//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // AArch64 Instruction definitions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ARM Instruction Predicate Definitions. // def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">, AssemblerPredicate<(all_of HasV8_1aOps), "armv8.1a">; def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">, AssemblerPredicate<(all_of HasV8_2aOps), "armv8.2a">; def HasV8_3a : Predicate<"Subtarget->hasV8_3aOps()">, AssemblerPredicate<(all_of HasV8_3aOps), "armv8.3a">; def HasV8_4a : Predicate<"Subtarget->hasV8_4aOps()">, AssemblerPredicate<(all_of HasV8_4aOps), "armv8.4a">; def HasV8_5a : Predicate<"Subtarget->hasV8_5aOps()">, AssemblerPredicate<(all_of HasV8_5aOps), "armv8.5a">; def HasV8_6a : Predicate<"Subtarget->hasV8_6aOps()">, AssemblerPredicate<(all_of HasV8_6aOps), "armv8.6a">; def HasV8_7a : Predicate<"Subtarget->hasV8_7aOps()">, AssemblerPredicate<(all_of HasV8_7aOps), "armv8.7a">; def HasV9_0a : Predicate<"Subtarget->hasV9_0aOps()">, AssemblerPredicate<(all_of HasV9_0aOps), "armv9-a">; def HasV9_1a : Predicate<"Subtarget->hasV9_1aOps()">, AssemblerPredicate<(all_of HasV9_1aOps), "armv9.1a">; def HasV9_2a : Predicate<"Subtarget->hasV9_2aOps()">, AssemblerPredicate<(all_of HasV9_2aOps), "armv9.2a">; def HasV9_3a : Predicate<"Subtarget->hasV9_3aOps()">, AssemblerPredicate<(all_of HasV9_3aOps), "armv9.3a">; def HasV8_0r : Predicate<"Subtarget->hasV8_0rOps()">, AssemblerPredicate<(all_of HasV8_0rOps), "armv8-r">; def HasEL2VMSA : Predicate<"Subtarget->hasEL2VMSA()">, AssemblerPredicate<(all_of FeatureEL2VMSA), "el2vmsa">; def HasEL3 : Predicate<"Subtarget->hasEL3()">, AssemblerPredicate<(all_of FeatureEL3), "el3">; def HasVH : Predicate<"Subtarget->hasVH()">, AssemblerPredicate<(all_of FeatureVH), "vh">; def HasLOR : Predicate<"Subtarget->hasLOR()">, AssemblerPredicate<(all_of FeatureLOR), "lor">; def HasPAuth : Predicate<"Subtarget->hasPAuth()">, AssemblerPredicate<(all_of FeaturePAuth), "pauth">; def HasJS : Predicate<"Subtarget->hasJS()">, AssemblerPredicate<(all_of FeatureJS), "jsconv">; def HasCCIDX : Predicate<"Subtarget->hasCCIDX()">, AssemblerPredicate<(all_of FeatureCCIDX), "ccidx">; def HasComplxNum : Predicate<"Subtarget->hasComplxNum()">, AssemblerPredicate<(all_of FeatureComplxNum), "complxnum">; def HasNV : Predicate<"Subtarget->hasNV()">, AssemblerPredicate<(all_of FeatureNV), "nv">; def HasMPAM : Predicate<"Subtarget->hasMPAM()">, AssemblerPredicate<(all_of FeatureMPAM), "mpam">; def HasDIT : Predicate<"Subtarget->hasDIT()">, AssemblerPredicate<(all_of FeatureDIT), "dit">; def HasTRACEV8_4 : Predicate<"Subtarget->hasTRACEV8_4()">, AssemblerPredicate<(all_of FeatureTRACEV8_4), "tracev8.4">; def HasAM : Predicate<"Subtarget->hasAM()">, AssemblerPredicate<(all_of FeatureAM), "am">; def HasSEL2 : Predicate<"Subtarget->hasSEL2()">, AssemblerPredicate<(all_of FeatureSEL2), "sel2">; def HasTLB_RMI : Predicate<"Subtarget->hasTLB_RMI()">, AssemblerPredicate<(all_of FeatureTLB_RMI), "tlb-rmi">; def HasFlagM : Predicate<"Subtarget->hasFlagM()">, AssemblerPredicate<(all_of FeatureFlagM), "flagm">; def HasRCPC_IMMO : Predicate<"Subtarget->hasRCPCImm()">, AssemblerPredicate<(all_of FeatureRCPC_IMMO), "rcpc-immo">; def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">, AssemblerPredicate<(all_of FeatureFPARMv8), "fp-armv8">; def HasNEON : Predicate<"Subtarget->hasNEON()">, AssemblerPredicate<(all_of FeatureNEON), "neon">; def HasCrypto : Predicate<"Subtarget->hasCrypto()">, AssemblerPredicate<(all_of FeatureCrypto), "crypto">; def HasSM4 : Predicate<"Subtarget->hasSM4()">, AssemblerPredicate<(all_of FeatureSM4), "sm4">; def HasSHA3 : Predicate<"Subtarget->hasSHA3()">, AssemblerPredicate<(all_of FeatureSHA3), "sha3">; def HasSHA2 : Predicate<"Subtarget->hasSHA2()">, AssemblerPredicate<(all_of FeatureSHA2), "sha2">; def HasAES : Predicate<"Subtarget->hasAES()">, AssemblerPredicate<(all_of FeatureAES), "aes">; def HasDotProd : Predicate<"Subtarget->hasDotProd()">, AssemblerPredicate<(all_of FeatureDotProd), "dotprod">; def HasCRC : Predicate<"Subtarget->hasCRC()">, AssemblerPredicate<(all_of FeatureCRC), "crc">; def HasLSE : Predicate<"Subtarget->hasLSE()">, AssemblerPredicate<(all_of FeatureLSE), "lse">; def HasNoLSE : Predicate<"!Subtarget->hasLSE()">; def HasRAS : Predicate<"Subtarget->hasRAS()">, AssemblerPredicate<(all_of FeatureRAS), "ras">; def HasRDM : Predicate<"Subtarget->hasRDM()">, AssemblerPredicate<(all_of FeatureRDM), "rdm">; def HasPerfMon : Predicate<"Subtarget->hasPerfMon()">; def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">, AssemblerPredicate<(all_of FeatureFullFP16), "fullfp16">; def HasFP16FML : Predicate<"Subtarget->hasFP16FML()">, AssemblerPredicate<(all_of FeatureFP16FML), "fp16fml">; def HasSPE : Predicate<"Subtarget->hasSPE()">, AssemblerPredicate<(all_of FeatureSPE), "spe">; def HasFuseAES : Predicate<"Subtarget->hasFuseAES()">, AssemblerPredicate<(all_of FeatureFuseAES), "fuse-aes">; def HasSVE : Predicate<"Subtarget->hasSVE()">, AssemblerPredicate<(all_of FeatureSVE), "sve">; def HasSVE2 : Predicate<"Subtarget->hasSVE2()">, AssemblerPredicate<(all_of FeatureSVE2), "sve2">; def HasSVE2AES : Predicate<"Subtarget->hasSVE2AES()">, AssemblerPredicate<(all_of FeatureSVE2AES), "sve2-aes">; def HasSVE2SM4 : Predicate<"Subtarget->hasSVE2SM4()">, AssemblerPredicate<(all_of FeatureSVE2SM4), "sve2-sm4">; def HasSVE2SHA3 : Predicate<"Subtarget->hasSVE2SHA3()">, AssemblerPredicate<(all_of FeatureSVE2SHA3), "sve2-sha3">; def HasSVE2BitPerm : Predicate<"Subtarget->hasSVE2BitPerm()">, AssemblerPredicate<(all_of FeatureSVE2BitPerm), "sve2-bitperm">; def HasSME : Predicate<"Subtarget->hasSME()">, AssemblerPredicate<(all_of FeatureSME), "sme">; def HasSMEF64 : Predicate<"Subtarget->hasSMEF64()">, AssemblerPredicate<(all_of FeatureSMEF64), "sme-f64">; def HasSMEI64 : Predicate<"Subtarget->hasSMEI64()">, AssemblerPredicate<(all_of FeatureSMEI64), "sme-i64">; def HasStreamingSVE : Predicate<"Subtarget->hasStreamingSVE()">, AssemblerPredicate<(all_of FeatureStreamingSVE), "sme">; // A subset of SVE(2) instructions are legal in Streaming SVE execution mode, // they should be enabled if either has been specified. def HasSVEorStreamingSVE : Predicate<"Subtarget->hasSVE() || Subtarget->hasStreamingSVE()">, AssemblerPredicate<(any_of FeatureSVE, FeatureStreamingSVE), "sve or sme">; def HasSVE2orStreamingSVE : Predicate<"Subtarget->hasSVE2() || Subtarget->hasStreamingSVE()">, AssemblerPredicate<(any_of FeatureSVE2, FeatureStreamingSVE), "sve2 or sme">; // A subset of NEON instructions are legal in Streaming SVE execution mode, // they should be enabled if either has been specified. def HasNEONorStreamingSVE : Predicate<"Subtarget->hasNEON() || Subtarget->hasStreamingSVE()">, AssemblerPredicate<(any_of FeatureNEON, FeatureStreamingSVE), "neon or sme">; def HasRCPC : Predicate<"Subtarget->hasRCPC()">, AssemblerPredicate<(all_of FeatureRCPC), "rcpc">; def HasAltNZCV : Predicate<"Subtarget->hasAlternativeNZCV()">, AssemblerPredicate<(all_of FeatureAltFPCmp), "altnzcv">; def HasFRInt3264 : Predicate<"Subtarget->hasFRInt3264()">, AssemblerPredicate<(all_of FeatureFRInt3264), "frint3264">; def HasSB : Predicate<"Subtarget->hasSB()">, AssemblerPredicate<(all_of FeatureSB), "sb">; def HasPredRes : Predicate<"Subtarget->hasPredRes()">, AssemblerPredicate<(all_of FeaturePredRes), "predres">; def HasCCDP : Predicate<"Subtarget->hasCCDP()">, AssemblerPredicate<(all_of