//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the AArch64 specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "AArch64Subtarget.h" #include "AArch64.h" #include "AArch64InstrInfo.h" #include "AArch64PBQPRegAlloc.h" #include "AArch64TargetMachine.h" #include "GISel/AArch64CallLowering.h" #include "GISel/AArch64LegalizerInfo.h" #include "GISel/AArch64RegisterBankInfo.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/SipHash.h" #include "llvm/TargetParser/AArch64TargetParser.h" using namespace llvm; #define DEBUG_TYPE "aarch64-subtarget" #define GET_SUBTARGETINFO_CTOR #define GET_SUBTARGETINFO_TARGET_DESC #include "AArch64GenSubtargetInfo.inc" static cl::opt EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if " "converter pass"), cl::init(true), cl::Hidden); // If OS supports TBI, use this flag to enable it. static cl::opt UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of " "an address is ignored"), cl::init(false), cl::Hidden); static cl::opt MachOUseNonLazyBind( "aarch64-macho-enable-nonlazybind", cl::desc("Call nonlazybind functions via direct GOT load for Mach-O"), cl::Hidden); static cl::opt UseAA("aarch64-use-aa", cl::init(true), cl::desc("Enable the use of AA during codegen.")); static cl::opt OverrideVectorInsertExtractBaseCost( "aarch64-insert-extract-base-cost", cl::desc("Base cost of vector insert/extract element"), cl::Hidden); // Reserve a list of X# registers, so they are unavailable for register // allocator, but can still be used as ABI requests, such as passing arguments // to function call. static cl::list ReservedRegsForRA("reserve-regs-for-regalloc", cl::desc("Reserve physical " "registers, so they can't be used by register allocator. " "Should only be used for testing register allocator."), cl::CommaSeparated, cl::Hidden); static cl::opt AuthenticatedLRCheckMethod("aarch64-authenticated-lr-check-method", cl::Hidden, cl::desc("Override the variant of check applied " "to authenticated LR during tail call"), cl::values(AUTH_CHECK_METHOD_CL_VALUES_LR)); static cl::opt AArch64MinimumJumpTableEntries( "aarch64-min-jump-table-entries", cl::init(13), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table on AArch64")); unsigned AArch64Subtarget::getVectorInsertExtractBaseCost() const { if (OverrideVectorInsertExtractBaseCost.getNumOccurrences() > 0) return OverrideVectorInsertExtractBaseCost; return VectorInsertExtractBaseCost; } AArch64Subtarget &AArch64Subtarget::initializeSubtargetDependencies( StringRef FS, StringRef CPUString, StringRef TuneCPUString, bool HasMinSize) { // Determine default and user-specified characteristics if (CPUString.empty()) CPUString = "generic"; if (TuneCPUString.empty()) TuneCPUString = CPUString; ParseSubtargetFeatures(CPUString, TuneCPUString, FS); initializeProperties(HasMinSize); return *this; } void AArch64Subtarget::initializeProperties(bool HasMinSize) { // Initialize CPU specific properties. We should add a tablegen feature for // this in the future so we can specify it together with the subtarget // features. switch (ARMProcFamily) { case Others: break; case Carmel: CacheLineSize = 64; break; case CortexA35: case CortexA53: case CortexA55: case CortexR82: case CortexR82AE: PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(16); MaxBytesForLoopAlignment = 8; break; case CortexA57: MaxInterleaveFactor = 4; PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(16); MaxBytesForLoopAlignment = 8; break; case CortexA65: PrefFunctionAlignment = Align(8); break; case CortexA72: case CortexA73: case CortexA75: PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(16); MaxBytesForLoopAlignment = 8; break; case CortexA76: case CortexA77: case CortexA78: case CortexA78AE: case CortexA78C: case CortexX1: PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(32); MaxBytesForLoopAlignment = 16; break; case CortexA510: case CortexA520: PrefFunctionAlignment = Align(16); VScaleForTuning = 1; PrefLoopAlignment = Align(16); MaxBytesForLoopAlignment = 8; break; case CortexA710: case CortexA715: case CortexA720: case CortexA725: case CortexX2: case CortexX3: case CortexX4: case CortexX925: PrefFunctionAlignment = Align(16); VScaleForTuning = 1; PrefLoopAlignment = Align(32); MaxBytesForLoopAlignment = 16; break; case A64FX: CacheLineSize = 256; PrefFunctionAlignment = Align(8); PrefLoopAlignment = Align(4); MaxInterleaveFactor = 4; PrefetchDistance = 128; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 4; VScaleForTuning = 4; break; case AppleA7: case AppleA10: case AppleA11: case AppleA12: case AppleA13: case AppleA14: case AppleA15: case AppleA16: case AppleA17: case AppleM4: CacheLineSize = 64; PrefetchDistance = 280; MinPrefetchStride = 2048; MaxPrefetchIterationsAhead = 3; switch (ARMProcFamily) { case AppleA14: case AppleA15: case AppleA16: case AppleA17: case AppleM4: MaxInterleaveFactor = 4; break; default: break; } break; case ExynosM3: MaxInterleaveFactor = 4; MaxJumpTableSize = 20; PrefFunctionAlignment = Align(32); PrefLoopAlignment = Align(16); break; case Falkor: MaxInterleaveFactor = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; CacheLineSize = 128; PrefetchDistance = 820; MinPrefetchStride = 2048; MaxPrefetchIterationsAhead = 8; break; case Kryo: MaxInterleaveFactor = 4; VectorInsertExtractBaseCost = 2; CacheLineSize = 128; PrefetchDistance = 740; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 11; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case NeoverseE1: PrefFunctionAlignment = Align(8); break; case NeoverseN1: PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(32); MaxBytesForLoopAlignment = 16; break; case NeoverseN2: case NeoverseN3: case NeoverseV2: case NeoverseV3: PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(32); MaxBytesForLoopAlignment = 16; VScaleForTuning = 1; break; case NeoverseV1: PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(32); MaxBytesForLoopAlignment = 16; VScaleForTuning = 2; DefaultSVETFOpts = TailFoldingOpts::Simple; break; case Neoverse512TVB: PrefFunctionAlignment = Align(16); VScaleForTuning = 1; MaxInterleaveFactor = 4; break; case Saphira: MaxInterleaveFactor = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case ThunderX2T99: CacheLineSize = 64; PrefFunctionAlignment = Align(8); PrefLoopAlignment = Align(4); MaxInterleaveFactor = 4; PrefetchDistance = 128; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case ThunderX: case ThunderXT88: case ThunderXT81: case ThunderXT83: CacheLineSize = 128; PrefFunctionAlignment = Align(8); PrefLoopAlignment = Align(4); // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case TSV110: CacheLineSize = 64; PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(4); break; case ThunderX3T110: CacheLineSize = 64; PrefFunctionAlignment = Align(16); PrefLoopAlignment = Align(4); MaxInterleaveFactor = 4; PrefetchDistance = 128; MinPrefetchStride = 1024; MaxPrefetchIterationsAhead = 4; // FIXME: remove this to enable 64-bit SLP if performance looks good. MinVectorRegisterBitWidth = 128; break; case Ampere1: case Ampere1A: case Ampere1B: CacheLineSize = 64; PrefFunctionAlignment = Align(64); PrefLoopAlignment = Align(64); MaxInterleaveFactor = 4; break; case Oryon: CacheLineSize = 64; PrefFunctionAlignment = Align(16); MaxInterleaveFactor = 4; PrefetchDistance = 128; MinPrefetchStride = 1024; break; } if (AArch64MinimumJumpTableEntries.getNumOccurrences() > 0 || !HasMinSize) MinimumJumpTableEntries = AArch64MinimumJumpTableEntries; } AArch64Subtarget::AArch64Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS, const TargetMachine &TM, bool LittleEndian, unsigned MinSVEVectorSizeInBitsOverride, unsigned MaxSVEVectorSizeInBitsOverride, bool IsStreaming, bool IsStreamingCompatible, bool HasMinSize) : AArch64GenSubtargetInfo(TT, CPU, TuneCPU, FS), ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()), ReserveXRegisterForRA(AArch64::GPR64commonRegClass.getNumRegs()), CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()), IsLittle(LittleEndian), IsStreaming(IsStreaming), IsStreamingCompatible(IsStreamingCompatible), MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride), MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(FS, CPU, TuneCPU, HasMinSize)), TLInfo(TM, *this) { if (AArch64::isX18ReservedByDefault(TT)) ReserveXRegister.set(18); CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering())); InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); Legalizer.reset(new AArch64LegalizerInfo(*this)); auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo()); // FIXME: At this point, we can't rely on Subtarget having RBI. // It's awkward to mix passing RBI and