//=- AArch64SchedNeoverseV1.td - NeoverseV1 Scheduling Model -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the scheduling model for the Arm Neoverse V1 processors. // // References: // - "Arm Neoverse V1 Software Optimization Guide" // - "Arm Neoverse V1 Platform: Unleashing a new performance tier for Arm-based computing" // https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/neoverse-v1-platform-a-new-performance-tier-for-arm // - "Neoverse V1" // https://en.wikichip.org/wiki/arm_holdings/microarchitectures/neoverse_v1 // //===----------------------------------------------------------------------===// def NeoverseV1Model : SchedMachineModel { let IssueWidth = 15; // Maximum micro-ops dispatch rate. let MicroOpBufferSize = 256; // Micro-op re-order buffer. let LoadLatency = 4; // Optimistic load latency. let MispredictPenalty = 11; // Cycles cost of branch mispredicted. let LoopMicroOpBufferSize = 16; // NOTE: Copied from Cortex-A57. let CompleteModel = 1; list UnsupportedFeatures = !listconcat(SVE2Unsupported.F, SMEUnsupported.F, [HasMTE, HasCPA, HasCSSC]); } //===----------------------------------------------------------------------===// // Define each kind of processor resource and number available on Neoverse V1. // Instructions are first fetched and then decoded into internal macro-ops // (MOPs). From there, the MOPs proceed through register renaming and dispatch // stages. A MOP can be split into one or more micro-ops further down the // pipeline, after the decode stage. Once dispatched, micro-ops wait for their // operands and issue out-of-order to one of the issue pipelines. Each issue // pipeline can accept one micro-op per cycle. let SchedModel = NeoverseV1Model in { // Define the issue ports. def V1UnitB : ProcResource<2>; // Branch 0/1 def V1UnitS : ProcResource<2>; // Integer single cycle 0/1 def V1UnitM0 : ProcResource<1>; // Integer multicycle 0 def V1UnitM1 : ProcResource<1>; // Integer multicycle 1 def V1UnitL01 : ProcResource<2>; // Load/Store 0/1 def V1UnitL2 : ProcResource<1>; // Load 2 def V1UnitD : ProcResource<2>; // Store data 0/1 def V1UnitV0 : ProcResource<1>; // FP/ASIMD 0 def V1UnitV1 : ProcResource<1>; // FP/ASIMD 1 def V1UnitV2 : ProcResource<1>; // FP/ASIMD 2 def V1UnitV3 : ProcResource<1>; // FP/ASIMD 3 def V1UnitI : ProcResGroup<[V1UnitS, V1UnitM0, V1UnitM1]>; // Integer units def V1UnitJ : ProcResGroup<[V1UnitS, V1UnitM0]>; // Integer 0-2 units def V1UnitM : ProcResGroup<[V1UnitM0, V1UnitM1]>; // Integer multicycle units def V1UnitL : ProcResGroup<[V1UnitL01, V1UnitL2]>; // Load units def V1UnitV : ProcResGroup<[V1UnitV0, V1UnitV1, V1UnitV2, V1UnitV3]>; // FP/ASIMD units def V1UnitV01 : ProcResGroup<[V1UnitV0, V1UnitV1]>; // FP/ASIMD 0/1 units def V1UnitV02 : ProcResGroup<[V1UnitV0, V1UnitV2]>; // FP/ASIMD 0/2 units def V1UnitV13 : ProcResGroup<[V1UnitV1, V1UnitV3]>; // FP/ASIMD 1/3 units // Define commonly used read types. // No generic forwarding is provided for these types. def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : WriteRes { let Unsupported = 1; } def : WriteRes { let Latency = 1; } def : WriteRes { let Latency = 1; } //===----------------------------------------------------------------------===// // Define generic 0 micro-op types let Latency = 0, NumMicroOps = 0 in def V1Write_0c_0Z : SchedWriteRes<[]>; //===----------------------------------------------------------------------===// // Define generic 1 micro-op types def V1Write_1c_1B : SchedWriteRes<[V1UnitB]> { let Latency = 1; } def V1Write_1c_1I : SchedWriteRes<[V1UnitI]> { let Latency = 1; } def V1Write_1c_1J : SchedWriteRes<[V1UnitJ]> { let Latency = 1; } def V1Write_4c_1L : SchedWriteRes<[V1UnitL]> { let Latency = 4; } def V1Write_6c_1L : SchedWriteRes<[V1UnitL]> { let Latency = 6; } def V1Write_1c_1L01 : SchedWriteRes<[V1UnitL01]> { let Latency = 1; } def V1Write_4c_1L01 : SchedWriteRes<[V1UnitL01]> { let Latency = 4; } def V1Write_6c_1L01 : SchedWriteRes<[V1UnitL01]> { let Latency = 6; } def V1Write_2c_1M : SchedWriteRes<[V1UnitM]> { let Latency = 2; } def V1Write_3c_1M : SchedWriteRes<[V1UnitM]> { let Latency = 3; } def V1Write_4c_1M : SchedWriteRes<[V1UnitM]> { let Latency = 4; } def V1Write_1c_1M0 : SchedWriteRes<[V1UnitM0]> { let Latency = 1; } def V1Write_2c_1M0 : SchedWriteRes<[V1UnitM0]> { let Latency = 2; } def V1Write_3c_1M0 : SchedWriteRes<[V1UnitM0]> { let Latency = 3; } def V1Write_5c_1M0 : SchedWriteRes<[V1UnitM0]> { let Latency = 5; } def V1Write_12c5_1M0 : SchedWriteRes<[V1UnitM0]> { let Latency = 12; let ReleaseAtCycles = [5]; } def V1Write_20c5_1M0 : SchedWriteRes<[V1UnitM0]> { let Latency = 20; let ReleaseAtCycles = [5]; } def V1Write_2c_1V : SchedWriteRes<[V1UnitV]> { let Latency = 2; } def V1Write_3c_1V : SchedWriteRes<[V1UnitV]> { let Latency = 3; } def V1Write_4c_1V : SchedWriteRes<[V1UnitV]> { let Latency = 4; } def V1Write_5c_1V : SchedWriteRes<[V1UnitV]> { let Latency = 5; } def V1Write_2c_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 2; } def V1Write_3c_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 3; } def V1Write_4c_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 4; } def V1Write_6c_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 6; } def V1Write_10c7_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 10; let ReleaseAtCycles = [7]; } def V1Write_12c7_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 12; let ReleaseAtCycles = [7]; } def V1Write_13c10_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 13; let ReleaseAtCycles = [10]; } def V1Write_15c7_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 15; let ReleaseAtCycles = [7]; } def V1Write_16c7_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 16; let ReleaseAtCycles = [7]; } def V1Write_20c7_1V0 : SchedWriteRes<[V1UnitV0]> { let Latency = 20; let ReleaseAtCycles = [7]; } def V1Write_2c_1V01 : SchedWriteRes<[V1UnitV01]> { let Latency = 2; } def V1Write_3c_1V01 : SchedWriteRes<[V1UnitV01]> { let Latency = 3; } def V1Write_4c_1V01 : SchedWriteRes<[V1UnitV01]> { let Latency = 4; } def V1Write_5c_1V01 : SchedWriteRes<[V1UnitV01]> { let Latency = 5; } def V1Write_3c_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 3; } def V1Write_4c_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 4; } def V1Write_7c7_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 7; let ReleaseAtCycles = [7]; } def V1Write_10c7_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 10; let ReleaseAtCycles = [7]; } def V1Write_13c5_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 13; let ReleaseAtCycles = [5]; } def V1Write_13c11_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 13; let ReleaseAtCycles = [11]; } def V1Write_15c7_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 15; let ReleaseAtCycles = [7]; } def V1Write_16c7_1V02 : SchedWriteRes<[V1UnitV02]> { let Latency = 16; let ReleaseAtCycles = [7]; } def V1Write_2c_1V1 : SchedWriteRes<[V1UnitV1]> { let Latency = 2; } def V1Write_3c_1V1 : SchedWriteRes<[V1UnitV1]> { let Latency = 3; } def V1Write_4c_1V1 : SchedWriteRes<[V1UnitV1]> { let Latency = 4; } def V1Write_2c_1V13 : SchedWriteRes<[V1UnitV13]> { let Latency = 2; } def V1Write_4c_1V13 : SchedWriteRes<[V1UnitV13]> { let Latency = 4; } //===----------------------------------------------------------------------===// // Define generic 2 micro-op types let Latency = 1, NumMicroOps = 2 in def V1Write_1c_1B_1S : SchedWriteRes<[V1UnitB, V1UnitS]>; let Latency = 6, NumMicroOps = 2 in def V1Write_6c_1B_1M0 : SchedWriteRes<[V1UnitB, V1UnitM0]>; let Latency = 3, NumMicroOps = 2 in def V1Write_3c_1I_1M : SchedWriteRes<[V1UnitI, V1UnitM]>; let Latency = 5, NumMicroOps = 2 in def V1Write_5c_1I_1L : SchedWriteRes<[V1UnitI, V1UnitL]>; let Latency = 7, NumMicroOps = 2 in def V1Write_7c_1I_1L : SchedWriteRes<[V1UnitI, V1UnitL]>; let Latency = 6, NumMicroOps = 2 in def V1Write_6c_2L : SchedWriteRes<[V1UnitL, V1UnitL]>; let Latency = 6, NumMicroOps = 2 in def V1Write_6c_1L_1M : SchedWriteRes<[V1UnitL, V1UnitM]>; let Latency = 8, NumMicroOps = 2 in def V1Write_8c_1L_1V : SchedWriteRes<[V1UnitL, V1UnitV]>; let Latency = 9, NumMicroOps = 2 in def V1Write_9c_1L_1V : SchedWriteRes<[V1UnitL, V1UnitV]>; let Latency = 11, NumMicroOps = 2 in def V1Write_11c_1L_1V : SchedWriteRes<[V1UnitL, V1UnitV]>; let Latency = 1, NumMicroOps = 2 in def V1Write_1c_1L01_1D : SchedWriteRes<[V1UnitL01, V1UnitD]>; let Latency = 6, NumMicroOps = 2 in def V1Write_6c_1L01_1S : SchedWriteRes<[V1UnitL01, V1UnitS]>; let Latency = 7, NumMicroOps = 2 in def V1Write_7c_1L01_1S : SchedWriteRes<[V1UnitL01, V1UnitS]>; let Latency = 2, NumMicroOps = 2 in def V1Write_2c_1L01_1V : SchedWriteRes<[V1UnitL01, V1UnitV]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_1L01_1V : SchedWriteRes<[V1UnitL01, V1UnitV]>; let Latency = 6, NumMicroOps = 2 in def V1Write_6c_1L01_1V : SchedWriteRes<[V1UnitL01, V1UnitV]>; let Latency = 2, NumMicroOps = 2 in def V1Write_2c_1L01_1V01 : SchedWriteRes<[V1UnitL01, V1UnitV01]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_1L01_1V01 : SchedWriteRes<[V1UnitL01, V1UnitV01]>; let Latency = 2, NumMicroOps = 2 in def V1Write_2c_2M0 : SchedWriteRes<[V1UnitM0, V1UnitM0]>; let Latency = 3, NumMicroOps = 2 in def V1Write_3c_2M0 : SchedWriteRes<[V1UnitM0, V1UnitM0]>; let Latency = 9, NumMicroOps = 2 in def V1Write_9c_1M0_1L : SchedWriteRes<[V1UnitM0, V1UnitL]>; let Latency = 5, NumMicroOps = 2 in def V1Write_5c_1M0_1V : SchedWriteRes<[V1UnitM0, V1UnitV]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_1M0_1V0 : SchedWriteRes<[V1UnitM0, V1UnitV0]>; let Latency = 7, NumMicroOps = 2 in def V1Write_7c_1M0_1V0 : SchedWriteRes<[V1UnitM0, V1UnitV1]>; let Latency = 5, NumMicroOps = 2 in def V1Write_5c_1M0_1V01 : SchedWriteRes<[V1UnitM0, V1UnitV01]>; let Latency = 6, NumMicroOps = 2 in def V1Write_6c_1M0_1V1 : SchedWriteRes<[V1UnitM0, V1UnitV1]>; let Latency = 9, NumMicroOps = 2 in def V1Write_9c_1M0_1V1 : SchedWriteRes<[V1UnitM0, V1UnitV1]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_2V : SchedWriteRes<[V1UnitV, V1UnitV]>; let Latency = 8, NumMicroOps = 2 in def V1Write_8c_1V_1V01 : SchedWriteRes<[V1UnitV, V1UnitV01]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_2V0 : SchedWriteRes<[V1UnitV0, V1UnitV0]>; let Latency = 5, NumMicroOps = 2 in def V1Write_5c_2V0 : SchedWriteRes<[V1UnitV0, V1UnitV0]>; let Latency = 2, NumMicroOps = 2 in def V1Write_2c_2V01 : SchedWriteRes<[V1UnitV01, V1UnitV01]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_2V01 : SchedWriteRes<[V1UnitV01, V1UnitV01]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_2V02 : SchedWriteRes<[V1UnitV02, V1UnitV02]>; let Latency = 6, NumMicroOps = 2 in def V1Write_6c_2V02 : SchedWriteRes<[V1UnitV02, V1UnitV02]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_1V13_1V : SchedWriteRes<[V1UnitV13, V1UnitV]>; let Latency = 4, NumMicroOps = 2 in def V1Write_4c_2V13 : SchedWriteRes<[V1UnitV13, V1UnitV13]>; //===----------------------------------------------------------------------===// // Define generic 3 micro-op types let Latency = 2, NumMicroOps = 3 in def V1Write_2c_1I_1L01_1V01 : SchedWriteRes<[V1UnitI, V1UnitL01, V1UnitV01]>; let Latency = 7, NumMicroOps = 3 in def V1Write_7c_2M0_1V01 : SchedWriteRes<[V1UnitM0, V1UnitM0, V1UnitV01]>; let Latency = 8, NumMicroOps = 3 in def V1Write_8c_1L_2V : SchedWriteRes<[V1UnitL, V1UnitV, V1UnitV]>; let Latency = 6, NumMicroOps = 3 in def V1Write_6c_3L : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitL]>; let Latency = 2, NumMicroOps = 3 in def V1Write_2c_1L01_1S_1V : SchedWriteRes<[V1UnitL01, V1UnitS, V1UnitV]>; let Latency = 4, NumMicroOps = 3 in def V1Write_4c_1L01_1S_1V : SchedWriteRes<[V1UnitL01, V1UnitS, V1UnitV]>; let Latency = 2, NumMicroOps = 3 in def V1Write_2c_2L01_1V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitV01]>; let Latency = 6, NumMicroOps = 3 in def V1Write_6c_3V : SchedWriteRes<[V1UnitV, V1UnitV, V1UnitV]>; let Latency = 4, NumMicroOps = 3 in def V1Write_4c_3V01 : SchedWriteRes<[V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 6, NumMicroOps = 3 in def V1Write_6c_3V01 : SchedWriteRes<[V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 8, NumMicroOps = 3 in def V1Write_8c_3V01 : SchedWriteRes<[V1UnitV01, V1UnitV01, V1UnitV01]>; //===----------------------------------------------------------------------===// // Define generic 4 micro-op types let Latency = 8, NumMicroOps = 4 in def V1Write_8c_2M0_2V0 : SchedWriteRes<[V1UnitM0, V1UnitM0, V1UnitV0, V1UnitV0]>; let Latency = 7, NumMicroOps = 4 in def V1Write_7c_4L : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitL, V1UnitL]>; let Latency = 8, NumMicroOps = 4 in def V1Write_8c_2L_2V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitV, V1UnitV]>; let Latency = 9, NumMicroOps = 4 in def V1Write_9c_2L_2V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitV, V1UnitV]>; let Latency = 11, NumMicroOps = 4 in def V1Write_11c_2L_2V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitV, V1UnitV]>; let Latency = 10, NumMicroOps = 4 in def V1Write_10c_2L01_2V : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitV, V1UnitV]>; let Latency = 2, NumMicroOps = 4 in def V1Write_2c_2L01_2V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01]>; let Latency = 4, NumMicroOps = 4 in def V1Write_4c_2L01_2V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01]>; let Latency = 8, NumMicroOps = 4 in def V1Write_8c_2L01_2V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01]>; let Latency = 9, NumMicroOps = 4 in def V1Write_9c_2L01_2V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01]>; let Latency = 10, NumMicroOps = 4 in def V1Write_10c_2L01_2V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01]>; let Latency = 10, NumMicroOps = 4 in def V1Write_10c_1V_1V01_2V1 : SchedWriteRes<[V1UnitV, V1UnitV01, V1UnitV1, V1UnitV1]>; let Latency = 12, NumMicroOps = 4 in def V1Write_12c_1V_1V01_2V1 : SchedWriteRes<[V1UnitV, V1UnitV01, V1UnitV1, V1UnitV1]>; let Latency = 6, NumMicroOps = 4 in def V1Write_6c_4V0 : SchedWriteRes<[V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0]>; let Latency = 12, NumMicroOps = 4 in def V1Write_12c_4V01 : SchedWriteRes<[V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 6, NumMicroOps = 4 in def V1Write_6c_4V02 : SchedWriteRes<[V1UnitV02, V1UnitV02]>; //===----------------------------------------------------------------------===// // Define generic 5 micro-op types let Latency = 8, NumMicroOps = 5 in def V1Write_8c_2L_3V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitV, V1UnitV, V1UnitV]>; let Latency = 14, NumMicroOps = 5 in def V1Write_14c_1V_1V0_2V1_1V13 : SchedWriteRes<[V1UnitV, V1UnitV0, V1UnitV1, V1UnitV1, V1UnitV13]>; let Latency = 9, NumMicroOps = 5 in def V1Write_9c_1V_4V01 : SchedWriteRes<[V1UnitV, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 6, NumMicroOps = 5 in def V1Write_6c_5V01 : SchedWriteRes<[V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; //===----------------------------------------------------------------------===// // Define generic 6 micro-op types let Latency = 6, NumMicroOps = 6 in def V1Write_6c_3L_3V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitL, V1UnitV, V1UnitV, V1UnitV]>; let Latency = 8, NumMicroOps = 6 in def V1Write_8c_3L_3V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitL, V1UnitV, V1UnitV, V1UnitV]>; let Latency = 2, NumMicroOps = 6 in def V1Write_2c_3L01_3V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 5, NumMicroOps = 6 in def V1Write_5c_3L01_3V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 6, NumMicroOps = 6 in def V1Write_6c_3L01_3V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 11, NumMicroOps = 6 in def V1Write_11c_3L01_3V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 11, NumMicroOps = 6 