { assert(Kind == k_SVCR && "Invalid access!"); return StringRef(SVCR.Data, SVCR.Length); } StringRef getPrefetchName() const { assert(Kind == k_Prefetch && "Invalid access!"); return StringRef(Prefetch.Data, Prefetch.Length); } AArch64_AM::ShiftExtendType getShiftExtendType() const { if (Kind == k_ShiftExtend) return ShiftExtend.Type; if (Kind == k_Register) return Reg.ShiftExtend.Type; llvm_unreachable("Invalid access!"); } unsigned getShiftExtendAmount() const { if (Kind == k_ShiftExtend) return ShiftExtend.Amount; if (Kind == k_Register) return Reg.ShiftExtend.Amount; llvm_unreachable("Invalid access!"); } bool hasShiftExtendAmount() const { if (Kind == k_ShiftExtend) return ShiftExtend.HasExplicitAmount; if (Kind == k_Register) return Reg.ShiftExtend.HasExplicitAmount; llvm_unreachable("Invalid access!"); } bool isImm() const override { return Kind == k_Immediate; } bool isMem() const override { return false; } bool isUImm6() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= 0 && Val < 64); } template bool isSImm() const { return isSImmScaled(); } template DiagnosticPredicate isSImmScaled() const { return isImmScaled(true); } template DiagnosticPredicate isUImmScaled() const { return isImmScaled(false); } template DiagnosticPredicate isImmScaled(bool Signed) const { if (!isImm()) return DiagnosticPredicateTy::NoMatch; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return DiagnosticPredicateTy::NoMatch; int64_t MinVal, MaxVal; if (Signed) { int64_t Shift = Bits - 1; MinVal = (int64_t(1) << Shift) * -Scale; MaxVal = ((int64_t(1) << Shift) - 1) * Scale; } else { MinVal = 0; MaxVal = ((int64_t(1) << Bits) - 1) * Scale; } int64_t Val = MCE->getValue(); if (Val >= MinVal && Val <= MaxVal && (Val % Scale) == 0) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } DiagnosticPredicate isSVEPattern() const { if (!isImm()) return DiagnosticPredicateTy::NoMatch; auto *MCE = dyn_cast(getImm()); if (!MCE) return DiagnosticPredicateTy::NoMatch; int64_t Val = MCE->getValue(); if (Val >= 0 && Val < 32) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } bool isSymbolicUImm12Offset(const MCExpr *Expr) const { AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { // If we don't understand the expression, assume the best and // let the fixup and relocation code deal with it. return true; } if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || ELFRefKind == AArch64MCExpr::VK_LO12 || ELFRefKind == AArch64MCExpr::VK_GOT_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_GOTTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 || ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 || ELFRefKind == AArch64MCExpr::VK_SECREL_HI12 || ELFRefKind == AArch64MCExpr::VK_GOT_PAGE_LO15) { // Note that we don't range-check the addend. It's adjusted modulo page // size when converted, so there is no "out of range" condition when using // @pageoff. return true; } else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) { // @gotpageoff/@tlvppageoff can only be used directly, not with an addend. return Addend == 0; } return false; } template bool isUImm12Offset() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return isSymbolicUImm12Offset(getImm()); int64_t Val = MCE->getValue(); return (Val % Scale) == 0 && Val >= 0 && (Val / Scale) < 0x1000; } template bool isImmInRange() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); return (Val >= N && Val <= M); } // NOTE: Also used for isLogicalImmNot as anything that can be represented as // a logical immediate can always be represented when inverted. template bool isLogicalImm() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; int64_t Val = MCE->getValue(); // Avoid left shift by 64 directly. uint64_t Upper = UINT64_C(-1) << (sizeof(T) * 4) << (sizeof(T) * 4); // Allow all-0 or all-1 in top bits to permit bitwise NOT. if ((Val & Upper) && (Val & Upper) != Upper) return false; return AArch64_AM::isLogicalImmediate(Val & ~Upper, sizeof(T) * 8); } bool isShiftedImm() const { return Kind == k_ShiftedImm; } /// Returns the immediate value as a pair of (imm, shift) if the immediate is /// a shifted immediate by value 'Shift' or '0', or if it is an unshifted /// immediate that can be shifted by 'Shift'. template Optional > getShiftedVal() const { if (isShiftedImm() && Width == getShiftedImmShift()) if (auto *CE = dyn_cast(getShiftedImmVal())) return std::make_pair(CE->getValue(), Width); if (isImm()) if (auto *CE = dyn_cast(getImm())) { int64_t Val = CE->getValue(); if ((Val != 0) && (uint64_t(Val >> Width) << Width) == uint64_t(Val)) return std::make_pair(Val >> Width, Width); else return std::make_pair(Val, 0u); } return {}; } bool isAddSubImm() const { if (!isShiftedImm() && !isImm()) return false; const MCExpr *Expr; // An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'. if (isShiftedImm()) { unsigned Shift = ShiftedImm.ShiftAmount; Expr = ShiftedImm.Val; if (Shift != 0 && Shift != 12) return false; } else { Expr = getImm(); } AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { return DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF || (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF && Addend == 0) || ELFRefKind == AArch64MCExpr::VK_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 || ELFRefKind == AArch64MCExpr::VK_SECREL_HI12 || ELFRefKind == AArch64MCExpr::VK_SECREL_LO12; } // If it's a constant, it should be a real immediate in range. if (auto ShiftedVal = getShiftedVal<12>()) return ShiftedVal->first >= 0 && ShiftedVal->first <= 0xfff; // If it's an expression, we hope for the best and let the fixup/relocation // code deal with it. return true; } bool isAddSubImmNeg() const { if (!isShiftedImm() && !isImm()) return false; // Otherwise it should be a real negative immediate in range. if (auto ShiftedVal = getShiftedVal<12>()) return ShiftedVal->first < 0 && -ShiftedVal->first <= 0xfff; return false; } // Signed value in the range -128 to +127. For element widths of // 16 bits or higher it may also be a signed multiple of 256 in the // range -32768 to +32512. // For element-width of 8 bits a range of -128 to 255 is accepted, // since a copy of a byte can be either signed/unsigned. template DiagnosticPredicate isSVECpyImm() const { if (!isShiftedImm() && (!isImm() || !isa(getImm()))) return DiagnosticPredicateTy::NoMatch; bool IsByte = std::is_same>::value || std::is_same::value; if (auto ShiftedImm = getShiftedVal<8>()) if (!(IsByte && ShiftedImm->second) && AArch64_AM::isSVECpyImm(uint64_t(ShiftedImm->first) << ShiftedImm->second)) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } // Unsigned value in the range 0 to 255. For element widths of // 16 bits or higher it may also be a signed multiple of 256 in the // range 0 to 65280. template DiagnosticPredicate isSVEAddSubImm() const { if (!isShiftedImm() && (!isImm() || !isa(getImm()))) return DiagnosticPredicateTy::NoMatch; bool IsByte = std::is_same>::value || std::is_same::value; if (auto ShiftedImm = getShiftedVal<8>()) if (!(IsByte && ShiftedImm->second) && AArch64_AM::isSVEAddSubImm(ShiftedImm->first << ShiftedImm->second)) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } template DiagnosticPredicate isSVEPreferredLogicalImm() const { if (isLogicalImm() && !isSVECpyImm()) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NoMatch; } bool isCondCode() const { return Kind == k_CondCode; } bool isSIMDImmType10() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return false; return AArch64_AM::isAdvSIMDModImmType10(MCE->getValue()); } template bool isBranchTarget() const { if (!isImm()) return false; const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) return true; int64_t Val = MCE->getValue(); if (Val & 0x3) return false; assert(N > 0 && "Branch target immediate cannot be 0 bits!"); return (Val >= -((1<<(N-1)) << 2) && Val <= (((1<<(N-1))-1) << 2)); } bool isMovWSymbol(ArrayRef AllowedModifiers) const { if (!isImm()) return false; AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (!AArch64AsmParser::classifySymbolRef(getImm(), ELFRefKind, DarwinRefKind, Addend)) { return false; } if (DarwinRefKind != MCSymbolRefExpr::VK_None) return false; return llvm::is_contained(AllowedModifiers, ELFRefKind); } bool isMovWSymbolG3() const { return isMovWSymbol({AArch64MCExpr::VK_ABS_G3, AArch64MCExpr::VK_PREL_G3}); } bool isMovWSymbolG2() const { return isMovWSymbol( {AArch64MCExpr::VK_ABS_G2, AArch64MCExpr::VK_ABS_G2_S, AArch64MCExpr::VK_ABS_G2_NC, AArch64MCExpr::VK_PREL_G2, AArch64MCExpr::VK_PREL_G2_NC, AArch64MCExpr::VK_TPREL_G2, AArch64MCExpr::VK_DTPREL_G2}); } bool isMovWSymbolG1() const { return isMovWSymbol( {AArch64MCExpr::VK_ABS_G1, AArch64MCExpr::VK_ABS_G1_S, AArch64MCExpr::VK_ABS_G1_NC, AArch64MCExpr::VK_PREL_G1, AArch64MCExpr::VK_PREL_G1_NC, AArch64MCExpr::VK_GOTTPREL_G1, AArch64MCExpr::VK_TPREL_G1, AArch64MCExpr::VK_TPREL_G1_NC, AArch64MCExpr::VK_DTPREL_G1, AArch64MCExpr::VK_DTPREL_G1_NC}); } bool isMovWSymbolG0() const { return isMovWSymbol( {AArch64MCExpr::VK_ABS_G0, AArch64MCExpr::VK_ABS_G0_S, AArch64MCExpr::VK_ABS_G0_NC, AArch64MCExpr::VK_PREL_G0, AArch64MCExpr::VK_PREL_G0_NC, AArch64MCExpr::VK_GOTTPREL_G0_NC, AArch64MCExpr::VK_TPREL_G0, AArch64MCExpr::VK_TPREL_G0_NC, AArch64MCExpr::VK_DTPREL_G0, AArch64MCExpr::VK_DTPREL_G0_NC}); } template bool isMOVZMovAlias() const { if (!isImm()) return false; const MCExpr *E = getImm(); if (const MCConstantExpr *CE = dyn_cast(E)) { uint64_t Value = CE->getValue(); return AArch64_AM::isMOVZMovAlias(Value, Shift, RegWidth); } // Only supports the case of Shift being 0 if an expression is used as an // operand return !Shift && E; } template bool isMOVNMovAlias() const { if (!isImm()) return false; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return false; uint64_t Value = CE->getValue(); return AArch64_AM::isMOVNMovAlias(Value, Shift, RegWidth); } bool isFPImm() const { return Kind == k_FPImm && AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt()) != -1; } bool isBarrier() const { return Kind == k_Barrier && !getBarriernXSModifier(); } bool isBarriernXS() const { return Kind == k_Barrier && getBarriernXSModifier(); } bool isSysReg() const { return Kind == k_SysReg; } bool isMRSSystemRegister() const { if (!isSysReg()) return false; return SysReg.MRSReg != -1U; } bool isMSRSystemRegister() const { if (!isSysReg()) return false; return SysReg.MSRReg != -1U; } bool isSystemPStateFieldWithImm0_1() const { if (!isSysReg()) return false; return (SysReg.PStateField == AArch64PState::PAN || SysReg.PStateField == AArch64PState::DIT || SysReg.PStateField == AArch64PState::UAO || SysReg.PStateField == AArch64PState::SSBS); } bool isSystemPStateFieldWithImm0_15() const { if (!isSysReg() || isSystemPStateFieldWithImm0_1()) return false; return SysReg.PStateField != -1U; } bool isSVCR() const { if (Kind != k_SVCR) return false; return SVCR.PStateField != -1U; } bool isReg() const override { return Kind == k_Register; } bool isScalarReg() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar; } bool isNeonVectorReg() const { return Kind == k_Register && Reg.Kind == RegKind::NeonVector; } bool isNeonVectorRegLo() const { return Kind == k_Register && Reg.Kind == RegKind::NeonVector && (AArch64MCRegisterClasses[AArch64::FPR128_loRegClassID].contains( Reg.RegNum) || AArch64MCRegisterClasses[AArch64::FPR64_loRegClassID].contains( Reg.RegNum)); } bool isMatrix() const { return Kind == k_MatrixRegister; } bool isMatrixTileList() const { return Kind == k_MatrixTileList; } template bool isSVEVectorReg() const { RegKind RK; switch (Class) { case AArch64::ZPRRegClassID: case AArch64::ZPR_3bRegClassID: case AArch64::ZPR_4bRegClassID: RK = RegKind::SVEDataVector; break; case AArch64::PPRRegClassID: case AArch64::PPR_3bRegClassID: RK = RegKind::SVEPredicateVector; break; default: llvm_unreachable("Unsupport register class"); } return (Kind == k_Register && Reg.Kind == RK) && AArch64MCRegisterClasses[Class].contains(getReg()); } template bool isFPRasZPR() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar && AArch64MCRegisterClasses[Class].contains(getReg()); } template DiagnosticPredicate isSVEPredicateVectorRegOfWidth() const { if (Kind != k_Register || Reg.Kind != RegKind::SVEPredicateVector) return DiagnosticPredicateTy::NoMatch; if (isSVEVectorReg() && (Reg.ElementWidth == ElementWidth)) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } template DiagnosticPredicate isSVEDataVectorRegOfWidth() const { if (Kind != k_Register || Reg.Kind != RegKind::SVEDataVector) return DiagnosticPredicateTy::NoMatch; if (isSVEVectorReg() && Reg.ElementWidth == ElementWidth) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } template DiagnosticPredicate isSVEDataVectorRegWithShiftExtend() const { auto VectorMatch = isSVEDataVectorRegOfWidth(); if (!VectorMatch.isMatch()) return DiagnosticPredicateTy::NoMatch; // Give a more specific diagnostic when the user has explicitly typed in // a shift-amount that does not match what is expected, but for which // there is also an unscaled addressing mode (e.g. sxtw/uxtw). bool MatchShift = getShiftExtendAmount() == Log2_32(ShiftWidth / 8); if (!MatchShift && (ShiftExtendTy == AArch64_AM::UXTW || ShiftExtendTy == AArch64_AM::SXTW) && !ShiftWidthAlwaysSame && hasShiftExtendAmount() && ShiftWidth == 8) return DiagnosticPredicateTy::NoMatch; if (MatchShift && ShiftExtendTy == getShiftExtendType()) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } bool isGPR32as64() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar && AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(Reg.RegNum); } bool isGPR64as32() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar && AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(Reg.RegNum); } bool isGPR64x8() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar && AArch64MCRegisterClasses[AArch64::GPR64x8ClassRegClassID].contains( Reg.RegNum); } bool isWSeqPair() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar && AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID].contains( Reg.RegNum); } bool isXSeqPair() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar && AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID].contains( Reg.RegNum); } template DiagnosticPredicate isComplexRotation() const { if (!isImm()) return DiagnosticPredicateTy::NoMatch; const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return DiagnosticPredicateTy::NoMatch; uint64_t Value = CE->getValue(); if (Value % Angle == Remainder && Value <= 270) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } template bool isGPR64() const { return Kind == k_Register && Reg.Kind == RegKind::Scalar && AArch64MCRegisterClasses[RegClassID].contains(getReg()); } template DiagnosticPredicate isGPR64WithShiftExtend() const { if (Kind != k_Register || Reg.Kind != RegKind::Scalar) return DiagnosticPredicateTy::NoMatch; if (isGPR64() && getShiftExtendType() == AArch64_AM::LSL && getShiftExtendAmount() == Log2_32(ExtWidth / 8)) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } /// Is this a vector list with the type implicit (presumably attached to the /// instruction itself)? template bool isImplicitlyTypedVectorList() const { return Kind == k_VectorList && VectorList.Count == NumRegs && VectorList.NumElements == 0 && VectorList.RegisterKind == VectorKind; } template bool isTypedVectorList() const { if (Kind != k_VectorList) return false; if (VectorList.Count != NumRegs) return false; if (VectorList.RegisterKind != VectorKind) return false; if (VectorList.ElementWidth != ElementWidth) return false; return VectorList.NumElements == NumElements; } template DiagnosticPredicate isVectorIndex() const { if (Kind != k_VectorIndex) return DiagnosticPredicateTy::NoMatch; if (VectorIndex.Val >= Min && VectorIndex.Val <= Max) return DiagnosticPredicateTy::Match; return DiagnosticPredicateTy::NearMatch; } bool isToken() const override { return Kind == k_Token; } bool isTokenEqual(StringRef Str) const { return Kind == k_Token && getToken() == Str; } bool isSysCR() const { return Kind == k_SysCR; } bool isPrefetch() const { return Kind == k_Prefetch; } bool isPSBHint() const { return Kind == k_PSBHint; } bool isBTIHint() const { return Kind == k_BTIHint; } bool isShiftExtend() const { return Kind == k_ShiftExtend; } bool isShifter() const { if (!isShiftExtend()) return false; AArch64_AM::ShiftExtendType ST = getShiftExtendType(); return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR || ST == AArch64_AM::ASR || ST == AArch64_AM::ROR || ST == AArch64_AM::MSL); } template DiagnosticPredicate isExactFPImm() const { if (Kind != k_FPImm) return DiagnosticPredicateTy::NoMatch; if (getFPImmIsExact()) { // Lookup the immediate from table of supported immediates. auto *Desc = AArch64ExactFPImm::lookupExactFPImmByEnum(ImmEnum); assert(Desc && "Unknown enum value"); // Calculate its FP value. APFloat RealVal(APFloat::IEEEdouble()); auto StatusOrErr = RealVal.convertFromString(Desc->Repr, APFloat::rmTowardZero); if (errorToBool(StatusOrErr.takeError()) || *StatusOrErr != APFloat::opOK) llvm_unreachable("FP immediate is not exact"); if (getFPImm().bitwiseIsEqual(RealVal)) return DiagnosticPredicateTy::Match; } return DiagnosticPredicateTy::NearMatch; } template DiagnosticPredicate isExactFPImm() const { DiagnosticPredicate Res = DiagnosticPredicateTy::NoMatch; if ((Res = isExactFPImm())) return DiagnosticPredicateTy::Match; if ((Res = isExactFPImm())) return DiagnosticPredicateTy::Match; return Res; } bool isExtend() const { if (!isShiftExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB || ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH || ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW || ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX || ET == AArch64_AM::LSL) && getShiftExtendAmount() <= 4; } bool isExtend64() const { if (!isExtend()) return false; // Make sure the extend expects a 32-bit source register. AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB || ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH || ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW; } bool isExtendLSL64() const { if (!isExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX || ET == AArch64_AM::LSL) && getShiftExtendAmount() <= 4; } template bool isMemXExtend() const { if (!isExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::LSL || ET == AArch64_AM::SXTX) && (getShiftExtendAmount() == Log2_32(Width / 8) || getShiftExtendAmount() == 0); } template bool isMemWExtend() const { if (!isExtend()) return false; AArch64_AM::ShiftExtendType ET = getShiftExtendType(); return (ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW) && (getShiftExtendAmount() == Log2_32(Width / 8) || getShiftExtendAmount() == 0); } template bool isArithmeticShifter() const { if (!isShifter()) return false; // An arithmetic shifter is LSL, LSR, or ASR. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR || ST == AArch64_AM::ASR) && getShiftExtendAmount() < width; } template bool isLogicalShifter() const { if (!isShifter()) return false; // A logical shifter is LSL, LSR, ASR or ROR. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR || ST == AArch64_AM::ASR || ST == AArch64_AM::ROR) && getShiftExtendAmount() < width; } bool isMovImm32Shifter() const { if (!isShifter()) return false; // A MOVi shifter is LSL of 0, 16, 32, or 48. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); if (ST != AArch64_AM::LSL) return false; uint64_t Val = getShiftExtendAmount(); return (Val == 0 || Val == 16); } bool isMovImm64Shifter() const { if (!isShifter()) return false; // A MOVi shifter is LSL of 0 or 16. AArch64_AM::ShiftExtendType ST = getShiftExtendType(); if (ST != AArch64_AM::LSL) return false; uint64_t Val = getShiftExtendAmount(); return (Val == 0 || Val == 16 || Val == 32 || Val == 48); } bool isLogicalVecShifter() const { if (!isShifter()) return false; // A logical vector shifter is a left shift by 0, 8, 16, or 24. unsigned Shift = getShiftExtendAmount(); return getShiftExtendType() == AArch64_AM::LSL && (Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24); } bool isLogicalVecHalfWordShifter() const { if (!isLogicalVecShifter()) return false; // A logical vector shifter is a left shift by 0 or 8. unsigned Shift = getShiftExtendAmount(); return getShiftExtendType() == AArch64_AM::LSL && (Shift == 0 || Shift == 8); } bool isMoveVecShifter() const { if (!isShiftExtend()) return false; // A logical vector shifter is a left shift by 8 or 16. unsigned Shift = getShiftExtendAmount(); return getShiftExtendType() == AArch64_AM::MSL && (Shift == 8 || Shift == 16); } // Fallback unscaled operands are for aliases of LDR/STR that fall back // to LDUR/STUR when the offset is not legal for the former but is for // the latter. As such, in addition to checking for being a legal unscaled // address, also check that it is not a legal scaled address. This avoids // ambiguity in the matcher. template bool isSImm9OffsetFB() const { return isSImm<9>() && !isUImm12Offset(); } bool isAdrpLabel() const { // Validation was handled during parsing, so we just verify that // something didn't go haywire. if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Min = - (4096 * (1LL << (21 - 1))); int64_t Max = 4096 * ((1LL << (21 - 1)) - 1); return (Val % 4096) == 0 && Val >= Min && Val <= Max; } return true; } bool isAdrLabel() const { // Validation was handled during parsing, so we just verify that // something didn't go haywire. if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(Imm.Val)) { int64_t Val = CE->getValue(); int64_t Min = - (1LL << (21 - 1)); int64_t Max = ((1LL << (21 - 1)) - 1); return Val >= Min && Val <= Max; } return true; } template DiagnosticPredicate isMatrixRegOperand() const { if (!isMatrix()) return DiagnosticPredicateTy::NoMatch; if (getMatrixKind() != Kind || !AArch64MCRegisterClasses[RegClass].contains(getMatrixReg()) || EltSize != getMatrixElementWidth()) return DiagnosticPredicateTy::NearMatch; return DiagnosticPredicateTy::Match; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::createImm(0)); else if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::createImm(CE->getValue())); else Inst.addOperand(MCOperand::createExpr(Expr)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addMatrixOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMatrixReg())); } void addGPR32as64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert( AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(getReg())); const MCRegisterInfo *RI = Ctx.getRegisterInfo(); uint32_t Reg = RI->getRegClass(AArch64::GPR32RegClassID).getRegister( RI->getEncodingValue(getReg())); Inst.addOperand(MCOperand::createReg(Reg)); } void addGPR64as32Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert( AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(getReg())); const MCRegisterInfo *RI = Ctx.getRegisterInfo(); uint32_t Reg = RI->getRegClass(AArch64::GPR64RegClassID).getRegister( RI->getEncodingValue(getReg())); Inst.addOperand(MCOperand::createReg(Reg)); } template void addFPRasZPRRegOperands(MCInst &Inst, unsigned N) const { unsigned Base; switch (Width) { case 8: Base = AArch64::B0; break; case 16: Base = AArch64::H0; break; case 32: Base = AArch64::S0; break; case 64: Base = AArch64::D0; break; case 128: Base = AArch64::Q0; break; default: llvm_unreachable("Unsupported width"); } Inst.addOperand(MCOperand::createReg(AArch64::Z0 + getReg() - Base)); } void addVectorReg64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert( AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg())); Inst.addOperand(MCOperand::createReg(AArch64::D0 + getReg() - AArch64::Q0)); } void addVectorReg128Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert( AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg())); Inst.addOperand(MCOperand::createReg(getReg())); } void addVectorRegLoOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } enum VecListIndexType { VecListIdx_DReg = 0, VecListIdx_QReg = 1, VecListIdx_ZReg = 2, }; template void addVectorListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); static const unsigned FirstRegs[][5] = { /* DReg */ { AArch64::Q0, AArch64::D0, AArch64::D0_D1, AArch64::D0_D1_D2, AArch64::D0_D1_D2_D3 }, /* QReg */ { AArch64::Q0, AArch64::Q0, AArch64::Q0_Q1, AArch64::Q0_Q1_Q2, AArch64::Q0_Q1_Q2_Q3 }, /* ZReg */ { AArch64::Z0, AArch64::Z0, AArch64::Z0_Z1, AArch64::Z0_Z1_Z2, AArch64::Z0_Z1_Z2_Z3 } }; assert((RegTy != VecListIdx_ZReg || NumRegs <= 4) && " NumRegs must be <= 4 for ZRegs"); unsigned FirstReg = FirstRegs[(unsigned)RegTy][NumRegs]; Inst.addOperand(MCOperand::createReg(FirstReg + getVectorListStart() - FirstRegs[(unsigned)RegTy][0])); } void addMatrixTileListOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); unsigned RegMask = getMatrixTileListRegMask(); assert(RegMask <= 0xFF && "Invalid mask!"); Inst.addOperand(MCOperand::createImm(RegMask)); } void addVectorIndexOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getVectorIndex())); } template void addExactFPImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); assert(bool(isExactFPImm()) && "Invalid operand"); Inst.addOperand(MCOperand::createImm(bool(isExactFPImm()))); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); // If this is a pageoff symrefexpr with an addend, adjust the addend // to be only the page-offset portion. Otherwise, just add the expr // as-is. addExpr(Inst, getImm()); } template void addImmWithOptionalShiftOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); if (auto ShiftedVal = getShiftedVal()) { Inst.addOperand(MCOperand::createImm(ShiftedVal->first)); Inst.addOperand(MCOperand::createImm(ShiftedVal->second)); } else if (isShiftedImm()) { addExpr(Inst, getShiftedImmVal()); Inst.addOperand(MCOperand::createImm(getShiftedImmShift())); } else { addExpr(Inst, getImm()); Inst.addOperand(MCOperand::createImm(0)); } } template void addImmNegWithOptionalShiftOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); if (auto ShiftedVal = getShiftedVal()) { Inst.addOperand(MCOperand::createImm(-ShiftedVal->first)); Inst.addOperand(MCOperand::createImm(ShiftedVal->second)); } else llvm_unreachable("Not a shifted negative immediate"); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getCondCode())); } void addAdrpLabelOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) addExpr(Inst, getImm()); else Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 12)); } void addAdrLabelOperands(MCInst &Inst, unsigned N) const { addImmOperands(Inst, N); } template void addUImm12OffsetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) { Inst.addOperand(MCOperand::createExpr(getImm())); return; } Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale)); } void addUImm6Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast(getImm()); Inst.addOperand(MCOperand::createImm(MCE->getValue())); } template void addImmScaledOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast(getImm()); Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale)); } template void addLogicalImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast(getImm()); std::make_unsigned_t Val = MCE->getValue(); uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8); Inst.addOperand(MCOperand::createImm(encoding)); } template void addLogicalImmNotOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast(getImm()); std::make_unsigned_t Val = ~MCE->getValue(); uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8); Inst.addOperand(MCOperand::createImm(encoding)); } void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast(getImm()); uint64_t encoding = AArch64_AM::encodeAdvSIMDModImmType10(MCE->getValue()); Inst.addOperand(MCOperand::createImm(encoding)); } void addBranchTarget26Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2)); } void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2)); } void addBranchTarget14Operands(MCInst &Inst, unsigned N) const { // Branch operands don't encode the low bits, so shift them off // here. If it's a label, however, just put it on directly as there's // not enough information now to do anything. assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = dyn_cast(getImm()); if (!MCE) { addExpr(Inst, getImm()); return; } assert(MCE && "Invalid constant immediate operand!"); Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2)); } void addFPImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm( AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt()))); } void addBarrierOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getBarrier())); } void addBarriernXSOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getBarrier())); } void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(SysReg.MRSReg)); } void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(SysReg.MSRReg)); } void addSystemPStateFieldWithImm0_1Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(SysReg.PStateField)); } void addSVCROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(SVCR.PStateField)); } void addSystemPStateFieldWithImm0_15Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(SysReg.PStateField)); } void addSysCROperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getSysCR())); } void addPrefetchOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getPrefetch())); } void addPSBHintOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getPSBHint())); } void addBTIHintOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createImm(getBTIHint())); } void addShifterOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); unsigned Imm = AArch64_AM::getShifterImm(getShiftExtendType(), getShiftExtendAmount()); Inst.addOperand(MCOperand::createImm(Imm)); } void addExtendOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTW; unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount()); Inst.addOperand(MCOperand::createImm(Imm)); } void addExtend64Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTX; unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount()); Inst.addOperand(MCOperand::createImm(Imm)); } void addMemExtendOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX; Inst.addOperand(MCOperand::createImm(IsSigned)); Inst.addOperand(MCOperand::createImm(getShiftExtendAmount() != 0)); } // For 8-bit load/store instructions with a register offset, both the // "DoShift" and "NoShift" variants have a shift of 0. Because of this, // they're disambiguated by whether the shift was explicit or implicit rather // than its size. void addMemExtend8Operands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands!"); AArch64_AM::ShiftExtendType ET = getShiftExtendType(); bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX; Inst.addOperand(MCOperand::createImm(IsSigned)); Inst.addOperand(MCOperand::createImm(hasShiftExtendAmount())); } template void addMOVZMovAliasOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = dyn_cast(getImm()); if (CE) { uint64_t Value = CE->getValue(); Inst.addOperand(MCOperand::createImm((Value >> Shift) & 0xffff)); } else { addExpr(Inst, getImm()); } } template void addMOVNMovAliasOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *CE = cast(getImm()); uint64_t Value = CE->getValue(); Inst.addOperand(MCOperand::createImm((~Value >> Shift) & 0xffff)); } void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast(getImm()); Inst.addOperand(MCOperand::createImm(MCE->getValue() / 90)); } void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCConstantExpr *MCE = cast(getImm()); Inst.addOperand(MCOperand::createImm((MCE->getValue() - 90) / 180)); } void print(raw_ostream &OS) const override; static std::unique_ptr CreateToken(StringRef Str, SMLoc S, MCContext &Ctx, bool IsSuffix = false) { auto Op = std::make_unique(k_Token, Ctx); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->Tok.IsSuffix = IsSuffix; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateReg(unsigned RegNum, RegKind Kind, SMLoc S, SMLoc E, MCContext &Ctx, RegConstraintEqualityTy EqTy = RegConstraintEqualityTy::EqualsReg, AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL, unsigned ShiftAmount = 0, unsigned HasExplicitAmount = false) { auto Op = std::make_unique(k_Register, Ctx); Op->Reg.RegNum = RegNum; Op->Reg.Kind = Kind; Op->Reg.ElementWidth = 0; Op->Reg.EqualityTy = EqTy; Op->Reg.ShiftExtend.Type = ExtTy; Op->Reg.ShiftExtend.Amount = ShiftAmount; Op->Reg.ShiftExtend.HasExplicitAmount = HasExplicitAmount; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateVectorReg(unsigned RegNum, RegKind Kind, unsigned ElementWidth, SMLoc S, SMLoc E, MCContext &Ctx, AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL, unsigned ShiftAmount = 0, unsigned HasExplicitAmount = false) { assert((Kind == RegKind::NeonVector || Kind == RegKind::SVEDataVector || Kind == RegKind::SVEPredicateVector) && "Invalid vector kind"); auto Op = CreateReg(RegNum, Kind, S, E, Ctx, EqualsReg, ExtTy, ShiftAmount, HasExplicitAmount); Op->Reg.ElementWidth = ElementWidth; return Op; } static std::unique_ptr CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements, unsigned ElementWidth, RegKind RegisterKind, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_VectorList, Ctx); Op->VectorList.RegNum = RegNum; Op->VectorList.Count = Count; Op->VectorList.NumElements = NumElements; Op->VectorList.ElementWidth = ElementWidth; Op->VectorList.RegisterKind = RegisterKind; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateVectorIndex(int Idx, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_VectorIndex, Ctx); Op->VectorIndex.Val = Idx; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateMatrixTileList(unsigned RegMask, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_MatrixTileList, Ctx); Op->MatrixTileList.RegMask = RegMask; Op->StartLoc = S; Op->EndLoc = E; return Op; } static void ComputeRegsForAlias(unsigned Reg, SmallSet &OutRegs, const unsigned ElementWidth) { static std::map, std::vector> RegMap = { {{0, AArch64::ZAB0}, {AArch64::ZAD0, AArch64::ZAD1, AArch64::ZAD2, AArch64::ZAD3, AArch64::ZAD4, AArch64::ZAD5, AArch64::ZAD6, AArch64::ZAD7}}, {{8, AArch64::ZAB0}, {AArch64::ZAD0, AArch64::ZAD1, AArch64::ZAD2, AArch64::ZAD3, AArch64::ZAD4, AArch64::ZAD5, AArch64::ZAD6, AArch64::ZAD7}}, {{16, AArch64::ZAH0}, {AArch64::ZAD0, AArch64::ZAD2, AArch64::ZAD4, AArch64::ZAD6}}, {{16, AArch64::ZAH1}, {AArch64::ZAD1, AArch64::ZAD3, AArch64::ZAD5, AArch64::ZAD7}}, {{32, AArch64::ZAS0}, {AArch64::ZAD0, AArch64::ZAD4}}, {{32, AArch64::ZAS1}, {AArch64::ZAD1, AArch64::ZAD5}}, {{32, AArch64::ZAS2}, {AArch64::ZAD2, AArch64::ZAD6}}, {{32, AArch64::ZAS3}, {AArch64::ZAD3, AArch64::ZAD7}}, }; if (ElementWidth == 64) OutRegs.insert(Reg); else { std::vector Regs = RegMap[std::make_pair(ElementWidth, Reg)]; assert(!Regs.empty() && "Invalid tile or element width!"); for (auto OutReg : Regs) OutRegs.insert(OutReg); } } static std::unique_ptr CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_Immediate, Ctx); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateShiftedImm(const MCExpr *Val, unsigned ShiftAmount, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_ShiftedImm, Ctx); Op->ShiftedImm .Val = Val; Op->ShiftedImm.ShiftAmount = ShiftAmount; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateCondCode(AArch64CC::CondCode Code, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_CondCode, Ctx); Op->CondCode.Code = Code; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateFPImm(APFloat Val, bool IsExact, SMLoc S, MCContext &Ctx) { auto Op = std::make_unique(k_FPImm, Ctx); Op->FPImm.Val = Val.bitcastToAPInt().getSExtValue(); Op->FPImm.IsExact = IsExact; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateBarrier(unsigned Val, StringRef Str, SMLoc S, MCContext &Ctx, bool HasnXSModifier) { auto Op = std::make_unique(k_Barrier, Ctx); Op->Barrier.Val = Val; Op->Barrier.Data = Str.data(); Op->Barrier.Length = Str.size(); Op->Barrier.HasnXSModifier = HasnXSModifier; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateSysReg(StringRef Str, SMLoc S, uint32_t MRSReg, uint32_t MSRReg, uint32_t PStateField, MCContext &Ctx) { auto Op = std::make_unique(k_SysReg, Ctx); Op->SysReg.Data = Str.data(); Op->SysReg.Length = Str.size(); Op->SysReg.MRSReg = MRSReg; Op->SysReg.MSRReg = MSRReg; Op->SysReg.PStateField = PStateField; Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateSysCR(unsigned Val, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_SysCR, Ctx); Op->SysCRImm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreatePrefetch(unsigned Val, StringRef Str, SMLoc S, MCContext &Ctx) { auto Op = std::make_unique(k_Prefetch, Ctx); Op->Prefetch.Val = Val; Op->Barrier.Data = Str.data(); Op->Barrier.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreatePSBHint(unsigned Val, StringRef Str, SMLoc S, MCContext &Ctx) { auto Op = std::make_unique(k_PSBHint, Ctx); Op->PSBHint.Val = Val; Op->PSBHint.Data = Str.data(); Op->PSBHint.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateBTIHint(unsigned Val, StringRef Str, SMLoc S, MCContext &Ctx) { auto Op = std::make_unique(k_BTIHint, Ctx); Op->BTIHint.Val = Val | 32; Op->BTIHint.Data = Str.data(); Op->BTIHint.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateMatrixRegister(unsigned RegNum, unsigned ElementWidth, MatrixKind Kind, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_MatrixRegister, Ctx); Op->MatrixReg.RegNum = RegNum; Op->MatrixReg.ElementWidth = ElementWidth; Op->MatrixReg.Kind = Kind; Op->StartLoc = S; Op->EndLoc = E; return Op; } static std::unique_ptr CreateSVCR(uint32_t PStateField, StringRef Str, SMLoc S, MCContext &Ctx) { auto Op = std::make_unique(k_SVCR, Ctx); Op->SVCR.PStateField = PStateField; Op->SVCR.Data = Str.data(); Op->SVCR.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; return Op; } static std::unique_ptr CreateShiftExtend(AArch64_AM::ShiftExtendType ShOp, unsigned Val, bool HasExplicitAmount, SMLoc S, SMLoc E, MCContext &Ctx) { auto Op = std::make_unique(k_ShiftExtend, Ctx); Op->ShiftExtend.Type = ShOp; Op->ShiftExtend.Amount = Val; Op->ShiftExtend.HasExplicitAmount = HasExplicitAmount; Op->StartLoc = S; Op->EndLoc = E; return Op; } }; } // end anonymous namespace. void AArch64Operand::print(raw_ostream &OS) const { switch (Kind) { case k_FPImm: OS << ""; break; case k_Barrier: { StringRef Name = getBarrierName(); if (!Name.empty()) OS << ""; else OS << ""; break; } case k_Immediate: OS << *getImm(); break; case k_ShiftedImm: { unsigned Shift = getShiftedImmShift(); OS << ""; break; } case k_CondCode: OS << ""; break; case k_VectorList: { OS << ""; break; } case k_VectorIndex: OS << ""; break; case k_SysReg: OS << "'; break; case k_Token: OS << "'" << getToken() << "'"; break; case k_SysCR: OS << "c" << getSysCR(); break; case k_Prefetch: { StringRef Name = getPrefetchName(); if (!Name.empty()) OS << ""; else OS << ""; break; } case k_PSBHint: OS << getPSBHintName(); break; case k_BTIHint: OS << getBTIHintName(); break; case k_MatrixRegister: OS << ""; break; case k_MatrixTileList: { OS << " 0; --I) OS << ((RegMask & (1 << (I - 1))) >> (I - 1)); OS << '>'; break; } case k_SVCR: { OS << getSVCR(); break; } case k_Register: OS << ""; if (!getShiftExtendAmount() && !hasShiftExtendAmount()) break; LLVM_FALLTHROUGH; case k_ShiftExtend: OS << "<" << AArch64_AM::getShiftExtendName(getShiftExtendType()) << " #" << getShiftExtendAmount(); if (!hasShiftExtendAmount()) OS << ""; OS << '>'; break; } } /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } static unsigned MatchNeonVectorRegName(StringRef Name) { return StringSwitch(Name.lower()) .Case("v0", AArch64::Q0) .Case("v1", AArch64::Q1) .Case("v2", AArch64::Q2) .Case("v3", AArch64::Q3) .Case("v4", AArch64::Q4) .Case("v5", AArch64::Q5) .Case("v6", AArch64::Q6) .Case("v7", AArch64::Q7) .Case("v8", AArch64::Q8) .Case("v9", AArch64::Q9) .Case("v10", AArch64::Q10) .Case("v11", AArch64::Q11) .Case("v12", AArch64::Q12) .Case("v13", AArch64::Q13) .Case("v14", AArch64::Q14) .Case("v15", AArch64::Q15) .Case("v16", AArch64::Q16) .Case("v17", AArch64::Q17) .Case("v18", AArch64::Q18) .Case("v19", AArch64::Q19) .Case("v20", AArch64::Q20) .Case("v21", AArch64::Q21) .Case("v22", AArch64::Q22) .Case("v23", AArch64::Q23) .Case("v24", AArch64::Q24) .Case("v25", AArch64::Q25) .Case("v26", AArch64::Q26) .Case("v27", AArch64::Q27) .Case("v28", AArch64::Q28) .Case("v29", AArch64::Q29) .Case("v30", AArch64::Q30) .Case("v31", AArch64::Q31) .Default(0); } /// Returns an optional pair of (#elements, element-width) if Suffix /// is a valid vector kind. Where the number of elements in a vector /// or the vector width is implicit or explicitly unknown (but still a /// valid suffix kind), 0 is used. static Optional> parseVectorKind(StringRef Suffix, RegKind VectorKind) { std::pair Res = {-1, -1}; switch (VectorKind) { case RegKind::NeonVector: Res = StringSwitch>(Suffix.lower()) .Case("", {0, 0}) .Case(".1d", {1, 64}) .Case(".1q", {1, 128}) // '.2h' needed for fp16 scalar pairwise reductions .Case(".2h", {2, 16}) .Case(".2s", {2, 32}) .Case(".2d", {2, 64}) // '.4b' is another special case for the ARMv8.2a dot product // operand .Case(".4b", {4, 8}) .Case(".4h", {4, 16}) .Case(".4s", {4, 32}) .Case(".8b", {8, 8}) .Case(".8h", {8, 16}) .Case(".16b", {16, 8}) // Accept the width neutral ones, too, for verbose syntax. If those // aren't used in the right places, the token operand won't match so // all will work out. .Case(".b", {0, 8}) .Case(".h", {0, 16}) .Case(".s", {0, 32}) .Case(".d", {0, 64}) .Default({-1, -1}); break; case RegKind::SVEPredicateVector: case RegKind::SVEDataVector: case RegKind::Matrix: Res = StringSwitch>(Suffix.lower()) .Case("", {0, 0}) .Case(".b", {0, 8}) .Case(".h", {0, 16}) .Case(".s", {0, 32}) .Case(".d", {0, 64}) .Case(".q", {0, 128}) .Default({-1, -1}); break; default: llvm_unreachable("Unsupported RegKind"); } if (Res == std::make_pair(-1, -1)) return Optional>(); return Optional>(Res); } static bool isValidVectorKind(StringRef Suffix, RegKind VectorKind) { return parseVectorKind(Suffix, VectorKind).hasValue(); } static unsigned matchSVEDataVectorRegName(StringRef Name) { return StringSwitch(Name.lower()) .Case("z0", AArch64::Z0) .Case("z1", AArch64::Z1) .Case("z2", AArch64::Z2) .Case("z3", AArch64::Z3) .Case("z4", AArch64::Z4) .Case("z5", AArch64::Z5) .Case("z6", AArch64::Z6) .Case("z7", AArch64::Z7) .Case("z8", AArch64::Z8) .Case("z9", AArch64::Z9) .Case("z10", AArch64::Z10) .Case("z11", AArch64::Z11) .Case("z12", AArch64::Z12) .Case("z13", AArch64::Z13) .Case("z14", AArch64::Z14) .Case("z15", AArch64::Z15) .Case("z16", AArch64::Z16) .Case("z17", AArch64::Z17) .Case("z18", AArch64::Z18) .Case("z19", AArch64::Z19) .Case("z20", AArch64::Z20) .Case("z21", AArch64::Z21) .Case("z22", AArch64::Z22) .Case("z23", AArch64::Z23) .Case("z24", AArch64::Z24) .Case("z25", AArch64::Z25) .Case("z26", AArch64::Z26) .Case("z27", AArch64::Z27) .Case("z28", AArch64::Z28) .Case("z29", AArch64::Z29) .Case("z30", AArch64::Z30) .Case("z31", AArch64::Z31) .Default(0); } static unsigned matchSVEPredicateVectorRegName(StringRef Name) { return StringSwitch(Name.lower()) .Case("p0", AArch64::P0) .Case("p1", AArch64::P1) .Case("p2", AArch64::P2) .Case("p3", AArch64::P3) .Case("p4", AArch64::P4) .Case("p5", AArch64::P5) .Case("p6", AArch64::P6) .Case("p7", AArch64::P7) .Case("p8", AArch64::P8) .Case("p9", AArch64::P9) .Case("p10", AArch64::P10) .Case("p11", AArch64::P11) .Case("p12", AArch64::P12) .Case("p13", AArch64::P13) .Case("p14", AArch64::P14) .Case("p15", AArch64::P15) .Default(0); } static unsigned matchMatrixTileListRegName(StringRef Name) { return StringSwitch(Name.lower()) .Case("za0.d", AArch64::ZAD0) .Case("za1.d", AArch64::ZAD1) .Case("za2.d", AArch64::ZAD2) .Case("za3.d", AArch64::ZAD3) .Case("za4.d", AArch64::ZAD4) .Case("za5.d", AArch64::ZAD5) .Case("za6.d", AArch64::ZAD6) .Case("za7.d", AArch64::ZAD7) .Case("za0.s", AArch64::ZAS0) .Case("za1.s", AArch64::ZAS1) .Case("za2.s", AArch64::ZAS2) .Case("za3.s", AArch64::ZAS3) .Case("za0.h", AArch64::ZAH0) .Case("za1.h", AArch64::ZAH1) .Case("za0.b", AArch64::ZAB0) .Default(0); } static unsigned matchMatrixRegName(StringRef Name) { return StringSwitch(Name.lower()) .Case("za", AArch64::ZA) .Case("za0.q", AArch64::ZAQ0) .Case("za1.q", AArch64::ZAQ1) .Case("za2.q", AArch64::ZAQ2) .Case("za3.q", AArch64::ZAQ3) .Case("za4.q", AArch64::ZAQ4) .Case("za5.q", AArch64::ZAQ5) .Case("za6.q", AArch64::ZAQ6) .Case("za7.q", AArch64::ZAQ7) .Case("za8.q", AArch64::ZAQ8) .Case("za9.q", AArch64::ZAQ9) .Case("za10.q", AArch64::ZAQ10) .Case("za11.q", AArch64::ZAQ11) .Case("za12.q", AArch64::ZAQ12) .Case("za13.q", AArch64::ZAQ13) .Case("za14.q", AArch64::ZAQ14) .Case("za15.q", AArch64::ZAQ15) .Case("za0.d", AArch64::ZAD0) .Case("za1.d", AArch64::ZAD1) .Case("za2.d", AArch64::ZAD2) .Case("za3.d", AArch64::ZAD3) .Case("za4.d", AArch64::ZAD4) .Case("za5.d", AArch64::ZAD5) .Case("za6.d", AArch64::ZAD6) .Case("za7.d", AArch64::ZAD7) .Case("za0.s", AArch64::ZAS0) .Case("za1.s", AArch64::ZAS1) .Case("za2.s", AArch64::ZAS2) .Case("za3.s", AArch64::ZAS3) .Case("za0.h", AArch64::ZAH0) .Case("za1.h", AArch64::ZAH1) .Case("za0.b", AArch64::ZAB0) .Case("za0h.q", AArch64::ZAQ0) .Case("za1h.q", AArch64::ZAQ1) .Case("za2h.q", AArch64::ZAQ2) .Case("za3h.q", AArch64::ZAQ3) .Case("za4h.q", AArch64::ZAQ4) .Case("za5h.q", AArch64::ZAQ5) .Case("za6h.q", AArch64::ZAQ6) .Case("za7h.q", AArch64::ZAQ7) .Case("za8h.q", AArch64::ZAQ8) .Case("za9h.q", AArch64::ZAQ9) .Case("za10h.q", AArch64::ZAQ10) .Case("za11h.q", AArch64::ZAQ11) .Case("za12h.q", AArch64::ZAQ12) .Case("za13h.q", AArch64::ZAQ13) .Case("za14h.q", AArch64::ZAQ14) .Case("za15h.q", AArch64::ZAQ15) .Case("za0h.d", AArch64::ZAD0) .Case("za1h.d", AArch64::ZAD1) .Case("za2h.d", AArch64::ZAD2) .Case("za3h.d", AArch64::ZAD3) .Case("za4h.d", AArch64::ZAD4) .Case("za5h.d", AArch64::ZAD5) .Case("za6h.d", AArch64::ZAD6) .Case("za7h.d", AArch64::ZAD7) .Case("za0h.s", AArch64::ZAS0) .Case("za1h.s", AArch64::ZAS1) .Case("za2h.s", AArch64::ZAS2) .Case("za3h.s", AArch64::ZAS3) .Case("za0h.h", AArch64::ZAH0) .Case("za1h.h", AArch64::ZAH1) .Case("za0h.b", AArch64::ZAB0) .Case("za0v.q", AArch64::ZAQ0) .Case("za1v.q", AArch64::ZAQ1) .Case("za2v.q", AArch64::ZAQ2) .Case("za3v.q", AArch64::ZAQ3) .Case("za4v.q", AArch64::ZAQ4) .Case("za5v.q", AArch64::ZAQ5) .Case("za6v.q", AArch64::ZAQ6) .Case("za7v.q", AArch64::ZAQ7) .Case("za8v.q", AArch64::ZAQ8) .Case("za9v.q", AArch64::ZAQ9) .Case("za10v.q", AArch64::ZAQ10) .Case("za11v.q", AArch64::ZAQ11) .Case("za12v.q", AArch64::ZAQ12) .Case("za13v.q", AArch64::ZAQ13) .Case("za14v.q", AArch64::ZAQ14) .Case("za15v.q", AArch64::ZAQ15) .Case("za0v.d", AArch64::ZAD0) .Case("za1v.d", AArch64::ZAD1) .Case("za2v.d", AArch64::ZAD2) .Case("za3v.d", AArch64::ZAD3) .Case("za4v.d", AArch64::ZAD4) .Case("za5v.d", AArch64::ZAD5) .Case("za6v.d", AArch64::ZAD6) .Case("za7v.d", AArch64::ZAD7) .Case("za0v.s", AArch64::ZAS0) .Case("za1v.s", AArch64::ZAS1) .Case("za2v.s", AArch64::ZAS2) .Case("za3v.s", AArch64::ZAS3) .Case("za0v.h", AArch64::ZAH0) .Case("za1v.h", AArch64::ZAH1) .Case("za0v.b", AArch64::ZAB0) .Default(0); } bool AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { return tryParseRegister(RegNo, StartLoc, EndLoc) != MatchOperand_Success; } OperandMatchResultTy AArch64AsmParser::tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { StartLoc = getLoc(); auto Res = tryParseScalarRegister(RegNo); EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1); return Res; } // Matches a register name or register alias previously defined by '.req' unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name, RegKind Kind) { unsigned RegNum = 0; if ((RegNum = matchSVEDataVectorRegName(Name))) return Kind == RegKind::SVEDataVector ? RegNum : 0; if ((RegNum = matchSVEPredicateVectorRegName(Name))) return Kind == RegKind::SVEPredicateVector ? RegNum : 0; if ((RegNum = MatchNeonVectorRegName(Name))) return Kind == RegKind::NeonVector ? RegNum : 0; if ((RegNum = matchMatrixRegName(Name))) return Kind == RegKind::Matrix ? RegNum : 0; // The parsed register must be of RegKind Scalar if ((RegNum = MatchRegisterName(Name))) return Kind == RegKind::Scalar ? RegNum : 0; if (!RegNum) { // Handle a few common aliases of registers. if (auto RegNum = StringSwitch(Name.lower()) .Case("fp", AArch64::FP) .Case("lr", AArch64::LR) .Case("x31", AArch64::XZR) .Case("w31", AArch64::WZR) .Default(0)) return Kind == RegKind::Scalar ? RegNum : 0; // Check for aliases registered via .req. Canonicalize to lower case. // That's more consistent since register names are case insensitive, and // it's how the original entry was passed in from MC/MCParser/AsmParser. auto Entry = RegisterReqs.find(Name.lower()); if (Entry == RegisterReqs.end()) return 0; // set RegNum if the match is the right kind of register if (Kind == Entry->getValue().first) RegNum = Entry->getValue().second; } return RegNum; } /// tryParseScalarRegister - Try to parse a register name. The token must be an /// Identifier when called, and if it is a register name the token is eaten and /// the register is added to the operand list. OperandMatchResultTy AArch64AsmParser::tryParseScalarRegister(unsigned &RegNum) { const AsmToken &Tok = getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; std::string lowerCase = Tok.getString().lower(); unsigned Reg = matchRegisterNameAlias(lowerCase, RegKind::Scalar); if (Reg == 0) return MatchOperand_NoMatch; RegNum = Reg; Lex(); // Eat identifier token. return MatchOperand_Success; } /// tryParseSysCROperand - Try to parse a system instruction CR operand name. OperandMatchResultTy AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) { SMLoc S = getLoc(); if (getTok().isNot(AsmToken::Identifier)) { Error(S, "Expected cN operand where 0 <= N <= 15"); return MatchOperand_ParseFail; } StringRef Tok = getTok().getIdentifier(); if (Tok[0] != 'c' && Tok[0] != 'C') { Error(S, "Expected cN operand where 0 <= N <= 15"); return MatchOperand_ParseFail; } uint32_t CRNum; bool BadNum = Tok.drop_front().getAsInteger(10, CRNum); if (BadNum || CRNum > 15) { Error(S, "Expected cN operand where 0 <= N <= 15"); return MatchOperand_ParseFail; } Lex(); // Eat identifier token. Operands.push_back( AArch64Operand::CreateSysCR(CRNum, S, getLoc(), getContext())); return MatchOperand_Success; } /// tryParsePrefetch - Try to parse a prefetch operand. template OperandMatchResultTy AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) { SMLoc S = getLoc(); const AsmToken &Tok = getTok(); auto LookupByName = [](StringRef N) { if (IsSVEPrefetch) { if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByName(N)) return Optional(Res->Encoding); } else if (auto Res = AArch64PRFM::lookupPRFMByName(N)) return Optional(Res->Encoding); return Optional(); }; auto LookupByEncoding = [](unsigned E) { if (IsSVEPrefetch) { if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByEncoding(E)) return Optional(Res->Name); } else if (auto Res = AArch64PRFM::lookupPRFMByEncoding(E)) return Optional(Res->Name); return Optional(); }; unsigned MaxVal = IsSVEPrefetch ? 15 : 31; // Either an identifier for named values or a 5-bit immediate. // Eat optional hash. if (parseOptionalToken(AsmToken::Hash) || Tok.is(AsmToken::Integer)) { const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { TokError("immediate value expected for prefetch operand"); return MatchOperand_ParseFail; } unsigned prfop = MCE->getValue(); if (prfop > MaxVal) { TokError("prefetch operand out of range, [0," + utostr(MaxVal) + "] expected"); return MatchOperand_ParseFail; } auto PRFM = LookupByEncoding(MCE->getValue()); Operands.push_back(AArch64Operand::CreatePrefetch( prfop, PRFM.getValueOr(""), S, getContext())); return MatchOperand_Success; } if (Tok.isNot(AsmToken::Identifier)) { TokError("prefetch hint expected"); return MatchOperand_ParseFail; } auto PRFM = LookupByName(Tok.getString()); if (!PRFM) { TokError("prefetch hint expected"); return MatchOperand_ParseFail; } Operands.push_back(AArch64Operand::CreatePrefetch( *PRFM, Tok.getString(), S, getContext())); Lex(); // Eat identifier token. return MatchOperand_Success; } /// tryParsePSBHint - Try to parse a PSB operand, mapped to Hint command OperandMatchResultTy AArch64AsmParser::tryParsePSBHint(OperandVector &Operands) { SMLoc S = getLoc(); const AsmToken &Tok = getTok(); if (Tok.isNot(AsmToken::Identifier)) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } auto PSB = AArch64PSBHint::lookupPSBByName(Tok.getString()); if (!PSB) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } Operands.push_back(AArch64Operand::CreatePSBHint( PSB->Encoding, Tok.getString(), S, getContext())); Lex(); // Eat identifier token. return MatchOperand_Success; } /// tryParseBTIHint - Try to parse a BTI operand, mapped to Hint command OperandMatchResultTy AArch64AsmParser::tryParseBTIHint(OperandVector &Operands) { SMLoc S = getLoc(); const AsmToken &Tok = getTok(); if (Tok.isNot(AsmToken::Identifier)) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } auto BTI = AArch64BTIHint::lookupBTIByName(Tok.getString()); if (!BTI) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } Operands.push_back(AArch64Operand::CreateBTIHint( BTI->Encoding, Tok.getString(), S, getContext())); Lex(); // Eat identifier token. return MatchOperand_Success; } /// tryParseAdrpLabel - Parse and validate a source label for the ADRP /// instruction. OperandMatchResultTy AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) { SMLoc S = getLoc(); const MCExpr *Expr = nullptr; if (getTok().is(AsmToken::Hash)) { Lex(); // Eat hash token. } if (parseSymbolicImmVal(Expr)) return MatchOperand_ParseFail; AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { if (DarwinRefKind == MCSymbolRefExpr::VK_None && ELFRefKind == AArch64MCExpr::VK_INVALID) { // No modifier was specified at all; this is the syntax for an ELF basic // ADRP relocation (unfortunately). Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_PAGE, getContext()); } else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) && Addend != 0) { Error(S, "gotpage label reference not allowed an addend"); return MatchOperand_ParseFail; } else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE && DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE && DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE && ELFRefKind != AArch64MCExpr::VK_ABS_PAGE_NC && ELFRefKind != AArch64MCExpr::VK_GOT_PAGE && ELFRefKind != AArch64MCExpr::VK_GOT_PAGE_LO15 && ELFRefKind != AArch64MCExpr::VK_GOTTPREL_PAGE && ELFRefKind != AArch64MCExpr::VK_TLSDESC_PAGE) { // The operand must be an @page or @gotpage qualified symbolref. Error(S, "page or gotpage label reference expected"); return MatchOperand_ParseFail; } } // We have either a label reference possibly with addend or an immediate. The // addend is a raw value here. The linker will adjust it to only reference the // page. SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext())); return MatchOperand_Success; } /// tryParseAdrLabel - Parse and validate a source label for the ADR /// instruction. OperandMatchResultTy AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) { SMLoc S = getLoc(); const MCExpr *Expr = nullptr; // Leave anything with a bracket to the default for SVE if (getTok().is(AsmToken::LBrac)) return MatchOperand_NoMatch; if (getTok().is(AsmToken::Hash)) Lex(); // Eat hash token. if (parseSymbolicImmVal(Expr)) return MatchOperand_ParseFail; AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { if (DarwinRefKind == MCSymbolRefExpr::VK_None && ELFRefKind == AArch64MCExpr::VK_INVALID) { // No modifier was specified at all; this is the syntax for an ELF basic // ADR relocation (unfortunately). Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS, getContext()); } else { Error(S, "unexpected adr label"); return MatchOperand_ParseFail; } } SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext())); return MatchOperand_Success; } /// tryParseFPImm - A floating point immediate expression operand. template OperandMatchResultTy AArch64AsmParser::tryParseFPImm(OperandVector &Operands) { SMLoc S = getLoc(); bool Hash = parseOptionalToken(AsmToken::Hash); // Handle negation, as that still comes through as a separate token. bool isNegative = parseOptionalToken(AsmToken::Minus); const AsmToken &Tok = getTok(); if (!Tok.is(AsmToken::Real) && !Tok.is(AsmToken::Integer)) { if (!Hash) return MatchOperand_NoMatch; TokError("invalid floating point immediate"); return MatchOperand_ParseFail; } // Parse hexadecimal representation. if (Tok.is(AsmToken::Integer) && Tok.getString().startswith("0x")) { if (Tok.getIntVal() > 255 || isNegative) { TokError("encoded floating point value out of range"); return MatchOperand_ParseFail; } APFloat F((double)AArch64_AM::getFPImmFloat(Tok.getIntVal())); Operands.push_back( AArch64Operand::CreateFPImm(F, true, S, getContext())); } else { // Parse FP representation. APFloat RealVal(APFloat::IEEEdouble()); auto StatusOrErr = RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero); if (errorToBool(StatusOrErr.takeError())) { TokError("invalid floating point representation"); return MatchOperand_ParseFail; } if (isNegative) RealVal.changeSign(); if (AddFPZeroAsLiteral && RealVal.isPosZero()) { Operands.push_back(AArch64Operand::CreateToken("#0", S, getContext())); Operands.push_back(AArch64Operand::CreateToken(".0", S, getContext())); } else Operands.push_back(AArch64Operand::CreateFPImm( RealVal, *StatusOrErr == APFloat::opOK, S, getContext())); } Lex(); // Eat the token. return MatchOperand_Success; } /// tryParseImmWithOptionalShift - Parse immediate operand, optionally with /// a shift suffix, for example '#1, lsl #12'. OperandMatchResultTy AArch64AsmParser::tryParseImmWithOptionalShift(OperandVector &Operands) { SMLoc S = getLoc(); if (getTok().is(AsmToken::Hash)) Lex(); // Eat '#' else if (getTok().isNot(AsmToken::Integer)) // Operand should start from # or should be integer, emit error otherwise. return MatchOperand_NoMatch; const MCExpr *Imm = nullptr; if (parseSymbolicImmVal(Imm)) return MatchOperand_ParseFail; else if (getTok().isNot(AsmToken::Comma)) { Operands.push_back( AArch64Operand::CreateImm(Imm, S, getLoc(), getContext())); return MatchOperand_Success; } // Eat ',' Lex(); // The optional operand must be "lsl #N" where N is non-negative. if (!getTok().is(AsmToken::Identifier) || !getTok().getIdentifier().equals_insensitive("lsl")) { Error(getLoc(), "only 'lsl #+N' valid after immediate"); return MatchOperand_ParseFail; } // Eat 'lsl' Lex(); parseOptionalToken(AsmToken::Hash); if (getTok().isNot(AsmToken::Integer)) { Error(getLoc(), "only 'lsl #+N' valid after immediate"); return MatchOperand_ParseFail; } int64_t ShiftAmount = getTok().getIntVal(); if (ShiftAmount < 0) { Error(getLoc(), "positive shift amount required"); return MatchOperand_ParseFail; } Lex(); // Eat the number // Just in case the optional lsl #0 is used for immediates other than zero. if (ShiftAmount == 0 && Imm != nullptr) { Operands.push_back( AArch64Operand::CreateImm(Imm, S, getLoc(), getContext())); return MatchOperand_Success; } Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount, S, getLoc(), getContext())); return MatchOperand_Success; } /// parseCondCodeString - Parse a Condition Code string. AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) { AArch64CC::CondCode CC = StringSwitch(Cond.lower()) .Case("eq", AArch64CC::EQ) .Case("ne", AArch64CC::NE) .Case("cs", AArch64CC::HS) .Case("hs", AArch64CC::HS) .Case("cc", AArch64CC::LO) .Case("lo", AArch64CC::LO) .Case("mi", AArch64CC::MI) .Case("pl", AArch64CC::PL) .Case("vs", AArch64CC::VS) .Case("vc", AArch64CC::VC) .Case("hi", AArch64CC::HI) .Case("ls", AArch64CC::LS) .Case("ge", AArch64CC::GE) .Case("lt", AArch64CC::LT) .Case("gt", AArch64CC::GT) .Case("le", AArch64CC::LE) .Case("al", AArch64CC::AL) .Case("nv", AArch64CC::NV) .Default(AArch64CC::Invalid); if (CC == AArch64CC::Invalid && getSTI().getFeatureBits()[AArch64::FeatureSVE]) CC = StringSwitch(Cond.lower()) .Case("none", AArch64CC::EQ) .Case("any", AArch64CC::NE) .Case("nlast", AArch64CC::HS) .Case("last", AArch64CC::LO) .Case("first", AArch64CC::MI) .Case("nfrst", AArch64CC::PL) .Case("pmore", AArch64CC::HI) .Case("plast", AArch64CC::LS) .Case("tcont", AArch64CC::GE) .Case("tstop", AArch64CC::LT) .Default(AArch64CC::Invalid); return CC; } /// parseCondCode - Parse a Condition Code operand. bool AArch64AsmParser::parseCondCode(OperandVector &Operands, bool invertCondCode) { SMLoc S = getLoc(); const AsmToken &Tok = getTok(); assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier"); StringRef Cond = Tok.getString(); AArch64CC::CondCode CC = parseCondCodeString(Cond); if (CC == AArch64CC::Invalid) return TokError("invalid condition code"); Lex(); // Eat identifier token. if (invertCondCode) { if (CC == AArch64CC::AL || CC == AArch64CC::NV) return TokError("condition codes AL and NV are invalid for this instruction"); CC = AArch64CC::getInvertedCondCode(AArch64CC::CondCode(CC)); } Operands.push_back( AArch64Operand::CreateCondCode(CC, S, getLoc(), getContext())); return false; } OperandMatchResultTy AArch64AsmParser::tryParseSVCR(OperandVector &Operands) { const AsmToken &Tok = getTok(); SMLoc S = getLoc(); if (Tok.isNot(AsmToken::Identifier)) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } unsigned PStateImm = -1; const auto *SVCR = AArch64SVCR::lookupSVCRByName(Tok.getString()); if (SVCR && SVCR->haveFeatures(getSTI().getFeatureBits())) PStateImm = SVCR->Encoding; Operands.push_back( AArch64Operand::CreateSVCR(PStateImm, Tok.getString(), S, getContext())); Lex(); // Eat identifier token. return MatchOperand_Success; } OperandMatchResultTy AArch64AsmParser::tryParseMatrixRegister(OperandVector &Operands) { const AsmToken &Tok = getTok(); SMLoc S = getLoc(); StringRef Name = Tok.getString(); if (Name.equals_insensitive("za")) { Lex(); // eat "za" Operands.push_back(AArch64Operand::CreateMatrixRegister( AArch64::ZA, /*ElementWidth=*/0, MatrixKind::Array, S, getLoc(), getContext())); if (getLexer().is(AsmToken::LBrac)) { // There's no comma after matrix operand, so we can parse the next operand // immediately. if (parseOperand(Operands, false, false)) return MatchOperand_NoMatch; } return MatchOperand_Success; } // Try to parse matrix register. unsigned Reg = matchRegisterNameAlias(Name, RegKind::Matrix); if (!Reg) return MatchOperand_NoMatch; size_t DotPosition = Name.find('.'); assert(DotPosition != StringRef::npos && "Unexpected register"); StringRef Head = Name.take_front(DotPosition); StringRef Tail = Name.drop_front(DotPosition); StringRef RowOrColumn = Head.take_back(); MatrixKind Kind = StringSwitch(RowOrColumn) .Case("h", MatrixKind::Row) .Case("v", MatrixKind::Col) .Default(MatrixKind::Tile); // Next up, parsing the suffix const auto &KindRes = parseVectorKind(Tail, RegKind::Matrix); if (!KindRes) { TokError("Expected the register to be followed by element width suffix"); return MatchOperand_ParseFail; } unsigned ElementWidth = KindRes->second; Lex(); Operands.push_back(AArch64Operand::CreateMatrixRegister( Reg, ElementWidth, Kind, S, getLoc(), getContext())); if (getLexer().is(AsmToken::LBrac)) { // There's no comma after matrix operand, so we can parse the next operand // immediately. if (parseOperand(Operands, false, false)) return MatchOperand_NoMatch; } return MatchOperand_Success; } /// tryParseOptionalShift - Some operands take an optional shift argument. Parse /// them if present. OperandMatchResultTy AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) { const AsmToken &Tok = getTok(); std::string LowerID = Tok.getString().lower(); AArch64_AM::ShiftExtendType ShOp = StringSwitch(LowerID) .Case("lsl", AArch64_AM::LSL) .Case("lsr", AArch64_AM::LSR) .Case("asr", AArch64_AM::ASR) .Case("ror", AArch64_AM::ROR) .Case("msl", AArch64_AM::MSL) .Case("uxtb", AArch64_AM::UXTB) .Case("uxth", AArch64_AM::UXTH) .Case("uxtw", AArch64_AM::UXTW) .Case("uxtx", AArch64_AM::UXTX) .Case("sxtb", AArch64_AM::SXTB) .Case("sxth", AArch64_AM::SXTH) .Case("sxtw", AArch64_AM::SXTW) .Case("sxtx", AArch64_AM::SXTX) .Default(AArch64_AM::InvalidShiftExtend); if (ShOp == AArch64_AM::InvalidShiftExtend) return MatchOperand_NoMatch; SMLoc S = Tok.getLoc(); Lex(); bool Hash = parseOptionalToken(AsmToken::Hash); if (!Hash && getLexer().isNot(AsmToken::Integer)) { if (ShOp == AArch64_AM::LSL || ShOp == AArch64_AM::LSR || ShOp == AArch64_AM::ASR || ShOp == AArch64_AM::ROR || ShOp == AArch64_AM::MSL) { // We expect a number here. TokError("expected #imm after shift specifier"); return MatchOperand_ParseFail; } // "extend" type operations don't need an immediate, #0 is implicit. SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back( AArch64Operand::CreateShiftExtend(ShOp, 0, false, S, E, getContext())); return MatchOperand_Success; } // Make sure we do actually have a number, identifier or a parenthesized // expression. SMLoc E = getLoc(); if (!getTok().is(AsmToken::Integer) && !getTok().is(AsmToken::LParen) && !getTok().is(AsmToken::Identifier)) { Error(E, "expected integer shift amount"); return MatchOperand_ParseFail; } const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { Error(E, "expected constant '#imm' after shift specifier"); return MatchOperand_ParseFail; } E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateShiftExtend( ShOp, MCE->getValue(), true, S, E, getContext())); return MatchOperand_Success; } static const struct Extension { const char *Name; const FeatureBitset Features; } ExtensionMap[] = { {"crc", {AArch64::FeatureCRC}}, {"sm4", {AArch64::FeatureSM4}}, {"sha3", {AArch64::FeatureSHA3}}, {"sha2", {AArch64::FeatureSHA2}}, {"aes", {AArch64::FeatureAES}}, {"crypto", {AArch64::FeatureCrypto}}, {"fp", {AArch64::FeatureFPARMv8}}, {"simd", {AArch64::FeatureNEON}}, {"ras", {AArch64::FeatureRAS}}, {"lse", {AArch64::FeatureLSE}}, {"predres", {AArch64::FeaturePredRes}}, {"ccdp", {AArch64::FeatureCacheDeepPersist}}, {"mte", {AArch64::FeatureMTE}}, {"memtag", {AArch64::FeatureMTE}}, {"tlb-rmi", {AArch64::FeatureTLB_RMI}}, {"pan", {AArch64::FeaturePAN}}, {"pan-rwv", {AArch64::FeaturePAN_RWV}}, {"ccpp", {AArch64::FeatureCCPP}}, {"rcpc", {AArch64::FeatureRCPC}}, {"rng", {AArch64::FeatureRandGen}}, {"sve", {AArch64::FeatureSVE}}, {"sve2", {AArch64::FeatureSVE2}}, {"sve2-aes", {AArch64::FeatureSVE2AES}}, {"sve2-sm4", {AArch64::FeatureSVE2SM4}}, {"sve2-sha3", {AArch64::FeatureSVE2SHA3}}, {"sve2-bitperm", {AArch64::FeatureSVE2BitPerm}}, {"ls64", {AArch64::FeatureLS64}}, {"xs", {AArch64::FeatureXS}}, {"pauth", {AArch64::FeaturePAuth}}, {"flagm", {AArch64::FeatureFlagM}}, {"rme", {AArch64::FeatureRME}}, {"sme", {AArch64::FeatureSME}}, {"sme-f64", {AArch64::FeatureSMEF64}}, {"sme-i64", {AArch64::FeatureSMEI64}}, {"hbc", {AArch64::FeatureHBC}}, {"mops", {AArch64::FeatureMOPS}}, // FIXME: Unsupported extensions {"lor", {}}, {"rdma", {}}, {"profile", {}}, }; static void setRequiredFeatureString(FeatureBitset FBS, std::string &Str) { if (FBS[AArch64::HasV8_0aOps]) Str += "ARMv8a"; if (FBS[AArch64::HasV8_1aOps]) Str += "ARMv8.1a"; else if (FBS[AArch64::HasV8_2aOps]) Str += "ARMv8.2a"; else if (FBS[AArch64::HasV8_3aOps]) Str += "ARMv8.3a"; else if (FBS[AArch64::HasV8_4aOps]) Str += "ARMv8.4a"; else if (FBS[AArch64::HasV8_5aOps]) Str += "ARMv8.5a"; else if (FBS[AArch64::HasV8_6aOps]) Str += "ARMv8.6a"; else if (FBS[AArch64::HasV8_7aOps]) Str += "ARMv8.7a"; else if (FBS[AArch64::HasV8_8aOps]) Str += "ARMv8.8a"; else if (FBS[AArch64::HasV9_0aOps]) Str += "ARMv9-a"; else if (FBS[AArch64::HasV9_1aOps]) Str += "ARMv9.1a"; else if (FBS[AArch64::HasV9_2aOps]) Str += "ARMv9.2a"; else if (FBS[AArch64::HasV9_3aOps]) Str += "ARMv9.3a"; else if (FBS[AArch64::HasV8_0rOps]) Str += "ARMv8r"; else { SmallVector ExtMatches; for (const auto& Ext : ExtensionMap) { // Use & in case multiple features are enabled if ((FBS & Ext.Features) != FeatureBitset()) ExtMatches.push_back(Ext.Name); } Str += !ExtMatches.empty() ? llvm::join(ExtMatches, ", ") : "(unknown)"; } } void AArch64AsmParser::createSysAlias(uint16_t Encoding, OperandVector &Operands, SMLoc S) { const uint16_t Op2 = Encoding & 7; const uint16_t Cm = (Encoding & 0x78) >> 3; const uint16_t Cn = (Encoding & 0x780) >> 7; const uint16_t Op1 = (Encoding & 0x3800) >> 11; const MCExpr *Expr = MCConstantExpr::create(Op1, getContext()); Operands.push_back( AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); Operands.push_back( AArch64Operand::CreateSysCR(Cn, S, getLoc(), getContext())); Operands.push_back( AArch64Operand::CreateSysCR(Cm, S, getLoc(), getContext())); Expr = MCConstantExpr::create(Op2, getContext()); Operands.push_back( AArch64Operand::CreateImm(Expr, S, getLoc(), getContext())); } /// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for /// the SYS instruction. Parse them specially so that we create a SYS MCInst. bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands) { if (Name.contains('.')) return TokError("invalid operand"); Mnemonic = Name; Operands.push_back(AArch64Operand::CreateToken("sys", NameLoc, getContext())); const AsmToken &Tok = getTok(); StringRef Op = Tok.getString(); SMLoc S = Tok.getLoc(); if (Mnemonic == "ic") { const AArch64IC::IC *IC = AArch64IC::lookupICByName(Op); if (!IC) return TokError("invalid operand for IC instruction"); else if (!IC->haveFeatures(getSTI().getFeatureBits())) { std::string Str("IC " + std::string(IC->Name) + " requires: "); setRequiredFeatureString(IC->getRequiredFeatures(), Str); return TokError(Str); } createSysAlias(IC->Encoding, Operands, S); } else if (Mnemonic == "dc") { const AArch64DC::DC *DC = AArch64DC::lookupDCByName(Op); if (!DC) return TokError("invalid operand for DC instruction"); else if (!DC->haveFeatures(getSTI().getFeatureBits())) { std::string Str("DC " + std::string(DC->Name) + " requires: "); setRequiredFeatureString(DC->getRequiredFeatures(), Str); return TokError(Str); } createSysAlias(DC->Encoding, Operands, S); } else if (Mnemonic == "at") { const AArch64AT::AT *AT = AArch64AT::lookupATByName(Op); if (!AT) return TokError("invalid operand for AT instruction"); else if (!AT->haveFeatures(getSTI().getFeatureBits())) { std::string Str("AT " + std::string(AT->Name) + " requires: "); setRequiredFeatureString(AT->getRequiredFeatures(), Str); return TokError(Str); } createSysAlias(AT->Encoding, Operands, S); } else if (Mnemonic == "tlbi") { const AArch64TLBI::TLBI *TLBI = AArch64TLBI::lookupTLBIByName(Op); if (!TLBI) return TokError("invalid operand for TLBI instruction"); else if (!TLBI->haveFeatures(getSTI().getFeatureBits())) { std::string Str("TLBI " + std::string(TLBI->Name) + " requires: "); setRequiredFeatureString(TLBI->getRequiredFeatures(), Str); return TokError(Str); } createSysAlias(TLBI->Encoding, Operands, S); } else if (Mnemonic == "cfp" || Mnemonic == "dvp" || Mnemonic == "cpp") { const AArch64PRCTX::PRCTX *PRCTX = AArch64PRCTX::lookupPRCTXByName(Op); if (!PRCTX) return TokError("invalid operand for prediction restriction instruction"); else if (!PRCTX->haveFeatures(getSTI().getFeatureBits())) { std::string Str( Mnemonic.upper() + std::string(PRCTX->Name) + " requires: "); setRequiredFeatureString(PRCTX->getRequiredFeatures(), Str); return TokError(Str); } uint16_t PRCTX_Op2 = Mnemonic == "cfp" ? 