FeatureCacheDeepPersist), "ccdp">; def HasBTI : Predicate<"Subtarget->hasBTI()">, AssemblerPredicate<(all_of FeatureBranchTargetId), "bti">; def HasMTE : Predicate<"Subtarget->hasMTE()">, AssemblerPredicate<(all_of FeatureMTE), "mte">; def HasTME : Predicate<"Subtarget->hasTME()">, AssemblerPredicate<(all_of FeatureTME), "tme">; def HasETE : Predicate<"Subtarget->hasETE()">, AssemblerPredicate<(all_of FeatureETE), "ete">; def HasTRBE : Predicate<"Subtarget->hasTRBE()">, AssemblerPredicate<(all_of FeatureTRBE), "trbe">; def HasBF16 : Predicate<"Subtarget->hasBF16()">, AssemblerPredicate<(all_of FeatureBF16), "bf16">; def HasMatMulInt8 : Predicate<"Subtarget->hasMatMulInt8()">, AssemblerPredicate<(all_of FeatureMatMulInt8), "i8mm">; def HasMatMulFP32 : Predicate<"Subtarget->hasMatMulFP32()">, AssemblerPredicate<(all_of FeatureMatMulFP32), "f32mm">; def HasMatMulFP64 : Predicate<"Subtarget->hasMatMulFP64()">, AssemblerPredicate<(all_of FeatureMatMulFP64), "f64mm">; def HasXS : Predicate<"Subtarget->hasXS()">, AssemblerPredicate<(all_of FeatureXS), "xs">; def HasWFxT : Predicate<"Subtarget->hasWFxT()">, AssemblerPredicate<(all_of FeatureWFxT), "wfxt">; def HasLS64 : Predicate<"Subtarget->hasLS64()">, AssemblerPredicate<(all_of FeatureLS64), "ls64">; def HasBRBE : Predicate<"Subtarget->hasBRBE()">, AssemblerPredicate<(all_of FeatureBRBE), "brbe">; def HasSPE_EEF : Predicate<"Subtarget->hasSPE_EEF()">, AssemblerPredicate<(all_of FeatureSPE_EEF), "spe-eef">; def HasHBC : Predicate<"Subtarget->hasHBC()">, AssemblerPredicate<(all_of FeatureHBC), "hbc">; def HasMOPS : Predicate<"Subtarget->hasMOPS()">, AssemblerPredicate<(all_of FeatureMOPS), "mops">; def IsLE : Predicate<"Subtarget->isLittleEndian()">; def IsBE : Predicate<"!Subtarget->isLittleEndian()">; def IsWindows : Predicate<"Subtarget->isTargetWindows()">; def UseExperimentalZeroingPseudos : Predicate<"Subtarget->useExperimentalZeroingPseudos()">; def UseAlternateSExtLoadCVTF32 : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">; def UseNegativeImmediates : Predicate<"false">, AssemblerPredicate<(all_of (not FeatureNoNegativeImmediates)), "NegativeImmediates">; def UseScalarIncVL : Predicate<"Subtarget->useScalarIncVL()">; def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER", SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisInt<1>]>>; //===----------------------------------------------------------------------===// // AArch64-specific DAG Nodes. // // SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>]>; // SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisVT<3, i32>]>; // SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>, SDTCisVT<4, i32>]>; def SDT_AArch64Brcond : SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>; def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisVT<2, OtherVT>]>; def SDT_AArch64CSel : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<3>, SDTCisVT<4, i32>]>; def SDT_AArch64CCMP : SDTypeProfile<1, 5, [SDTCisVT<0, i32>, SDTCisInt<1>, SDTCisSameAs<1, 2>, SDTCisInt<3>, SDTCisInt<4>, SDTCisVT<5, i32>]>; def SDT_AArch64FCCMP : SDTypeProfile<1, 5, [SDTCisVT<0, i32>, SDTCisFP<1>, SDTCisSameAs<1, 2>, SDTCisInt<3>, SDTCisInt<4>, SDTCisVT<5, i32>]>; def SDT_AArch64FCmp : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>; def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>; def SDT_AArch64Insr : SDTypeProfile<1, 2, [SDTCisVec<0>]>; def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>]>; def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>; def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisInt<2>, SDTCisInt<3>]>; def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisInt<3>]>; def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>; def SDT_AArch64Dot: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>, SDTCisSameAs<2,3>]>; def SDT_AArch64vshiftinsert : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<3>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>; def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>; def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>; def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>; def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>]>; def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>; def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>; def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>; def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; def SDT_AArch64uaddlp : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>]>; def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; // Generates the general dynamic sequences, i.e. // adrp x0, :tlsdesc:var // ldr x1, [x0, #:tlsdesc_lo12:var] // add x0, x0, #:tlsdesc_lo12:var // .tlsdesccall var // blr x1 // (the TPIDR_EL0 offset is put directly in X0, hence no "result" here) // number of operands (the variable) def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1, [SDTCisPtrTy<0>]>; def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4, [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, SDTCisSameAs<1, 4>]>; def SDT_AArch64TBL : SDTypeProfile<1, 2, [ SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2> ]>; // non-extending masked load fragment. def nonext_masked_load : PatFrag<(ops node:$ptr, node:$pred, node:$def), (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ return cast(N)->getExtensionType() == ISD::NON_EXTLOAD && cast(N)->isUnindexed() && !cast(N)->isNonTemporal(); }]>; // sign extending masked load fragments. def asext_masked_load : PatFrag<(ops node:$ptr, node:$pred, node:$def), (masked_ld node:$ptr, undef, node:$pred, node:$def),[{ return (cast(N)->getExtensionType() == ISD::EXTLOAD || cast(N)->getExtensionType() == ISD::SEXTLOAD) && cast(N)->isUnindexed(); }]>; def asext_masked_load_i8 : PatFrag<(ops node:$ptr, node:$pred, node:$def), (asext_masked_load node:$ptr, node:$pred, node:$def), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def asext_masked_load_i16 : PatFrag<(ops node:$ptr, node:$pred, node:$def), (asext_masked_load node:$ptr, node:$pred, node:$def), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i16; }]>; def asext_masked_load_i32 : PatFrag<(ops node:$ptr, node:$pred, node:$def), (asext_masked_load node:$ptr, node:$pred, node:$def), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i32; }]>; // zero extending masked load fragments. def zext_masked_load : PatFrag<(ops node:$ptr, node:$pred, node:$def), (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ return cast(N)->getExtensionType() == ISD::ZEXTLOAD && cast(N)->isUnindexed(); }]>; def zext_masked_load_i8 : PatFrag<(ops node:$ptr, node:$pred, node:$def), (zext_masked_load node:$ptr, node:$pred, node:$def), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def zext_masked_load_i16 : PatFrag<(ops node:$ptr, node:$pred, node:$def), (zext_masked_load node:$ptr, node:$pred, node:$def), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i16; }]>; def zext_masked_load_i32 : PatFrag<(ops node:$ptr, node:$pred, node:$def), (zext_masked_load node:$ptr, node:$pred, node:$def), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i32; }]>; def non_temporal_load : PatFrag<(ops node:$ptr, node:$pred, node:$def), (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ return cast(N)->getExtensionType() == ISD::NON_EXTLOAD && cast(N)->isUnindexed() && cast(N)->isNonTemporal(); }]>; // non-truncating masked store fragment. def nontrunc_masked_store : PatFrag<(ops