in def V1Write_11c_1V_5V01 : SchedWriteRes<[V1UnitV, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 13, NumMicroOps = 6 in def V1Write_13c_6V01 : SchedWriteRes<[V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; //===----------------------------------------------------------------------===// // Define generic 7 micro-op types let Latency = 8, NumMicroOps = 7 in def V1Write_8c_3L_4V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitL, V1UnitV, V1UnitV, V1UnitV, V1UnitV]>; let Latency = 8, NumMicroOps = 7 in def V1Write_13c_3L01_1S_3V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitS, V1UnitV01, V1UnitV01, V1UnitV01]>; //===----------------------------------------------------------------------===// // Define generic 8 micro-op types let Latency = 9, NumMicroOps = 8 in def V1Write_9c_4L_4V : SchedWriteRes<[V1UnitL, V1UnitL, V1UnitL, V1UnitL, V1UnitV, V1UnitV, V1UnitV, V1UnitV]>; let Latency = 2, NumMicroOps = 8 in def V1Write_2c_4L01_4V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 4, NumMicroOps = 8 in def V1Write_4c_4L01_4V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 12, NumMicroOps = 8 in def V1Write_12c_4L01_4V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; //===----------------------------------------------------------------------===// // Define generic 10 micro-op types let Latency = 13, NumMicroOps = 10 in def V1Write_13c_4L01_2S_4V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitS, V1UnitS, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; let Latency = 7, NumMicroOps = 10 in def V1Write_7c_5L01_5V : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV]>; let Latency = 11, NumMicroOps = 10 in def V1Write_11c_10V0 : SchedWriteRes<[V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0]>; //===----------------------------------------------------------------------===// // Define generic 12 micro-op types let Latency = 7, NumMicroOps = 12 in def V1Write_7c_6L01_6V01 : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01, V1UnitV01]>; //===----------------------------------------------------------------------===// // Define generic 15 micro-op types let Latency = 7, NumMicroOps = 15 in def V1Write_7c_5L01_5S_5V : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV]>; //===----------------------------------------------------------------------===// // Define generic 18 micro-op types let Latency = 19, NumMicroOps = 18 in def V1Write_11c_9L01_9V : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV]>; let Latency = 19, NumMicroOps = 18 in def V1Write_19c_18V0 : SchedWriteRes<[V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0, V1UnitV0]>; //===----------------------------------------------------------------------===// // Define generic 27 micro-op types let Latency = 11, NumMicroOps = 27 in def V1Write_11c_9L01_9S_9V : SchedWriteRes<[V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitL01, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitS, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV, V1UnitV]>; // Miscellaneous Instructions // ----------------------------------------------------------------------------- // COPY def : InstRW<[V1Write_1c_1I], (instrs COPY)>; // MSR def : WriteRes { let Latency = 1; } // Branch Instructions // ----------------------------------------------------------------------------- // Branch, immed // Compare and branch def : SchedAlias; // Branch, register def : SchedAlias; // Branch and link, immed // Branch and link, register def : InstRW<[V1Write_1c_1B_1S], (instrs BL, BLR)>; // Compare and branch def : InstRW<[V1Write_1c_1B], (instregex "^[CT]BN?Z[XW]$")>; // Arithmetic and Logical Instructions // ----------------------------------------------------------------------------- // ALU, basic // Conditional compare // Conditional select // Logical, basic // Address generation // Count leading // Reverse bits/bytes // Move immediate def : SchedAlias; // ALU, basic, flagset def : InstRW<[V1Write_1c_1J], (instregex "^(ADD|SUB)S[WX]r[ir]$", "^(ADC|SBC)S[WX]r$", "^ANDS[WX]ri$", "^(AND|BIC)S[WX]rr$")>; // ALU, extend and shift def : SchedAlias; // Arithmetic, LSL shift, shift <= 4 // Arithmetic, LSR/ASR/ROR shift or LSL shift > 4 def V1WriteISReg : SchedWriteVariant< [SchedVar, SchedVar]>; def : SchedAlias; // Arithmetic, flagset, LSL shift, shift <= 4 // Arithmetic, flagset, LSR/ASR/ROR shift or LSL shift > 4 def V1WriteISRegS : SchedWriteVariant< [SchedVar, SchedVar]>; def : InstRW<[V1WriteISRegS], (instregex "^(ADD|SUB)S(([WX]r[sx])|Xrx64)$")>; // Logical, shift, no flagset def : InstRW<[V1Write_1c_1I], (instregex "^(AND|BIC|EON|EOR|ORN|ORR)[WX]rs$")>; // Logical, shift, flagset def : InstRW<[V1Write_2c_1M], (instregex "^(AND|BIC)S[WX]rs$")>; // Flag manipulation instructions def : InstRW<[V1Write_1c_1J], (instrs SETF8, SETF16, RMIF, CFINV)>; // Divide and multiply instructions // ----------------------------------------------------------------------------- // Divide def : SchedAlias; def : SchedAlias; // Multiply // Multiply accumulate // Multiply accumulate, long // Multiply long def V1WriteIM : SchedWriteVariant< [SchedVar, SchedVar]>; def : SchedAlias; def : SchedAlias; // Multiply high def : InstRW<[V1Write_3c_1M, ReadIM, ReadIM], (instrs SMULHrr, UMULHrr)>; // Pointer Authentication Instructions (v8.3 PAC) // ----------------------------------------------------------------------------- // Authenticate data address // Authenticate instruction address // Compute pointer authentication code for data address // Compute pointer authentication code, using generic key // Compute pointer authentication code for instruction address def : InstRW<[V1Write_5c_1M0], (instregex "^AUT", "^PAC")>; // Branch and link, register, with pointer authentication // Branch, register, with pointer authentication // Branch, return, with pointer authentication def : InstRW<[V1Write_6c_1B_1M0], (instregex "^BL?RA[AB]Z?$", "^E?RETA[AB]$")>; // Load register, with pointer authentication def : InstRW<[V1Write_9c_1M0_1L], (instregex "^LDRA[AB](indexed|writeback)")>; // Strip pointer authentication code def : InstRW<[V1Write_2c_1M0], (instrs XPACD, XPACI, XPACLRI)>; // Miscellaneous data-processing instructions // ----------------------------------------------------------------------------- // Bitfield extract, one reg // Bitfield extract, two regs def V1WriteExtr : SchedWriteVariant< [SchedVar, SchedVar]>; def : SchedAlias; // Bitfield move, basic // Variable shift def : SchedAlias; // Bitfield move, insert def : InstRW<[V1Write_2c_1M], (instregex "^BFM[WX]ri$")>; // Move immediate def : SchedAlias; // Load instructions // ----------------------------------------------------------------------------- // Load register, immed offset def : SchedAlias; // Load register, immed offset, index def : SchedAlias; def : SchedAlias; // Load pair, immed offset def : SchedAlias; def : InstRW<[V1Write_4c_1L, V1Write_0c_0Z], (instrs LDPWi, LDNPWi)>; def : InstRW<[WriteAdr, V1Write_4c_1L, V1Write_0c_0Z], (instrs LDPWpost, LDPWpre)>; // Load pair, signed immed offset, signed words def : InstRW<[V1Write_5c_1I_1L, V1Write_0c_0Z], (instrs LDPSWi)>; // Load pair, immed post or pre-index, signed words def : InstRW<[WriteAdr, V1Write_5c_1I_1L, V1Write_0c_0Z], (instrs LDPSWpost, LDPSWpre)>; // Store instructions // ----------------------------------------------------------------------------- // Store register, immed offset def : SchedAlias; // Store register, immed offset, index def : SchedAlias; // Store pair, immed offset def : SchedAlias; // FP data processing instructions // ----------------------------------------------------------------------------- // FP absolute value // FP arithmetic // FP min/max // FP negate def : SchedAlias; // FP compare def : SchedAlias; // FP divide // FP square root def : SchedAlias; // FP divide, H-form // FP square root, H-form def : InstRW<[V1Write_7c7_1V02], (instrs