4 : Mnemonic == "dvp" ? 5 : Mnemonic == "cpp" ? 7 : 0; assert(PRCTX_Op2 && "Invalid mnemonic for prediction restriction instruction"); createSysAlias(PRCTX->Encoding << 3 | PRCTX_Op2 , Operands, S); } Lex(); // Eat operand. bool ExpectRegister = (Op.lower().find("all") == StringRef::npos); bool HasRegister = false; // Check for the optional register operand. if (parseOptionalToken(AsmToken::Comma)) { if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands)) return TokError("expected register operand"); HasRegister = true; } if (ExpectRegister && !HasRegister) return TokError("specified " + Mnemonic + " op requires a register"); else if (!ExpectRegister && HasRegister) return TokError("specified " + Mnemonic + " op does not use a register"); if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) return true; return false; } OperandMatchResultTy AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); const AsmToken &Tok = getTok(); if (Mnemonic == "tsb" && Tok.isNot(AsmToken::Identifier)) { TokError("'csync' operand expected"); return MatchOperand_ParseFail; } else if (parseOptionalToken(AsmToken::Hash) || Tok.is(AsmToken::Integer)) { // Immediate operand. const MCExpr *ImmVal; SMLoc ExprLoc = getLoc(); AsmToken IntTok = Tok; if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { Error(ExprLoc, "immediate value expected for barrier operand"); return MatchOperand_ParseFail; } int64_t Value = MCE->getValue(); if (Mnemonic == "dsb" && Value > 15) { // This case is a no match here, but it might be matched by the nXS // variant. Deliberately not unlex the optional '#' as it is not necessary // to characterize an integer immediate. Parser.getLexer().UnLex(IntTok); return MatchOperand_NoMatch; } if (Value < 0 || Value > 15) { Error(ExprLoc, "barrier operand out of range"); return MatchOperand_ParseFail; } auto DB = AArch64DB::lookupDBByEncoding(Value); Operands.push_back(AArch64Operand::CreateBarrier(Value, DB ? DB->Name : "", ExprLoc, getContext(), false /*hasnXSModifier*/)); return MatchOperand_Success; } if (Tok.isNot(AsmToken::Identifier)) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } StringRef Operand = Tok.getString(); auto TSB = AArch64TSB::lookupTSBByName(Operand); auto DB = AArch64DB::lookupDBByName(Operand); // The only valid named option for ISB is 'sy' if (Mnemonic == "isb" && (!DB || DB->Encoding != AArch64DB::sy)) { TokError("'sy' or #imm operand expected"); return MatchOperand_ParseFail; // The only valid named option for TSB is 'csync' } else if (Mnemonic == "tsb" && (!TSB || TSB->Encoding != AArch64TSB::csync)) { TokError("'csync' operand expected"); return MatchOperand_ParseFail; } else if (!DB && !TSB) { if (Mnemonic == "dsb") { // This case is a no match here, but it might be matched by the nXS // variant. return MatchOperand_NoMatch; } TokError("invalid barrier option name"); return MatchOperand_ParseFail; } Operands.push_back(AArch64Operand::CreateBarrier( DB ? DB->Encoding : TSB->Encoding, Tok.getString(), getLoc(), getContext(), false /*hasnXSModifier*/)); Lex(); // Consume the option return MatchOperand_Success; } OperandMatchResultTy AArch64AsmParser::tryParseBarriernXSOperand(OperandVector &Operands) { const AsmToken &Tok = getTok(); assert(Mnemonic == "dsb" && "Instruction does not accept nXS operands"); if (Mnemonic != "dsb") return MatchOperand_ParseFail; if (parseOptionalToken(AsmToken::Hash) || Tok.is(AsmToken::Integer)) { // Immediate operand. const MCExpr *ImmVal; SMLoc ExprLoc = getLoc(); if (getParser().parseExpression(ImmVal)) return MatchOperand_ParseFail; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { Error(ExprLoc, "immediate value expected for barrier operand"); return MatchOperand_ParseFail; } int64_t Value = MCE->getValue(); // v8.7-A DSB in the nXS variant accepts only the following immediate // values: 16, 20, 24, 28. if (Value != 16 && Value != 20 && Value != 24 && Value != 28) { Error(ExprLoc, "barrier operand out of range"); return MatchOperand_ParseFail; } auto DB = AArch64DBnXS::lookupDBnXSByImmValue(Value); Operands.push_back(AArch64Operand::CreateBarrier(DB->Encoding, DB->Name, ExprLoc, getContext(), true /*hasnXSModifier*/)); return MatchOperand_Success; } if (Tok.isNot(AsmToken::Identifier)) { TokError("invalid operand for instruction"); return MatchOperand_ParseFail; } StringRef Operand = Tok.getString(); auto DB = AArch64DBnXS::lookupDBnXSByName(Operand); if (!DB) { TokError("invalid barrier option name"); return MatchOperand_ParseFail; } Operands.push_back( AArch64Operand::CreateBarrier(DB->Encoding, Tok.getString(), getLoc(), getContext(), true /*hasnXSModifier*/)); Lex(); // Consume the option return MatchOperand_Success; } OperandMatchResultTy AArch64AsmParser::tryParseSysReg(OperandVector &Operands) { const AsmToken &Tok = getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; if (AArch64SVCR::lookupSVCRByName(Tok.getString())) return MatchOperand_NoMatch; int MRSReg, MSRReg; auto SysReg = AArch64SysReg::lookupSysRegByName(Tok.getString()); if (SysReg && SysReg->haveFeatures(getSTI().getFeatureBits())) { MRSReg = SysReg->Readable ? SysReg->Encoding : -1; MSRReg = SysReg->Writeable ? SysReg->Encoding : -1; } else MRSReg = MSRReg = AArch64SysReg::parseGenericRegister(Tok.getString()); auto PState = AArch64PState::lookupPStateByName(Tok.getString()); unsigned PStateImm = -1; if (PState && PState->haveFeatures(getSTI().getFeatureBits())) PStateImm = PState->Encoding; Operands.push_back( AArch64Operand::CreateSysReg(Tok.getString(), getLoc(), MRSReg, MSRReg, PStateImm, getContext())); Lex(); // Eat identifier return MatchOperand_Success; } /// tryParseNeonVectorRegister - Parse a vector register operand. bool AArch64AsmParser::tryParseNeonVectorRegister(OperandVector &Operands) { if (getTok().isNot(AsmToken::Identifier)) return true; SMLoc S = getLoc(); // Check for a vector register specifier first. StringRef Kind; unsigned Reg; OperandMatchResultTy Res = tryParseVectorRegister(Reg, Kind, RegKind::NeonVector); if (Res != MatchOperand_Success) return true; const auto &KindRes = parseVectorKind(Kind, RegKind::NeonVector); if (!KindRes) return true; unsigned ElementWidth = KindRes->second; Operands.push_back( AArch64Operand::CreateVectorReg(Reg, RegKind::NeonVector, ElementWidth, S, getLoc(), getContext())); // If there was an explicit qualifier, that goes on as a literal text // operand. if (!Kind.empty()) Operands.push_back(AArch64Operand::CreateToken(Kind, S, getContext())); return tryParseVectorIndex(Operands) == MatchOperand_ParseFail; } OperandMatchResultTy AArch64AsmParser::tryParseVectorIndex(OperandVector &Operands) { SMLoc SIdx = getLoc(); if (parseOptionalToken(AsmToken::LBrac)) { const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal)) return MatchOperand_NoMatch; const MCConstantExpr *MCE = dyn_cast(ImmVal); if (!MCE) { TokError("immediate value expected for vector index"); return MatchOperand_ParseFail;; } SMLoc E = getLoc(); if (parseToken(AsmToken::RBrac, "']' expected")) return MatchOperand_ParseFail;; Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx, E, getContext())); return MatchOperand_Success; } return MatchOperand_NoMatch; } // tryParseVectorRegister - Try to parse a vector register name with // optional kind specifier. If it is a register specifier, eat the token // and return it. OperandMatchResultTy AArch64AsmParser::tryParseVectorRegister(unsigned &Reg, StringRef &Kind, RegKind MatchKind) { const AsmToken &Tok = getTok(); if (Tok.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; StringRef Name = Tok.getString(); // If there is a kind specifier, it's separated from the register name by // a '.'. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); unsigned RegNum = matchRegisterNameAlias(Head, MatchKind); if (RegNum) { if (Next != StringRef::npos) { Kind = Name.slice(Next, StringRef::npos); if (!isValidVectorKind(Kind, MatchKind)) { TokError("invalid vector kind qualifier"); return MatchOperand_ParseFail; } } Lex(); // Eat the register token. Reg = RegNum; return MatchOperand_Success; } return MatchOperand_NoMatch; } /// tryParseSVEPredicateVector - Parse a SVE predicate register operand. OperandMatchResultTy AArch64AsmParser::tryParseSVEPredicateVector(OperandVector &Operands) { // Check for a SVE predicate register specifier first. const SMLoc S = getLoc(); StringRef Kind; unsigned RegNum; auto Res = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector); if (Res != MatchOperand_Success) return Res; const auto &KindRes = parseVectorKind(Kind, RegKind::SVEPredicateVector); if (!KindRes) return MatchOperand_NoMatch; unsigned ElementWidth = KindRes->second; Operands.push_back(AArch64Operand::CreateVectorReg( RegNum, RegKind::SVEPredicateVector, ElementWidth, S, getLoc(), getContext())); if (getLexer().is(AsmToken::LBrac)) { // Indexed predicate, there's no comma so try parse the next operand // immediately. if (parseOperand(Operands, false, false)) return MatchOperand_NoMatch; } // Not all predicates are followed by a '/m' or '/z'. if (getTok().isNot(AsmToken::Slash)) return MatchOperand_Success; // But when they do they shouldn't have an element type suffix. if (!Kind.empty()) { Error(S, "not expecting size suffix"); return MatchOperand_ParseFail; } // Add a literal slash as operand Operands.push_back(AArch64Operand::CreateToken("/", getLoc(), getContext())); Lex(); // Eat the slash. // Zeroing or merging? auto Pred = getTok().getString().lower(); if (Pred != "z" && Pred != "m") { Error(getLoc(), "expecting 'm' or 'z' predication"); return MatchOperand_ParseFail; } // Add zero/merge token. const char *ZM = Pred == "z" ? "z" : "m"; Operands.push_back(AArch64Operand::CreateToken(ZM, getLoc(), getContext())); Lex(); // Eat zero/merge token. return MatchOperand_Success; } /// parseRegister - Parse a register operand. bool AArch64AsmParser::parseRegister(OperandVector &Operands) { // Try for a Neon vector register. if (!tryParseNeonVectorRegister(Operands)) return false; // Otherwise try for a scalar register. if (tryParseGPROperand(Operands) == MatchOperand_Success) return false; return true; } bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) { bool HasELFModifier = false; AArch64MCExpr::VariantKind RefKind; if (parseOptionalToken(AsmToken::Colon)) { HasELFModifier = true; if (getTok().isNot(AsmToken::Identifier)) return TokError("expect relocation specifier in operand after ':'"); std::string LowerCase = getTok().getIdentifier().lower(); RefKind = StringSwitch(LowerCase) .Case("lo12", AArch64MCExpr::VK_LO12) .Case("abs_g3", AArch64MCExpr::VK_ABS_G3) .Case("abs_g2", AArch64MCExpr::VK_ABS_G2) .Case("abs_g2_s", AArch64MCExpr::VK_ABS_G2_S) .Case("abs_g2_nc", AArch64MCExpr::VK_ABS_G2_NC) .Case("abs_g1", AArch64MCExpr::VK_ABS_G1) .Case("abs_g1_s", AArch64MCExpr::VK_ABS_G1_S) .Case("abs_g1_nc", AArch64MCExpr::VK_ABS_G1_NC) .Case("abs_g0", AArch64MCExpr::VK_ABS_G0) .Case("abs_g0_s", AArch64MCExpr::VK_ABS_G0_S) .Case("abs_g0_nc", AArch64MCExpr::VK_ABS_G0_NC) .Case("prel_g3", AArch64MCExpr::VK_PREL_G3) .Case("prel_g2", AArch64MCExpr::VK_PREL_G2) .Case("prel_g2_nc", AArch64MCExpr::VK_PREL_G2_NC) .Case("prel_g1", AArch64MCExpr::VK_PREL_G1) .Case("prel_g1_nc", AArch64MCExpr::VK_PREL_G1_NC) .Case("prel_g0", AArch64MCExpr::VK_PREL_G0) .Case("prel_g0_nc", AArch64MCExpr::VK_PREL_G0_NC) .Case("dtprel_g2", AArch64MCExpr::VK_DTPREL_G2) .Case("dtprel_g1", AArch64MCExpr::VK_DTPREL_G1) .Case("dtprel_g1_nc", AArch64MCExpr::VK_DTPREL_G1_NC) .Case("dtprel_g0", AArch64MCExpr::VK_DTPREL_G0) .Case("dtprel_g0_nc", AArch64MCExpr::VK_DTPREL_G0_NC) .Case("dtprel_hi12", AArch64MCExpr::VK_DTPREL_HI12) .Case("dtprel_lo12", AArch64MCExpr::VK_DTPREL_LO12) .Case("dtprel_lo12_nc", AArch64MCExpr::VK_DTPREL_LO12_NC) .Case("pg_hi21_nc", AArch64MCExpr::VK_ABS_PAGE_NC) .Case("tprel_g2", AArch64MCExpr::VK_TPREL_G2) .Case("tprel_g1", AArch64MCExpr::VK_TPREL_G1) .Case("tprel_g1_nc", AArch64MCExpr::VK_TPREL_G1_NC) .Case("tprel_g0", AArch64MCExpr::VK_TPREL_G0) .Case("tprel_g0_nc", AArch64MCExpr::VK_TPREL_G0_NC) .Case("tprel_hi12", AArch64MCExpr::VK_TPREL_HI12) .Case("tprel_lo12", AArch64MCExpr::VK_TPREL_LO12) .Case("tprel_lo12_nc", AArch64MCExpr::VK_TPREL_LO12_NC) .Case("tlsdesc_lo12", AArch64MCExpr::VK_TLSDESC_LO12) .Case("got", AArch64MCExpr::VK_GOT_PAGE) .Case("gotpage_lo15", AArch64MCExpr::VK_GOT_PAGE_LO15) .Case("got_lo12", AArch64MCExpr::VK_GOT_LO12) .Case("gottprel", AArch64MCExpr::VK_GOTTPREL_PAGE) .Case("gottprel_lo12", AArch64MCExpr::VK_GOTTPREL_LO12_NC) .Case("gottprel_g1", AArch64MCExpr::VK_GOTTPREL_G1) .Case("gottprel_g0_nc", AArch64MCExpr::VK_GOTTPREL_G0_NC) .Case("tlsdesc", AArch64MCExpr::VK_TLSDESC_PAGE) .Case("secrel_lo12", AArch64MCExpr::VK_SECREL_LO12) .Case("secrel_hi12", AArch64MCExpr::VK_SECREL_HI12) .Default(AArch64MCExpr::VK_INVALID); if (RefKind == AArch64MCExpr::VK_INVALID) return TokError("expect relocation specifier in operand after ':'"); Lex(); // Eat identifier if (parseToken(AsmToken::Colon, "expect ':' after relocation specifier")) return true; } if (getParser().parseExpression(ImmVal)) return true; if (HasELFModifier) ImmVal = AArch64MCExpr::create(ImmVal, RefKind, getContext()); return false; } OperandMatchResultTy AArch64AsmParser::tryParseMatrixTileList(OperandVector &Operands) { if (getTok().isNot(AsmToken::LCurly)) return MatchOperand_NoMatch; auto ParseMatrixTile = [this](unsigned &Reg, unsigned &ElementWidth) { StringRef Name = getTok().getString(); size_t DotPosition = Name.find('.'); if (DotPosition == StringRef::npos) return MatchOperand_NoMatch; unsigned RegNum = matchMatrixTileListRegName(Name); if (!RegNum) return MatchOperand_NoMatch; StringRef Tail = Name.drop_front(DotPosition); const Optional> &KindRes = parseVectorKind(Tail, RegKind::Matrix); if (!KindRes) { TokError("Expected the register to be followed by element width suffix"); return MatchOperand_ParseFail; } ElementWidth = KindRes->second; Reg = RegNum; Lex(); // Eat the register. return MatchOperand_Success; }; SMLoc S = getLoc(); auto LCurly = getTok(); Lex(); // Eat left bracket token. // Empty matrix list if (parseOptionalToken(AsmToken::RCurly)) { Operands.push_back(AArch64Operand::CreateMatrixTileList( /*RegMask=*/0, S, getLoc(), getContext())); return MatchOperand_Success; } // Try parse {za} alias early if (getTok().getString().equals_insensitive("za")) { Lex(); // Eat 'za' if (parseToken(AsmToken::RCurly, "'}' expected")) return MatchOperand_ParseFail; Operands.push_back(AArch64Operand::CreateMatrixTileList( /*RegMask=*/0xFF, S, getLoc(), getContext())); return MatchOperand_Success; } SMLoc TileLoc = getLoc(); unsigned FirstReg, ElementWidth; auto ParseRes = ParseMatrixTile(FirstReg, ElementWidth); if (ParseRes != MatchOperand_Success) { getLexer().UnLex(LCurly); return ParseRes; } const MCRegisterInfo *RI = getContext().getRegisterInfo(); unsigned PrevReg = FirstReg; unsigned Count = 1; SmallSet DRegs; AArch64Operand::ComputeRegsForAlias(FirstReg, DRegs, ElementWidth); SmallSet SeenRegs; SeenRegs.insert(FirstReg); while (parseOptionalToken(AsmToken::Comma)) { TileLoc = getLoc(); unsigned Reg, NextElementWidth; ParseRes = ParseMatrixTile(Reg, NextElementWidth); if (ParseRes != MatchOperand_Success) return ParseRes; // Element size must match on all regs in the list. if (ElementWidth != NextElementWidth) { Error(TileLoc, "mismatched register size suffix"); return MatchOperand_ParseFail; } if (RI->getEncodingValue(Reg) <= (RI->getEncodingValue(PrevReg))) Warning(TileLoc, "tile list not in ascending order"); if (SeenRegs.contains(Reg)) Warning(TileLoc, "duplicate tile in list"); else { SeenRegs.insert(Reg); AArch64Operand::ComputeRegsForAlias(Reg, DRegs, ElementWidth); } PrevReg = Reg; ++Count; } if (parseToken(AsmToken::RCurly, "'}' expected")) return MatchOperand_ParseFail; unsigned RegMask = 0; for (auto Reg : DRegs) RegMask |= 0x1 << (RI->getEncodingValue(Reg) - RI->getEncodingValue(AArch64::ZAD0)); Operands.push_back( AArch64Operand::CreateMatrixTileList(RegMask, S, getLoc(), getContext())); return MatchOperand_Success; } template OperandMatchResultTy AArch64AsmParser::tryParseVectorList(OperandVector &Operands, bool ExpectMatch) { MCAsmParser &Parser = getParser(); if (!getTok().is(AsmToken::LCurly)) return MatchOperand_NoMatch; // Wrapper around parse function auto ParseVector = [this](unsigned &Reg, StringRef &Kind, SMLoc Loc, bool NoMatchIsError) { auto RegTok = getTok(); auto ParseRes = tryParseVectorRegister(Reg, Kind, VectorKind); if (ParseRes == MatchOperand_Success) { if (parseVectorKind(Kind, VectorKind)) return ParseRes; llvm_unreachable("Expected a valid vector kind"); } if (RegTok.isNot(AsmToken::Identifier) || ParseRes == MatchOperand_ParseFail || (ParseRes == MatchOperand_NoMatch && NoMatchIsError && !RegTok.getString().startswith_insensitive("za"))) { Error(Loc, "vector register expected"); return MatchOperand_ParseFail; } return MatchOperand_NoMatch; }; SMLoc S = getLoc(); auto LCurly = getTok(); Lex(); // Eat left bracket token. StringRef Kind; unsigned FirstReg; auto ParseRes = ParseVector(FirstReg, Kind, getLoc(), ExpectMatch); // Put back the original left bracket if there was no match, so that // different types of list-operands can be matched (e.g. SVE, Neon). if (ParseRes == MatchOperand_NoMatch) Parser.getLexer().UnLex(LCurly); if (ParseRes != MatchOperand_Success) return ParseRes; int64_t PrevReg = FirstReg; unsigned Count = 1; if (parseOptionalToken(AsmToken::Minus)) { SMLoc Loc = getLoc(); StringRef NextKind; unsigned Reg; ParseRes = ParseVector(Reg, NextKind, getLoc(), true); if (ParseRes != MatchOperand_Success) return ParseRes; // Any Kind suffices must match on all regs in the list. if (Kind != NextKind) { Error(Loc, "mismatched register size suffix"); return MatchOperand_ParseFail; } unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg); if (Space == 0 || Space > 3) { Error(Loc, "invalid number of vectors"); return MatchOperand_ParseFail; } Count += Space; } else { while (parseOptionalToken(AsmToken::Comma)) { SMLoc Loc = getLoc(); StringRef NextKind; unsigned Reg; ParseRes = ParseVector(Reg, NextKind, getLoc(), true); if (ParseRes != MatchOperand_Success) return ParseRes; // Any Kind suffices must match on all regs in the list. if (Kind != NextKind) { Error(Loc, "mismatched register size suffix"); return MatchOperand_ParseFail; } // Registers must be incremental (with wraparound at 31) if (getContext().getRegisterInfo()->getEncodingValue(Reg) != (getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32) { Error(Loc, "registers must be sequential"); return MatchOperand_ParseFail; } PrevReg = Reg; ++Count; } } if (parseToken(AsmToken::RCurly, "'}' expected")) return MatchOperand_ParseFail; if (Count > 4) { Error(S, "invalid number of vectors"); return MatchOperand_ParseFail; } unsigned NumElements = 0; unsigned ElementWidth = 0; if (!Kind.empty()) { if (const auto &VK = parseVectorKind(Kind, VectorKind)) std::tie(NumElements, ElementWidth) = *VK; } Operands.push_back(AArch64Operand::CreateVectorList( FirstReg, Count, NumElements, ElementWidth, VectorKind, S, getLoc(), getContext())); return MatchOperand_Success; } /// parseNeonVectorList - Parse a vector list operand for AdvSIMD instructions. bool AArch64AsmParser::parseNeonVectorList(OperandVector &Operands) { auto ParseRes = tryParseVectorList(Operands, true); if (ParseRes != MatchOperand_Success) return true; return tryParseVectorIndex(Operands) == MatchOperand_ParseFail; } OperandMatchResultTy AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) { SMLoc StartLoc = getLoc(); unsigned RegNum; OperandMatchResultTy Res = tryParseScalarRegister(RegNum); if (Res != MatchOperand_Success) return Res; if (!parseOptionalToken(AsmToken::Comma)) { Operands.push_back(AArch64Operand::CreateReg( RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext())); return MatchOperand_Success; } parseOptionalToken(AsmToken::Hash); if (getTok().isNot(AsmToken::Integer)) { Error(getLoc(), "index must be absent or #0"); return MatchOperand_ParseFail; } const MCExpr *ImmVal; if (getParser().parseExpression(ImmVal) || !isa(ImmVal) || cast(ImmVal)->getValue() != 0) { Error(getLoc(), "index must be absent or #0"); return MatchOperand_ParseFail; } Operands.push_back(AArch64Operand::CreateReg( RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext())); return MatchOperand_Success; } template OperandMatchResultTy AArch64AsmParser::tryParseGPROperand(OperandVector &Operands) { SMLoc StartLoc = getLoc(); unsigned RegNum; OperandMatchResultTy Res = tryParseScalarRegister(RegNum); if (Res != MatchOperand_Success) return Res; // No shift/extend is the default. if (!ParseShiftExtend || getTok().isNot(AsmToken::Comma)) { Operands.push_back(AArch64Operand::CreateReg( RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext(), EqTy)); return MatchOperand_Success; } // Eat the comma Lex(); // Match the shift SmallVector, 1> ExtOpnd; Res = tryParseOptionalShiftExtend(ExtOpnd); if (Res != MatchOperand_Success) return Res; auto Ext = static_cast(ExtOpnd.back().get()); Operands.push_back(AArch64Operand::CreateReg( RegNum, RegKind::Scalar, StartLoc, Ext->getEndLoc(), getContext(), EqTy, Ext->getShiftExtendType(), Ext->getShiftExtendAmount(), Ext->hasShiftExtendAmount())); return MatchOperand_Success; } bool AArch64AsmParser::parseOptionalMulOperand(OperandVector &Operands) { MCAsmParser &Parser = getParser(); // Some SVE instructions have a decoration after the immediate, i.e. // "mul vl". We parse them here and add tokens, which must be present in the // asm string in the tablegen instruction. bool NextIsVL = Parser.getLexer().peekTok().getString().equals_insensitive("vl"); bool NextIsHash = Parser.getLexer().peekTok().is(AsmToken::Hash); if (!getTok().getString().equals_insensitive("mul") || !