node:$val, node:$ptr, node:$pred), (masked_st node:$val, node:$ptr, undef, node:$pred), [{ return !cast(N)->isTruncatingStore() && cast(N)->isUnindexed() && !cast(N)->isNonTemporal(); }]>; // truncating masked store fragments. def trunc_masked_store : PatFrag<(ops node:$val, node:$ptr, node:$pred), (masked_st node:$val, node:$ptr, undef, node:$pred), [{ return cast(N)->isTruncatingStore() && cast(N)->isUnindexed(); }]>; def trunc_masked_store_i8 : PatFrag<(ops node:$val, node:$ptr, node:$pred), (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i8; }]>; def trunc_masked_store_i16 : PatFrag<(ops node:$val, node:$ptr, node:$pred), (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i16; }]>; def trunc_masked_store_i32 : PatFrag<(ops node:$val, node:$ptr, node:$pred), (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ return cast(N)->getMemoryVT().getScalarType() == MVT::i32; }]>; def non_temporal_store : PatFrag<(ops node:$val, node:$ptr, node:$pred), (masked_st node:$val, node:$ptr, undef, node:$pred), [{ return !cast(N)->isTruncatingStore() && cast(N)->isUnindexed() && cast(N)->isNonTemporal(); }]>; // top16Zero - answer true if the upper 16 bits of $src are 0, false otherwise def top16Zero: PatLeaf<(i32 GPR32:$src), [{ return SDValue(N,0)->getValueType(0) == MVT::i32 && CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 16)); }]>; // top32Zero - answer true if the upper 32 bits of $src are 0, false otherwise def top32Zero: PatLeaf<(i64 GPR64:$src), [{ return SDValue(N,0)->getValueType(0) == MVT::i64 && CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(64, 32)); }]>; // Node definitions. def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>; def AArch64adr : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>; def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>; def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>; def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDCallSeqStart<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>, [SDNPHasChain, SDNPOutGlue]>; def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def AArch64call : SDNode<"AArch64ISD::CALL", SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def AArch64call_bti : SDNode<"AArch64ISD::CALL_BTI", SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def AArch64call_rvmarker: SDNode<"AArch64ISD::CALL_RVMARKER", SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond, [SDNPHasChain]>; def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz, [SDNPHasChain]>; def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz, [SDNPHasChain]>; def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz, [SDNPHasChain]>; def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz, [SDNPHasChain]>; def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>; def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>; def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>; def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>; def AArch64retflag : SDNode<"AArch64ISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >; def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>; def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut, [SDNPCommutative]>; def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>; def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut, [SDNPCommutative]>; def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>; def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>; def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>; def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>; def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>; def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>; def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>; def AArch64strict_fcmp : SDNode<"AArch64ISD::STRICT_FCMP", SDT_AArch64FCmp, [SDNPHasChain]>; def AArch64strict_fcmpe : SDNode<"AArch64ISD::STRICT_FCMPE", SDT_AArch64FCmp, [SDNPHasChain]>; def AArch64any_fcmp : PatFrags<(ops node:$lhs, node:$rhs), [(AArch64strict_fcmp node:$lhs, node:$rhs), (AArch64fcmp node:$lhs, node:$rhs)]>; def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>; def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>; def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>; def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>; def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>; def AArch64insr : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>; def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>; def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>; def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>; def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>; def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>; def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>; def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>; def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>; def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>; def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>; def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>; def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>; def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>; def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>; def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>; def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>; def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>; def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>; def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>; def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>; def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>; def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>; def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>; def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>; def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>; def AArch64vsli : SDNode<"AArch64ISD::VSLI", SDT_AArch64vshiftinsert>; def AArch64vsri : SDNode<"AArch64ISD::VSRI", SDT_AArch64vshiftinsert>; def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>; def AArch64bsp: SDNode<"AArch64ISD::BSP", SDT_AArch64trivec>; def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>; def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>; def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>; def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>; def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>; def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>; def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>; def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>; def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>; def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>; def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>; def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>; def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>; def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS), (vnot (AArch64cmeqz (and