FDIVHrr, FSQRTHr)>; // FP divide, S-form // FP square root, S-form def : InstRW<[V1Write_10c7_1V02], (instrs FDIVSrr, FSQRTSr)>; // FP divide, D-form def : InstRW<[V1Write_15c7_1V02], (instrs FDIVDrr)>; // FP square root, D-form def : InstRW<[V1Write_16c7_1V02], (instrs FSQRTDr)>; // FP multiply def : SchedAlias; // FP multiply accumulate def : InstRW<[V1Write_4c_1V], (instregex "^FN?M(ADD|SUB)[HSD]rrr$")>; // FP round to integral def : InstRW<[V1Write_3c_1V02], (instregex "^FRINT[AIMNPXZ][HSD]r$", "^FRINT(32|64)[XZ][SD]r$")>; // FP select def : InstRW<[V1Write_2c_1V01], (instregex "^FCSEL[HSD]rrr$")>; // FP miscellaneous instructions // ----------------------------------------------------------------------------- // FP convert, from gen to vec reg def : InstRW<[V1Write_3c_1M0], (instregex "^[SU]CVTF[SU][WX][HSD]ri$")>; // FP convert, from vec to gen reg def : InstRW<[V1Write_3c_1V0], (instregex "^FCVT[AMNPZ][SU][SU][WX][HSD]r$")>; // FP convert, Javascript from vec to gen reg def : InstRW<[V1Write_3c_1V0], (instrs FJCVTZS)>; // FP convert, from vec to vec reg def : SchedAlias; // FP move, immed def : SchedAlias; // FP move, register def : InstRW<[V1Write_2c_1V], (instrs FMOVHr, FMOVSr, FMOVDr)>; // FP transfer, from gen to low half of vec reg def : InstRW<[V1Write_3c_1M0], (instrs FMOVWHr, FMOVXHr, FMOVWSr, FMOVXDr)>; // FP transfer, from gen to high half of vec reg def : InstRW<[V1Write_5c_1M0_1V], (instrs FMOVXDHighr)>; // FP transfer, from vec to gen reg def : SchedAlias; // FP load instructions // ----------------------------------------------------------------------------- // Load vector reg, literal, S/D/Q forms // Load vector reg, unscaled immed // Load vector reg, unsigned immed def : InstRW<[V1Write_6c_1L, ReadAdrBase], (instregex "^LDR[SDQ]l$", "^LDUR[BHSDQ]i$", "^LDR[BHSDQ]ui$")>; // Load vector reg, immed post-index // Load vector reg, immed pre-index def : InstRW<[WriteAdr, V1Write_6c_1L], (instregex "^LDR[BHSDQ](post|pre)$")>; // Load vector reg, register offset, basic // Load vector reg, register offset, scale, S/D-form // Load vector reg, register offset, extend // Load vector reg, register offset, extend, scale, S/D-form def : InstRW<[V1Write_6c_1L, ReadAdrBase], (instregex "^LDR[BSD]ro[WX]$")>; // Load vector reg, register offset, scale, H/Q-form // Load vector reg, register offset, extend, scale, H/Q-form def : InstRW<[V1Write_7c_1I_1L, ReadAdrBase], (instregex "^LDR[HQ]ro[WX]$")>; // Load vector pair, immed offset, S/D-form def : InstRW<[V1Write_6c_1L, V1Write_0c_0Z], (instregex "^LDN?P[SD]i$")>; // Load vector pair, immed offset, Q-form def : InstRW<[V1Write_6c_1L, WriteLDHi], (instrs LDPQi, LDNPQi)>; // Load vector pair, immed post-index, S/D-form // Load vector pair, immed pre-index, S/D-form def : InstRW<[WriteAdr, V1Write_6c_1L, V1Write_0c_0Z], (instregex "^LDP[SD](pre|post)$")>; // Load vector pair, immed post-index, Q-form // Load vector pair, immed pre-index, Q-form def : InstRW<[WriteAdr, V1Write_6c_1L, WriteLDHi], (instrs LDPQpost, LDPQpre)>; // FP store instructions // ----------------------------------------------------------------------------- // Store vector reg, unscaled immed, B/H/S/D/Q-form def : InstRW<[V1Write_2c_1L01_1V01], (instregex "^STUR[BHSDQ]i$")>; // Store vector reg, immed post-index, B/H/S/D/Q-form // Store vector reg, immed pre-index, B/H/S/D/Q-form def : InstRW<[WriteAdr, V1Write_2c_1L01_1V01], (instregex "^STR[BHSDQ](pre|post)$")>; // Store vector reg, unsigned immed, B/H/S/D/Q-form def : InstRW<[V1Write_2c_1L01_1V01], (instregex "^STR[BHSDQ]ui$")>; // Store vector reg, register offset, basic, B/S/D-form // Store vector reg, register offset, scale, B/S/D-form // Store vector reg, register offset, extend, B/S/D-form // Store vector reg, register offset, extend, scale, B/S/D-form def : InstRW<[V1Write_2c_1L01_1V01, ReadAdrBase], (instregex "^STR[BSD]ro[WX]$")>; // Store vector reg, register offset, basic, H/Q-form // Store vector reg, register offset, scale, H/Q-form // Store vector reg, register offset, extend, H/Q-form // Store vector reg, register offset, extend, scale, H/Q-form def : InstRW<[V1Write_2c_1I_1L01_1V01, ReadAdrBase], (instregex "^STR[HQ]ro[WX]$")>; // Store vector pair, immed offset, S/D/Q-form def : InstRW<[V1Write_2c_1L01_1V01], (instregex "^STN?P[SDQ]i$")>; // Store vector pair, immed post-index, S/D-form // Store vector pair, immed pre-index, S/D-form def : InstRW<[WriteAdr, V1Write_2c_1L01_1V01], (instregex "^STP[SD](pre|post)$")>; // Store vector pair, immed post-index, Q-form // Store vector pair, immed pre-index, Q-form def : InstRW<[WriteAdr, V1Write_2c_2L01_1V01], (instrs STPQpre, STPQpost)>; // ASIMD integer instructions // ----------------------------------------------------------------------------- // ASIMD absolute diff // ASIMD absolute diff long // ASIMD arith, basic // ASIMD arith, complex // ASIMD arith, pair-wise // ASIMD compare // ASIMD logical // ASIMD max/min, basic and pair-wise def : SchedAlias; def : SchedAlias; // ASIMD absolute diff accum // ASIMD absolute diff accum long // ASIMD pairwise add and accumulate long def : InstRW<[V1Write_4c_1V13], (instregex "^[SU]ABAL?v", "^[SU]ADALPv")>; // ASIMD arith, reduce, 4H/4S // ASIMD max/min, reduce, 4H/4S def : InstRW<[V1Write_2c_1V13], (instregex "^(ADD|[SU]ADDL)Vv4(i16|i32)v$", "^[SU](MAX|MIN)Vv4(i16|i32)v$")>; // ASIMD arith, reduce, 8B/8H // ASIMD max/min, reduce, 8B/8H def : InstRW<[V1Write_4c_1V13_1V], (instregex "^(ADD|[SU]ADDL)Vv8(i8|i16)v$", "^[SU](MAX|MIN)Vv8(i8|i16)v$")>; // ASIMD arith, reduce, 16B // ASIMD max/min, reduce, 16B def : InstRW<[V1Write_4c_2V13], (instregex "^(ADD|[SU]ADDL)Vv16i8v$", "[SU](MAX|MIN)Vv16i8v$")>; // ASIMD dot product // ASIMD dot product using signed and unsigned integers def : InstRW<[V1Write_2c_1V], (instregex "^([SU]|SU|US)DOT(lane)?v(8|16)i8$")>; // ASIMD matrix multiply- accumulate def : InstRW<[V1Write_3c_1V], (instrs SMMLA, UMMLA, USMMLA)>; // ASIMD multiply // ASIMD multiply accumulate // ASIMD multiply accumulate long // ASIMD multiply accumulate high // ASIMD multiply accumulate saturating long def : InstRW<[V1Write_4c_1V02], (instregex "^MUL(v[148]i16|v[124]i32)$", "^SQR?DMULH(v[48]i16|v[24]i32)$", "^ML[AS](v[148]i16|v[124]i32)$", "^[SU]ML[AS]Lv", "^SQRDML[AS]H(v[148]i16|v[124]i32)$", "^SQDML[AS]Lv")>; // ASIMD multiply/multiply long (8x8) polynomial def : InstRW<[V1Write_3c_1V01], (instregex "^PMULL?v(8|16)i8$")>; // ASIMD multiply long def : InstRW<[V1Write_3c_1V02], (instregex "^([SU]|SQD)MULLv")>; // ASIMD shift accumulate // ASIMD shift by immed, complex // ASIMD shift by register, complex def : InstRW<[V1Write_4c_1V13], (instregex "^[SU]R?SRAv", "^RSHRNv", "^SQRSHRU?Nv", "^(SQSHLU?|UQSHL)[bhsd]$", "^(SQSHLU?