the Subtarget; should we pass // TII/TRI as well? InstSelector.reset(createAArch64InstructionSelector( *static_cast(&TM), *this, *RBI)); RegBankInfo.reset(RBI); auto TRI = getRegisterInfo(); StringSet<> ReservedRegNames; ReservedRegNames.insert(ReservedRegsForRA.begin(), ReservedRegsForRA.end()); for (unsigned i = 0; i < 29; ++i) { if (ReservedRegNames.count(TRI->getName(AArch64::X0 + i))) ReserveXRegisterForRA.set(i); } // X30 is named LR, so we can't use TRI->getName to check X30. if (ReservedRegNames.count("X30") || ReservedRegNames.count("LR")) ReserveXRegisterForRA.set(30); // X29 is named FP, so we can't use TRI->getName to check X29. if (ReservedRegNames.count("X29") || ReservedRegNames.count("FP")) ReserveXRegisterForRA.set(29); AddressCheckPSV.reset(new AddressCheckPseudoSourceValue(TM)); } const CallLowering *AArch64Subtarget::getCallLowering() const { return CallLoweringInfo.get(); } const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const { return InlineAsmLoweringInfo.get(); } InstructionSelector *AArch64Subtarget::getInstructionSelector() const { return InstSelector.get(); } const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const { return Legalizer.get(); } const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const { return RegBankInfo.get(); } /// Find the target operand flags that describe how a global value should be /// referenced for the current subtarget. unsigned AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { // MachO large model always goes via a GOT, simply to get a single 8-byte // absolute relocation on all global addresses. if (TM.getCodeModel() == CodeModel::Large && isTargetMachO()) return AArch64II::MO_GOT; // All globals dynamically protected by MTE must have their address tags // synthesized. This is done by having the loader stash the tag in the GOT // entry. Force all tagged globals (even ones with internal linkage) through // the GOT. if (GV->isTagged()) return AArch64II::MO_GOT; if (!TM.shouldAssumeDSOLocal(GV)) { if (GV->hasDLLImportStorageClass()) { return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT; } if (getTargetTriple().isOSWindows()) return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB; return AArch64II::MO_GOT; } // The small code model's direct accesses use ADRP, which cannot // necessarily produce the value 0 (if the code is above 4GB). // Same for the tiny code model, where we have a pc relative LDR. if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) && GV->hasExternalWeakLinkage()) return AArch64II::MO_GOT; // References to tagged globals are marked with MO_NC | MO_TAGGED to indicate // that their nominal addresses are tagged and outside of the code model. In // AArch64ExpandPseudo::expandMI we emit an additional instruction to set the // tag if necessary based on MO_TAGGED. if (AllowTaggedGlobals && !isa(GV->getValueType())) return AArch64II::MO_NC | AArch64II::MO_TAGGED; return AArch64II::MO_NO_FLAG; } unsigned AArch64Subtarget::classifyGlobalFunctionReference( const GlobalValue *GV, const TargetMachine &TM) const { // MachO large model always goes via a GOT, because we don't have the // relocations available to do anything else.. if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() && !GV->hasInternalLinkage()) return AArch64II::MO_GOT; // NonLazyBind goes via GOT unless we know it's available locally. auto *F = dyn_cast(GV); if ((!isTargetMachO() || MachOUseNonLazyBind) && F && F->hasFnAttribute(Attribute::NonLazyBind) && !TM.shouldAssumeDSOLocal(GV)) return AArch64II::MO_GOT; if (getTargetTriple().isOSWindows()) { if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy()) { if (GV->hasDLLImportStorageClass()) { // On Arm64EC, if we're calling a symbol from the import table // directly, use MO_ARM64EC_CALLMANGLE. return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT | AArch64II::MO_ARM64EC_CALLMANGLE; } if (GV->hasExternalLinkage()) { // If we're calling a symbol directly, use the mangled form in the // call instruction. return AArch64II::MO_ARM64EC_CALLMANGLE; } } // Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB. return ClassifyGlobalReference(GV, TM); } return AArch64II::MO_NO_FLAG; } void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const { // LNT run (at least on Cyclone) showed reasonably significant gains for // bi-directional scheduling. 