node:$LHS, node:$RHS)))>; def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>; def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>; def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>; def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>; def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>; def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>; def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>; def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH, [SDNPHasChain, SDNPSideEffect]>; def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>; def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>; def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ", SDT_AArch64TLSDescCallSeq, [SDNPInGlue, SDNPOutGlue, SDNPHasChain, SDNPVariadic]>; def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge", SDT_AArch64WrapperLarge>; def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>; def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>; def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>; def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>; def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>; def AArch64frecps : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>; def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>; def AArch64frsqrts : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>; def AArch64sdot : SDNode<"AArch64ISD::SDOT", SDT_AArch64Dot>; def AArch64udot : SDNode<"AArch64ISD::UDOT", SDT_AArch64Dot>; def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>; def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>; def AArch64sminv : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>; def AArch64uminv : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>; def AArch64smaxv : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>; def AArch64umaxv : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>; def AArch64srhadd : SDNode<"AArch64ISD::SRHADD", SDT_AArch64binvec>; def AArch64urhadd : SDNode<"AArch64ISD::URHADD", SDT_AArch64binvec>; def AArch64shadd : SDNode<"AArch64ISD::SHADD", SDT_AArch64binvec>; def AArch64uhadd : SDNode<"AArch64ISD::UHADD", SDT_AArch64binvec>; def AArch64uabd : PatFrags<(ops node:$lhs, node:$rhs), [(abdu node:$lhs, node:$rhs), (int_aarch64_neon_uabd node:$lhs, node:$rhs)]>; def AArch64sabd : PatFrags<(ops node:$lhs, node:$rhs), [(abds node:$lhs, node:$rhs), (int_aarch64_neon_sabd node:$lhs, node:$rhs)]>; def AArch64uaddlp_n : SDNode<"AArch64ISD::UADDLP", SDT_AArch64uaddlp>; def AArch64uaddlp : PatFrags<(ops node:$src), [(AArch64uaddlp_n node:$src), (int_aarch64_neon_uaddlp node:$src)]>; def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def SDT_AArch64unpk : SDTypeProfile<1, 1, [ SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0> ]>; def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>; def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>; def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>; def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>; def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>; def AArch64mrs : SDNode<"AArch64ISD::MRS", SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, i32>]>, [SDNPHasChain, SDNPOutGlue]>; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // AArch64 Instruction Predicate Definitions. // We could compute these on a per-module basis but doing so requires accessing // the Function object through the Subtarget and objections were raised // to that (see post-commit review comments for r301750). let RecomputePerFunction = 1 in { def ForCodeSize : Predicate<"shouldOptForSize(MF)">; def NotForCodeSize : Predicate<"!shouldOptForSize(MF)">; // Avoid generating STRQro if it is slow, unless we're optimizing for code size. def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">; def UseBTI : Predicate<[{ MF->getInfo()->branchTargetEnforcement() }]>; def NotUseBTI : Predicate<[{ !MF->getInfo()->branchTargetEnforcement() }]>; def SLSBLRMitigation : Predicate<[{ MF->getSubtarget().hardenSlsBlr() }]>; def NoSLSBLRMitigation : Predicate<[{ !MF->getSubtarget().hardenSlsBlr() }]>; // Toggles patterns which aren't beneficial in GlobalISel when we aren't // optimizing. This allows us to selectively use patterns without impacting // SelectionDAG's behaviour. // FIXME: One day there will probably be a nicer way to check for this, but // today is not that day. def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">; } include "AArch64InstrFormats.td" include "SVEInstrFormats.td" include "SMEInstrFormats.td" //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Miscellaneous instructions. //===----------------------------------------------------------------------===// let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in { // We set Sched to empty list because we expect these instructions to simply get // removed in most cases. def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), [(AArch64callseq_start timm:$amt1, timm:$amt2)]>, Sched<[]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), [(AArch64callseq_end timm:$amt1, timm:$amt2)]>, Sched<[]>; } // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 let isReMaterializable = 1, isCodeGenOnly = 1 in { // FIXME: The following pseudo instructions are only needed because remat // cannot handle multiple instructions. When that changes, they can be // removed, along with the AArch64Wrapper node. let AddedComplexity = 10 in def LOADgot : Pseudo<(outs GPR64common:$dst), (ins i64imm:$addr), [(set GPR64common:$dst, (AArch64LOADgot tglobaladdr:$addr))]>, Sched<[WriteLDAdr]>; // The MOVaddr instruction should match only when the add is not folded // into a load or store address. def MOVaddr : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi), tglobaladdr:$low))]>, Sched<[WriteAdrAdr]>; def MOVaddrJT : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi), tjumptable:$low))]>, Sched<[WriteAdrAdr]>; def MOVaddrCP : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi), tconstpool:$low))]>, Sched<[WriteAdrAdr]>; def MOVaddrBA : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi), tblockaddress:$low))]>, Sched<[WriteAdrAdr]>; def MOVaddrTLS : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi), tglobaltlsaddr:$low))]>, Sched<[WriteAdrAdr]>; def MOVaddrEXT : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), [(set GPR64common:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi), texternalsym:$low))]>, Sched<[WriteAdrAdr]>; // Normally AArch64addlow either gets folded into a following ldr/str, // or together with an adrp into MOVaddr above. For cases with TLS, it // might appear without either of them, so allow lowering it into a plain // add. def ADDlowTLS : Pseudo<(outs GPR64sp:$dst), (ins GPR64sp:$src, i64imm:$low), [(set GPR64sp:$dst, (AArch64addlow GPR64sp:$src, tglobaltlsaddr:$low))]>, Sched<[WriteAdr]>; } // isReMaterializable, isCodeGenOnly def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr), (LOADgot tglobaltlsaddr:$addr)>; def : Pat<(AArch64LOADgot texternalsym:$addr), (LOADgot texternalsym:$addr)>; def : Pat<(AArch64LOADgot tconstpool:$addr), (LOADgot tconstpool:$addr)>; // In general these get lowered into a sequence of three 4-byte instructions. // 32-bit jump table destination is actually only 2 instructions since we can // use the table itself as a PC-relative base. But optimization occurs after // branch relaxation so be pessimistic. let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch", isNotDuplicable = 1 in { def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, Sched<[]>; def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, Sched<[]>; def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, Sched<[]>; } // Space-consuming pseudo to aid testing of placement and reachability // algorithms. Immediate operand is the number of bytes this "instruction" // occupies; register