|UQSHL)(v8i8|v16i8|v4i16|v8i16|v2i32|v4i32|v2i64)_shift$", "^SQSHU?RNv", "^[SU]RSHRv", "^UQR?SHRNv", "^[SU]Q?RSHLv", "^[SU]QSHLv")>; // ASIMD shift by immed, basic // ASIMD shift by immed and insert, basic // ASIMD shift by register, basic def : InstRW<[V1Write_2c_1V13], (instregex "^SHLL?v", "^SHRNv", "^[SU]SHLLv", "^[SU]SHRv", "^S[LR]Iv", "^[SU]SHLv")>; // ASIMD FP instructions // ----------------------------------------------------------------------------- // ASIMD FP absolute value/difference // ASIMD FP arith, normal // ASIMD FP compare // ASIMD FP complex add // ASIMD FP max/min, normal // ASIMD FP max/min, pairwise // ASIMD FP negate // Covered by "SchedAlias (WriteV[dq]...)" above // ASIMD FP complex multiply add // ASIMD FP multiply accumulate def : InstRW<[V1Write_4c_1V], (instregex "^FCADD(v[48]f16|v[24]f32|v2f64)$", "^FML[AS]v")>; // ASIMD FP convert, long (F16 to F32) def : InstRW<[V1Write_4c_2V02], (instregex "^FCVTLv[48]i16$")>; // ASIMD FP convert, long (F32 to F64) def : InstRW<[V1Write_3c_1V02], (instregex "^FCVTLv[24]i32$")>; // ASIMD FP convert, narrow (F32 to F16) def : InstRW<[V1Write_4c_2V02], (instregex "^FCVTNv[48]i16$")>; // ASIMD FP convert, narrow (F64 to F32) def : InstRW<[V1Write_3c_1V02], (instregex "^FCVTNv[24]i32$", "^FCVTXN(v[24]f32|v1i64)$")>; // ASIMD FP convert, other, D-form F32 and Q-form F64 def : InstRW<[V1Write_3c_1V02], (instregex "^[FSU]CVT[AMNPZ][SU]v2f(32|64)$", "^[SU]CVTFv2f(32|64)$")>; // ASIMD FP convert, other, D-form F16 and Q-form F32 def : InstRW<[V1Write_4c_2V02], (instregex "^[FSU]CVT[AMNPZ][SU]v4f(16|32)$", "^[SU]CVTFv4f(16|32)$")>; // ASIMD FP convert, other, Q-form F16 def : InstRW<[V1Write_6c_4V02], (instregex "^[FSU]CVT[AMNPZ][SU]v8f16$", "^[SU]CVTFv8f16$")>; // ASIMD FP divide, D-form, F16 // ASIMD FP square root, D-form, F16 def : InstRW<[V1Write_7c7_1V02], (instrs FDIVv4f16, FSQRTv4f16)>; // ASIMD FP divide, F32 // ASIMD FP square root, F32 def : InstRW<[V1Write_10c7_1V02], (instrs FDIVv2f32, FDIVv4f32, FSQRTv2f32, FSQRTv4f32)>; // ASIMD FP divide, Q-form, F16 def : InstRW<[V1Write_13c5_1V02], (instrs FDIVv8f16)>; // ASIMD FP divide, Q-form, F64 def : InstRW<[V1Write_15c7_1V02], (instrs FDIVv2f64)>; // ASIMD FP square root, Q-form, F16 def : InstRW<[V1Write_13c11_1V02], (instrs FSQRTv8f16)>; // ASIMD FP square root, Q-form, F64 def : InstRW<[V1Write_16c7_1V02], (instrs FSQRTv2f64)>; // ASIMD FP max/min, reduce, F32 and D-form F16 def : InstRW<[V1Write_4c_2V], (instregex "^F(MAX|MIN)(NM)?Vv4(i16|i32)v$")>; // ASIMD FP max/min, reduce, Q-form F16 def : InstRW<[V1Write_6c_3V], (instregex "^F(MAX|MIN)(NM)?Vv8i16v$")>; // ASIMD FP multiply def : InstRW<[V1Write_3c_1V], (instregex "^FMULX?v")>; // ASIMD FP multiply accumulate long def : InstRW<[V1Write_5c_1V], (instregex "^FML[AS]L2?v")>; // ASIMD FP round, D-form F32 and Q-form F64 def : InstRW<[V1Write_3c_1V02], (instregex "^FRINT[AIMNPXZ]v2f(32|64)$")>; // ASIMD FP round, D-form F16 and Q-form F32 def : InstRW<[V1Write_4c_2V02], (instregex "^FRINT[AIMNPXZ]v4f(16|32)$")>; // ASIMD FP round, Q-form F16 def : InstRW<[V1Write_6c_4V02], (instregex "^FRINT[AIMNPXZ]v8f16$")>; // ASIMD BF instructions // ----------------------------------------------------------------------------- // ASIMD convert, F32 to BF16 def : InstRW<[V1Write_4c_1V02], (instrs BFCVTN, BFCVTN2)>; // ASIMD dot product def : InstRW<[V1Write_4c_1V], (instregex "^BF(DOT|16DOTlane)v[48]bf16$")>; // ASIMD matrix multiply accumulate def : InstRW<[V1Write_5c_1V], (instrs BFMMLA)>; // ASIMD multiply accumulate long def : InstRW<[V1Write_4c_1V], (instregex "^BFMLAL[BT](Idx)?$")>; // Scalar convert, F32 to BF16 def : InstRW<[V1Write_3c_1V02], (instrs BFCVT)>; // ASIMD miscellaneous instructions // ----------------------------------------------------------------------------- // ASIMD bit reverse // ASIMD bitwise insert // ASIMD count // ASIMD duplicate, element // ASIMD extract // ASIMD extract narrow // ASIMD insert, element to element // ASIMD move, FP immed // ASIMD move, integer immed // ASIMD reverse // ASIMD table lookup, 1 or 2 table regs // ASIMD table lookup extension, 1 table reg // ASIMD transfer, element to gen reg // ASIMD transpose // ASIMD unzip/zip // Covered by "SchedAlias (WriteV[dq]...)" above // ASIMD duplicate, gen reg def : InstRW<[V1Write_3c_1M0], (instregex "^DUP((v16|v8)i8|(v8|v4)i16|(v4|v2)i32|v2i64)gpr$")>; // ASIMD extract narrow, saturating def : InstRW<[V1Write_4c_1V13], (instregex "^[SU]QXTNv", "^SQXTUNv")>; // ASIMD reciprocal and square root estimate, D-form U32 // ASIMD reciprocal and square root estimate, D-form F32 and F64 def : InstRW<[V1Write_3c_1V02], (instrs URECPEv2i32, URSQRTEv2i32, FRECPEv1i32, FRECPEv2f32, FRECPEv1i64, FRSQRTEv1i32, FRSQRTEv2f32, FRSQRTEv1i64)>; // ASIMD reciprocal and square root estimate, Q-form U32 // ASIMD reciprocal and square root estimate, D-form F16 and Q-form F32 and F64 def : InstRW<[V1Write_4c_1V02], (instrs URECPEv4i32, URSQRTEv4i32, FRECPEv1f16, FRECPEv4f16, FRECPEv4f32, FRECPEv2f64, FRSQRTEv1f16, FRSQRTEv4f16, FRSQRTEv4f32, FRSQRTEv2f64)>; // ASIMD reciprocal and square root estimate, Q-form F16 def : InstRW<[V1Write_6c_2V02], (instrs FRECPEv8f16, FRSQRTEv8f16)>; // ASIMD reciprocal exponent def : InstRW<[V1Write_3c_1V02], (instrs FRECPXv1f16, FRECPXv1i32, FRECPXv1i64)>; // ASIMD reciprocal step def : InstRW<[V1Write_4c_1V], (instregex "^FRECPS(16|32|64)$", "^FRECPSv", "^FRSQRTS(16|32|64)$", "^FRSQRTSv")>; // ASIMD table lookup, 1 or 2 table regs // ASIMD table lookup extension, 1 table reg def : InstRW<[V1Write_2c_2V01], (instregex "^TBLv(8|16)i8(One|Two)$", "^TBXv(8|16)i8One$")>; // ASIMD table lookup, 3 table regs // ASIMD table lookup extension, 2 table reg def : InstRW<[V1Write_4c_2V01], (instrs TBLv8i8Three, TBLv16i8Three, TBXv8i8Two, TBXv16i8Two)>; // ASIMD table lookup, 4 table regs def : InstRW<[V1Write_4c_3V01], (instrs TBLv8i8Four, TBLv16i8Four)>; // ASIMD table lookup extension, 3 table reg def : InstRW<[V1Write_6c_3V01], (instrs TBXv8i8Three, TBXv16i8Three)>; // ASIMD table lookup extension, 4 table reg def : InstRW<[V1Write_6c_5V01], (instrs TBXv8i8Four, TBXv16i8Four)>; // ASIMD transfer, element to gen reg def : InstRW<[V1Write_2c_1V], (instregex "^SMOVvi(((8|16)to(32|64))|32to64)$", "^UMOVvi(8|16|32|64)$")>; // ASIMD transfer, gen reg to element def : InstRW<[V1Write_5c_1M0_1V], (instregex "^INSvi(8|16|32|64)gpr$")>; // ASIMD load instructions // ----------------------------------------------------------------------------- // ASIMD load, 1 element, multiple, 1 reg def : InstRW<[V1Write_6c_1L], (instregex "^LD1Onev(8b|16b|4h|8h|2s|4s|1d|2d)$")>; def : InstRW<[WriteAdr, V1Write_6c_1L], (instregex "^LD1Onev(8b|16b|4h|8h|2s|4s|1d|2d)_POST$")>; // ASIMD load, 1 element, multiple, 2 reg def : InstRW<[V1Write_6c_2L], (instregex "^LD1Twov(8b|16b|4h|8h|2s|4s|1d|2d)$")>; def : InstRW<[WriteAdr, V1Write_6c_2L], (instregex "^LD1Twov(8b|16b|4h|8h|2s|4s|1d|2d)_POST$")>; // ASIMD load, 1 element, multiple, 3 reg def : InstRW<[V1Write_6c_3L], (instregex "^LD1Threev(8b|16b|4h|8h|2s|4s|1d|2d)$")>; def : InstRW<[WriteAdr, V1Write_6c_3L], (instregex "^LD1Threev(8b|16b|4h|8h|2s|4s|1d|2d)_POST$")>; // ASIMD load, 1 element, multiple, 4 reg, D-form def : InstRW<[V1Write_6c_2L], (instregex "^LD1Fourv(8b|4h|2s|1d)$")>; def : InstRW<[WriteAdr, V1Write_6c_2L], (instregex "^LD1Fourv(8b|4h|2s|1d)_POST$")>; // ASIMD load, 1 element, multiple, 4 reg, Q-form def : InstRW<[V1Write_7c_4L], (instregex "^LD1Fourv(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, V1Write_7c_4L], (instregex "^LD1Fourv(16b|8h|4s|2d)_POST$")>; // ASIMD load, 1 element, one lane // ASIMD load, 1 element, all lanes def : InstRW<[V1Write_8c_1L_1V], (instregex "^LD1(i|Rv)(8|16|32|64)$", "^LD1Rv(8b|16b|4h|8h|2s|4s|1d|2d)$")>; def : InstRW<[WriteAdr, V1Write_8c_1L_1V], (instregex "^LD1i(8|16|32|64)_POST$", "^LD1Rv(8b|16b|4h|8h|2s|4s|1d|2d)_POST$")>; // ASIMD load, 2 element, multiple, D-form def : InstRW<[V1Write_8c_1L_2V], (instregex "^LD2Twov(8b|4h|2s)$")>; def : InstRW<[WriteAdr, V1Write_8c_1L_2V], (instregex "^LD2Twov(8b|4h|2s)_POST$")>; // ASIMD load, 2 element, multiple, Q-form def : InstRW<[V1Write_8c_2L_2V], (instregex "^LD2Twov(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, V1Write_8c_2L_2V], (instregex "^LD2Twov(16b|8h|4s|2d)_POST$")>; // ASIMD load, 2 element, one lane // ASIMD load, 2 element, all lanes def : InstRW<[V1Write_8c_1L_2V], (instregex "^LD2i(8|16|32|64)$", "^LD2Rv(8b|16b|4h|8h|2s|4s|1d|2d)$")>; def : InstRW<[WriteAdr, V1Write_8c_1L_2V], (instregex "^LD2i(8|16|32|64)_POST$", "^LD2Rv(8b|16b|4h|8h|2s|4s|1d|2d)_POST$")>; // ASIMD load, 3 element, multiple, D-form // ASIMD load, 3 element, one lane // ASIMD load, 3 element, all lanes def : InstRW<[V1Write_8c_2L_3V], (instregex "^LD3Threev(8b|4h|2s)$", "^LD3i(8|16|32|64)$", "^LD3Rv(8b|16b|4h|8h|2s|4s|1d|2d)$")>; def : InstRW<[WriteAdr, V1Write_8c_2L_3V], (instregex "^LD3Threev(8b|4h|2s)_POST$", "^LD3i(8|16|32|64)_POST$", "^LD3Rv(8b|16b|4h|8h|2s|4s|1d|2d)_POST$")>; // ASIMD load, 