(NextIsVL || NextIsHash)) return true; Operands.push_back( AArch64Operand::CreateToken("mul", getLoc(), getContext())); Lex(); // Eat the "mul" if (NextIsVL) { Operands.push_back( AArch64Operand::CreateToken("vl", getLoc(), getContext())); Lex(); // Eat the "vl" return false; } if (NextIsHash) { Lex(); // Eat the # SMLoc S = getLoc(); // Parse immediate operand. const MCExpr *ImmVal; if (!Parser.parseExpression(ImmVal)) if (const MCConstantExpr *MCE = dyn_cast(ImmVal)) { Operands.push_back(AArch64Operand::CreateImm( MCConstantExpr::create(MCE->getValue(), getContext()), S, getLoc(), getContext())); return MatchOperand_Success; } } return Error(getLoc(), "expected 'vl' or '#'"); } bool AArch64AsmParser::parseKeywordOperand(OperandVector &Operands) { auto Tok = getTok(); if (Tok.isNot(AsmToken::Identifier)) return true; auto Keyword = Tok.getString(); Keyword = StringSwitch(Keyword.lower()) .Case("sm", "sm") .Case("za", "za") .Default(Keyword); Operands.push_back( AArch64Operand::CreateToken(Keyword, Tok.getLoc(), getContext())); Lex(); return false; } /// parseOperand - Parse a arm instruction operand. For now this parses the /// operand regardless of the mnemonic. bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode, bool invertCondCode) { MCAsmParser &Parser = getParser(); OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/ true); // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. if (ResTy == MatchOperand_Success) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_ParseFail) return true; // Nothing custom, so do general case parsing. SMLoc S, E; switch (getLexer().getKind()) { default: { SMLoc S = getLoc(); const MCExpr *Expr; if (parseSymbolicImmVal(Expr)) return Error(S, "invalid operand"); SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext())); return false; } case AsmToken::LBrac: { Operands.push_back( AArch64Operand::CreateToken("[", getLoc(), getContext())); Lex(); // Eat '[' // There's no comma after a '[', so we can parse the next operand // immediately. return parseOperand(Operands, false, false); } case AsmToken::LCurly: { if (!parseNeonVectorList(Operands)) return false; Operands.push_back( AArch64Operand::CreateToken("{", getLoc(), getContext())); Lex(); // Eat '{' // There's no comma after a '{', so we can parse the next operand // immediately. return parseOperand(Operands, false, false); } case AsmToken::Identifier: { // If we're expecting a Condition Code operand, then just parse that. if (isCondCode) return parseCondCode(Operands, invertCondCode); // If it's a register name, parse it. if (!parseRegister(Operands)) return false; // See if this is a "mul vl" decoration or "mul #" operand used // by SVE instructions. if (!parseOptionalMulOperand(Operands)) return false; // If this is an "smstart" or "smstop" instruction, parse its special // keyword operand as an identifier. if (Mnemonic == "smstart" || Mnemonic == "smstop") return parseKeywordOperand(Operands); // This could be an optional "shift" or "extend" operand. OperandMatchResultTy GotShift = tryParseOptionalShiftExtend(Operands); // We can only continue if no tokens were eaten. if (GotShift != MatchOperand_NoMatch) return GotShift; // If this is a two-word mnemonic, parse its special keyword // operand as an identifier. if (Mnemonic == "brb") return parseKeywordOperand(Operands); // This was not a register so parse other operands that start with an // identifier (like labels) as expressions and create them as immediates. const MCExpr *IdVal; S = getLoc(); if (getParser().parseExpression(IdVal)) return true; E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(IdVal, S, E, getContext())); return false; } case AsmToken::Integer: case AsmToken::Real: case AsmToken::Hash: { // #42 -> immediate. S = getLoc(); parseOptionalToken(AsmToken::Hash); // Parse a negative sign bool isNegative = false; if (getTok().is(AsmToken::Minus)) { isNegative = true; // We need to consume this token only when we have a Real, otherwise // we let parseSymbolicImmVal take care of it if (Parser.getLexer().peekTok().is(AsmToken::Real)) Lex(); } // The only Real that should come through here is a literal #0.0 for // the fcmp[e] r, #0.0 instructions. They expect raw token operands, // so convert the value. const AsmToken &Tok = getTok(); if (Tok.is(AsmToken::Real)) { APFloat RealVal(APFloat::IEEEdouble(), Tok.getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" && Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" && Mnemonic != "fcmlt" && Mnemonic != "fcmne") return TokError("unexpected floating point literal"); else if (IntVal != 0 || isNegative) return TokError("expected floating-point constant #0.0"); Lex(); // Eat the token. Operands.push_back(AArch64Operand::CreateToken("#0", S, getContext())); Operands.push_back(AArch64Operand::CreateToken(".0", S, getContext())); return false; } const MCExpr *ImmVal; if (parseSymbolicImmVal(ImmVal)) return true; E = SMLoc::getFromPointer(getLoc().getPointer() - 1); Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E, getContext())); return false; } case AsmToken::Equal: { SMLoc Loc = getLoc(); if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) return TokError("unexpected token in operand"); Lex(); // Eat '=' const MCExpr *SubExprVal; if (getParser().parseExpression(SubExprVal)) return true; if (Operands.size() < 2 || !static_cast(*Operands[1]).isScalarReg()) return Error(Loc, "Only valid when first operand is register"); bool IsXReg = AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Operands[1]->getReg()); MCContext& Ctx = getContext(); E = SMLoc::getFromPointer(Loc.getPointer() - 1); // If the op is an imm and can be fit into a mov, then replace ldr with mov. if (isa(SubExprVal)) { uint64_t Imm = (cast(SubExprVal))->getValue(); uint32_t ShiftAmt = 0, MaxShiftAmt = IsXReg ? 48 : 16; while(Imm > 0xFFFF && countTrailingZeros(Imm) >= 16) { ShiftAmt += 16; Imm >>= 16; } if (ShiftAmt <= MaxShiftAmt && Imm <= 0xFFFF) { Operands[0] = AArch64Operand::CreateToken("movz", Loc, Ctx); Operands.push_back(AArch64Operand::CreateImm( MCConstantExpr::create(Imm, Ctx), S, E, Ctx)); if (ShiftAmt) Operands.push_back(AArch64Operand::CreateShiftExtend(AArch64_AM::LSL, ShiftAmt, true, S, E, Ctx)); return false; } APInt Simm = APInt(64, Imm << ShiftAmt); // check if the immediate is an unsigned or signed 32-bit int for W regs if (!IsXReg && !(Simm.isIntN(32) || Simm.isSignedIntN(32))) return Error(Loc, "Immediate too large for register"); } // If it is a label or an imm that cannot fit in a movz, put it into CP. const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal, IsXReg ? 8 : 4, Loc); Operands.push_back(AArch64Operand::CreateImm(CPLoc, S, E, Ctx)); return false; } } } bool AArch64AsmParser::parseImmExpr(int64_t &Out) { const MCExpr *Expr = nullptr; SMLoc L = getLoc(); if (check(getParser().parseExpression(Expr), L, "expected expression")) return true; const MCConstantExpr *Value = dyn_cast_or_null(Expr); if (check(!Value, L, "expected constant expression")) return true; Out = Value->getValue(); return false; } bool AArch64AsmParser::parseComma() { if (check(getTok().isNot(AsmToken::Comma), getLoc(), "expected comma")) return true; // Eat the comma Lex(); return false; } bool AArch64AsmParser::parseRegisterInRange(unsigned &Out, unsigned Base, unsigned First, unsigned Last) { unsigned Reg; SMLoc Start, End; if (check(ParseRegister(Reg, Start, End), getLoc(), "expected register")) return true; // Special handling for FP and LR; they aren't linearly after x28 in // the registers enum. unsigned RangeEnd = Last; if (Base == AArch64::X0) { if (Last == AArch64::FP) { RangeEnd = AArch64::X28; if (Reg == AArch64::FP) { Out = 29; return false; } } if (Last == AArch64::LR) { RangeEnd = AArch64::X28; if (Reg == AArch64::FP) { Out = 29; return false; } else if (Reg == AArch64::LR) { Out = 30; return false; } } } if (check(Reg < First || Reg > RangeEnd, Start, Twine("expected register in range ") + AArch64InstPrinter::getRegisterName(First) + " to " + AArch64InstPrinter::getRegisterName(Last))) return true; Out = Reg - Base; return false; } bool AArch64AsmParser::regsEqual(const MCParsedAsmOperand &Op1, const MCParsedAsmOperand &Op2) const { auto &AOp1 = static_cast(Op1); auto &AOp2 = static_cast(Op2); if (AOp1.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg && AOp2.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg) return MCTargetAsmParser::regsEqual(Op1, Op2); assert(AOp1.isScalarReg() && AOp2.isScalarReg() && "Testing equality of non-scalar registers not supported"); // Check if a registers match their sub/super register classes. if (AOp1.getRegEqualityTy() == EqualsSuperReg) return getXRegFromWReg(Op1.getReg()) == Op2.getReg(); if (AOp1.getRegEqualityTy() == EqualsSubReg) return getWRegFromXReg(Op1.getReg()) == Op2.getReg(); if (AOp2.getRegEqualityTy() == EqualsSuperReg) return getXRegFromWReg(Op2.getReg()) == Op1.getReg(); if (AOp2.getRegEqualityTy() == EqualsSubReg) return getWRegFromXReg(Op2.getReg()) == Op1.getReg(); return false; } /// ParseInstruction - Parse an AArch64 instruction mnemonic followed by its /// operands. bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { Name = StringSwitch(Name.lower()) .Case("beq", "b.eq") .Case("bne", "b.ne") .Case("bhs", "b.hs") .Case("bcs", "b.cs") .Case("blo", "b.lo") .Case("bcc", "b.cc") .Case("bmi", "b.mi") .Case("bpl", "b.pl") .Case("bvs", "b.vs") .Case("bvc", "b.vc") .Case("bhi", "b.hi") .Case("bls", "b.ls") .Case("bge", "b.ge") .Case("blt", "b.lt") .Case("bgt", "b.gt") .Case("ble", "b.le") .Case("bal", "b.al") .Case("bnv", "b.nv") .Default(Name); // First check for the AArch64-specific .req directive. if (getTok().is(AsmToken::Identifier) && getTok().getIdentifier().lower() == ".req") { parseDirectiveReq(Name, NameLoc); // We always return 'error' for this, as we're done with this // statement and don't need to match the 'instruction." return true; } // Create the leading tokens for the mnemonic, split by '.' characters. size_t Start = 0, Next = Name.find('.'); StringRef Head = Name.slice(Start, Next); // IC, DC, AT, TLBI and Prediction invalidation instructions are aliases for // the SYS instruction. if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi" || Head == "cfp" || Head == "dvp" || Head == "cpp") return parseSysAlias(Head, NameLoc, Operands); Operands.push_back(AArch64Operand::CreateToken(Head, NameLoc, getContext())); Mnemonic = Head; // Handle condition codes for a branch mnemonic if ((Head == "b" || Head == "bc") && Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start + 1, Next); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + (Head.data() - Name.data())); AArch64CC::CondCode CC = parseCondCodeString(Head); if (CC == AArch64CC::Invalid) return Error(SuffixLoc, "invalid condition code"); Operands.push_back(AArch64Operand::CreateToken(".", SuffixLoc, getContext(), /*IsSuffix=*/true)); Operands.push_back( AArch64Operand::CreateCondCode(CC, NameLoc, NameLoc, getContext())); } // Add the remaining tokens in the mnemonic. while (Next != StringRef::npos) { Start = Next; Next = Name.find('.', Start + 1); Head = Name.slice(Start, Next); SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() + (Head.data() - Name.data()) + 1); Operands.push_back(AArch64Operand::CreateToken( Head, SuffixLoc, getContext(), /*IsSuffix=*/true)); } // Conditional compare instructions have a Condition Code operand, which needs // to be parsed and an immediate operand created. bool condCodeFourthOperand = (Head == "ccmp" || Head == "ccmn" || Head == "fccmp" || Head == "fccmpe" || Head == "fcsel" || Head == "csel" || Head == "csinc" || Head == "csinv" || Head == "csneg"); // These instructions are aliases to some of the conditional select // instructions. However, the condition code is inverted in the aliased // instruction. // // FIXME: Is this the correct way to handle these? Or should the parser // generate the aliased instructions directly? bool condCodeSecondOperand = (Head == "cset" || Head == "csetm"); bool condCodeThirdOperand = (Head == "cinc" || Head == "cinv" || Head == "cneg"); // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { unsigned N = 1; do { // Parse and remember the operand. if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) || (N == 3 && condCodeThirdOperand) || (N == 2 && condCodeSecondOperand), condCodeSecondOperand || condCodeThirdOperand)) { return true; } // After successfully parsing some operands there are three special cases // to consider (i.e. notional operands not separated by commas). Two are // due to memory specifiers: // + An RBrac will end an address for load/store/prefetch // + An '!' will indicate a pre-indexed operation. // // And a further case is '}', which ends a group of tokens specifying the // SME accumulator array 'ZA' or tile vector, i.e. // // '{ ZA }' or '{ .[, #] }' // // It's someone else's responsibility to make sure these tokens are sane // in the given context! if (parseOptionalToken(AsmToken::RBrac)) Operands.push_back( AArch64Operand::CreateToken("]", getLoc(), getContext())); if (parseOptionalToken(AsmToken::Exclaim)) Operands.push_back( AArch64Operand::CreateToken("!", getLoc(), getContext())); if (parseOptionalToken(AsmToken::RCurly)) Operands.push_back( AArch64Operand::CreateToken("}", getLoc(), getContext())); ++N; } while (parseOptionalToken(AsmToken::Comma)); } if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) return true; return false; } static inline bool isMatchingOrAlias(unsigned ZReg, unsigned Reg) { assert((ZReg >= AArch64::Z0) && (ZReg <= AArch64::Z31)); return (ZReg == ((Reg - AArch64::B0) + AArch64::Z0)) || (ZReg == ((Reg - AArch64::H0) + AArch64::Z0)) || (ZReg == ((Reg - AArch64::S0) + AArch64::Z0)) || (ZReg == ((Reg - AArch64::D0) + AArch64::Z0)) || (ZReg == ((Reg - AArch64::Q0) + AArch64::Z0)) || (ZReg == ((Reg - AArch64::Z0) + AArch64::Z0)); } // FIXME: This entire function is a giant hack to provide us with decent // operand range validation/diagnostics until TableGen/MC can be extended // to support autogeneration of this kind of validation. bool AArch64AsmParser::validateInstruction(MCInst &Inst, SMLoc &IDLoc, SmallVectorImpl &Loc) { const MCRegisterInfo *RI = getContext().getRegisterInfo(); const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); // A prefix only applies to the instruction following it. Here we extract // prefix information for the next instruction before validating the current // one so that in the case of failure we don't erronously continue using the // current prefix. PrefixInfo Prefix = NextPrefix; NextPrefix = PrefixInfo::CreateFromInst(Inst, MCID.TSFlags); // Before validating the instruction in isolation we run through the rules // applicable when it follows a prefix instruction. // NOTE: brk & hlt can be prefixed but require no additional validation. if (Prefix.isActive() && (Inst.getOpcode() != AArch64::BRK) && (Inst.getOpcode() != AArch64::HLT)) { // Prefixed intructions must have a destructive operand. if ((MCID.TSFlags & AArch64::DestructiveInstTypeMask) == AArch64::NotDestructive) return Error(IDLoc, "instruction is unpredictable when following a" " movprfx, suggest replacing movprfx with mov"); // Destination operands must match. if (Inst.getOperand(0).getReg() != Prefix.getDstReg()) return Error(Loc[0], "instruction is unpredictable when following a" " movprfx writing to a different destination"); // Destination operand must not be used in any other location. for (unsigned i = 1; i < Inst.getNumOperands(); ++i) { if (Inst.getOperand(i).isReg() && (MCID.getOperandConstraint(i, MCOI::TIED_TO) == -1) && isMatchingOrAlias(Prefix.getDstReg(), Inst.getOperand(i).getReg())) return Error(Loc[0], "instruction is unpredictable when following a" " movprfx and destination also used as non-destructive" " source"); } auto PPRRegClass = AArch64MCRegisterClasses[AArch64::PPRRegClassID]; if (Prefix.isPredicated()) { int PgIdx = -1; // Find the instructions general predicate. for (unsigned i = 1; i < Inst.getNumOperands(); ++i) if (Inst.getOperand(i).isReg() && PPRRegClass.contains(Inst.getOperand(i).getReg())) { PgIdx = i; break; } // Instruction must be predicated if the movprfx is predicated. if (PgIdx == -1 || (MCID.TSFlags & AArch64::ElementSizeMask) == AArch64::ElementSizeNone) return Error(IDLoc, "instruction is unpredictable when following a" " predicated movprfx, suggest using unpredicated movprfx"); // Instruction must use same general predicate as the movprfx. if (Inst.getOperand(PgIdx).getReg() != Prefix.getPgReg()) return Error(IDLoc, "instruction is unpredictable when following a" " predicated movprfx using a different general predicate"); // Instruction element type must match the movprfx. if ((MCID.TSFlags & AArch64::ElementSizeMask) != Prefix.getElementSize()) return Error(IDLoc, "instruction is unpredictable when following a" " predicated movprfx with a different element size"); } } // Check for indexed addressing modes w/ the base register being the // same as a destination/source register or pair load where // the Rt == Rt2. All of those are undefined behaviour. switch (Inst.getOpcode()) { case AArch64::LDPSWpre: case AArch64::LDPWpost: case AArch64::LDPWpre: case AArch64::LDPXpost: case AArch64::LDPXpre: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rt2 = Inst.getOperand(2).getReg(); unsigned Rn = Inst.getOperand(3).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable LDP instruction, writeback base " "is also a destination"); if (RI->isSubRegisterEq(Rn, Rt2)) return Error(Loc[1], "unpredictable LDP instruction, writeback base " "is also a destination"); LLVM_FALLTHROUGH; } case AArch64::LDPDi: case AArch64::LDPQi: case AArch64::LDPSi: case AArch64::LDPSWi: case AArch64::LDPWi: case AArch64::LDPXi: { unsigned Rt = Inst.getOperand(0).getReg(); unsigned Rt2 = Inst.getOperand(1).getReg(); if (Rt == Rt2) return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt"); break; } case AArch64::LDPDpost: case AArch64::LDPDpre: case AArch64::LDPQpost: case AArch64::LDPQpre: case AArch64::LDPSpost: case AArch64::LDPSpre: case AArch64::LDPSWpost: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rt2 = Inst.getOperand(2).getReg(); if (Rt == Rt2) return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt"); break; } case AArch64::STPDpost: case AArch64::STPDpre: case AArch64::STPQpost: case AArch64::STPQpre: case AArch64::STPSpost: case AArch64::STPSpre: case AArch64::STPWpost: case AArch64::STPWpre: case AArch64::STPXpost: case AArch64::STPXpre: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rt2 = Inst.getOperand(2).getReg(); unsigned Rn = Inst.getOperand(3).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable STP instruction, writeback base " "is also a source"); if (RI->isSubRegisterEq(Rn, Rt2)) return Error(Loc[1], "unpredictable STP instruction, writeback base " "is also a source"); break; } case AArch64::LDRBBpre: case AArch64::LDRBpre: case AArch64::LDRHHpre: case AArch64::LDRHpre: case AArch64::LDRSBWpre: case AArch64::LDRSBXpre: case AArch64::LDRSHWpre: case AArch64::LDRSHXpre: case AArch64::LDRSWpre: case AArch64::LDRWpre: case AArch64::LDRXpre: case AArch64::LDRBBpost: case AArch64::LDRBpost: case AArch64::LDRHHpost: case AArch64::LDRHpost: case AArch64::LDRSBWpost: case AArch64::LDRSBXpost: case AArch64::LDRSHWpost: case AArch64::LDRSHXpost: case AArch64::LDRSWpost: case AArch64::LDRWpost: case AArch64::LDRXpost: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rn = Inst.getOperand(2).