253.perlbmk. Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; // Enabling or Disabling the latency heuristic is a close call: It seems to // help nearly no benchmark on out-of-order architectures, on the other hand // it regresses register pressure on a few benchmarking. Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic; } void AArch64Subtarget::adjustSchedDependency( SUnit *Def, int DefOpIdx, SUnit *Use, int UseOpIdx, SDep &Dep, const TargetSchedModel *SchedModel) const { if (!SchedModel || Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || !Def->isInstr() || !Use->isInstr() || (Def->getInstr()->getOpcode() != TargetOpcode::BUNDLE && Use->getInstr()->getOpcode() != TargetOpcode::BUNDLE)) return; // If the Def is a BUNDLE, find the last instruction in the bundle that defs // the register. const MachineInstr *DefMI = Def->getInstr(); if (DefMI->getOpcode() == TargetOpcode::BUNDLE) { Register Reg = DefMI->getOperand(DefOpIdx).getReg(); for (const auto &Op : const_mi_bundle_ops(*DefMI)) { if (Op.isReg() && Op.isDef() && Op.getReg() == Reg) { DefMI = Op.getParent(); DefOpIdx = Op.getOperandNo(); } } } // If the Use is a BUNDLE, find the first instruction that uses the Reg. const MachineInstr *UseMI = Use->getInstr(); if (UseMI->getOpcode() == TargetOpcode::BUNDLE) { Register Reg = UseMI->getOperand(UseOpIdx).getReg(); for (const auto &Op : const_mi_bundle_ops(*UseMI)) { if (Op.isReg() && Op.isUse() && Op.getReg() == Reg) { UseMI = Op.getParent(); UseOpIdx = Op.getOperandNo(); break; } } } Dep.setLatency( SchedModel->computeOperandLatency(DefMI, DefOpIdx, UseMI, UseOpIdx)); } bool AArch64Subtarget::enableEarlyIfConversion() const { return EnableEarlyIfConvert; } bool AArch64Subtarget::supportsAddressTopByteIgnored() const { if (!UseAddressTopByteIgnored) return false; if (TargetTriple.isDriverKit()) return true; if (TargetTriple.isiOS()) { return TargetTriple.getiOSVersion() >= VersionTuple(8); } return false; } std::unique_ptr AArch64Subtarget::getCustomPBQPConstraints() const { return balanceFPOps() ? std::make_unique() : nullptr; } void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const { // We usually compute max call frame size after ISel. Do the computation now // if the .mir file didn't specify it. Note that this will probably give you // bogus values after PEI has eliminated the callframe setup/destroy pseudo // instructions, specify explicitly if you need it to be correct. MachineFrameInfo &MFI = MF.getFrameInfo(); if (!MFI.isMaxCallFrameSizeComputed()) MFI.computeMaxCallFrameSize(MF); } bool AArch64Subtarget::useAA() const { return UseAA; } // If return address signing is enabled, tail calls are emitted as follows: // // ``` // // // TCRETURN ; the callee may sign and spill the LR in its prologue // ``` // // LR may require explicit checking because if FEAT_FPAC is not implemented // and LR was tampered with, then `` will not generate an // exception on its own. Later, if the callee spills the signed LR value and // neither FEAT_PAuth2 nor FEAT_EPAC are implemented, the valid PAC replaces // the higher bits of LR thus hiding the authentication failure. AArch64PAuth::AuthCheckMethod AArch64Subtarget::getAuthenticatedLRCheckMethod( const MachineFunction &MF) const { // TODO: Check subtarget for the scheme. Present variant is a default for // pauthtest ABI. if (MF.getFunction().hasFnAttribute("ptrauth-returns") && MF.getFunction().hasFnAttribute("ptrauth-auth-traps")) return AArch64PAuth::AuthCheckMethod::HighBitsNoTBI; if (AuthenticatedLRCheckMethod.getNumOccurrences()) return AuthenticatedLRCheckMethod; // At now, use None by default because checks may introduce an unexpected // performance regression or incompatibility with execute-only mappings. return AArch64PAuth::AuthCheckMethod::None; } std::optional AArch64Subtarget::getPtrAuthBlockAddressDiscriminatorIfEnabled( const Function &ParentFn) const { if (!ParentFn.hasFnAttribute("ptrauth-indirect-gotos")) return std::nullopt; // We currently have one simple mechanism for all targets. // This isn't ABI, so we can always do better in the future. return getPointerAuthStableSipHash( (Twine(ParentFn.getName()) + " blockaddress").str()); } bool AArch64Subtarget::enableMachinePipeliner() const { return getSchedModel().hasInstrSchedModel(); }