3 element, multiple, Q-form def : InstRW<[V1Write_8c_3L_3V], (instregex "^LD3Threev(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, V1Write_8c_3L_3V], (instregex "^LD3Threev(16b|8h|4s|2d)_POST$")>; // ASIMD load, 4 element, multiple, D-form // ASIMD load, 4 element, one lane // ASIMD load, 4 element, all lanes def : InstRW<[V1Write_8c_3L_4V], (instregex "^LD4Fourv(8b|4h|2s)$", "^LD4i(8|16|32|64)$", "^LD4Rv(8b|16b|4h|8h|2s|4s|1d|2d)$")>; def : InstRW<[WriteAdr, V1Write_8c_3L_4V], (instregex "^LD4Fourv(8b|4h|2s)_POST$", "^LD4i(8|16|32|64)_POST$", "^LD4Rv(8b|16b|4h|8h|2s|4s|1d|2d)_POST$")>; // ASIMD load, 4 element, multiple, Q-form def : InstRW<[V1Write_9c_4L_4V], (instregex "^LD4Fourv(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, V1Write_9c_4L_4V], (instregex "^LD4Fourv(16b|8h|4s|2d)_POST$")>; // ASIMD store instructions // ----------------------------------------------------------------------------- // ASIMD store, 1 element, multiple, 1 reg // ASIMD store, 1 element, multiple, 2 reg, D-form def : InstRW<[V1Write_2c_1L01_1V01], (instregex "^ST1Onev(8b|16b|4h|8h|2s|4s|1d|2d)$", "^ST1Twov(8b|4h|2s|1d)$")>; def : InstRW<[WriteAdr, V1Write_2c_1L01_1V01], (instregex "^ST1Onev(8b|16b|4h|8h|2s|4s|1d|2d)_POST$", "^ST1Twov(8b|4h|2s|1d)_POST$")>; // ASIMD store, 1 element, multiple, 2 reg, Q-form // ASIMD store, 1 element, multiple, 3 reg, D-form // ASIMD store, 1 element, multiple, 4 reg, D-form def : InstRW<[V1Write_2c_2L01_2V01], (instregex "^ST1Twov(16b|8h|4s|2d)$", "^ST1Threev(8b|4h|2s|1d)$", "^ST1Fourv(8b|4h|2s|1d)$")>; def : InstRW<[WriteAdr, V1Write_2c_2L01_2V01], (instregex "^ST1Twov(16b|8h|4s|2d)_POST$", "^ST1Threev(8b|4h|2s|1d)_POST$", "^ST1Fourv(8b|4h|2s|1d)_POST$")>; // ASIMD store, 1 element, multiple, 3 reg, Q-form def : InstRW<[V1Write_2c_3L01_3V01], (instregex "^ST1Threev(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, V1Write_2c_3L01_3V01], (instregex "^ST1Threev(16b|8h|4s|2d)_POST$")>; // ASIMD store, 1 element, multiple, 4 reg, Q-form def : InstRW<[V1Write_2c_4L01_4V01], (instregex "^ST1Fourv(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, V1Write_2c_4L01_4V01], (instregex "^ST1Fourv(16b|8h|4s|2d)_POST$")>; // ASIMD store, 1 element, one lane // ASIMD store, 2 element, multiple, D-form // ASIMD store, 2 element, one lane def : InstRW<[V1Write_4c_1L01_1V01], (instregex "^ST1i(8|16|32|64)$", "^ST2Twov(8b|4h|2s)$", "^ST2i(8|16|32|64)$")>; def : InstRW<[WriteAdr, V1Write_4c_1L01_1V01], (instregex "^ST1i(8|16|32|64)_POST$", "^ST2Twov(8b|4h|2s)_POST$", "^ST2i(8|16|32|64)_POST$")>; // ASIMD store, 2 element, multiple, Q-form // ASIMD store, 3 element, multiple, D-form // ASIMD store, 3 element, one lane // ASIMD store, 4 element, one lane, D def : InstRW<[V1Write_4c_2L01_2V01], (instregex "^ST2Twov(16b|8h|4s|2d)$", "^ST3Threev(8b|4h|2s)$", "^ST3i(8|16|32|64)$", "^ST4i64$")>; def : InstRW<[WriteAdr, V1Write_4c_2L01_2V01], (instregex "^ST2Twov(16b|8h|4s|2d)_POST$", "^ST3Threev(8b|4h|2s)_POST$", "^ST3i(8|16|32|64)_POST$", "^ST4i64_POST$")>; // ASIMD store, 3 element, multiple, Q-form def : InstRW<[V1Write_5c_3L01_3V01], (instregex "^ST3Threev(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, V1Write_5c_3L01_3V01], (instregex "^ST3Threev(16b|8h|4s|2d)_POST$")>; // ASIMD store, 4 element, multiple, D-form def : InstRW<[V1Write_6c_3L01_3V01], (instregex "^ST4Fourv(8b|4h|2s)$")>; def : InstRW<[WriteAdr, V1Write_6c_3L01_3V01], (instregex "^ST4Fourv(8b|4h|2s)_POST$")>; // ASIMD store, 4 element, multiple, Q-form, B/H/S def : InstRW<[V1Write_7c_6L01_6V01], (instregex "^ST4Fourv(16b|8h|4s)$")>; def : InstRW<[WriteAdr, V1Write_7c_6L01_6V01], (instregex "^ST4Fourv(16b|8h|4s)_POST$")>; // ASIMD store, 4 element, multiple, Q-form, D def : InstRW<[V1Write_4c_4L01_4V01], (instrs ST4Fourv2d)>; def : InstRW<[WriteAdr, V1Write_4c_4L01_4V01], (instrs ST4Fourv2d_POST)>; // ASIMD store, 4 element, one lane, B/H/S def : InstRW<[V1Write_6c_3L_3V], (instregex "^ST4i(8|16|32)$")>; def : InstRW<[WriteAdr, V1Write_6c_3L_3V], (instregex "^ST4i(8|16|32)_POST$")>; // Cryptography extensions // ----------------------------------------------------------------------------- // Crypto polynomial (64x64) multiply long // Covered by "SchedAlias (WriteV[dq]...)" above // Crypto AES ops def V1WriteVC : WriteSequence<[V1Write_2c_1V]>; def V1ReadVC : SchedReadAdvance<2, [V1WriteVC]>; def : InstRW<[V1WriteVC], (instrs AESDrr, AESErr)>; def : InstRW<[V1Write_2c_1V, V1ReadVC], (instrs AESMCrr, AESIMCrr)>; // Crypto SHA1 hash acceleration op // Crypto SHA1 schedule acceleration ops // Crypto SHA256 schedule acceleration ops // Crypto SHA512 hash acceleration ops // Crypto SM3 ops def : InstRW<[V1Write_2c_1V0], (instregex "^SHA1(H|SU[01])rr$", "^SHA256SU[01]rr$", "^SHA512(H2?|SU[01])$", "^SM3(PARTW(1|2SM3SS1)|TT[12][AB])$")>; // Crypto SHA1 hash acceleration ops // Crypto SHA256 hash acceleration ops // Crypto SM4 ops def : InstRW<[V1Write_4c_1V0], (instregex "^SHA1[CMP]rrr$", "^SHA256H2?rrr$", "^SM4E(KEY)?$")>; // Crypto SHA3 ops def : InstRW<[V1Write_2c_1V0], (instrs BCAX, EOR3, RAX1, XAR)>; // CRC instruction // ----------------------------------------------------------------------------- // CRC checksum ops def : InstRW<[V1Write_2c_1M0], (instregex "^CRC32C?[BHWX]rr$")>; // SVE Predicate instructions // ----------------------------------------------------------------------------- // Loop control, based on predicate def : InstRW<[V1Write_2c_1M0], (instregex "^BRK[AB]_PP[mz]P$")>; def : InstRW<[V1Write_2c_1M0], (instrs BRKN_PPzP, BRKPA_PPzPP, BRKPB_PPzPP)>; // Loop control, based on predicate and flag setting def : InstRW<[V1Write_3c_2M0], (instrs BRKAS_PPzP, BRKBS_PPzP, BRKNS_PPzP, BRKPAS_PPzPP, BRKPBS_PPzPP)>; // Loop control, based on GPR def : InstRW<[V1Write_3c_2M0], (instregex "^WHILE(LE|LO|LS|LT)_P(WW|XX)_[BHSD]$")>; // Loop terminate def : InstRW<[V1Write_1c_1M0], (instregex "^CTERM(EQ|NE)_(WW|XX)$")>; // Predicate counting scalar // Predicate counting scalar, active predicate def : InstRW<[V1Write_2c_1M0], (instrs ADDPL_XXI, ADDVL_XXI, RDVLI_XI)>; def : InstRW<[V1Write_2c_1M0], (instregex "^(CNT|([SU]Q)?(DEC|INC))[BHWD]_XPiI$", "^SQ(DEC|INC)[BHWD]_XPiWdI$", "^UQ(DEC|INC)[BHWD]_WPiI$", "^CNTP_XPP_[BHSD]$", "^([SU]Q)?(DEC|INC)P_XP_[BHSD]$", "^UQ(DEC|INC)P_WP_[BHSD]$", "^[SU]Q(DEC|INC)P_XPWd_[BHSD]$")>; // Predicate counting vector, active predicate def : InstRW<[V1Write_7c_2M0_1V01], (instregex "^([SU]Q)?(DEC|INC)P_ZP_[HSD]$")>; // Predicate logical def : InstRW<[V1Write_1c_1M0], (instregex "^(AND|BIC|EOR|NAND|NOR|ORN|ORR)_PPzPP$")>; // Predicate logical, flag setting def : InstRW<[V1Write_2c_2M0], (instregex "^(AND|BIC|EOR|NAND|NOR|ORN|ORR)S_PPzPP$")>; // Predicate reverse // Predicate set/initialize/find next // Predicate transpose // Predicate unpack and widen // Predicate zip/unzip def : InstRW<[V1Write_2c_1M0], (instregex "^REV_PP_[BHSD]$", "^PFALSE$", "^PFIRST_B$", "^PNEXT_[BHSD]$", "^PTRUE_[BHSD]$", "^TRN[12]_PPP_[BHSDQ]$", "^(ZIP|UZP)[12]_PPP_[BHSDQ]$")>; // Predicate set/initialize/find next // Predicate unpack and widen def : InstRW<[V1Write_2c_1M0], (instrs PTEST_PP, PUNPKHI_PP, PUNPKLO_PP)>; // Predicate select def : InstRW<[V1Write_1c_1M0], (instrs SEL_PPPP)>; // Predicate set/initialize, set flags def : InstRW<[V1Write_3c_2M0], (instregex "^PTRUES_[BHSD]$")>; // SVE integer instructions // ----------------------------------------------------------------------------- // Arithmetic, basic // Logical def : InstRW<[V1Write_2c_1V01], (instregex "^(ABS|CNOT|NEG)_ZPmZ_[BHSD]$", "^(ADD|SUB)_Z(I|P[mZ]Z|ZZ)_[BHSD]$", "^ADR_[SU]XTW_ZZZ_D_[0123]$", "^ADR_LSL_ZZZ_[SD]_[0123]$", "^[SU]ABD_ZP[mZ]Z_[BHSD]$", "^[SU](MAX|MIN)_Z(I|P[mZ]Z)_[BHSD]$", "^[SU]Q(ADD|SUB)_Z(I|ZZ)_[BHSD]$", "^SUBR_Z(I|P[mZ]Z)_[BHSD]$", "^(AND|EOR|ORR)_ZI$", "^(AND|BIC|EOR|EOR(BT|TB)?