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable LDR instruction, writeback base " "is also a source"); break; } case AArch64::STRBBpost: case AArch64::STRBpost: case AArch64::STRHHpost: case AArch64::STRHpost: case AArch64::STRWpost: case AArch64::STRXpost: case AArch64::STRBBpre: case AArch64::STRBpre: case AArch64::STRHHpre: case AArch64::STRHpre: case AArch64::STRWpre: case AArch64::STRXpre: { unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rn = Inst.getOperand(2).getReg(); if (RI->isSubRegisterEq(Rn, Rt)) return Error(Loc[0], "unpredictable STR instruction, writeback base " "is also a source"); break; } case AArch64::STXRB: case AArch64::STXRH: case AArch64::STXRW: case AArch64::STXRX: case AArch64::STLXRB: case AArch64::STLXRH: case AArch64::STLXRW: case AArch64::STLXRX: { unsigned Rs = Inst.getOperand(0).getReg(); unsigned Rt = Inst.getOperand(1).getReg(); unsigned Rn = Inst.getOperand(2).getReg(); if (RI->isSubRegisterEq(Rt, Rs) || (RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP)) return Error(Loc[0], "unpredictable STXR instruction, status is also a source"); break; } case AArch64::STXPW: case AArch64::STXPX: case AArch64::STLXPW: case AArch64::STLXPX: { unsigned Rs = Inst.getOperand(0).getReg(); unsigned Rt1 = Inst.getOperand(1).getReg(); unsigned Rt2 = Inst.getOperand(2).getReg(); unsigned Rn = Inst.getOperand(3).getReg(); if (RI->isSubRegisterEq(Rt1, Rs) || RI->isSubRegisterEq(Rt2, Rs) || (RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP)) return Error(Loc[0], "unpredictable STXP instruction, status is also a source"); break; } case AArch64::LDRABwriteback: case AArch64::LDRAAwriteback: { unsigned Xt = Inst.getOperand(0).getReg(); unsigned Xn = Inst.getOperand(1).getReg(); if (Xt == Xn) return Error(Loc[0], "unpredictable LDRA instruction, writeback base" " is also a destination"); break; } } // Check v8.8-A memops instructions. switch (Inst.getOpcode()) { case AArch64::CPYFP: case AArch64::CPYFPWN: case AArch64::CPYFPRN: case AArch64::CPYFPN: case AArch64::CPYFPWT: case AArch64::CPYFPWTWN: case AArch64::CPYFPWTRN: case AArch64::CPYFPWTN: case AArch64::CPYFPRT: case AArch64::CPYFPRTWN: case AArch64::CPYFPRTRN: case AArch64::CPYFPRTN: case AArch64::CPYFPT: case AArch64::CPYFPTWN: case AArch64::CPYFPTRN: case AArch64::CPYFPTN: case AArch64::CPYFM: case AArch64::CPYFMWN: case AArch64::CPYFMRN: case AArch64::CPYFMN: case AArch64::CPYFMWT: case AArch64::CPYFMWTWN: case AArch64::CPYFMWTRN: case AArch64::CPYFMWTN: case AArch64::CPYFMRT: case AArch64::CPYFMRTWN: case AArch64::CPYFMRTRN: case AArch64::CPYFMRTN: case AArch64::CPYFMT: case AArch64::CPYFMTWN: case AArch64::CPYFMTRN: case AArch64::CPYFMTN: case AArch64::CPYFE: case AArch64::CPYFEWN: case AArch64::CPYFERN: case AArch64::CPYFEN: case AArch64::CPYFEWT: case AArch64::CPYFEWTWN: case AArch64::CPYFEWTRN: case AArch64::CPYFEWTN: case AArch64::CPYFERT: case AArch64::CPYFERTWN: case AArch64::CPYFERTRN: case AArch64::CPYFERTN: case AArch64::CPYFET: case AArch64::CPYFETWN: case AArch64::CPYFETRN: case AArch64::CPYFETN: case AArch64::CPYP: case AArch64::CPYPWN: case AArch64::CPYPRN: case AArch64::CPYPN: case AArch64::CPYPWT: case AArch64::CPYPWTWN: case AArch64::CPYPWTRN: case AArch64::CPYPWTN: case AArch64::CPYPRT: case AArch64::CPYPRTWN: case AArch64::CPYPRTRN: case AArch64::CPYPRTN: case AArch64::CPYPT: case AArch64::CPYPTWN: case AArch64::CPYPTRN: case AArch64::CPYPTN: case AArch64::CPYM: case AArch64::CPYMWN: case AArch64::CPYMRN: case AArch64::CPYMN: case AArch64::CPYMWT: case AArch64::CPYMWTWN: case AArch64::CPYMWTRN: case AArch64::CPYMWTN: case AArch64::CPYMRT: case AArch64::CPYMRTWN: case AArch64::CPYMRTRN: case AArch64::CPYMRTN: case AArch64::CPYMT: case AArch64::CPYMTWN: case AArch64::CPYMTRN: case AArch64::CPYMTN: case AArch64::CPYE: case AArch64::CPYEWN: case AArch64::CPYERN: case AArch64::CPYEN: case AArch64::CPYEWT: case AArch64::CPYEWTWN: case AArch64::CPYEWTRN: case AArch64::CPYEWTN: case AArch64::CPYERT: case AArch64::CPYERTWN: case AArch64::CPYERTRN: case AArch64::CPYERTN: case AArch64::CPYET: case AArch64::CPYETWN: case AArch64::CPYETRN: case AArch64::CPYETN: { unsigned Xd_wb = Inst.getOperand(0).getReg(); unsigned Xs_wb = Inst.getOperand(1).getReg(); unsigned Xn_wb = Inst.getOperand(2).getReg(); unsigned Xd = Inst.getOperand(3).getReg(); unsigned Xs = Inst.getOperand(4).getReg(); unsigned Xn = Inst.getOperand(5).getReg(); if (Xd_wb != Xd) return Error(Loc[0], "invalid CPY instruction, Xd_wb and Xd do not match"); if (Xs_wb != Xs) return Error(Loc[0], "invalid CPY instruction, Xs_wb and Xs do not match"); if (Xn_wb != Xn) return Error(Loc[0], "invalid CPY instruction, Xn_wb and Xn do not match"); if (Xd == Xs) return Error(Loc[0], "invalid CPY instruction, destination and source" " registers are the same"); if (Xd == Xn) return Error(Loc[0], "invalid CPY instruction, destination and size" " registers are the same"); if (Xs == Xn) return Error(Loc[0], "invalid CPY instruction, source and size" " registers are the same"); break; } case AArch64::SETP: case AArch64::SETPT: case AArch64::SETPN: case AArch64::SETPTN: case AArch64::SETM: case AArch64::SETMT: case AArch64::SETMN: case AArch64::SETMTN: case AArch64::SETE: case AArch64::SETET: case AArch64::SETEN: case AArch64::SETETN: case AArch64::SETGP: case AArch64::SETGPT: case AArch64::SETGPN: case AArch64::SETGPTN: case AArch64::SETGM: case AArch64::SETGMT: case AArch64::SETGMN: case AArch64::SETGMTN: case AArch64::MOPSSETGE: case AArch64::MOPSSETGET: case AArch64::MOPSSETGEN: case AArch64::MOPSSETGETN: { unsigned Xd_wb = Inst.getOperand(0).getReg(); unsigned Xn_wb = Inst.getOperand(1).getReg(); unsigned Xd = Inst.getOperand(2).getReg(); unsigned Xn = Inst.getOperand(3).getReg(); unsigned Xm = Inst.getOperand(4).getReg(); if (Xd_wb != Xd) return Error(Loc[0], "invalid SET instruction, Xd_wb and Xd do not match"); if (Xn_wb != Xn) return Error(Loc[0], "invalid SET instruction, Xn_wb and Xn do not match"); if (Xd == Xn) return Error(Loc[0], "invalid SET instruction, destination and size" " registers are the same"); if (Xd == Xm) return Error(Loc[0], "invalid SET instruction, destination and source" " registers are the same"); if (Xn == Xm) return Error(Loc[0], "invalid SET instruction, source and size" " registers are the same"); break; } } // Now check immediate ranges. Separate from the above as there is overlap // in the instructions being checked and this keeps the nested conditionals // to a minimum. switch (Inst.getOpcode()) { case AArch64::ADDSWri: case AArch64::ADDSXri: case AArch64::ADDWri: case AArch64::ADDXri: case AArch64::SUBSWri: case AArch64::SUBSXri: case AArch64::SUBWri: case AArch64::SUBXri: { // Annoyingly we can't do this in the isAddSubImm predicate, so there is // some slight duplication here. if (Inst.getOperand(2).isExpr()) { const MCExpr *Expr = Inst.getOperand(2).getExpr(); AArch64MCExpr::VariantKind ELFRefKind; MCSymbolRefExpr::VariantKind DarwinRefKind; int64_t Addend; if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) { // Only allow these with ADDXri. if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF || DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) && Inst.getOpcode() == AArch64::ADDXri) return false; // Only allow these with ADDXri/ADDWri if ((ELFRefKind == AArch64MCExpr::VK_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 || ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC || ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 || ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 || ELFRefKind == AArch64MCExpr::VK_SECREL_HI12) && (Inst.getOpcode() == AArch64::ADDXri || Inst.getOpcode() == AArch64::ADDWri)) return false; // Don't allow symbol refs in the immediate field otherwise // Note: Loc.back() may be Loc[1] or Loc[2] depending on the number of // operands of the original instruction (i.e. 'add w0, w1, borked' vs // 'cmp w0, 'borked') return Error(Loc.back(), "invalid immediate expression"); } // We don't validate more complex expressions here } return false; } default: return false; } } static std::string AArch64MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, unsigned VariantID = 0); bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode, uint64_t ErrorInfo, OperandVector &Operands) { switch (ErrCode) { case Match_InvalidTiedOperand: { RegConstraintEqualityTy EqTy = static_cast(*Operands[ErrorInfo]) .getRegEqualityTy(); switch (EqTy) { case RegConstraintEqualityTy::EqualsSubReg: return Error(Loc, "operand must be 64-bit form of destination register"); case RegConstraintEqualityTy::EqualsSuperReg: return Error(Loc, "operand must be 32-bit form of destination register"); case RegConstraintEqualityTy::EqualsReg: return Error(Loc, "operand must match destination register"); } llvm_unreachable("Unknown RegConstraintEqualityTy"); } case Match_MissingFeature: return Error(Loc, "instruction requires a CPU feature not currently enabled"); case Match_InvalidOperand: return Error(Loc, "invalid operand for instruction"); case Match_InvalidSuffix: return Error(Loc, "invalid type suffix for instruction"); case Match_InvalidCondCode: return Error(Loc, "expected AArch64 condition code"); case Match_AddSubRegExtendSmall: return Error(Loc, "expected '[su]xt[bhw]' with optional integer in range [0, 4]"); case Match_AddSubRegExtendLarge: return Error(Loc, "expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]"); case Match_AddSubSecondSource: return Error(Loc, "expected compatible register, symbol or integer in range [0, 4095]"); case Match_LogicalSecondSource: return Error(Loc, "expected compatible register or logical immediate"); case Match_InvalidMovImm32Shift: return Error(Loc, "expected 'lsl' with optional integer 0 or 16"); case Match_InvalidMovImm64Shift: return Error(Loc, "expected 'lsl' with optional integer 0, 16, 32 or 48"); case Match_AddSubRegShift32: return Error(Loc, "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]"); case Match_AddSubRegShift64: return Error(Loc, "expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]"); case Match_InvalidFPImm: return Error(Loc, "expected compatible register or floating-point constant"); case Match_InvalidMemoryIndexedSImm6: return Error(Loc, "index must be an integer in range [-32, 31]."); case Match_InvalidMemoryIndexedSImm5: return Error(Loc, "index must be an integer in range [-16, 15]."); case Match_InvalidMemoryIndexed1SImm4: return Error(Loc, "index must be an integer in range [-8, 7]."); case Match_InvalidMemoryIndexed2SImm4: return Error(Loc, "index must be a multiple of 2 in range [-16, 14]."); case Match_InvalidMemoryIndexed3SImm4: return Error(Loc, "index must be a multiple of 3 in range [-24, 21]."); case Match_InvalidMemoryIndexed4SImm4: return Error(Loc, "index must be a multiple of 4 in range [-32, 28]."); case Match_InvalidMemoryIndexed16SImm4: return Error(Loc, "index must be a multiple of 16 in range [-128, 112]."); case Match_InvalidMemoryIndexed32SImm4: return Error(Loc, "index must be a multiple of 32 in range [-256, 224]."); case Match_InvalidMemoryIndexed1SImm6: return Error(Loc, "index must be an integer in range [-32, 31]."); case Match_InvalidMemoryIndexedSImm8: return Error(Loc, "index must be an integer in range [-128, 127]."); case Match_InvalidMemoryIndexedSImm9: return Error(Loc, "index must be an integer in range [-256, 255]."); case Match_InvalidMemoryIndexed16SImm9: return Error(Loc, "index must be a multiple of 16 in range [-4096, 4080]."); case Match_InvalidMemoryIndexed8SImm10: return Error(Loc, "index must be a multiple of 8 in range [-4096, 4088]."); case Match_InvalidMemoryIndexed4SImm7: return Error(Loc, "index must be a multiple of 4 in range [-256, 252]."); case Match_InvalidMemoryIndexed8SImm7: return Error(Loc, "index must be a multiple of 8 in range [-512, 504]."); case Match_InvalidMemoryIndexed16SImm7: return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008]."); case Match_InvalidMemoryIndexed8UImm5: return Error(Loc, "index must be a multiple of 8 in range [0, 248]."); case Match_InvalidMemoryIndexed4UImm5: return Error(Loc, "index must be a multiple of 4 in range [0, 124]."); case Match_InvalidMemoryIndexed2UImm5: return Error(Loc, "index must be a multiple of 2 in range [0, 62]."); case Match_InvalidMemoryIndexed8UImm6: return Error(Loc, "index must be a multiple of 8 in range [0, 504]."); case Match_InvalidMemoryIndexed16UImm6: return Error(Loc, "index must be a multiple of 16 in range [0, 1008]."); case Match_InvalidMemoryIndexed4UImm6: return Error(Loc, "index must be a multiple of 4 in range [0, 252]."); case Match_InvalidMemoryIndexed2UImm6: return Error(Loc, "index must be a multiple of 2 in range [0, 126]."); case Match_InvalidMemoryIndexed1UImm6: return Error(Loc, "index must be in range [0, 63]."); case Match_InvalidMemoryWExtend8: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0"); case Match_InvalidMemoryWExtend16: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #1"); case Match_InvalidMemoryWExtend32: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #2"); case Match_InvalidMemoryWExtend64: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #3"); case Match_InvalidMemoryWExtend128: return Error(Loc, "expected 'uxtw' or 'sxtw' with optional shift of #0 or #4"); case Match_InvalidMemoryXExtend8: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0"); case Match_InvalidMemoryXExtend16: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #1"); case Match_InvalidMemoryXExtend32: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #2"); case Match_InvalidMemoryXExtend64: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #3"); case Match_InvalidMemoryXExtend128: return Error(Loc, "expected 'lsl' or 'sxtx' with optional shift of #0 or #4"); case Match_InvalidMemoryIndexed1: return Error(Loc, "index must be an integer in range [0, 4095]."); case Match_InvalidMemoryIndexed2: return Error(Loc, "index must be a multiple of 2 in range [0, 8190]."); case Match_InvalidMemoryIndexed4: return Error(Loc, "index must be a multiple of 4 in range [0, 16380]."); case Match_InvalidMemoryIndexed8: return Error(Loc, "index must be a multiple of 8 in range [0, 32760]."); case Match_InvalidMemoryIndexed16: return Error(Loc, "index must be a multiple of 16 in range [0, 65520]."); case Match_InvalidImm0_0: return Error(Loc, "immediate must be 0."); case Match_InvalidImm0_1: return Error(Loc, "immediate must be an integer in range [0, 1]."); case Match_InvalidImm0_3: return Error(Loc, "immediate must be an integer in range [0, 3]."); case Match_InvalidImm0_7: return Error(Loc, "immediate must be an integer in range [0, 7]."); case Match_InvalidImm0_15: return Error(Loc, "immediate must be an integer in range [0, 15]."); case Match_InvalidImm0_31: return Error(Loc, "immediate must be an integer in range [0, 31]."); case Match_InvalidImm0_63: return Error(Loc, "immediate must be an integer in range [0, 63]."); case Match_InvalidImm0_127: return Error(Loc, "immediate must be an integer in range [0, 127]."); case Match_InvalidImm0_255: return Error(Loc, "immediate must be an integer in range [0, 255]."); case Match_InvalidImm0_65535: return Error(Loc, "immediate must be an integer in range [0, 65535]."); case Match_InvalidImm1_8: return Error(Loc, "immediate must be an integer in range [1, 8]."); case Match_InvalidImm1_16: return Error(Loc, "immediate must be an integer in range [1, 16]."); case Match_InvalidImm1_32: return Error(Loc, "immediate must be an integer in range [1, 32]."); case Match_InvalidImm1_64: return Error(Loc, "immediate must be an integer in range [1, 64]."); case Match_InvalidSVEAddSubImm8: return Error(Loc, "immediate must be an integer in range [0, 255]" " with a shift amount of 0"); case Match_InvalidSVEAddSubImm16: case Match_InvalidSVEAddSubImm32: case Match_InvalidSVEAddSubImm64: return Error(Loc, "immediate must be an integer in range [0, 255] or a " "multiple of 256 in range [256, 65280]"); case Match_InvalidSVECpyImm8: return Error(Loc, "immediate must be an integer in range [-128, 255]" " with a shift amount of 0"); case Match_InvalidSVECpyImm16: return Error(Loc, "immediate must be an integer in range [-128, 127] or a " "multiple of 256 in range [-32768, 65280]"); case Match_InvalidSVECpyImm32: case Match_InvalidSVECpyImm64: return Error(Loc, "immediate must be an integer in range [-128, 127] or a " "multiple of 256 in range [-32768, 32512]"); case Match_InvalidIndexRange0_0: return Error(Loc, "expected lane specifier '[0]'"); case Match_InvalidIndexRange1_1: return Error(Loc, "expected lane specifier '[1]'"); case Match_InvalidIndexRange0_15: return Error(Loc, "vector lane must be an integer in range [0, 15]."); case Match_InvalidIndexRange0_7: return Error(Loc, "vector lane must be an integer in range [0, 7]."); case Match_InvalidIndexRange0_3: return Error(Loc, "vector lane must be an integer in range [0, 3]."); case Match_InvalidIndexRange0_1: return Error(Loc, "vector lane must be an integer in range [0, 1]."); case Match_InvalidSVEIndexRange0_63: return Error(Loc, "vector lane must be an integer in range [0, 63]."); case Match_InvalidSVEIndexRange0_31: return Error(Loc, "vector lane must be an integer in range [0, 31]."); case Match_InvalidSVEIndexRange0_15: return Error(Loc, "vector lane must be an integer in range [0, 15]."); case Match_InvalidSVEIndexRange0_7: return Error(Loc, "vector lane must be an integer in range [0, 7]."); case Match_InvalidSVEIndexRange0_3: return Error(Loc, "vector lane must be an integer in range [0, 3]."); case Match_InvalidLabel: return Error(Loc, "expected label or encodable integer pc offset"); case Match_MRS: return Error(Loc, "expected readable system register"); case Match_MSR: case Match_InvalidSVCR: return Error(Loc, "expected writable system register or pstate"); case Match_InvalidComplexRotationEven: return Error(Loc, "complex rotation must be 0, 90, 180 or 270."); case Match_InvalidComplexRotationOdd: return Error(Loc, "complex rotation must be 90 or 270."); case Match_MnemonicFail: { std::string Suggestion = AArch64MnemonicSpellCheck( ((AArch64Operand &)*Operands[0]).getToken(), ComputeAvailableFeatures(STI->getFeatureBits())); return Error(Loc, "unrecognized instruction mnemonic" + Suggestion); } case Match_InvalidGPR64shifted8: return Error(Loc, "register must be x0..x30 or xzr, without shift"); case Match_InvalidGPR64shifted16: return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #1'"); case Match_InvalidGPR64shifted32: return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #2'"); case Match_InvalidGPR64shifted64: return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #3'"); case Match_InvalidGPR64shifted128: return Error( Loc, "register must be x0..x30 or xzr, with required shift 'lsl #4'"); case Match_InvalidGPR64NoXZRshifted8: return Error(Loc, "register must be x0..x30 without shift"); case Match_InvalidGPR64NoXZRshifted16: return Error(Loc, "register must be x0..x30 with required shift 'lsl #1'"); case Match_InvalidGPR64NoXZRshifted32: return Error(Loc, "register must be x0..x30 with required shift 'lsl #2'"); case Match_InvalidGPR64NoXZRshifted64: return Error(Loc, "register must be x0..x30 with required shift 'lsl #3'"); case Match_InvalidGPR64NoXZRshifted128: return Error(Loc, "register must be x0..x30 with required shift 'lsl #4'"); case Match_InvalidZPR32UXTW8: case Match_InvalidZPR32SXTW8: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw)'"); case Match_InvalidZPR32UXTW16: case Match_InvalidZPR32SXTW16: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #1'"); case Match_InvalidZPR32UXTW32: case Match_InvalidZPR32SXTW32: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #2'"); case Match_InvalidZPR32UXTW64: case Match_InvalidZPR32SXTW64: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #3'"); case Match_InvalidZPR64UXTW8: case Match_InvalidZPR64SXTW8: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (uxtw|sxtw)'"); case Match_InvalidZPR64UXTW16: case Match_InvalidZPR64SXTW16: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #1'"); case Match_InvalidZPR64UXTW32: case Match_InvalidZPR64SXTW32: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'"); case Match_InvalidZPR64UXTW64: case Match_InvalidZPR64SXTW64: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #3'"); case Match_InvalidZPR32LSL8: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s'"); case Match_InvalidZPR32LSL16: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #1'"); case Match_InvalidZPR32LSL32: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #2'"); case Match_InvalidZPR32LSL64: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #3'"); case Match_InvalidZPR64LSL8: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d'"); case Match_InvalidZPR64LSL16: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #1'"); case Match_InvalidZPR64LSL32: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #2'"); case Match_InvalidZPR64LSL64: return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #3'"); case Match_InvalidZPR0: return Error(Loc, "expected register without element width suffix"); case Match_InvalidZPR8: case Match_InvalidZPR16: case Match_InvalidZPR32: case Match_InvalidZPR64: case Match_InvalidZPR128: return Error(Loc, "invalid element width"); case Match_InvalidZPR_3b8: return Error(Loc, "Invalid restricted vector register, expected z0.b..z7.b"); case Match_InvalidZPR_3b16: return Error(Loc, "Invalid restricted vector register, expected z0.h..z7.h"); case Match_InvalidZPR_3b32: return Error(Loc, "Invalid restricted vector register, expected z0.s..z7.s"); case Match_InvalidZPR_4b16: return Error(Loc, "Invalid restricted vector register, expected z0.h..z15.h"); case Match_InvalidZPR_4b32: return Error(Loc, "Invalid restricted vector register, expected z0.s..z15.s"); case Match_InvalidZPR_4b64: return Error(Loc, "Invalid restricted vector register, expected z0.d..z15.d"); case Match_InvalidSVEPattern: return Error(Loc, "invalid predicate pattern"); case Match_InvalidSVEPredicateAnyReg: case Match_InvalidSVEPredicateBReg: case Match_InvalidSVEPredicateHReg: case Match_InvalidSVEPredicateSReg: case Match_InvalidSVEPredicateDReg: return Error(Loc, "invalid predicate register."); case Match_InvalidSVEPredicate3bAnyReg: return Error(Loc, "invalid restricted predicate register, expected p0..p7 (without element suffix)"); case Match_InvalidSVEExactFPImmOperandHalfOne: return Error(Loc, "Invalid floating point constant, expected 0.5 or 1.0."); case Match_InvalidSVEExactFPImmOperandHalfTwo: return Error(Loc, "Invalid floating point constant, expected 0.5 or 2.0."); case Match_InvalidSVEExactFPImmOperandZeroOne: return Error(Loc, "Invalid floating point constant, expected 0.0 or 1.0."); case Match_InvalidMatrixTileVectorH8: case Match_InvalidMatrixTileVectorV8: return Error(Loc, "invalid matrix operand, expected za0h.b or za0v.b"); case Match_InvalidMatrixTileVectorH16: case Match_InvalidMatrixTileVectorV16: return Error(Loc, "invalid matrix operand, expected za[0-1]h.h or za[0-1]v.h"); case Match_InvalidMatrixTileVectorH32: case Match_InvalidMatrixTileVectorV32: return Error(Loc, "invalid matrix operand, expected za[0-3]h.s or za[0-3]v.s"); case Match_InvalidMatrixTileVectorH64: case Match_InvalidMatrixTileVectorV64: return Error(Loc, "invalid matrix operand, expected za[0-7]h.d or za[0-7]v.d"); case Match_InvalidMatrixTileVectorH128: case Match_InvalidMatrixTileVectorV128: return Error(Loc, "invalid matrix operand, expected za[0-15]h.q or za[0-15]v.q"); case Match_InvalidMatrixTile32: return Error(Loc, "invalid matrix operand, expected za[0-3].s"); case Match_InvalidMatrixTile64: return Error(Loc, "invalid matrix operand, expected za[0-7].d"); case Match_InvalidMatrix: return Error(Loc, "invalid matrix operand, expected za"); case Match_InvalidMatrixIndexGPR32_12_15: return Error(Loc, "operand must be a register in range [w12, w15]"); default: llvm_unreachable("unexpected error code!"); } } static const char *getSubtargetFeatureName(uint64_t Val); bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { assert(!Operands.empty() && "Unexpect empty operand list!"); AArch64Operand &Op = static_cast(*Operands[0]); assert(Op.isToken() && "Leading operand should always be a mnemonic!"); StringRef Tok = Op.getToken(); unsigned NumOperands = Operands.size(); if (NumOperands == 4 && Tok == "lsl") { AArch64Operand &Op2 = static_cast(*Operands[2]); AArch64Operand &Op3 = static_cast(*Operands[3]); if (Op2.isScalarReg() && Op3.isImm()) { const MCConstantExpr *Op3CE = dyn_cast(Op3.getImm()); if (Op3CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t NewOp3Val = 0; uint64_t NewOp4Val = 0; if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains( Op2.getReg())) { NewOp3Val = (32 - Op3Val) & 0x1f; NewOp4Val = 31 - Op3Val; } else { NewOp3Val = (64 - Op3Val) & 0x3f; NewOp4Val = 63 - Op3Val; } const MCExpr *NewOp3 = MCConstantExpr::create(NewOp3Val, getContext()); const MCExpr *NewOp4 = MCConstantExpr::create(NewOp4Val, getContext()); Operands[0] = AArch64Operand::CreateToken("ubfm", Op.getStartLoc(), getContext()); Operands.push_back(AArch64Operand::CreateImm( NewOp4, Op3.getStartLoc(), Op3.getEndLoc(), getContext())); Operands[3] = AArch64Operand::CreateImm(NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext()); } } } else if (NumOperands == 4 && Tok == "bfc") { // FIXME: Horrible hack to handle BFC->BFM alias. AArch64Operand &Op1 = static_cast(*Operands[1]); AArch64Operand LSBOp = static_cast(*Operands[2]); AArch64Operand WidthOp = static_cast(*Operands[3]); if (Op1.isScalarReg() && LSBOp.isImm() && WidthOp.isImm()) { const MCConstantExpr *LSBCE = dyn_cast(LSBOp.getImm()); const MCConstantExpr *WidthCE = dyn_cast(WidthOp.getImm()); if (LSBCE && WidthCE) { uint64_t LSB = LSBCE->getValue(); uint64_t Width = WidthCE->getValue(); uint64_t RegWidth = 0; if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op1.getReg())) RegWidth = 64; else RegWidth = 32; if (LSB >= RegWidth) return Error(LSBOp.getStartLoc(), "expected integer in range [0, 31]"); if (Width < 1 || Width > RegWidth) return Error(WidthOp.getStartLoc(), "expected integer in range [1, 32]"); uint64_t ImmR = 0; if (RegWidth == 32) ImmR = (32 - LSB) & 0x1f; else ImmR = (64 - LSB) & 0x3f; uint64_t ImmS = Width - 1; if (ImmR != 0 && ImmS >= ImmR) return Error(WidthOp.getStartLoc(), "requested insert overflows register"); const MCExpr *ImmRExpr = MCConstantExpr::create(ImmR, getContext()); const MCExpr *ImmSExpr = MCConstantExpr::create(ImmS, getContext()); Operands[0] = AArch64Operand::CreateToken("bfm", Op.getStartLoc(), getContext()); Operands[2] = AArch64Operand::CreateReg( RegWidth == 32 ? AArch64::WZR : AArch64::XZR, RegKind::Scalar, SMLoc(), SMLoc(), getContext()); Operands[3] = AArch64Operand::CreateImm( ImmRExpr, LSBOp.getStartLoc(), LSBOp.getEndLoc(), getContext()); Operands.emplace_back( AArch64Operand::CreateImm(ImmSExpr, WidthOp.getStartLoc(), WidthOp.getEndLoc(), getContext())); } } } else if (NumOperands == 5) { // FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and // UBFIZ -> UBFM aliases. if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") { AArch64Operand &Op1 = static_cast(*Operands[1]); AArch64Operand &Op3 = static_cast(*Operands[3]); AArch64Operand &Op4 = static_cast(*Operands[4]); if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) { const MCConstantExpr *Op3CE = dyn_cast(Op3.getImm()); const MCConstantExpr *Op4CE = dyn_cast(Op4.getImm()); if (Op3CE && Op4CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t Op4Val = Op4CE->getValue(); uint64_t RegWidth = 0; if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op1.getReg())) RegWidth = 64; else RegWidth = 32; if (Op3Val >= RegWidth) return Error(Op3.getStartLoc(), "expected integer in range [0, 31]"); if (Op4Val < 1 || Op4Val > RegWidth) return Error(Op4.getStartLoc(), "expected integer in range [1, 32]"); uint64_t NewOp3Val = 0; if (RegWidth == 32) NewOp3Val = (32 - Op3Val) & 0x1f; else NewOp3Val = (64 - Op3Val) & 0x3f; uint64_t NewOp4Val = Op4Val - 1; if (NewOp3Val != 0 && NewOp4Val >= NewOp3Val) return Error(Op4.getStartLoc(), "requested insert overflows register"); const MCExpr *NewOp3 = MCConstantExpr::create(NewOp3Val, getContext()); const MCExpr *NewOp4 = MCConstantExpr::create(NewOp4Val, getContext()); Operands[3] = AArch64Operand::CreateImm( NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext()); Operands[4] = AArch64Operand::CreateImm( NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext()); if (Tok == "bfi") Operands[0] = AArch64Operand::CreateToken("bfm", Op.getStartLoc(), getContext()); else if (Tok == "sbfiz") Operands[0] = AArch64Operand::CreateToken("sbfm", Op.getStartLoc(), getContext()); else if (Tok == "ubfiz") Operands[0] = AArch64Operand::CreateToken("ubfm", Op.getStartLoc(), getContext()); else llvm_unreachable("No valid mnemonic for alias?"); } } // FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and // UBFX -> UBFM aliases. } else if (NumOperands == 5 && (Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) { AArch64Operand &Op1 = static_cast(*Operands[1]); AArch64Operand &Op3 = static_cast(*Operands[3]); AArch64Operand &Op4 = static_cast(*Operands[4]); if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) { const MCConstantExpr *Op3CE = dyn_cast(Op3.getImm()); const MCConstantExpr *Op4CE = dyn_cast(Op4.getImm()); if (Op3CE && Op4CE) { uint64_t Op3Val = Op3CE->getValue(); uint64_t Op4Val = Op4CE->getValue(); uint64_t RegWidth = 0; if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op1.getReg())) RegWidth = 64; else RegWidth = 32; if (Op3Val >= RegWidth) return Error(Op3.getStartLoc(), "expected integer in range [0, 31]"); if (Op4Val < 1 || Op4Val > RegWidth) return Error(Op4.getStartLoc(), "expected integer in range [1, 32]"); uint64_t NewOp4Val = Op3Val + Op4Val - 1; if (NewOp4Val >= RegWidth || NewOp4Val < Op3Val) return Error(Op4.getStartLoc(), "requested extract overflows register"); const MCExpr *NewOp4 = MCConstantExpr::create(NewOp4Val, getContext()); Operands[4] = AArch64Operand::CreateImm( NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext()); if (Tok == "bfxil") Operands[0] = AArch64Operand::CreateToken("bfm", Op.getStartLoc(), getContext()); else if (Tok == "sbfx") Operands[0] = AArch64Operand::CreateToken("sbfm", Op.getStartLoc(), getContext()); else if (Tok == "ubfx") Operands[0] = AArch64Operand::CreateToken("ubfm", Op.getStartLoc(), getContext()); else llvm_unreachable("No valid mnemonic for alias?"); } } } } // The Cyclone CPU and early successors didn't execute the zero-cycle zeroing // instruction for FP registers correctly in some rare circumstances. Convert // it to a safe instruction and warn (because silently changing someone's // assembly is rude). if (getSTI().getFeatureBits()[AArch64::FeatureZCZeroingFPWorkaround] && NumOperands == 4 && Tok == "movi") { AArch64Operand &Op1 = static_cast(*Operands[1]); AArch64Operand &Op2 = static_cast(*Operands[2]); AArch64Operand &Op3 = static_cast(*Operands[3]); if ((Op1.isToken() && Op2.isNeonVectorReg() && Op3.isImm()) || (Op1.isNeonVectorReg() && Op2.isToken() && Op3.isImm())) { StringRef Suffix = Op1.isToken() ? Op1.getToken() : Op2.getToken(); if (Suffix.lower() == ".2d" && cast(Op3.getImm())->getValue() == 0) { Warning(IDLoc, "instruction movi.2d with immediate #0 may not function" " correctly on this CPU, converting to equivalent movi.16b"); // Switch the suffix to .16b. unsigned Idx = Op1.isToken() ? 1 : 2; Operands[Idx] = AArch64Operand::CreateToken(".16b", IDLoc, getContext()); } } } // FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands. // InstAlias can't quite handle this since the reg classes aren't // subclasses. if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) { // The source register can be Wn here, but the matcher expects a // GPR64. Twiddle it here if necessary. AArch64Operand &Op = static_cast(*Operands[2]); if (Op.isScalarReg()) { unsigned Reg = getXRegFromWReg(Op.getReg()); Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar, Op.getStartLoc(), Op.getEndLoc(), getContext()); } } // FIXME: Likewise for sxt[bh] with a Xd dst operand else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) { AArch64Operand &Op = static_cast(*Operands[1]); if (Op.isScalarReg() && AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op.getReg())) { // The source register can be Wn here, but the matcher expects a // GPR64. Twiddle it here if necessary. AArch64Operand &Op = static_cast(*Operands[2]); if (Op.isScalarReg()) { unsigned Reg = getXRegFromWReg(Op.getReg()); Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar, Op.getStartLoc(), Op.getEndLoc(), getContext()); } } } // FIXME: Likewise for uxt[bh] with a Xd dst operand else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) { AArch64Operand &Op = static_cast(*Operands[1]); if (Op.isScalarReg() && AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains( Op.getReg())) { // The source register can be Wn here, but the matcher expects a // GPR32. Twiddle it here if necessary. AArch64Operand &Op = static_cast(*Operands[1]); if (Op.isScalarReg()) { unsigned Reg = getWRegFromXReg(Op.getReg()); Operands[1] = AArch64Operand::CreateReg(Reg, RegKind::Scalar, Op.getStartLoc(), Op.getEndLoc(), getContext()); } } } MCInst Inst; FeatureBitset MissingFeatures; // First try to match against the secondary set of tables containing the // short-form NEON instructions (e.g. "fadd.2s v0, v1, v2"). unsigned MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, 1); // If that fails, try against the alternate table containing long-form NEON: // "fadd v0.2s, v1.2s, v2.2s" if (MatchResult != Match_Success) { // But first, save the short-form match result: we can use it in case the // long-form match also fails. auto ShortFormNEONErrorInfo = ErrorInfo; auto ShortFormNEONMatchResult = MatchResult; auto ShortFormNEONMissingFeatures = MissingFeatures; MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm, 0); // Now, both matches failed, and the long-form match failed on the mnemonic // suffix token operand. The short-form match failure is probably more // relevant: use it instead. if (MatchResult == Match_InvalidOperand && ErrorInfo == 1 && Operands.size() > 1 && ((AArch64Operand &)*Operands[1]).isToken() && ((AArch64Operand &)*Operands[1]).isTokenSuffix()) { MatchResult = ShortFormNEONMatchResult; ErrorInfo = ShortFormNEONErrorInfo; MissingFeatures = ShortFormNEONMissingFeatures; } } switch (MatchResult) { case Match_Success: { // Perform range checking and other semantic validations SmallVector OperandLocs; NumOperands = Operands.size(); for (unsigned i = 1; i < NumOperands; ++i) OperandLocs.push_back(Operands[i]->getStartLoc()); if (validateInstruction(Inst, IDLoc, OperandLocs)) return true; Inst.setLoc(IDLoc); Out.emitInstruction(Inst, getSTI()); return false; } case Match_MissingFeature: { assert(MissingFeatures.any() && "Unknown missing feature!"); // Special case the error message for the very common case where only // a single subtarget feature is missing (neon, e.g.). std::string Msg = "instruction requires:"; for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) { if (MissingFeatures[i]) { Msg += " "; Msg += getSubtargetFeatureName(i); } } return Error(IDLoc, Msg); } case Match_MnemonicFail: return showMatchError(IDLoc, MatchResult, ErrorInfo, Operands); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0ULL) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction", SMRange(IDLoc, getTok().getLoc())); ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } // If the match failed on a suffix token operand, tweak the diagnostic // accordingly. if (((AArch64Operand &)*Operands[ErrorInfo]).isToken() && ((AArch64Operand &)*Operands[ErrorInfo]).isTokenSuffix()) MatchResult = Match_InvalidSuffix; return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands); } case Match_InvalidTiedOperand: case Match_InvalidMemoryIndexed1: case Match_InvalidMemoryIndexed2: case Match_InvalidMemoryIndexed4: case Match_InvalidMemoryIndexed8: case Match_InvalidMemoryIndexed16: case Match_InvalidCondCode: case Match_AddSubRegExtendSmall: case Match_AddSubRegExtendLarge: case Match_AddSubSecondSource: case Match_LogicalSecondSource: case Match_AddSubRegShift32: case Match_AddSubRegShift64: case Match_InvalidMovImm32Shift: case Match_InvalidMovImm64Shift: case Match_InvalidFPImm: case Match_InvalidMemoryWExtend8: case Match_InvalidMemoryWExtend16: case Match_InvalidMemoryWExtend32: case Match_InvalidMemoryWExtend64: case Match_InvalidMemoryWExtend128: case Match_InvalidMemoryXExtend8: case Match_InvalidMemoryXExtend16: case Match_InvalidMemoryXExtend32: case Match_InvalidMemoryXExtend64: case Match_InvalidMemoryXExtend128: case Match_InvalidMemoryIndexed1SImm4: case Match_InvalidMemoryIndexed2SImm4: case Match_InvalidMemoryIndexed3SImm4: case Match_InvalidMemoryIndexed4SImm4: case Match_InvalidMemoryIndexed1SImm6: case Match_InvalidMemoryIndexed16SImm4: case Match_InvalidMemoryIndexed32SImm4: case Match_InvalidMemoryIndexed4SImm7: case Match_InvalidMemoryIndexed8SImm7: case Match_InvalidMemoryIndexed16SImm7: case Match_InvalidMemoryIndexed8UImm5: case Match_InvalidMemoryIndexed4UImm5: case Match_InvalidMemoryIndexed2UImm5: case Match_InvalidMemoryIndexed1UImm6: case Match_InvalidMemoryIndexed2UImm6: case Match_InvalidMemoryIndexed4UImm6: case Match_InvalidMemoryIndexed8UImm6: case Match_InvalidMemoryIndexed16UImm6: case Match_InvalidMemoryIndexedSImm6: case Match_InvalidMemoryIndexedSImm5: case Match_InvalidMemoryIndexedSImm8: case Match_InvalidMemoryIndexedSImm9: case Match_InvalidMemoryIndexed16SImm9: case Match_InvalidMemoryIndexed8SImm10: case Match_InvalidImm0_0: case Match_InvalidImm0_1: case Match_InvalidImm0_3: case Match_InvalidImm0_7: case Match_InvalidImm0_15: case Match_InvalidImm0_31: case Match_InvalidImm0_63: case Match_InvalidImm0_127: case Match_InvalidImm0_255: case Match_InvalidImm0_65535: case Match_InvalidImm1_8: case Match_InvalidImm1_16: case Match_InvalidImm1_32: case Match_InvalidImm1_64: case Match_InvalidSVEAddSubImm8: case Match_InvalidSVEAddSubImm16: case Match_InvalidSVEAddSubImm32: case Match_InvalidSVEAddSubImm64: case Match_InvalidSVECpyImm8: case Match_InvalidSVECpyImm16: case Match_InvalidSVECpyImm32: case Match_InvalidSVECpyImm64: case Match_InvalidIndexRange0_0: case Match_InvalidIndexRange1_1: case Match_InvalidIndexRange0_15: case Match_InvalidIndexRange0_7: case Match_InvalidIndexRange0_3: case Match_InvalidIndexRange0_1: case Match_InvalidSVEIndexRange0_63: case Match_InvalidSVEIndexRange0_31: case Match_InvalidSVEIndexRange0_15: case Match_InvalidSVEIndexRange0_7: case Match_InvalidSVEIndexRange0_3: case Match_InvalidLabel: case Match_InvalidComplexRotationEven: case Match_InvalidComplexRotationOdd: case Match_InvalidGPR64shifted8: case Match_InvalidGPR64shifted16: case Match_InvalidGPR64shifted32: case Match_InvalidGPR64shifted64: case Match_InvalidGPR64shifted128: case Match_InvalidGPR64NoXZRshifted8: case Match_InvalidGPR64NoXZRshifted16: case Match_InvalidGPR64NoXZRshifted32: case Match_InvalidGPR64NoXZRshifted64: case Match_InvalidGPR64NoXZRshifted128: case Match_InvalidZPR32UXTW8: case Match_InvalidZPR32UXTW16: case Match_InvalidZPR32UXTW32: case Match_InvalidZPR32UXTW64: case Match_InvalidZPR32SXTW8: case Match_InvalidZPR32SXTW16: case Match_InvalidZPR32SXTW32: case Match_InvalidZPR32SXTW64: case Match_InvalidZPR64UXTW8: case Match_InvalidZPR64SXTW8: case Match_InvalidZPR64UXTW16: case Match_InvalidZPR64SXTW16: case Match_InvalidZPR64UXTW32: case Match_InvalidZPR64SXTW32: case Match_InvalidZPR64UXTW64: case Match_InvalidZPR64SXTW64: case Match_InvalidZPR32LSL8: case Match_InvalidZPR32LSL16: case Match_InvalidZPR32LSL32: case Match_InvalidZPR32LSL64: case Match_InvalidZPR64LSL8: case Match_InvalidZPR64LSL16: case Match_InvalidZPR64LSL32: case Match_InvalidZPR64LSL64: case Match_InvalidZPR0: case Match_InvalidZPR8: case Match_InvalidZPR16: case Match_InvalidZPR32: case Match_InvalidZPR64: case Match_InvalidZPR128: case Match_InvalidZPR_3b8: case Match_InvalidZPR_3b16: case Match_InvalidZPR_3b32: case Match_InvalidZPR_4b16: case Match_InvalidZPR_4b32: case Match_InvalidZPR_4b64: case Match_InvalidSVEPredicateAnyReg: case Match_InvalidSVEPattern: case Match_InvalidSVEPredicateBReg: case Match_InvalidSVEPredicateHReg: case Match_InvalidSVEPredicateSReg: case Match_InvalidSVEPredicateDReg: case Match_InvalidSVEPredicate3bAnyReg: case Match_InvalidSVEExactFPImmOperandHalfOne: case Match_InvalidSVEExactFPImmOperandHalfTwo: case Match_InvalidSVEExactFPImmOperandZeroOne: case Match_InvalidMatrixTile32: case Match_InvalidMatrixTile64: case Match_InvalidMatrix: case Match_InvalidMatrixTileVectorH8: case Match_InvalidMatrixTileVectorH16: case Match_InvalidMatrixTileVectorH32: case Match_InvalidMatrixTileVectorH64: case Match_InvalidMatrixTileVectorH128: case Match_InvalidMatrixTileVectorV8: case Match_InvalidMatrixTileVectorV16: case Match_InvalidMatrixTileVectorV32: case Match_InvalidMatrixTileVectorV64: case Match_InvalidMatrixTileVectorV128: case Match_InvalidSVCR: case Match_InvalidMatrixIndexGPR32_12_15: case Match_MSR: case Match_MRS: { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction", SMRange(IDLoc, (*Operands.back()).getEndLoc())); // Any time we get here, there's nothing fancy to do. Just get the // operand SMLoc and display the diagnostic. SMLoc ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands); } } llvm_unreachable("Implement any new match types added!"); } /// ParseDirective parses the arm specific directives bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) { const MCContext::Environment Format = getContext().getObjectFileType(); bool IsMachO = Format == MCContext::IsMachO; bool IsCOFF = Format == MCContext::IsCOFF; auto IDVal = DirectiveID.getIdentifier().lower(); SMLoc Loc = DirectiveID.getLoc(); if (IDVal == ".arch") parseDirectiveArch(Loc); else if (IDVal == ".cpu") parseDirectiveCPU(Loc); else if (IDVal == ".tlsdesccall") parseDirectiveTLSDescCall(Loc); else if (IDVal == ".ltorg" || IDVal == ".pool") parseDirectiveLtorg(Loc); else if (IDVal == ".unreq") parseDirectiveUnreq(Loc); else if (IDVal == ".inst") parseDirectiveInst(Loc); else if (IDVal == ".cfi_negate_ra_state") parseDirectiveCFINegateRAState(); else if (IDVal == ".cfi_b_key_frame") parseDirectiveCFIBKeyFrame(); else if (IDVal == ".arch_extension") parseDirectiveArchExtension(Loc); else if (IDVal == ".variant_pcs") parseDirectiveVariantPCS(Loc); else if (IsMachO) { if (IDVal == MCLOHDirectiveName()) parseDirectiveLOH(IDVal, Loc); else return true; } else if (IsCOFF) { if (IDVal == ".seh_stackalloc") parseDirectiveSEHAllocStack(Loc); else if (IDVal == ".seh_endprologue") parseDirectiveSEHPrologEnd(Loc); else if (IDVal == ".seh_save_r19r20_x") parseDirectiveSEHSaveR19R20X(Loc); else if (IDVal == ".seh_save_fplr") parseDirectiveSEHSaveFPLR(Loc); else if (IDVal == ".seh_save_fplr_x") parseDirectiveSEHSaveFPLRX(Loc); else if (IDVal == ".seh_save_reg") parseDirectiveSEHSaveReg(Loc); else if (IDVal == ".seh_save_reg_x") parseDirectiveSEHSaveRegX(Loc); else if (IDVal == ".seh_save_regp") parseDirectiveSEHSaveRegP(Loc); else if (IDVal == ".seh_save_regp_x") parseDirectiveSEHSaveRegPX(Loc); else if (IDVal == ".seh_save_lrpair") parseDirectiveSEHSaveLRPair(Loc); else if (IDVal == ".seh_save_freg") parseDirectiveSEHSaveFReg(Loc); else if (IDVal == ".seh_save_freg_x") parseDirectiveSEHSaveFRegX(Loc); else if (IDVal == ".seh_save_fregp") parseDirectiveSEHSaveFRegP(Loc); else if (IDVal == ".seh_save_fregp_x") parseDirectiveSEHSaveFRegPX(Loc); else if (IDVal == ".seh_set_fp") parseDirectiveSEHSetFP(Loc); else if (IDVal == ".seh_add_fp") parseDirectiveSEHAddFP(Loc); else if (IDVal == ".seh_nop") parseDirectiveSEHNop(Loc); else if (IDVal == ".seh_save_next") parseDirectiveSEHSaveNext(Loc); else if (IDVal == ".seh_startepilogue") parseDirectiveSEHEpilogStart(Loc); else if (IDVal == ".seh_endepilogue") parseDirectiveSEHEpilogEnd(Loc); else if (IDVal == ".seh_trap_frame") parseDirectiveSEHTrapFrame(Loc); else if (IDVal == ".seh_pushframe") parseDirectiveSEHMachineFrame(Loc); else if (IDVal == ".seh_context") parseDirectiveSEHContext(Loc); else if (IDVal == ".seh_clear_unwound_to_call") parseDirectiveSEHClearUnwoundToCall(Loc); else return true; } else return true; return false; } static void ExpandCryptoAEK(AArch64::ArchKind ArchKind, SmallVector &RequestedExtensions) { const bool NoCrypto = llvm::is_contained(RequestedExtensions, "nocrypto"); const bool Crypto = llvm::is_contained(RequestedExtensions, "crypto"); if (!NoCrypto && Crypto) { switch (ArchKind) { default: // Map 'generic' (and others) to sha2 and aes, because // that was the traditional meaning of crypto. case AArch64::ArchKind::ARMV8_1A: case AArch64::ArchKind::ARMV8_2A: case AArch64::ArchKind::ARMV8_3A: RequestedExtensions.push_back("sha2"); RequestedExtensions.push_back("aes"); break; case AArch64::ArchKind::ARMV8_4A: case AArch64::ArchKind::ARMV8_5A: case AArch64::ArchKind::ARMV8_6A: case AArch64::ArchKind::ARMV8_7A: case AArch64::ArchKind::ARMV8_8A: case AArch64::ArchKind::ARMV9A: case AArch64::ArchKind::ARMV9_1A: case AArch64::ArchKind::ARMV9_2A: case AArch64::ArchKind::ARMV9_3A: case AArch64::ArchKind::ARMV8R: RequestedExtensions.push_back("sm4"); RequestedExtensions.push_back("sha3"); RequestedExtensions.push_back("sha2"); RequestedExtensions.push_back("aes"); break; } } else if (NoCrypto) { switch (ArchKind) { default: // Map 'generic' (and others) to sha2 and aes, because // that was the traditional meaning of crypto. case AArch64::ArchKind::ARMV8_1A: case AArch64::ArchKind::ARMV8_2A: case AArch64::ArchKind::ARMV8_3A: RequestedExtensions.push_back("nosha2"); RequestedExtensions.push_back("noaes"); break; case AArch64::ArchKind::ARMV8_4A: case AArch64::ArchKind::ARMV8_5A: case AArch64::ArchKind::ARMV8_6A: case AArch64::ArchKind::ARMV8_7A: case AArch64::ArchKind::ARMV8_8A: case AArch64::ArchKind::ARMV9A: case AArch64::ArchKind::ARMV9_1A: case AArch64::ArchKind::ARMV9_2A: RequestedExtensions.push_back("nosm4"); RequestedExtensions.push_back("nosha3"); RequestedExtensions.push_back("nosha2"); RequestedExtensions.push_back("noaes"); break; } } } /// parseDirectiveArch /// ::= .arch token bool AArch64AsmParser::parseDirectiveArch(SMLoc L) { SMLoc ArchLoc = getLoc(); StringRef Arch, ExtensionString; std::tie(Arch, ExtensionString) = getParser().parseStringToEndOfStatement().trim().split('+'); AArch64::ArchKind ID = AArch64::parseArch(Arch); if (ID == AArch64::ArchKind::INVALID) return Error(ArchLoc, "unknown arch name"); if (parseToken(AsmToken::EndOfStatement)) return true; // Get the architecture and extension features. std::vector AArch64Features; AArch64::getArchFeatures(ID, AArch64Features); AArch64::getExtensionFeatures(AArch64::getDefaultExtensions("generic", ID), AArch64Features); MCSubtargetInfo &STI = copySTI(); std::vector ArchFeatures(AArch64Features.begin(), AArch64Features.end()); STI.setDefaultFeatures("generic", /*TuneCPU*/ "generic", join(ArchFeatures.begin(), ArchFeatures.end(), ",")); SmallVector RequestedExtensions; if (!ExtensionString.empty()) ExtensionString.split(RequestedExtensions, '+'); ExpandCryptoAEK(ID, RequestedExtensions); FeatureBitset Features = STI.getFeatureBits(); for (auto Name : RequestedExtensions) { bool EnableFeature = true; if (Name.startswith_insensitive("no")) { EnableFeature = false; Name = Name.substr(2); } for (const auto &Extension : ExtensionMap) { if (Extension.Name != Name) continue; if (Extension.Features.none()) report_fatal_error("unsupported architectural extension: " + Name); FeatureBitset ToggleFeatures = EnableFeature ? (~Features & Extension.Features) : ( Features & Extension.Features); FeatureBitset Features = ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); setAvailableFeatures(Features); break; } } return false; } /// parseDirectiveArchExtension /// ::= .arch_extension [no]feature bool AArch64AsmParser::parseDirectiveArchExtension(SMLoc L) { SMLoc ExtLoc = getLoc(); StringRef Name = getParser().parseStringToEndOfStatement().trim(); if (parseToken(AsmToken::EndOfStatement, "unexpected token in '.arch_extension' directive")) return true; bool EnableFeature = true; if (Name.startswith_insensitive("no")) { EnableFeature = false; Name = Name.substr(2); } MCSubtargetInfo &STI = copySTI(); FeatureBitset Features = STI.getFeatureBits(); for (const auto &Extension : ExtensionMap) { if (Extension.Name != Name) continue; if (Extension.Features.none()) return Error(ExtLoc, "unsupported architectural extension: " + Name); FeatureBitset ToggleFeatures = EnableFeature ? (~Features & Extension.Features) : (Features & Extension.Features); FeatureBitset Features = ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); setAvailableFeatures(Features); return false; } return Error(ExtLoc, "unknown architectural extension: " + Name); } static SMLoc incrementLoc(SMLoc L, int Offset) { return SMLoc::getFromPointer(L.getPointer() + Offset); } /// parseDirectiveCPU /// ::= .cpu id bool AArch64AsmParser::parseDirectiveCPU(SMLoc L) { SMLoc CurLoc = getLoc(); StringRef CPU, ExtensionString; std::tie(CPU, ExtensionString) = getParser().parseStringToEndOfStatement().trim().split('+'); if (parseToken(AsmToken::EndOfStatement)) return true; SmallVector RequestedExtensions; if (!ExtensionString.empty()) ExtensionString.split(RequestedExtensions, '+'); // FIXME This is using tablegen data, but should be moved to ARMTargetParser // once that is tablegen'ed if (!getSTI().isCPUStringValid(CPU)) { Error(CurLoc, "unknown CPU name"); return false; } MCSubtargetInfo &STI = copySTI(); STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); CurLoc = incrementLoc(CurLoc, CPU.size()); ExpandCryptoAEK(llvm::AArch64::getCPUArchKind(CPU), RequestedExtensions); FeatureBitset Features = STI.getFeatureBits(); for (auto Name : RequestedExtensions) { // Advance source location past '+'. CurLoc = incrementLoc(CurLoc, 1); bool EnableFeature = true; if (Name.startswith_insensitive("no")) { EnableFeature = false; Name = Name.substr(2); } bool FoundExtension = false; for (const auto &Extension : ExtensionMap) { if (Extension.Name != Name) continue; if (Extension.Features.none()) report_fatal_error("unsupported architectural extension: " + Name); FeatureBitset ToggleFeatures = EnableFeature ? (~Features & Extension.Features) : ( Features & Extension.Features); FeatureBitset Features = ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); setAvailableFeatures(Features); FoundExtension = true; break; } if (!FoundExtension) Error(CurLoc, "unsupported architectural extension"); CurLoc = incrementLoc(CurLoc, Name.size()); } return false; } /// parseDirectiveInst /// ::= .inst opcode [, ...] bool AArch64AsmParser::parseDirectiveInst(SMLoc Loc) { if (getLexer().is(AsmToken::EndOfStatement)) return Error(Loc, "expected expression following '.inst' directive"); auto parseOp = [&]() -> bool { SMLoc L = getLoc(); const MCExpr *Expr = nullptr; if (check(getParser().parseExpression(Expr), L, "expected expression")) return true; const MCConstantExpr *Value = dyn_cast_or_null(Expr); if (check(!Value, L, "expected constant expression")) return true; getTargetStreamer().emitInst(Value->getValue()); return false; }; return parseMany(parseOp); } // parseDirectiveTLSDescCall: // ::= .tlsdesccall symbol bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) { StringRef Name; if (check(getParser().parseIdentifier(Name), L, "expected symbol after directive") || parseToken(AsmToken::EndOfStatement)) return true; MCSymbol *Sym = getContext().getOrCreateSymbol(Name); const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext()); Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_TLSDESC, getContext()); MCInst Inst; Inst.setOpcode(AArch64::TLSDESCCALL); Inst.addOperand(MCOperand::createExpr(Expr)); getParser().getStreamer().emitInstruction(Inst, getSTI()); return false; } /// ::= .loh label1, ..., labelN /// The number of arguments depends on the loh identifier. bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) { MCLOHType Kind; if (getTok().isNot(AsmToken::Identifier)) { if (getTok().isNot(AsmToken::Integer)) return TokError("expected an identifier or a number in directive"); // We successfully get a numeric value for the identifier. // Check if it is valid. int64_t Id = getTok().getIntVal(); if (Id <= -1U && !isValidMCLOHType(Id)) return TokError("invalid numeric identifier in directive"); Kind = (MCLOHType)Id; } else { StringRef Name = getTok().getIdentifier(); // We successfully parse an identifier. // Check if it is a recognized one. int Id = MCLOHNameToId(Name); if (Id == -1) return TokError("invalid identifier in directive"); Kind = (MCLOHType)Id; } // Consume the identifier. Lex(); // Get the number of arguments of this LOH. int NbArgs = MCLOHIdToNbArgs(Kind); assert(NbArgs != -1 && "Invalid number of arguments"); SmallVector Args; for (int Idx = 0; Idx < NbArgs; ++Idx) { StringRef Name; if (getParser().parseIdentifier(Name)) return TokError("expected identifier in directive"); Args.push_back(getContext().getOrCreateSymbol(Name)); if (Idx + 1 == NbArgs) break; if (parseToken(AsmToken::Comma, "unexpected token in '" + Twine(IDVal) + "' directive")) return true; } if (parseToken(AsmToken::EndOfStatement, "unexpected token in '" + Twine(IDVal) + "' directive")) return true; getStreamer().emitLOHDirective((MCLOHType)Kind, Args); return false; } /// parseDirectiveLtorg /// ::= .ltorg | .pool bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) { if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) return true; getTargetStreamer().emitCurrentConstantPool(); return false; } /// parseDirectiveReq /// ::= name .req registername bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { Lex(); // Eat the '.req' token. SMLoc SRegLoc = getLoc(); RegKind RegisterKind = RegKind::Scalar; unsigned RegNum; OperandMatchResultTy ParseRes = tryParseScalarRegister(RegNum); if (ParseRes != MatchOperand_Success) { StringRef Kind; RegisterKind = RegKind::NeonVector; ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::NeonVector); if (ParseRes == MatchOperand_ParseFail) return true; if (ParseRes == MatchOperand_Success && !Kind.empty()) return Error(SRegLoc, "vector register without type specifier expected"); } if (ParseRes != MatchOperand_Success) { StringRef Kind; RegisterKind = RegKind::SVEDataVector; ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector); if (ParseRes == MatchOperand_ParseFail) return true; if (ParseRes == MatchOperand_Success && !Kind.empty()) return Error(SRegLoc, "sve vector register without type specifier expected"); } if (ParseRes != MatchOperand_Success) { StringRef Kind; RegisterKind = RegKind::SVEPredicateVector; ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector); if (ParseRes == MatchOperand_ParseFail) return true; if (ParseRes == MatchOperand_Success && !Kind.empty()) return Error(SRegLoc, "sve predicate register without type specifier expected"); } if (ParseRes != MatchOperand_Success) return Error(SRegLoc, "register name or alias expected"); // Shouldn't be anything else. if (parseToken(AsmToken::EndOfStatement, "unexpected input in .req directive")) return true; auto pair = std::make_pair(RegisterKind, (unsigned) RegNum); if (RegisterReqs.insert(std::make_pair(Name, pair)).first->second != pair) Warning(L, "ignoring redefinition of register alias '" + Name + "'"); return false; } /// parseDirectiveUneq /// ::= .unreq registername bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) { if (getTok().isNot(AsmToken::Identifier)) return TokError("unexpected input in .unreq directive."); RegisterReqs.erase(getTok().getIdentifier().lower()); Lex(); // Eat the identifier. return parseToken(AsmToken::EndOfStatement); } bool AArch64AsmParser::parseDirectiveCFINegateRAState() { if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) return true; getStreamer().emitCFINegateRAState(); return false; } /// parseDirectiveCFIBKeyFrame /// ::= .cfi_b_key bool AArch64AsmParser::parseDirectiveCFIBKeyFrame() { if (parseToken(AsmToken::EndOfStatement, "unexpected token in '.cfi_b_key_frame'")) return true; getStreamer().emitCFIBKeyFrame(); return false; } /// parseDirectiveVariantPCS /// ::= .variant_pcs symbolname bool AArch64AsmParser::parseDirectiveVariantPCS(SMLoc L) { StringRef Name; if (getParser().parseIdentifier(Name)) return TokError("expected symbol name"); if (parseEOL()) return true; getTargetStreamer().emitDirectiveVariantPCS( getContext().getOrCreateSymbol(Name)); return false; } /// parseDirectiveSEHAllocStack /// ::= .seh_stackalloc bool AArch64AsmParser::parseDirectiveSEHAllocStack(SMLoc L) { int64_t Size; if (parseImmExpr(Size)) return true; getTargetStreamer().emitARM64WinCFIAllocStack(Size); return false; } /// parseDirectiveSEHPrologEnd /// ::= .seh_endprologue bool AArch64AsmParser::parseDirectiveSEHPrologEnd(SMLoc L) { getTargetStreamer().emitARM64WinCFIPrologEnd(); return false; } /// parseDirectiveSEHSaveR19R20X /// ::= .seh_save_r19r20_x bool AArch64AsmParser::parseDirectiveSEHSaveR19R20X(SMLoc L) { int64_t Offset; if (parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveR19R20X(Offset); return false; } /// parseDirectiveSEHSaveFPLR /// ::= .seh_save_fplr bool AArch64AsmParser::parseDirectiveSEHSaveFPLR(SMLoc L) { int64_t Offset; if (parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveFPLR(Offset); return false; } /// parseDirectiveSEHSaveFPLRX /// ::= .seh_save_fplr_x bool AArch64AsmParser::parseDirectiveSEHSaveFPLRX(SMLoc L) { int64_t Offset; if (parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveFPLRX(Offset); return false; } /// parseDirectiveSEHSaveReg /// ::= .seh_save_reg bool AArch64AsmParser::parseDirectiveSEHSaveReg(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::X0, AArch64::X19, AArch64::LR) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveReg(Reg, Offset); return false; } /// parseDirectiveSEHSaveRegX /// ::= .seh_save_reg_x bool AArch64AsmParser::parseDirectiveSEHSaveRegX(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::X0, AArch64::X19, AArch64::LR) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveRegX(Reg, Offset); return false; } /// parseDirectiveSEHSaveRegP /// ::= .seh_save_regp bool AArch64AsmParser::parseDirectiveSEHSaveRegP(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::X0, AArch64::X19, AArch64::FP) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveRegP(Reg, Offset); return false; } /// parseDirectiveSEHSaveRegPX /// ::= .seh_save_regp_x bool AArch64AsmParser::parseDirectiveSEHSaveRegPX(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::X0, AArch64::X19, AArch64::FP) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveRegPX(Reg, Offset); return false; } /// parseDirectiveSEHSaveLRPair /// ::= .seh_save_lrpair bool AArch64AsmParser::parseDirectiveSEHSaveLRPair(SMLoc L) { unsigned Reg; int64_t Offset; L = getLoc(); if (parseRegisterInRange(Reg, AArch64::X0, AArch64::X19, AArch64::LR) || parseComma() || parseImmExpr(Offset)) return true; if (check(((Reg - 19) % 2 != 0), L, "expected register with even offset from x19")) return true; getTargetStreamer().emitARM64WinCFISaveLRPair(Reg, Offset); return false; } /// parseDirectiveSEHSaveFReg /// ::= .seh_save_freg bool AArch64AsmParser::parseDirectiveSEHSaveFReg(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::D0, AArch64::D8, AArch64::D15) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveFReg(Reg, Offset); return false; } /// parseDirectiveSEHSaveFRegX /// ::= .seh_save_freg_x bool AArch64AsmParser::parseDirectiveSEHSaveFRegX(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::D0, AArch64::D8, AArch64::D15) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveFRegX(Reg, Offset); return false; } /// parseDirectiveSEHSaveFRegP /// ::= .seh_save_fregp bool AArch64AsmParser::parseDirectiveSEHSaveFRegP(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::D0, AArch64::D8, AArch64::D14) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveFRegP(Reg, Offset); return false; } /// parseDirectiveSEHSaveFRegPX /// ::= .seh_save_fregp_x bool AArch64AsmParser::parseDirectiveSEHSaveFRegPX(SMLoc L) { unsigned Reg; int64_t Offset; if (parseRegisterInRange(Reg, AArch64::D0, AArch64::D8, AArch64::D14) || parseComma() || parseImmExpr(Offset)) return true; getTargetStreamer().emitARM64WinCFISaveFRegPX(Reg, Offset); return false; } /// parseDirectiveSEHSetFP /// ::= .seh_set_fp bool AArch64AsmParser::parseDirectiveSEHSetFP(SMLoc L) { getTargetStreamer().emitARM64WinCFISetFP(); return false; } /// parseDirectiveSEHAddFP /// ::= .seh_add_fp bool AArch64AsmParser::parseDirectiveSEHAddFP(SMLoc L) { int64_t Size; if (parseImmExpr(Size)) return true; getTargetStreamer().emitARM64WinCFIAddFP(Size); return false; } /// parseDirectiveSEHNop /// ::= .seh_nop bool AArch64AsmParser::parseDirectiveSEHNop(SMLoc L) { getTargetStreamer().emitARM64WinCFINop(); return false; } /// parseDirectiveSEHSaveNext /// ::= .seh_save_next bool AArch64AsmParser::parseDirectiveSEHSaveNext(SMLoc L) { getTargetStreamer().emitARM64WinCFISaveNext(); return false; } /// parseDirectiveSEHEpilogStart /// ::= .seh_startepilogue bool AArch64AsmParser::parseDirectiveSEHEpilogStart(SMLoc L) { getTargetStreamer().emitARM64WinCFIEpilogStart(); return false; } /// parseDirectiveSEHEpilogEnd /// ::= .seh_endepilogue bool AArch64AsmParser::parseDirectiveSEHEpilogEnd(SMLoc L) { getTargetStreamer().emitARM64WinCFIEpilogEnd(); return false; } /// parseDirectiveSEHTrapFrame /// ::= .seh_trap_frame bool AArch64AsmParser::parseDirectiveSEHTrapFrame(SMLoc L) { getTargetStreamer().emitARM64WinCFITrapFrame(); return false; } /// parseDirectiveSEHMachineFrame /// ::= .seh_pushframe bool AArch64AsmParser::parseDirectiveSEHMachineFrame(SMLoc L) { getTargetStreamer().emitARM64WinCFIMachineFrame(); return false; } /// parseDirectiveSEHContext /// ::= .seh_context bool AArch64AsmParser::parseDirectiveSEHContext(SMLoc L) { getTargetStreamer().emitARM64WinCFIContext(); return false; } /// parseDirectiveSEHClearUnwoundToCall /// ::= .seh_clear_unwound_to_call bool AArch64AsmParser::parseDirectiveSEHClearUnwoundToCall(SMLoc L) { getTargetStreamer().emitARM64WinCFIClearUnwoundToCall(); return false; } bool AArch64AsmParser::classifySymbolRef(const MCExpr *Expr, AArch64MCExpr::VariantKind &ELFRefKind, MCSymbolRefExpr::VariantKind &DarwinRefKind, int64_t &Addend) { ELFRefKind = AArch64MCExpr::VK_INVALID; DarwinRefKind = MCSymbolRefExpr::VK_None; Addend = 0; if (const AArch64MCExpr *AE = dyn_cast(Expr)) { ELFRefKind = AE->getKind(); Expr = AE->getSubExpr(); } const MCSymbolRefExpr *SE = dyn_cast(Expr); if (SE) { // It's a simple symbol reference with no addend. DarwinRefKind = SE->getKind(); return true; } // Check that it looks like a symbol + an addend MCValue Res; bool Relocatable = Expr->evaluateAsRelocatable(Res, nullptr, nullptr); if (!Relocatable || Res.getSymB()) return false; // Treat expressions with an ELFRefKind (like ":abs_g1:3", or // ":abs_g1:x" where x is constant) as symbolic even if there is no symbol. if (!Res.getSymA() && ELFRefKind == AArch64MCExpr::VK_INVALID) return false; if (Res.getSymA()) DarwinRefKind = Res.getSymA()->getKind(); Addend = Res.getConstant(); // It's some symbol reference + a constant addend, but really // shouldn't use both Darwin and ELF syntax. return ELFRefKind == AArch64MCExpr::VK_INVALID || DarwinRefKind == MCSymbolRefExpr::VK_None; } /// Force static initialization. extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64AsmParser() { RegisterMCAsmParser X(getTheAArch64leTarget()); RegisterMCAsmParser Y(getTheAArch64beTarget()); RegisterMCAsmParser Z(getTheARM64Target()); RegisterMCAsmParser W(getTheARM64_32Target()); RegisterMCAsmParser V(getTheAArch64_32Target()); } #define GET_REGISTER_MATCHER #define GET_SUBTARGET_FEATURE_NAME #define GET_MATCHER_IMPLEMENTATION #define GET_MNEMONIC_SPELL_CHECKER #include "AArch64GenAsmMatcher.inc" // Define this matcher function after the auto-generated include so we // have the match class enum definitions. unsigned AArch64AsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, unsigned Kind) { AArch64Operand &Op = static_cast(AsmOp); // If the kind is a token for a literal immediate, check if our asm // operand matches. This is for InstAliases which have a fixed-value // immediate in the syntax. int64_t ExpectedVal; switch (Kind) { default: return Match_InvalidOperand; case MCK__HASH_0: ExpectedVal = 0; break; case MCK__HASH_1: ExpectedVal = 1; break; case MCK__HASH_12: ExpectedVal = 12; break; case MCK__HASH_16: ExpectedVal = 16; break; case MCK__HASH_2: ExpectedVal = 2; break; case MCK__HASH_24: ExpectedVal = 24; break; case MCK__HASH_3: ExpectedVal = 3; break; case MCK__HASH_32: ExpectedVal = 32; break; case MCK__HASH_4: ExpectedVal = 4; break; case MCK__HASH_48: ExpectedVal = 48; break; case MCK__HASH_6: ExpectedVal = 6; break; case MCK__HASH_64: ExpectedVal = 64; break; case MCK__HASH_8: ExpectedVal = 8; break; case MCK_MPR: // If the Kind is a token for the MPR register class which has the "za" // register (SME accumulator array), check if the asm is a literal "za" // token. This is for the "smstart za" alias that defines the register // as a literal token. if (Op.isTokenEqual("za")) return Match_Success; break; } if (!Op.isImm()) return Match_InvalidOperand; const MCConstantExpr *CE = dyn_cast(Op.getImm()); if (!CE) return Match_InvalidOperand; if (CE->getValue() == ExpectedVal) return Match_Success; return Match_InvalidOperand; } OperandMatchResultTy AArch64AsmParser::tryParseGPRSeqPair(OperandVector &Operands) { SMLoc S = getLoc(); if (getTok().isNot(AsmToken::Identifier)) { Error(S, "expected register"); return MatchOperand_ParseFail; } unsigned FirstReg; OperandMatchResultTy Res = tryParseScalarRegister(FirstReg); if (Res != MatchOperand_Success) return MatchOperand_ParseFail; const MCRegisterClass &WRegClass = AArch64MCRegisterClasses[AArch64::GPR32RegClassID]; const MCRegisterClass &XRegClass = AArch64MCRegisterClasses[AArch64::GPR64RegClassID]; bool isXReg = XRegClass.contains(FirstReg), isWReg = WRegClass.contains(FirstReg); if (!isXReg && !isWReg) { Error(S, "expected first even register of a " "consecutive same-size even/odd register pair"); return MatchOperand_ParseFail; } const MCRegisterInfo *RI = getContext().getRegisterInfo(); unsigned FirstEncoding = RI->getEncodingValue(FirstReg); if (FirstEncoding & 0x1) { Error(S, "expected first even register of a " "consecutive same-size even/odd register pair"); return MatchOperand_ParseFail; } if (getTok().isNot(AsmToken::Comma)) { Error(getLoc(), "expected comma"); return MatchOperand_ParseFail; } // Eat the comma Lex(); SMLoc E = getLoc(); unsigned SecondReg; Res = tryParseScalarRegister(SecondReg); if (Res != MatchOperand_Success) return MatchOperand_ParseFail; if (RI->getEncodingValue(SecondReg) != FirstEncoding + 1 || (isXReg && !XRegClass.contains(SecondReg)) || (isWReg && !WRegClass.contains(SecondReg))) { Error(E,"expected second odd register of a " "consecutive same-size even/odd register pair"); return MatchOperand_ParseFail; } unsigned Pair = 0; if (isXReg) { Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube64, &AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID]); } else { Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube32, &AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID]); } Operands.push_back(AArch64Operand::CreateReg(Pair, RegKind::Scalar, S, getLoc(), getContext())); return MatchOperand_Success; } template OperandMatchResultTy AArch64AsmParser::tryParseSVEDataVector(OperandVector &Operands) { const SMLoc S = getLoc(); // Check for a SVE vector register specifier first. unsigned RegNum; StringRef Kind; OperandMatchResultTy Res = tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector); if (Res != MatchOperand_Success) return Res; if (ParseSuffix && Kind.empty()) return MatchOperand_NoMatch; const auto &KindRes = parseVectorKind(Kind, RegKind::SVEDataVector); if (!KindRes) return MatchOperand_NoMatch; unsigned ElementWidth = KindRes->second; // No shift/extend is the default. if (!ParseShiftExtend || getTok().isNot(AsmToken::Comma)) { Operands.push_back(AArch64Operand::CreateVectorReg( RegNum, RegKind::SVEDataVector, ElementWidth, S, S, getContext())); OperandMatchResultTy Res = tryParseVectorIndex(Operands); if (Res == MatchOperand_ParseFail) return MatchOperand_ParseFail; return MatchOperand_Success; } // Eat the comma Lex(); // Match the shift SmallVector, 1> ExtOpnd; Res = tryParseOptionalShiftExtend(ExtOpnd); if (Res != MatchOperand_Success) return Res; auto Ext = static_cast(ExtOpnd.back().get()); Operands.push_back(AArch64Operand::CreateVectorReg( RegNum, RegKind::SVEDataVector, ElementWidth, S, Ext->getEndLoc(), getContext(), Ext->getShiftExtendType(), Ext->getShiftExtendAmount(), Ext->hasShiftExtendAmount())); return MatchOperand_Success; } OperandMatchResultTy AArch64AsmParser::tryParseSVEPattern(OperandVector &Operands) { MCAsmParser &Parser = getParser(); SMLoc SS = getLoc(); const AsmToken &TokE = getTok(); bool IsHash = TokE.is(AsmToken::Hash); if (!IsHash && TokE.isNot(AsmToken::Identifier)) return MatchOperand_NoMatch; int64_t Pattern; if (IsHash) { Lex(); // Eat hash // Parse the immediate operand. const MCExpr *ImmVal; SS = getLoc(); if (Parser.parseExpression(ImmVal)) return MatchOperand_ParseFail; auto *MCE = dyn_cast(ImmVal); if (!MCE) return MatchOperand_ParseFail; Pattern = MCE->getValue(); } else { // Parse the pattern auto Pat = AArch64SVEPredPattern::lookupSVEPREDPATByName(TokE.getString()); if (!Pat) return MatchOperand_NoMatch; Lex(); Pattern = Pat->Encoding; assert(Pattern >= 0 && Pattern < 32); } Operands.push_back( AArch64Operand::CreateImm(MCConstantExpr::create(Pattern, getContext()), SS, getLoc(), getContext())); return MatchOperand_Success; } OperandMatchResultTy AArch64AsmParser::tryParseGPR64x8(OperandVector &Operands) { SMLoc SS = getLoc(); unsigned XReg; if (tryParseScalarRegister(XReg) != MatchOperand_Success) return MatchOperand_NoMatch; MCContext &ctx = getContext(); const MCRegisterInfo *RI = ctx.getRegisterInfo(); int X8Reg = RI->getMatchingSuperReg( XReg, AArch64::x8sub_0, &AArch64MCRegisterClasses[AArch64::GPR64x8ClassRegClassID]); if (!X8Reg) { Error(SS, "expected an even-numbered x-register in the range [x0,x22]"); return MatchOperand_ParseFail; } Operands.push_back( AArch64Operand::CreateReg(X8Reg, RegKind::Scalar, SS, getLoc(), ctx)); return MatchOperand_Success; }