//===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "AArch64TargetMachine.h" #include "AArch64.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64MacroFusion.h" #include "AArch64Subtarget.h" #include "AArch64TargetObjectFile.h" #include "AArch64TargetTransformInfo.h" #include "MCTargetDesc/AArch64MCTargetDesc.h" #include "TargetInfo/AArch64TargetInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/CSEConfigBase.h" #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" #include "llvm/CodeGen/GlobalISel/Legalizer.h" #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" #include "llvm/CodeGen/GlobalISel/Localizer.h" #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" #include "llvm/CodeGen/MIRParser/MIParser.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Pass.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/CFGuard.h" #include "llvm/Transforms/Scalar.h" #include #include using namespace llvm; static cl::opt EnableCCMP("aarch64-enable-ccmp", cl::desc("Enable the CCMP formation pass"), cl::init(true), cl::Hidden); static cl::opt EnableCondBrTuning("aarch64-enable-cond-br-tune", cl::desc("Enable the conditional branch tuning pass"), cl::init(true), cl::Hidden); static cl::opt EnableMCR("aarch64-enable-mcr", cl::desc("Enable the machine combiner pass"), cl::init(true), cl::Hidden); static cl::opt EnableStPairSuppress("aarch64-enable-stp-suppress", cl::desc("Suppress STP for AArch64"), cl::init(true), cl::Hidden); static cl::opt EnableAdvSIMDScalar( "aarch64-enable-simd-scalar", cl::desc("Enable use of AdvSIMD scalar integer instructions"), cl::init(false), cl::Hidden); static cl::opt EnablePromoteConstant("aarch64-enable-promote-const", cl::desc("Enable the promote constant pass"), cl::init(true), cl::Hidden); static cl::opt EnableCollectLOH( "aarch64-enable-collect-loh", cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), cl::init(true), cl::Hidden); static cl::opt EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, cl::desc("Enable the pass that removes dead" " definitons and replaces stores to" " them with stores to the zero" " register"), cl::init(true)); static cl::opt EnableRedundantCopyElimination( "aarch64-enable-copyelim", cl::desc("Enable the redundant copy elimination pass"), cl::init(true), cl::Hidden); static cl::opt EnableLoadStoreOpt("aarch64-enable-ldst-opt", cl::desc("Enable the load/store pair" " optimization pass"), cl::init(true), cl::Hidden); static cl::opt EnableAtomicTidy( "aarch64-enable-atomic-cfg-tidy", cl::Hidden, cl::desc("Run SimplifyCFG after expanding atomic operations" " to make use of cmpxchg flow-based information"), cl::init(true)); static cl::opt EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, cl::desc("Run early if-conversion"), cl::init(true)); static cl::opt EnableCondOpt("aarch64-enable-condopt", cl::desc("Enable the condition optimizer pass"), cl::init(true), cl::Hidden); static cl::opt EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, cl::desc("Enable optimizations on complex GEPs"), cl::init(false)); static cl::opt BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), cl::desc("Relax out of range conditional branches")); static cl::opt EnableCompressJumpTables( "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), cl::desc("Use smallest entry possible for jump tables")); // FIXME: Unify control over GlobalMerge. static cl::opt EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, cl::desc("Enable the global merge pass")); static cl::opt EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, cl::desc("Enable the loop data prefetch pass"), cl::init(true)); static cl::opt EnableGlobalISelAtO( "aarch64-enable-global-isel-at-O", cl::Hidden, cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), cl::init(0)); static cl::opt EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, cl::desc("Enable SVE intrinsic opts"), cl::init(true)); static cl::opt EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", cl::init(true), cl::Hidden); static cl::opt EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, cl::desc("Enable the AArch64 branch target pass"), cl::init(true)); static cl::opt