|ORR)_ZZZ$", "^EOR(BT|TB)_ZZZ_[BHSD]$", "^(AND|BIC|EOR|NOT|ORR)_ZPmZ_[BHSD]$")>; // Arithmetic, shift def : InstRW<[V1Write_2c_1V1], (instregex "^(ASR|LSL|LSR)_WIDE_Z(Pm|Z)Z_[BHS]", "^(ASR|LSL|LSR)_ZPm[IZ]_[BHSD]", "^(ASR|LSL|LSR)_ZZI_[BHSD]", "^(ASR|LSL|LSR)_ZPZ[IZ]_[BHSD]", "^(ASRR|LSLR|LSRR)_ZPmZ_[BHSD]")>; // Arithmetic, shift right for divide def : InstRW<[V1Write_4c_1V1], (instregex "^ASRD_ZP[mZ]I_[BHSD]$")>; // Count/reverse bits def : InstRW<[V1Write_2c_1V01], (instregex "^(CLS|CLZ|CNT|RBIT)_ZPmZ_[BHSD]$")>; // Broadcast logical bitmask immediate to vector def : InstRW<[V1Write_2c_1V01], (instrs DUPM_ZI)>; // Compare and set flags def : InstRW<[V1Write_4c_1M0_1V0], (instregex "^CMP(EQ|GE|GT|HI|HS|LE|LO|LS|LT|NE)_PPzZ[IZ]_[BHSD]$", "^CMP(EQ|GE|GT|HI|HS|LE|LO|LS|LT|NE)_WIDE_PPzZZ_[BHS]$")>; // Conditional extract operations, scalar form def : InstRW<[V1Write_9c_1M0_1V1], (instregex "^CLAST[AB]_RPZ_[BHSD]$")>; // Conditional extract operations, SIMD&FP scalar and vector forms def : InstRW<[V1Write_3c_1V1], (instregex "^CLAST[AB]_[VZ]PZ_[BHSD]$", "^COMPACT_ZPZ_[SD]$", "^SPLICE_ZPZZ?_[BHSD]$")>; // Convert to floating point, 64b to float or convert to double def : InstRW<[V1Write_3c_1V0], (instregex "^[SU]CVTF_ZPmZ_Dto[HSD]", "^[SU]CVTF_ZPmZ_StoD")>; // Convert to floating point, 32b to single or half def : InstRW<[V1Write_4c_2V0], (instregex "^[SU]CVTF_ZPmZ_Sto[HS]$")>; // Convert to floating point, 16b to half def : InstRW<[V1Write_6c_4V0], (instregex "^[SU]CVTF_ZPmZ_HtoH$")>; // Copy, scalar def : InstRW<[V1Write_5c_1M0_1V01], (instregex "^CPY_ZPmR_[BHSD]$")>; // Copy, scalar SIMD&FP or imm def : InstRW<[V1Write_2c_1V01], (instregex "^CPY_ZP([mz]I|mV)_[BHSD]$")>; // Divides, 32 bit def : InstRW<[V1Write_12c7_1V0], (instregex "^[SU]DIVR?_ZPmZ_S$")>; // Divides, 64 bit def : InstRW<[V1Write_20c7_1V0], (instregex "^[SU]DIVR?_ZPmZ_D$")>; // Dot product, 8 bit def : InstRW<[V1Write_3c_1V01], (instregex "^[SU]DOT_ZZZI?_S$")>; // Dot product, 8 bit, using signed and unsigned integers def : InstRW<[V1Write_3c_1V], (instrs SUDOT_ZZZI, USDOT_ZZZ, USDOT_ZZZI)>; // Dot product, 16 bit def : InstRW<[V1Write_4c_1V01], (instregex "^[SU]DOT_ZZZI?_D$")>; // Duplicate, immediate and indexed form def : InstRW<[V1Write_2c_1V01], (instregex "^DUP_ZI_[BHSD]$", "^DUP_ZZI_[BHSDQ]$")>; // Duplicate, scalar form def : InstRW<[V1Write_3c_1M0], (instregex "^DUP_ZR_[BHSD]$")>; // Extend, sign or zero def : InstRW<[V1Write_2c_1V1], (instregex "^[SU]XTB_ZPmZ_[HSD]$", "^[SU]XTH_ZPmZ_[SD]$", "^[SU]XTW_ZPmZ_[D]$")>; // Extract def : InstRW<[V1Write_2c_1V01], (instrs EXT_ZZI)>; // Extract/insert operation, SIMD and FP scalar form def : InstRW<[V1Write_3c_1V1], (instregex "^LAST[AB]_VPZ_[BHSD]$", "^INSR_ZV_[BHSD]$")>; // Extract/insert operation, scalar def : InstRW<[V1Write_6c_1M0_1V1], (instregex "^LAST[AB]_RPZ_[BHSD]$", "^INSR_ZR_[BHSD]$")>; // Horizontal operations, B, H, S form, imm, imm def : InstRW<[V1Write_4c_1V0], (instregex "^INDEX_II_[BHS]$")>; // Horizontal operations, B, H, S form, scalar, imm / scalar / imm, scalar def : InstRW<[V1Write_7c_1M0_1V0], (instregex "^INDEX_(IR|RI|RR)_[BHS]$")>; // Horizontal operations, D form, imm, imm def : InstRW<[V1Write_5c_2V0], (instrs INDEX_II_D)>; // Horizontal operations, D form, scalar, imm / scalar / imm, scalar def : InstRW<[V1Write_8c_2M0_2V0], (instregex "^INDEX_(IR|RI|RR)_D$")>; // Move prefix def : InstRW<[V1Write_2c_1V01], (instregex "^MOVPRFX_ZP[mz]Z_[BHSD]$", "^MOVPRFX_ZZ$")>; // Matrix multiply-accumulate def : InstRW<[V1Write_3c_1V01], (instrs SMMLA_ZZZ, UMMLA_ZZZ, USMMLA_ZZZ)>; // Multiply, B, H, S element size def : InstRW<[V1Write_4c_1V0], (instregex "^MUL_(ZI|ZPmZ)_[BHS]$", "^[SU]MULH_(ZPmZ|ZZZ)_[BHS]$")>; // Multiply, D element size // Multiply accumulate, D element size def : InstRW<[V1Write_5c_2V0], (instregex "^MUL_(ZI|ZPmZ)_D$", "^[SU]MULH_ZPmZ_D$", "^(MLA|MLS|MAD|MSB)_ZPmZZ_D$")>; // Multiply accumulate, B, H, S element size // NOTE: This is not specified in the SOG. def : InstRW<[V1Write_4c_1V0], (instregex "^(ML[AS]|MAD|MSB)_ZPmZZ_[BHS]")>; // Predicate counting vector def : InstRW<[V1Write_2c_1V0], (instregex "^([SU]Q)?(DEC|INC)[HWD]_ZPiI$")>; // Reduction, arithmetic, B form def : InstRW<[V1Write_14c_1V_1V0_2V1_1V13], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_B")>; // Reduction, arithmetic, H form def : InstRW<[V1Write_12c_1V_1V01_2V1], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_H")>; // Reduction, arithmetic, S form def : InstRW<[V1Write_10c_1V_1V01_2V1], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_S")>; // Reduction, arithmetic, D form def : InstRW<[V1Write_8c_1V_1V01], (instregex "^[SU](ADD|MAX|MIN)V_VPZ_D")>; // Reduction, logical def : InstRW<[V1Write_12c_4V01], (instregex "^(AND|EOR|OR)V_VPZ_[BHSD]$")>; // Reverse, vector def : InstRW<[V1Write_2c_1V01], (instregex "^REV_ZZ_[BHSD]$", "^REVB_ZPmZ_[HSD]$", "^REVH_ZPmZ_[SD]$", "^REVW_ZPmZ_D$")>; // Select, vector form // Table lookup // Table lookup extension // Transpose, vector form // Unpack and extend // Zip/unzip def : InstRW<[V1Write_2c_1V01], (instregex "^SEL_ZPZZ_[BHSD]$", "^TB[LX]_ZZZ_[BHSD]$", "^TRN[12]_ZZZ_[BHSDQ]$", "^[SU]UNPK(HI|LO)_ZZ_[HSD]$", "^(UZP|ZIP)[12]_ZZZ_[BHSDQ]$")>; // SVE floating-point instructions // ----------------------------------------------------------------------------- // Floating point absolute value/difference // Floating point arithmetic def : InstRW<[V1Write_2c_1V01], (instregex "^FAB[SD]_ZPmZ_[HSD]$", "^F(ADD|SUB)_(ZPm[IZ]|ZZZ)_[HSD]$", "^FADDP_ZPmZZ_[HSD]$", "^FNEG_ZPmZ_[HSD]$", "^FSUBR_ZPm[IZ]_[HSD]$")>; // Floating point associative add, F16 def : InstRW<[V1Write_19c_18V0], (instrs FADDA_VPZ_H)>; // Floating point associative add, F32 def : InstRW<[V1Write_11c_10V0], (instrs FADDA_VPZ_S)>; // Floating point associative add, F64 def : InstRW<[V1Write_8c_3V01], (instrs FADDA_VPZ_D)>; // Floating point compare def : InstRW<[V1Write_2c_1V0], (instregex "^FAC(GE|GT)_PPzZZ_[HSD]$", "^FCM(EQ|GE|GT|NE|UO)_PPzZZ_[HSD]$", "^FCM(EQ|GE|GT|LE|LT|NE)_PPzZ0_[HSD]$")>; // Floating point complex add def : InstRW<[V1Write_3c_1V01], (instregex "^FCADD_ZPmZ_[HSD]$")>; // Floating point complex multiply add def : InstRW<[V1Write_5c_1V01], (instregex "^FCMLA_ZPmZZ_[HSD]$", "^FCMLA_ZZZI_[HS]$")>; // Floating point convert, long or narrow (F16 to F32 or F32 to F16) // Floating point convert to integer, F32 def : InstRW<[V1Write_4c_2V0], (instregex "^FCVT_ZPmZ_(HtoS|StoH)$", "^FCVTZ[SU]_ZPmZ_(HtoS|StoS)$")>; // Floating point convert, long or narrow (F16 to F64, F32 to F64, F64 to F32 or F64 to F16) // Floating point convert to integer, F64 def : InstRW<[V1Write_3c_1V0], (instregex "^FCVT_ZPmZ_(HtoD|StoD|DtoS|DtoH)$", "^FCVTZ[SU]_ZPmZ_(HtoD|StoD|DtoS|DtoD)$")>; // Floating point convert to integer, F16 def : InstRW<[V1Write_6c_4V0], (instregex "^FCVTZ[SU]_ZPmZ_HtoH$")>; // Floating point copy def : InstRW<[V1Write_2c_1V01], (instregex "^FCPY_ZPmI_[HSD]$", "^FDUP_ZI_[HSD]$")>; // Floating point divide, F16 def : InstRW<[V1Write_13c10_1V0], (instregex "^FDIVR?_ZPmZ_H$")>; // Floating point divide, F32 def : InstRW<[V1Write_10c7_1V0], (instregex "^FDIVR?_ZPmZ_S$")>; // Floating point divide, F64 def : InstRW<[V1Write_15c7_1V0], (instregex "^FDIVR?_ZPmZ_D$")>; // Floating point min/max def : InstRW<[V1Write_2c_1V01], (instregex "^F(MAX|MIN)(NM)?_ZPm[IZ]_[HSD]$")>; // Floating point multiply def : InstRW<[V1Write_3c_1V01], (instregex "^F(SCALE|MULX)_ZPmZ_[HSD]$", "^FMUL_(ZPm[IZ]|ZZZI?)