operands can be used to enforce dependency and constrain // the scheduler. let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn), [(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>, Sched<[]>; let hasSideEffects = 1, isCodeGenOnly = 1 in { def SpeculationSafeValueX : Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>; def SpeculationSafeValueW : Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>; } // SpeculationBarrierEndBB must only be used after an unconditional control // flow, i.e. after a terminator for which isBarrier is True. let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in { // This gets lowered to a pair of 4-byte instructions. let Size = 8 in def SpeculationBarrierISBDSBEndBB : Pseudo<(outs), (ins), []>, Sched<[]>; // This gets lowered to a 4-byte instruction. let Size = 4 in def SpeculationBarrierSBEndBB : Pseudo<(outs), (ins), []>, Sched<[]>; } //===----------------------------------------------------------------------===// // System instructions. //===----------------------------------------------------------------------===// def HINT : HintI<"hint">; def : InstAlias<"nop", (HINT 0b000)>; def : InstAlias<"yield",(HINT 0b001)>; def : InstAlias<"wfe", (HINT 0b010)>; def : InstAlias<"wfi", (HINT 0b011)>; def : InstAlias<"sev", (HINT 0b100)>; def : InstAlias<"sevl", (HINT 0b101)>; def : InstAlias<"dgh", (HINT 0b110)>; def : InstAlias<"esb", (HINT 0b10000)>, Requires<[HasRAS]>; def : InstAlias<"csdb", (HINT 20)>; // In order to be able to write readable assembly, LLVM should accept assembly // inputs that use Branch Target Indentification mnemonics, even with BTI disabled. // However, in order to be compatible with other assemblers (e.g. GAS), LLVM // should not emit these mnemonics unless BTI is enabled. def : InstAlias<"bti", (HINT 32), 0>; def : InstAlias<"bti $op", (HINT btihint_op:$op), 0>; def : InstAlias<"bti", (HINT 32)>, Requires<[HasBTI]>; def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>; // v8.2a Statistical Profiling extension def : InstAlias<"psb $op", (HINT psbhint_op:$op)>, Requires<[HasSPE]>; // As far as LLVM is concerned this writes to the system's exclusive monitors. let mayLoad = 1, mayStore = 1 in def CLREX : CRmSystemI; // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot // model patterns with sufficiently fine granularity. let mayLoad = ?, mayStore = ? in { def DMB : CRmSystemI; def DSB : CRmSystemI; def ISB : CRmSystemI; def TSB : CRmSystemI { let CRm = 0b0010; let Inst{12} = 0; let Predicates = [HasTRACEV8_4]; } def DSBnXS : CRmSystemI { let CRm{1-0} = 0b11; let Inst{9-8} = 0b10; let Predicates = [HasXS]; } let Predicates = [HasWFxT] in { def WFET : RegInputSystemI<0b0000, 0b000, "wfet">; def WFIT : RegInputSystemI<0b0000, 0b001, "wfit">; } // Branch Record Buffer two-word mnemonic instructions class BRBEI op2, string keyword> : SimpleSystemI<0, (ins), "brb", keyword>, Sched<[WriteSys]> { let Inst{31-8} = 0b110101010000100101110010; let Inst{7-5} = op2; let Predicates = [HasBRBE]; } def BRB_IALL: BRBEI<0b100, "\tiall">; def BRB_INJ: BRBEI<0b101, "\tinj">; } // Allow uppercase and lowercase keyword arguments for BRB IALL and BRB INJ def : TokenAlias<"INJ", "inj">; def : TokenAlias<"IALL", "iall">; // ARMv8.2-A Dot Product let Predicates = [HasDotProd] in { defm SDOT : SIMDThreeSameVectorDot<0, 0, "sdot", AArch64sdot>; defm UDOT : SIMDThreeSameVectorDot<1, 0, "udot", AArch64udot>; defm SDOTlane : SIMDThreeSameVectorDotIndex<0, 0, 0b10, "sdot", AArch64sdot>; defm UDOTlane : SIMDThreeSameVectorDotIndex<1, 0, 0b10, "udot", AArch64udot>; } // ARMv8.6-A BFloat let Predicates = [HasNEON, HasBF16] in { defm BFDOT : SIMDThreeSameVectorBFDot<1, "bfdot">; defm BF16DOTlane : SIMDThreeSameVectorBF16DotI<0, "bfdot">; def BFMMLA : SIMDThreeSameVectorBF16MatrixMul<"bfmmla">; def BFMLALB : SIMDBF16MLAL<0, "bfmlalb", int_aarch64_neon_bfmlalb>; def BFMLALT : SIMDBF16MLAL<1, "bfmlalt", int_aarch64_neon_bfmlalt>; def BFMLALBIdx : SIMDBF16MLALIndex<0, "bfmlalb", int_aarch64_neon_bfmlalb>; def BFMLALTIdx : SIMDBF16MLALIndex<1, "bfmlalt", int_aarch64_neon_bfmlalt>; def BFCVTN : SIMD_BFCVTN; def BFCVTN2 : SIMD_BFCVTN2; // Vector-scalar BFDOT: // The second source operand of the 64-bit variant of BF16DOTlane is a 128-bit // register (the instruction uses a single 32-bit lane from it), so the pattern // is a bit tricky. def : Pat<(v2f32 (int_aarch64_neon_bfdot (v2f32 V64:$Rd), (v4bf16 V64:$Rn), (v4bf16 (bitconvert (v2i32 (AArch64duplane32 (v4i32 (bitconvert (v8bf16 (insert_subvector undef, (v4bf16 V64:$Rm), (i64 0))))), VectorIndexS:$idx)))))), (BF16DOTlanev4bf16 (v2f32 V64:$Rd), (v4bf16 V64:$Rn), (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; } let Predicates = [HasNEONorStreamingSVE, HasBF16] in { def BFCVT : BF16ToSinglePrecision<"bfcvt">; } // ARMv8.6A AArch64 matrix multiplication let Predicates = [HasMatMulInt8] in { def SMMLA : SIMDThreeSameVectorMatMul<0, 0, "smmla", int_aarch64_neon_smmla>; def UMMLA : SIMDThreeSameVectorMatMul<0, 1, "ummla", int_aarch64_neon_ummla>; def USMMLA : SIMDThreeSameVectorMatMul<1, 0, "usmmla", int_aarch64_neon_usmmla>; defm USDOT : SIMDThreeSameVectorDot<0, 1, "usdot", int_aarch64_neon_usdot>; defm USDOTlane : SIMDThreeSameVectorDotIndex<0, 1, 0b10, "usdot", int_aarch64_neon_usdot>; // sudot lane has a pattern where usdot is expected (there is no sudot). // The second operand is used in the dup operation to repeat the indexed // element. class BaseSIMDSUDOTIndex : BaseSIMDThreeSameVectorDotIndex { let Pattern = [(set (AccumType RegType:$dst), (AccumType (int_aarch64_neon_usdot (AccumType RegType:$Rd), (InputType (bitconvert (AccumType (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx)))), (InputType RegType:$Rn))))]; } multiclass SIMDSUDOTIndex { def v8i8 : BaseSIMDSUDOTIndex<0, ".2s", ".8b", ".4b", V64, v2i32, v8i8>; def v16i8 : BaseSIMDSUDOTIndex<1, ".4s", ".16b", ".4b", V128, v4i32, v16i8>; } defm SUDOTlane : SIMDSUDOTIndex; } // ARMv8.2-A FP16 Fused Multiply-Add Long let Predicates = [HasNEON, HasFP16FML] in { defm FMLAL : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>; defm FMLSL : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>; defm FMLAL2 : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>; defm FMLSL2 : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>; defm FMLALlane : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>; defm FMLSLlane : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>; defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>; defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>; } // Armv8.2-A Crypto extensions let Predicates = [HasSHA3] in { def SHA512H : CryptoRRRTied<0b0, 0b00, "sha512h">; def SHA512H2 : CryptoRRRTied<0b0, 0b01, "sha512h2">; def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">; def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">; def RAX1 : CryptoRRR_2D<0b0,0b11, "rax1">; def EOR3 : CryptoRRRR_16B<0b00, "eor3">; def BCAX : CryptoRRRR_16B<0b01, "bcax">; def XAR : CryptoRRRi6<"xar">; class SHA3_pattern : Pat<(VecTy (OpNode (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))), (INST (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))>; def : Pat<(v2i64 (int_aarch64_crypto_sha512su0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))), (SHA512SU0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; class EOR3_pattern : Pat<(xor (xor (VecTy V128:$Vn), (VecTy V128:$Vm)), (VecTy V128:$Va)), (EOR3 (VecTy V128:$Vn), (VecTy V128:$Vm), (VecTy