SVEVectorBitsMaxOpt( "aarch64-sve-vector-bits-max", cl::desc("Assume SVE vector registers are at most this big, " "with zero meaning no maximum size is assumed."), cl::init(0), cl::Hidden); static cl::opt SVEVectorBitsMinOpt( "aarch64-sve-vector-bits-min", cl::desc("Assume SVE vector registers are at least this big, " "with zero meaning no minimum size is assumed."), cl::init(0), cl::Hidden); extern cl::opt EnableHomogeneousPrologEpilog; static cl::opt EnableGISelLoadStoreOptPreLegal( "aarch64-enable-gisel-ldst-prelegal", cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), cl::init(true), cl::Hidden); static cl::opt EnableGISelLoadStoreOptPostLegal( "aarch64-enable-gisel-ldst-postlegal", cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), cl::init(false), cl::Hidden); extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { // Register the target. RegisterTargetMachine X(getTheAArch64leTarget()); RegisterTargetMachine Y(getTheAArch64beTarget()); RegisterTargetMachine Z(getTheARM64Target()); RegisterTargetMachine W(getTheARM64_32Target()); RegisterTargetMachine V(getTheAArch64_32Target()); auto PR = PassRegistry::getPassRegistry(); initializeGlobalISel(*PR); initializeAArch64A53Fix835769Pass(*PR); initializeAArch64A57FPLoadBalancingPass(*PR); initializeAArch64AdvSIMDScalarPass(*PR); initializeAArch64BranchTargetsPass(*PR); initializeAArch64CollectLOHPass(*PR); initializeAArch64CompressJumpTablesPass(*PR); initializeAArch64ConditionalComparesPass(*PR); initializeAArch64ConditionOptimizerPass(*PR); initializeAArch64DeadRegisterDefinitionsPass(*PR); initializeAArch64ExpandPseudoPass(*PR); initializeAArch64LoadStoreOptPass(*PR); initializeAArch64MIPeepholeOptPass(*PR); initializeAArch64SIMDInstrOptPass(*PR); initializeAArch64O0PreLegalizerCombinerPass(*PR); initializeAArch64PreLegalizerCombinerPass(*PR); initializeAArch64PostLegalizerCombinerPass(*PR); initializeAArch64PostLegalizerLoweringPass(*PR); initializeAArch64PostSelectOptimizePass(*PR); initializeAArch64PromoteConstantPass(*PR); initializeAArch64RedundantCopyEliminationPass(*PR); initializeAArch64StorePairSuppressPass(*PR); initializeFalkorHWPFFixPass(*PR); initializeFalkorMarkStridedAccessesLegacyPass(*PR); initializeLDTLSCleanupPass(*PR); initializeSVEIntrinsicOptsPass(*PR); initializeAArch64SpeculationHardeningPass(*PR); initializeAArch64SLSHardeningPass(*PR); initializeAArch64StackTaggingPass(*PR); initializeAArch64StackTaggingPreRAPass(*PR); initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); } //===----------------------------------------------------------------------===// // AArch64 Lowering public interface. //===----------------------------------------------------------------------===// static std::unique_ptr createTLOF(const Triple &TT) { if (TT.isOSBinFormatMachO()) return std::make_unique(); if (TT.isOSBinFormatCOFF()) return std::make_unique(); return std::make_unique(); } // Helper function to build a DataLayout string static std::string computeDataLayout(const Triple &TT, const MCTargetOptions &Options, bool LittleEndian) { if (TT.isOSBinFormatMachO()) { if (TT.getArch() == Triple::aarch64_32) return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; return "e-m:o-i64:64-i128:128-n32:64-S128"; } if (TT.isOSBinFormatCOFF()) return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; std::string Endian = LittleEndian ? "e" : "E"; std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; return Endian + "-m:e" + Ptr32 + "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; } static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { if (CPU.empty() && TT.isArm64e()) return "apple-a12"; return CPU; } static Reloc::Model getEffectiveRelocModel(const Triple &TT, Optional RM) { // AArch64 Darwin and Windows are always PIC. if (TT.isOSDarwin() || TT.isOSWindows()) return Reloc::PIC_; // On ELF platforms the default static relocation model has a smart enough // linker to cope with referencing external symbols defined in a shared // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) return Reloc::Static; return *RM; } static CodeModel::Model getEffectiveAArch64CodeModel(const Triple &TT, Optional CM, bool JIT) { if (CM) { if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && *CM != CodeModel::Large) { report_fatal_error( "Only small, tiny and large code models are allowed on AArch64"); } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) report_fatal_error("tiny code model is only supported on ELF"); return *CM; } // The default MCJIT memory managers make no guarantees about where they can // find an executable page; JITed code needs to be able to refer to globals // no matter how far away they are. // We should set the CodeModel::Small for Windows ARM64 in JIT mode, // since with large code model LLVM generating 4 MOV instructions, and // Windows doesn't support relocating these long branch (4 MOVs). if (JIT && !TT.isOSWindows()) return CodeModel::Large; return CodeModel::Small; } /// Create an AArch64 architecture model. /// AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT, bool LittleEndian) : LLVMTargetMachine(T, computeDataLayout(TT, Options.MCOptions, LittleEndian), TT, computeDefaultCPU(TT, CPU), FS, Options, getEffectiveRelocModel(TT, RM), getEffectiveAArch64CodeModel(TT, CM, JIT), OL), TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { initAsmInfo(); if (TT.isOSBinFormatMachO()) { this->Options.TrapUnreachable = true; this->Options.NoTrapAfterNoreturn = true; } if (getMCAsmInfo()->usesWindowsCFI()) { // Unwinding can get confused if the last instruction in an // exception-handling region (function, funclet, try block, etc.) // is a call. // // FIXME: We could elide the trap if the next instruction would be in // the same region anyway. this->Options.TrapUnreachable = true; } if (this->Options.TLSSize == 0) // default this->Options.TLSSize = 24; if ((getCodeModel() == CodeModel::Small || getCodeModel() == CodeModel::Kernel) && this->Options.TLSSize > 32) // for the small (and kernel) code model, the maximum TLS size is 4GiB this->Options.TLSSize = 32; else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) this->Options.TLSSize = 24; // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is // MachO/CodeModel::Large, which GlobalISel does not support. if (getOptLevel() <= EnableGlobalISelAtO && TT.getArch() != Triple::aarch64_32 && TT.getEnvironment() != Triple::GNUILP32 && !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { setGlobalISel(true); setGlobalISelAbort(GlobalISelAbortMode::Disable); } // AArch64 supports the MachineOutliner. setMachineOutliner(true); // AArch64 supports default outlining behaviour. setSupportsDefaultOutlining(true); // AArch64 supports the debug entry values. setSupportsDebugEntryValues(true); } AArch64TargetMachine::~AArch64TargetMachine() = default; const AArch64Subtarget * AArch64TargetMachine::getSubtargetImpl(const Function &F) const { Attribute CPUAttr = F.getFnAttribute("target-cpu"); Attribute TuneAttr = F.getFnAttribute("tune-cpu"); Attribute FSAttr = F.getFnAttribute("target-features"); std::string CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; std::string TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; std::string FS = FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; SmallString<512> Key; unsigned MinSVEVectorSize = 0; unsigned MaxSVEVectorSize = 0; Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); if (VScaleRangeAttr.isValid()) { Optional VScaleMax = VScaleRangeAttr.getVScaleRangeMax(); MinSVEVectorSize = VScaleRangeAttr.getVScaleRangeMin() * 128; MaxSVEVectorSize = VScaleMax ? VScaleMax.getValue() * 128 : 0; } else { MinSVEVectorSize = SVEVectorBitsMinOpt; MaxSVEVectorSize = SVEVectorBitsMaxOpt; } assert(MinSVEVectorSize % 128 == 0 && "SVE requires vector length in multiples of 128!"); assert(MaxSVEVectorSize % 128 == 0 && "SVE requires vector length in multiples of 128!"); assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && "Minimum SVE vector size should not be larger than its maximum!"); // Sanitize user input in case of no asserts if (MaxSVEVectorSize == 0) MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; else { MinSVEVectorSize = (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; MaxSVEVectorSize = (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; } Key += "SVEMin"; Key += std::to_string(MinSVEVectorSize); Key += "SVEMax"; Key += std::to_string(MaxSVEVectorSize); Key += CPU; Key += TuneCPU; Key += FS; auto &I = SubtargetMap[Key]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = std::make_unique(TargetTriple, CPU, TuneCPU, FS, *this, isLittle, MinSVEVectorSize, MaxSVEVectorSize); } return I.get(); } void AArch64leTargetMachine::anchor() { } AArch64leTargetMachine::AArch64leTargetMachine( const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT) : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} void AArch64beTargetMachine::anchor() { } AArch64beTargetMachine::AArch64beTargetMachine( const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional RM, Optional CM, CodeGenOpt::Level OL, bool JIT) : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} namespace { /// AArch64 Code Generator Pass Configuration Options. class AArch64PassConfig : public TargetPassConfig { public: AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) { if (TM.getOptLevel() != CodeGenOpt::None) substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); } AArch64TargetMachine &getAArch64TargetMachine() const { return getTM(); } ScheduleDAGInstrs * createMachineScheduler(MachineSchedContext *C) const override { const AArch64Subtarget &ST = C->MF->getSubtarget(); ScheduleDAGMILive *DAG = createGenericSchedLive(C); DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); if (ST.hasFusion()) DAG->addMutation(createAArch64MacroFusionDAGMutation()); return DAG; } ScheduleDAGInstrs * createPostMachineScheduler(MachineSchedContext *C) const override { const AArch64Subtarget &ST = C->MF->getSubtarget(); if (ST.hasFusion()) { // Run the Macro Fusion after RA again since literals are expanded from // pseudos then (v. addPreSched2()). ScheduleDAGMI *DAG = createGenericSchedPostRA(C); DAG->addMutation(createAArch64MacroFusionDAGMutation()); return DAG; } return nullptr; } void addIRPasses() override; bool addPreISel() override; void addCodeGenPrepare() override; bool addInstSelector() override; bool addIRTranslator() override; void addPreLegalizeMachineIR() override; bool addLegalizeMachineIR() override; void addPreRegBankSelect() override; bool addRegBankSelect() override; void addPreGlobalInstructionSelect() override; bool addGlobalInstructionSelect() override; void addMachineSSAOptimization() override; bool addILPOpts() override; void addPreRegAlloc() override; void addPostRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; void addPreEmitPass2() override; std::unique_ptr getCSEConfig() const override; }; } // end anonymous namespace TargetTransformInfo AArch64TargetMachine::getTargetTransformInfo(const Function &F) { return TargetTransformInfo(AArch64TTIImpl(this, F)); } TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { return new AArch64PassConfig(*this, PM); } std::unique_ptr AArch64PassConfig::getCSEConfig() const { return getStandardCSEConfigForOpt(TM->getOptLevel()); } void AArch64PassConfig::addIRPasses() { // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg // ourselves. addPass(createAtomicExpandPass()); // Expand any SVE vector library calls that we can't code generate directly. if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) addPass(createSVEIntrinsicOptsPass()); // Cmpxchg instructions are often used with a subsequent comparison to // determine whether it succeeded. We can exploit existing control-flow in // ldrex/strex loops to simplify this, but it needs tidying up. if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) addPass(createCFGSimplificationPass(SimplifyCFGOptions() .forwardSwitchCondToPhi(true) .convertSwitchRangeToICmp(true) .convertSwitchToLookupTable(true) .needCanonicalLoops(false) .hoistCommonInsts(true) .sinkCommonInsts(true))); // Run LoopDataPrefetch // // Run this before LSR to remove the multiplies involved in computing the // pointer values N iterations ahead. if (TM->getOptLevel() != CodeGenOpt::None) { if (EnableLoopDataPrefetch) addPass(createLoopDataPrefetchPass()); if (EnableFalkorHWPFFix) addPass(createFalkorMarkStridedAccessesPass()); } TargetPassConfig::addIRPasses(); addPass(createAArch64StackTaggingPass( /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); // Match interleaved memory accesses to ldN/stN intrinsics. if (TM->getOptLevel() != CodeGenOpt::None) { addPass(createInterleavedLoadCombinePass()); addPass(createInterleavedAccessPass()); } if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { // Call SeparateConstOffsetFromGEP pass to extract constants within indices // and lower a GEP with multiple indices to either arithmetic operations or // multiple GEPs with single index. addPass(createSeparateConstOffsetFromGEPPass(true)); // Call EarlyCSE pass to find and remove subexpressions in the lowered // result. addPass(createEarlyCSEPass()); // Do loop invariant code motion in case part of the lowered result is // invariant. addPass(createLICMPass()); } // Add Control Flow Guard checks. if (TM->getTargetTriple().isOSWindows()) addPass(createCFGuardCheckPass()); } // Pass Pipeline Configuration bool AArch64PassConfig::addPreISel() { // Run promote constant before global merge, so that the promoted constants // get a chance to be merged if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) addPass(createAArch64PromoteConstantPass()); // FIXME: On AArch64, this depends on the type. // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). // and the offset has to be a multiple of the related size in bytes. if ((TM->getOptLevel() != CodeGenOpt::None && EnableGlobalMerge == cl::BOU_UNSET) || EnableGlobalMerge == cl::BOU_TRUE) { bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && (EnableGlobalMerge == cl::BOU_UNSET); // Merging of extern globals is enabled by default on non-Mach-O as we // expect it to be generally either beneficial or harmless. On Mach-O it // is disabled as we emit the .subsections_via_symbols directive which // means that merging extern globals is not safe. bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); // FIXME: extern global merging is only enabled when we optimise for size // because there are some regressions with it also enabled for performance. if (!OnlyOptimizeForSize) MergeExternalByDefault = false; addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, MergeExternalByDefault)); } return false; } void AArch64PassConfig::addCodeGenPrepare() { if (getOptLevel() != CodeGenOpt::None) addPass(createTypePromotionPass()); TargetPassConfig::addCodeGenPrepare(); } bool AArch64PassConfig::addInstSelector() { addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many // references to _TLS_MODULE_BASE_ as possible. if (TM->getTargetTriple().isOSBinFormatELF() && getOptLevel() != CodeGenOpt::None) addPass(createAArch64CleanupLocalDynamicTLSPass()); return false; } bool AArch64PassConfig::addIRTranslator() { addPass(new IRTranslator(getOptLevel())); return false; } void AArch64PassConfig::addPreLegalizeMachineIR() { if (getOptLevel() == CodeGenOpt::None) addPass(createAArch64O0PreLegalizerCombiner()); else { addPass(createAArch64PreLegalizerCombiner()); if (EnableGISelLoadStoreOptPreLegal) addPass(new LoadStoreOpt()); } } bool AArch64PassConfig::addLegalizeMachineIR() { addPass(new Legalizer()); return false; } void AArch64PassConfig::addPreRegBankSelect() { bool IsOptNone = getOptLevel() == CodeGenOpt::None; if (!IsOptNone) { addPass(createAArch64PostLegalizerCombiner(IsOptNone)); if (EnableGISelLoadStoreOptPostLegal) addPass(new LoadStoreOpt()); } addPass(createAArch64PostLegalizerLowering()); } bool AArch64PassConfig::addRegBankSelect() { addPass(new RegBankSelect()); return false; } void AArch64PassConfig::addPreGlobalInstructionSelect() { addPass(new Localizer()); } bool AArch64PassConfig::addGlobalInstructionSelect() { addPass(new InstructionSelect(getOptLevel())); if (getOptLevel() != CodeGenOpt::None) addPass(createAArch64PostSelectOptimize()); return false; } void AArch64PassConfig::addMachineSSAOptimization() { // Run default MachineSSAOptimization first. TargetPassConfig::addMachineSSAOptimization(); if (TM->getOptLevel() != CodeGenOpt::None) addPass(createAArch64MIPeepholeOptPass()); } bool AArch64PassConfig::addILPOpts() { if (EnableCondOpt) addPass(createAArch64ConditionOptimizerPass()); if (EnableCCMP) addPass(createAArch64ConditionalCompares()); if (EnableMCR) addPass(&MachineCombinerID); if (EnableCondBrTuning) addPass(createAArch64CondBrTuning()); if (EnableEarlyIfConversion) addPass(&EarlyIfConverterID); if (EnableStPairSuppress) addPass(createAArch64StorePairSuppressPass()); addPass(createAArch64SIMDInstrOptPass()); if (TM->getOptLevel() != CodeGenOpt::None) addPass(createAArch64StackTaggingPreRAPass()); return true; } void AArch64PassConfig::addPreRegAlloc() { // Change dead register definitions to refer to the zero register. if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) addPass(createAArch64DeadRegisterDefinitions()); // Use AdvSIMD scalar instructions whenever profitable. if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { addPass(createAArch64AdvSIMDScalar()); // The AdvSIMD pass may produce copies that can be rewritten to // be register coalescer friendly. addPass(&PeepholeOptimizerID); } } void AArch64PassConfig::addPostRegAlloc() { // Remove redundant copy instructions. if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) addPass(createAArch64RedundantCopyEliminationPass()); if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) // Improve performance for some FP/SIMD code for A57. addPass(createAArch64A57FPLoadBalancing()); } void AArch64PassConfig::addPreSched2() { // Lower homogeneous frame instructions if (EnableHomogeneousPrologEpilog) addPass(createAArch64LowerHomogeneousPrologEpilogPass()); // Expand some pseudo instructions to allow proper scheduling. addPass(createAArch64ExpandPseudoPass()); // Use load/store pair instructions when possible. if (TM->getOptLevel() != CodeGenOpt::None) { if (EnableLoadStoreOpt) addPass(createAArch64LoadStoreOptimizationPass()); } // The AArch64SpeculationHardeningPass destroys dominator tree and natural // loop info, which is needed for the FalkorHWPFFixPass and also later on. // Therefore, run the AArch64SpeculationHardeningPass before the // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop // info. addPass(createAArch64SpeculationHardeningPass()); addPass(createAArch64IndirectThunks()); addPass(createAArch64SLSHardeningPass()); if (TM->getOptLevel() != CodeGenOpt::None) { if (EnableFalkorHWPFFix) addPass(createFalkorHWPFFixPass()); } } void AArch64PassConfig::addPreEmitPass() { // Machine Block Placement might have created new opportunities when run // at O3, where the Tail Duplication Threshold is set to 4 instructions. // Run the load/store optimizer once more. if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) addPass(createAArch64LoadStoreOptimizationPass()); addPass(createAArch64A53Fix835769()); if (EnableBranchTargets) addPass(createAArch64BranchTargetsPass()); // Relax conditional branch instructions if they're otherwise out of // range of their destination. if (BranchRelaxation) addPass(&BranchRelaxationPassID); if (TM->getTargetTriple().isOSWindows()) { // Identify valid longjmp targets for Windows Control Flow Guard. addPass(createCFGuardLongjmpPass()); // Identify valid eh continuation targets for Windows EHCont Guard. addPass(createEHContGuardCatchretPass()); } if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) addPass(createAArch64CompressJumpTablesPass()); if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && TM->getTargetTriple().isOSBinFormatMachO()) addPass(createAArch64CollectLOHPass()); } void AArch64PassConfig::addPreEmitPass2() { // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo // instructions are lowered to bundles as well. addPass(createUnpackMachineBundles(nullptr)); } yaml::MachineFunctionInfo * AArch64TargetMachine::createDefaultFuncInfoYAML() const { return new yaml::AArch64FunctionInfo(); } yaml::MachineFunctionInfo * AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { const auto *MFI = MF.getInfo(); return new yaml::AArch64FunctionInfo(*MFI); } bool AArch64TargetMachine::parseMachineFunctionInfo( const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) const { const auto &YamlMFI = reinterpret_cast(MFI); MachineFunction &MF = PFS.MF; MF.getInfo()->initializeBaseYamlFields(YamlMFI); return false; }