_[HSD]$")>; // Floating point multiply accumulate // Floating point reciprocal step def : InstRW<[V1Write_4c_1V01], (instregex "^F(N?M(AD|SB)|N?ML[AS])_ZPmZZ_[HSD]$", "^FML[AS]_ZZZI_[HSD]$", "^F(RECPS|RSQRTS)_ZZZ_[HSD]$")>; // Floating point reciprocal estimate, F16 def : InstRW<[V1Write_6c_4V0], (instrs FRECPE_ZZ_H, FRSQRTE_ZZ_H)>; // Floating point reciprocal estimate, F32 def : InstRW<[V1Write_4c_2V0], (instrs FRECPE_ZZ_S, FRSQRTE_ZZ_S)>; // Floating point reciprocal estimate, F64 def : InstRW<[V1Write_3c_1V0], (instrs FRECPE_ZZ_D, FRSQRTE_ZZ_D)>; // Floating point reciprocal exponent def : InstRW<[V1Write_3c_1V0], (instregex "^FRECPX_ZPmZ_[HSD]$")>; // Floating point reduction, F16 def : InstRW<[V1Write_13c_6V01], (instregex "^F(ADD|((MAX|MIN)(NM)?))V_VPZ_H$")>; // Floating point reduction, F32 def : InstRW<[V1Write_11c_1V_5V01], (instregex "^F(ADD|((MAX|MIN)(NM)?))V_VPZ_S$")>; // Floating point reduction, F64 def : InstRW<[V1Write_9c_1V_4V01], (instregex "^F(ADD|((MAX|MIN)(NM)?))V_VPZ_D$")>; // Floating point round to integral, F16 def : InstRW<[V1Write_6c_1V0], (instregex "^FRINT[AIMNPXZ]_ZPmZ_H$")>; // Floating point round to integral, F32 def : InstRW<[V1Write_4c_1V0], (instregex "^FRINT[AIMNPXZ]_ZPmZ_S$")>; // Floating point round to integral, F64 def : InstRW<[V1Write_3c_1V0], (instregex "^FRINT[AIMNPXZ]_ZPmZ_D$")>; // Floating point square root, F16 def : InstRW<[V1Write_13c10_1V0], (instrs FSQRT_ZPmZ_H)>; // Floating point square root, F32 def : InstRW<[V1Write_10c7_1V0], (instrs FSQRT_ZPmZ_S)>; // Floating point square root, F64 def : InstRW<[V1Write_16c7_1V0], (instrs FSQRT_ZPmZ_D)>; // Floating point trigonometric def : InstRW<[V1Write_3c_1V01], (instregex "^FEXPA_ZZ_[HSD]$", "^FTMAD_ZZI_[HSD]$", "^FTS(MUL|SEL)_ZZZ_[HSD]$")>; // SVE BFloat16 (BF16) instructions // ----------------------------------------------------------------------------- // Convert, F32 to BF16 def : InstRW<[V1Write_4c_1V0], (instrs BFCVT_ZPmZ, BFCVTNT_ZPmZ)>; // Dot product def : InstRW<[V1Write_4c_1V01], (instrs BFDOT_ZZI, BFDOT_ZZZ)>; // Matrix multiply accumulate def : InstRW<[V1Write_5c_1V01], (instrs BFMMLA_ZZZ)>; // Multiply accumulate long def : InstRW<[V1Write_5c_1V01], (instregex "^BFMLAL[BT]_ZZZ(I)?$")>; // SVE Load instructions // ----------------------------------------------------------------------------- // Load vector def : InstRW<[V1Write_6c_1L01], (instrs LDR_ZXI)>; // Load predicate def : InstRW<[V1Write_6c_1L_1M], (instrs LDR_PXI)>; // Contiguous load, scalar + imm // Contiguous load, scalar + scalar // Contiguous load broadcast, scalar + imm // Contiguous load broadcast, scalar + scalar def : InstRW<[V1Write_6c_1L01], (instregex "^LD1[BHWD]_IMM$", "^LD1S?B_[HSD]_IMM$", "^LD1S?H_[SD]_IMM$", "^LD1S?W_D_IMM$", "^LD1[BWD]$", "^LD1S?B_[HSD]$", "^LD1S?W_D$", "^LD1R[BHWD]_IMM$", "^LD1RSW_IMM$", "^LD1RS?B_[HSD]_IMM$", "^LD1RS?H_[SD]_IMM$", "^LD1RS?W_D_IMM$", "^LD1RQ_[BHWD]_IMM$", "^LD1RQ_[BWD]$")>; def : InstRW<[V1Write_7c_1L01_1S], (instregex "^LD1H$", "^LD1S?H_[SD]$", "^LD1RQ_H$")>; // Non temporal load, scalar + imm def : InstRW<[V1Write_6c_1L01], (instregex "^LDNT1[BHWD]_ZRI$")>; // Non temporal load, scalar + scalar def : InstRW<[V1Write_7c_1L01_1S], (instrs LDNT1H_ZRR)>; def : InstRW<[V1Write_6c_1L01_1S], (instregex "^LDNT1[BWD]_ZRR$")>; // Contiguous first faulting load, scalar + scalar def : InstRW<[V1Write_7c_1L01_1S], (instregex "^LDFF1H_REAL$", "^LDFF1S?H_[SD]_REAL$")>; def : InstRW<[V1Write_6c_1L01_1S], (instregex "^LDFF1[BWD]_REAL$", "^LDFF1S?B_[HSD]_REAL$", "^LDFF1S?W_D_REAL$")>; // Contiguous non faulting load, scalar + imm def : InstRW<[V1Write_6c_1L01], (instregex "^LDNF1[BHWD]_IMM_REAL$", "^LDNF1S?B_[HSD]_IMM_REAL$", "^LDNF1S?H_[SD]_IMM_REAL$", "^LDNF1S?W_D_IMM_REAL$")>; // Contiguous Load two structures to two vectors, scalar + imm def : InstRW<[V1Write_8c_2L01_2V01], (instregex "^LD2[BHWD]_IMM$")>; // Contiguous Load two structures to two vectors, scalar + scalar def : InstRW<[V1Write_10c_2L01_2V01], (instrs LD2H)>; def : InstRW<[V1Write_9c_2L01_2V01], (instregex "^LD2[BWD]$")>; // Contiguous Load three structures to three vectors, scalar + imm def : InstRW<[V1Write_11c_3L01_3V01], (instregex "^LD3[BHWD]_IMM$")>; // Contiguous Load three structures to three vectors, scalar + scalar def : InstRW<[V1Write_13c_3L01_1S_3V01], (instregex "^LD3[BHWD]$")>; // Contiguous Load four structures to four vectors, scalar + imm def : InstRW<[V1Write_12c_4L01_4V01], (instregex "^LD4[BHWD]_IMM$")>; // Contiguous Load four structures to four vectors, scalar + scalar def : InstRW<[V1Write_13c_4L01_2S_4V01], (instregex "^LD4[BHWD]$")>; // Gather load, vector + imm, 32-bit element size def : InstRW<[V1Write_11c_1L_1V], (instregex "^GLD(FF)?1S?[BH]_S_IMM_REAL$", "^GLD(FF)?1W_IMM_REAL$")>; // Gather load, vector + imm, 64-bit element size def : InstRW<[V1Write_9c_2L_2V], (instregex "^GLD(FF)?1S?[BHW]_D_IMM_REAL$", "^GLD(FF)?1S?[BHW]_D_([SU]XTW_)?(SCALED_)?REAL$", "^GLD(FF)?1D_IMM_REAL$", "^GLD(FF)?1D_([SU]XTW_)?(SCALED_)?REAL$")>; // Gather load, 32-bit scaled offset def : InstRW<[V1Write_11c_2L_2V], (instregex "^GLD(FF)?1S?[HW]_S_[SU]XTW_SCALED_REAL$", "^GLD(FF)?1W_[SU]XTW_SCALED_REAL")>; // Gather load, 32-bit unpacked unscaled offset def : InstRW<[V1Write_9c_1L_1V], (instregex "^GLD(FF)?1S?[BH]_S_[SU]XTW_REAL$", "^GLD(FF)?1W_[SU]XTW_REAL$")>; // Prefetch // NOTE: This is not specified in the SOG. def : InstRW<[V1Write_4c_1L01], (instregex "^PRF[BHWD]")>; // SVE Store instructions // ----------------------------------------------------------------------------- // Store from predicate reg def : InstRW<[V1Write_1c_1L01], (instrs STR_PXI)>; // Store from vector reg def : InstRW<[V1Write_2c_1L01_1V], (instrs STR_ZXI)>; // Contiguous store, scalar + imm // Contiguous store, scalar + scalar def : InstRW<[V1Write_2c_1L01_1V], (instregex "^ST1[BHWD]_IMM$", "^ST1B_[HSD]_IMM$", "^ST1H_[SD]_IMM$", "^ST1W_D_IMM$", "^ST1[BWD]$", "^ST1B_[HSD]$", "^ST1W_D$")>; def : InstRW<[V1Write_2c_1L01_1S_1V], (instregex "^ST1H(_[SD])?$")>; // Contiguous store two structures from two vectors, scalar + imm // Contiguous store two structures from two vectors, scalar + scalar def : InstRW<[V1Write_4c_1L01_1V], (instregex "^ST2[BHWD]_IMM$", "^ST2[BWD]$")>; def : InstRW<[V1Write_4c_1L01_1S_1V], (instrs ST2H)>; // Contiguous store three structures from three vectors, scalar + imm def : InstRW<[V1Write_7c_5L01_5V], (instregex "^ST3[BHWD]_IMM$")>; // Contiguous store three structures from three vectors, scalar + scalar def : InstRW<[V1Write_7c_5L01_5S_5V], (instregex "^ST3[BHWD]$")>; // Contiguous store four structures from four vectors, scalar + imm def : InstRW<[V1Write_11c_9L01_9V], (instregex "^ST4[BHWD]_IMM$")>; // Contiguous store four structures from four vectors, scalar + scalar def : InstRW<[V1Write_11c_9L01_9S_9V], (instregex "^ST4[BHWD]$")>; // Non temporal store, scalar + imm // Non temporal store, scalar + scalar def : InstRW<[V1Write_2c_1L01_1V], (instregex "^STNT1[BHWD]_ZRI$", "^STNT1[BWD]_ZRR$")>; def : InstRW<[V1Write_2c_1L01_1S_1V], (instrs STNT1H_ZRR)>; // Scatter store vector + imm 32-bit element size // Scatter store, 32-bit scaled offset // Scatter store, 32-bit unscaled offset def : InstRW<[V1Write_10c_2L01_2V], (instregex "^SST1[BH]_S_IMM$", "^SST1W_IMM$", "^SST1(H_S|W)_[SU]XTW_SCALED$", "^SST1[BH]_S_[SU]XTW$", "^SST1W_[SU]XTW$")>; // Scatter store, 32-bit unpacked unscaled offset // Scatter store, 32-bit unpacked scaled offset def : InstRW<[V1Write_6c_1L01_1V], (instregex "^SST1[BHW]_D_[SU]XTW$", "^SST1D_[SU]XTW$", "^SST1[HW]_D_[SU]XTW_SCALED$", "^SST1D_[SU]XTW_SCALED$")>; // Scatter store vector + imm 64-bit element size // Scatter store, 64-bit scaled offset // Scatter store, 64-bit unscaled offset def : InstRW<[V1Write_6c_1L01_1V], (instregex "^SST1[BHW]_D_IMM$", "^SST1D_IMM$", "^SST1[HW]_D_SCALED$", "^SST1D_SCALED$", "^SST1[BHW]_D$", "^SST1D$")>; // SVE Miscellaneous instructions // ----------------------------------------------------------------------------- // Read first fault register, unpredicated // Set first fault register // Write to first fault register def : InstRW<[V1Write_2c_1M0], (instrs RDFFR_P_REAL, SETFFR, WRFFR)>; // Read first fault register, predicated def : InstRW<[V1Write_3c_2M0], (instrs RDFFR_PPz_REAL)>; // Read first fault register and set flags def : InstRW<[V1Write_4c_1M], (instrs RDFFRS_PPz)>; }