V128:$Va))>; def : EOR3_pattern; def : EOR3_pattern; def : EOR3_pattern; def : EOR3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : SHA3_pattern; def : Pat<(v2i64 (int_aarch64_crypto_rax1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))), (RAX1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; def : Pat<(v2i64 (int_aarch64_crypto_xar (v2i64 V128:$Vn), (v2i64 V128:$Vm), (i64 timm0_63:$imm))), (XAR (v2i64 V128:$Vn), (v2i64 V128:$Vm), (timm0_63:$imm))>; } // HasSHA3 let Predicates = [HasSM4] in { def SM3TT1A : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">; def SM3TT1B : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">; def SM3TT2A : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">; def SM3TT2B : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">; def SM3SS1 : CryptoRRRR_4S<0b10, "sm3ss1">; def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">; def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">; def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">; def SM4E : CryptoRRTied_4S<0b0, 0b01, "sm4e">; def : Pat<(v4i32 (int_aarch64_crypto_sm3ss1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))), (SM3SS1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))>; class SM3PARTW_pattern : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))), (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))>; class SM3TT_pattern : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (i64 VectorIndexS_timm:$imm) )), (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (VectorIndexS_timm:$imm))>; class SM4_pattern : Pat<(v4i32 (OpNode (v4i32 V128:$Vn), (v4i32 V128:$Vm))), (INST (v4i32 V128:$Vn), (v4i32 V128:$Vm))>; def : SM3PARTW_pattern; def : SM3PARTW_pattern; def : SM3TT_pattern; def : SM3TT_pattern; def : SM3TT_pattern; def : SM3TT_pattern; def : SM4_pattern; def : SM4_pattern; } // HasSM4 let Predicates = [HasRCPC] in { // v8.3 Release Consistent Processor Consistent support, optional in v8.2. def LDAPRB : RCPCLoad<0b00, "ldaprb", GPR32>; def LDAPRH : RCPCLoad<0b01, "ldaprh", GPR32>; def LDAPRW : RCPCLoad<0b10, "ldapr", GPR32>; def LDAPRX : RCPCLoad<0b11, "ldapr", GPR64>; } // v8.3a complex add and multiply-accumulate. No predicate here, that is done // inside the multiclass as the FP16 versions need different predicates. defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop, "fcmla", null_frag>; defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd, "fcadd", null_frag>; defm FCMLA : SIMDIndexedTiedComplexHSD<0, 1, complexrotateop, "fcmla">; let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in { def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))), (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>; def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))), (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>; def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))), (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>; def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))), (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>; } let Predicates = [HasComplxNum, HasNEON] in { def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))), (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>; def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))), (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>; foreach Ty = [v4f32, v2f64] in { def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))), (!cast("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>; def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))), (!cast("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>; } } multiclass FCMLA_PATS { def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), (!cast("FCMLA" # ty) $Rd, $Rn, $Rm, 0)>; def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), (!cast("FCMLA" # ty) $Rd, $Rn, $Rm, 1)>; def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), (!cast("FCMLA" # ty) $Rd, $Rn, $Rm, 2)>; def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), (!cast("FCMLA" # ty) $Rd, $Rn, $Rm, 3)>; } multiclass FCMLA_LANE_PATS { def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), (!cast("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 0)>; def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), (!cast("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 1)>; def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), (!cast("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 2)>; def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), (!cast("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 3)>; } let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in { defm : FCMLA_PATS; defm : FCMLA_PATS; defm : FCMLA_LANE_PATS; defm : FCMLA_LANE_PATS; } let Predicates = [HasComplxNum, HasNEON] in { defm : FCMLA_PATS; defm : FCMLA_PATS; defm : FCMLA_PATS; defm : FCMLA_LANE_PATS; } // v8.3a Pointer Authentication // These instructions inhabit part of the hint space and so can be used for // armv8 targets. Keeping the old HINT mnemonic when compiling without PA is // important for compatibility with other assemblers (e.g. GAS) when building // software compatible with both CPUs that do or don't implement PA. let Uses = [LR], Defs = [LR] in { def PACIAZ : SystemNoOperands<0b000, "hint\t#24">; def PACIBZ : SystemNoOperands<0b010, "hint\t#26">; let isAuthenticated = 1 in { def AUTIAZ : SystemNoOperands<0b100, "hint\t#28">; def AUTIBZ : SystemNoOperands<0b110, "hint\t#30">; } } let Uses = [LR, SP], Defs = [LR] in { def PACIASP : SystemNoOperands<0b001, "hint\t#25">; def PACIBSP : SystemNoOperands<0b011, "hint\t#27">; let isAuthenticated = 1 in { def AUTIASP : SystemNoOperands<0b101, "hint\t#29">; def AUTIBSP : SystemNoOperands<0b111, "hint\t#31">; } } let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in { def PACIA1716 : SystemNoOperands<0b000, "hint\t#8">; def PACIB1716 : SystemNoOperands<0b010, "hint\t#10">; let isAuthenticated = 1 in { def AUTIA1716 : SystemNoOperands<0b100, "hint\t#12">; def AUTIB1716 : SystemNoOperands<0b110, "hint\t#14">; } } let Uses = [LR], Defs = [LR], CRm = 0b0000 in { def XPACLRI : SystemNoOperands<0b111, "hint\t#7">; } // In order to be able to write readable assembly, LLVM should accept assembly // inputs that use pointer authentication mnemonics, even with PA disabled. // However, in order to be compatible with other assemblers (e.g. GAS), LLVM // should not emit these mnemonics unless PA is enabled. def : InstAlias<"paciaz", (PACIAZ), 0>; def : InstAlias<"pacibz", (PACIBZ), 0>; def : InstAlias<"autiaz", (AUTIAZ), 0>; def : InstAlias<"autibz", (AUTIBZ), 0>; def : InstAlias<"paciasp", (PACIASP), 0>; def : InstAlias<"pacibsp", (PACIBSP), 0>; def : InstAlias<"autiasp", (AUTIASP), 0>; def : InstAlias<"autibsp", (AUTIBSP), 0>; def : InstAlias<"pacia1716", (PACIA1716), 0>; def : InstAlias<"pacib1716", (PACIB1716), 0>; def : InstAlias<"autia1716", (AUTIA1716), 0>; def : InstAlias<"autib1716", (AUTIB1716), 0>; def : InstAlias<"xpaclri", (XPACLRI), 0>; // These pointer authentication instructions require armv8.3a let Predicates = [HasPAuth] in { // When PA is enabled, a better mnemonic should be emitted. def : InstAlias<"paciaz", (PACIAZ), 1>; def : InstAlias<"pacibz", (PACIBZ), 1>; def : InstAlias<"autiaz", (AUTIAZ), 1>; def : InstAlias<"autibz", (AUTIBZ), 1>; def : InstAlias<"paciasp", (PACIASP), 1>; def : InstAlias<"pacibsp", (PACIBSP), 1>; def : InstAlias<"autiasp", (AUTIASP), 1>; def : InstAlias<"autibsp", (AUTIBSP), 1>; def : InstAlias<"pacia1716", (PACIA1716), 1>; def : InstAlias<"pacib1716", (PACIB1716), 1>; def : InstAlias<"autia1716", (AUTIA1716), 1>; def : InstAlias<"autib1716", (AUTIB1716), 1>; def : InstAlias<"xpaclri", (XPACLRI), 1>; multiclass SignAuth prefix, bits<3> prefix_z, string asm, SDPatternOperator op> { def IA : SignAuthOneData; def IB : SignAuthOneData; def DA : SignAuthOneData; def DB : SignAuthOneData; def IZA : SignAuthZero; def DZA : SignAuthZero; def IZB : SignAuthZero; def DZB : SignAuthZero; } defm PAC : SignAuth<0b000, 0b010, "pac", int_ptrauth_sign>; defm AUT : SignAuth<0b001, 0b011, "aut", null_frag>; def XPACI : ClearAuth<0, "xpaci">; def XPACD : ClearAuth<1, "xpacd">; def PACGA : SignAuthTwoOperand<0b1100, "pacga", int_ptrauth_sign_generic>; // Combined Instructions let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def BRAA : AuthBranchTwoOperands<0, 0, "braa">; def BRAB : AuthBranchTwoOperands<0, 1, "brab">; } let isCall = 1, Defs = [LR], Uses = [SP] in { def BLRAA : AuthBranchTwoOperands<1, 0, "blraa">; def BLRAB : AuthBranchTwoOperands<1, 1, "blrab">; } let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def BRAAZ : AuthOneOperand<0b000, 0, "braaz">; def BRABZ : AuthOneOperand<0b000, 1, "brabz">; } let isCall = 1, Defs = [LR], Uses = [SP] in { def BLRAAZ : AuthOneOperand<0b001, 0, "blraaz">; def BLRABZ : AuthOneOperand<0b001, 1, "blrabz">; } let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def RETAA : AuthReturn<0b010, 0, "retaa">; def RETAB : AuthReturn<0b010, 1, "retab">; def ERETAA : AuthReturn<0b100, 0, "eretaa">; def ERETAB : AuthReturn<0b100, 1, "eretab">; } defm LDRAA : AuthLoad<0, "ldraa", simm10Scaled>; defm LDRAB : AuthLoad<1, "ldrab", simm10Scaled>; } // v8.3a floating point conversion for javascript let Predicates = [HasJS, HasFPARMv8], Defs = [NZCV] in def FJCVTZS : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32, "fjcvtzs", [(set GPR32:$Rd, (int_aarch64_fjcvtzs FPR64:$Rn))]> { let Inst{31} = 0; } // HasJS, HasFPARMv8 // v8.4 Flag manipulation instructions let Predicates = [HasFlagM], Defs = [NZCV], Uses = [NZCV] in { def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> { let Inst{20-5} = 0b0000001000000000; } def SETF8 : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">; def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">; def RMIF : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif", "{\t$Rn, $imm, $mask}">; } // HasFlagM // v8.5 flag manipulation instructions let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in { def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> { let Inst{18-16} = 0b000; let Inst{11-8} = 0b0000; let Unpredictable{11-8} = 0b1111; let Inst{7-5} = 0b001; } def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> { let Inst{18-16} = 0b000; let Inst{11-8} = 0b0000; let Unpredictable{11-8} = 0b1111; let Inst{7-5} = 0b010; } } // HasAltNZCV // Armv8.5-A speculation barrier def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> { let Inst{20-5} = 0b0001100110000111; let Unpredictable{11-8} = 0b1111; let Predicates = [HasSB]; let hasSideEffects = 1; } def : InstAlias<"clrex", (CLREX 0xf)>; def : InstAlias<"isb", (ISB 0xf)>; def : InstAlias<"ssbb", (DSB 0)>; def : InstAlias<"pssbb", (DSB 4)>; def : InstAlias<"dfb", (DSB 0b1100)>, Requires<[HasV8_0r]>; def MRS : MRSI; def MSR : MSRI; def MSRpstateImm1 : MSRpstateImm0_1; def MSRpstateImm4 : MSRpstateImm0_15; def : Pat<(AArch64mrs imm:$id), (MRS imm:$id)>; // The thread pointer (on Linux, at least, where this has been implemented) is // TPIDR_EL0. def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins), [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>; let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in { def HWASAN_CHECK_MEMACCESS : Pseudo< (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo), [(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>, Sched<[]>; } let Uses = [ X20 ], Defs = [ X16, X17, LR, NZCV ] in { def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo< (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo), [(int_hwasan_check_memaccess_shortgranules X20, GPR64noip:$ptr, (i32 timm:$accessinfo))]>, Sched<[]>; } // The cycle counter PMC register is PMCCNTR_EL0. let Predicates = [HasPerfMon] in def : Pat<(readcyclecounter), (MRS 0xdce8)>; // FPCR register def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>; def : Pat<(int_aarch64_set_fpcr i64:$val), (MSR 0xda20, GPR64:$val)>; // Generic system instructions def SYSxt : SystemXtI<0, "sys">; def SYSLxt : SystemLXtI<1, "sysl">; def : InstAlias<"sys $op1, $Cn, $Cm, $op2", (SYSxt imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, XZR)>; let Predicates = [HasTME] in { def TSTART : TMSystemI<0b0000, "tstart", [(set GPR64:$Rt, (int_aarch64_tstart))]>; def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>; def TCANCEL : TMSystemException<0b011, "tcancel", [(int_aarch64_tcancel timm64_0_65535:$imm)]>; def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> { let mayLoad = 0; let mayStore = 0; } } // HasTME //===----------------------------------------------------------------------===// // Move immediate instructions. //===----------------------------------------------------------------------===// defm MOVK : InsertImmediate<0b11, "movk">; defm MOVN : MoveImmediate<0b00, "movn">; let PostEncoderMethod = "fixMOVZ" in defm MOVZ : MoveImmediate<0b10, "movz">; // First group of aliases covers an implicit "lsl #0". def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, timm32_0_65535:$imm, 0), 0>; def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, timm32_0_65535:$imm, 0), 0>; def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, timm32_0_65535:$imm, 0)>; def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, timm32_0_65535:$imm, 0)>; def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, timm32_0_65535:$imm, 0)>; def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, timm32_0_65535:$imm, 0)>; // Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax. def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>; def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>; def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>; def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>; def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>; def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>; def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>; def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>; def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>; def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>; def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>; def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>; def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>; def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>; def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>; def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>; def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>; def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>; // Final group of aliases covers true "mov $Rd, $imm" cases. multiclass movw_mov_alias { def _asmoperand : AsmOperandClass { let Name = basename # width # "_lsl" # shift # "MovAlias"; let PredicateMethod = "is" # basename # "MovAlias<" # width # ", " # shift # ">"; let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">"; } def _movimm : Operand { let ParserMatchClass = !cast(NAME # "_asmoperand"); } def : InstAlias<"mov $Rd, $imm", (INST GPR:$Rd, !cast(NAME # "_movimm"):$imm, shift)>; } defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>; defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>; defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>; defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>; defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>; defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>; defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>; defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>; defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>; defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>; defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>; defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>; let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1, isAsCheapAsAMove = 1 in { // FIXME: The following pseudo instructions are only needed because remat // cannot handle multiple instructions. When that changes, we can select // directly to the real instructions and get rid of these pseudos. def MOVi32imm : Pseudo<(outs GPR32:$dst), (ins i32imm:$src), [(set GPR32:$dst, imm:$src)]>, Sched<[WriteImm]>; def MOVi64imm : Pseudo<(outs GPR64:$dst), (ins i64imm:$src), [(set GPR64:$dst, imm:$src)]>, Sched<[WriteImm]>; } // isReMaterializable, isCodeGenOnly // If possible, we want to use MOVi32imm even for 64-bit moves. This gives the // eventual expansion code fewer bits to worry about getting right. Marshalling // the types is a little tricky though: def i64imm_32bit : ImmLeaf(Imm); }]>; def s64imm_32bit : ImmLeaf(Imm); return Imm64 >= std::numeric_limits::min() && Imm64 <= std::numeric_limits::max(); }]>; def trunc_imm : SDNodeXFormgetTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32); }]>; def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">, GISDNodeXFormEquiv; let Predicates = [OptimizedGISelOrOtherSelector] in { // The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless // copies. def : Pat<(i64 i64imm_32bit:$src), (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>; } // Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model). def bitcast_fpimm_to_i32 : SDNodeXFormgetTargetConstant( N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32); }]>; def bitcast_fpimm_to_i64 : SDNodeXFormgetTargetConstant( N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64); }]>; def : Pat<(f32 fpimm:$in), (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>; def : Pat<(f64 fpimm:$in), (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>; // Deal with the various forms of (ELF) large addressing with MOVZ/MOVK // sequences. def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2, tglobaladdr:$g1, tglobaladdr:$g0), (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0), tglobaladdr:$g1, 16), tglobaladdr:$g2, 32), tglobaladdr:$g3, 48)>; def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2, tblockaddress:$g1, tblockaddress:$g0), (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0), tblockaddress:$g1, 16), tblockaddress:$g2, 32), tblockaddress:$g3, 48)>; def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2, tconstpool:$g1, tconstpool:$g0), (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0), tconstpool:$g1, 16), tconstpool:$g2, 32), tconstpool:$g3, 48)>; def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2, tjumptable:$g1, tjumptable:$g0), (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0), tjumptable:$g1, 16), tjumptable:$g2, 32), tjumptable:$g3, 48)>; //===----------------------------------------------------------------------===// // Arithmetic instructions. //===----------------------------------------------------------------------===// // Add/subtract with carry. defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>; defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>; def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>; def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>; def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>; def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>; // Add/subtract defm ADD : AddSub<0, "add", "sub", add>; defm SUB : AddSub<1, "sub", "add">; def : InstAlias<"mov $dst, $src", (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>; def : InstAlias<"mov $dst, $src", (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>; def : InstAlias<"mov $dst, $src", (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>; def : InstAlias<"mov $dst, $src", (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>; defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">; defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">; // Use SUBS instead of SUB to enable CSE between SUBS and SUB. def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm), (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>; def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm), (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>; def : Pat<(sub GPR32:$Rn, GPR32:$Rm), (SUBSWrr GPR32:$Rn, GPR32:$Rm)>; def : Pat<(sub GPR64:$Rn, GPR64:$Rm), (SUBSXrr GPR64:$Rn, GPR64:$Rm)>; def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm), (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>; def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm), (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>; let AddedComplexity = 1 in { def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3), (SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>; def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3), (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>; } // Because of the immediate format for add/sub-imm instructions, the // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). // These patterns capture that transformation. let AddedComplexity = 1 in { def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm), (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm), (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm), (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm), (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; } // Because of the immediate format for add/sub-imm instructions, the // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). // These patterns capture that transformation. let AddedComplexity = 1 in { def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; } def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; def : InstAlias<"neg $dst, $src$shift", (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; def : InstAlias<"neg $dst, $src$shift", (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; def : InstAlias<"negs $dst, $src$shift", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; def : InstAlias<"negs $dst, $src$shift", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; // Unsigned/Signed divide defm UDIV : Div<0, "udiv", udiv>; defm SDIV : Div<1, "sdiv", sdiv>; def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>; def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>; def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>; def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>; // Variable shift defm ASRV : Shift<0b10, "asr", sra>; defm LSLV : Shift<0b00, "lsl", shl>; defm LSRV : Shift<0b01, "lsr", srl>; defm RORV : Shift<0b11, "ror", rotr>; def : ShiftAlias<"asrv", ASRVWr, GPR32>; def : ShiftAlias<"asrv", ASRVXr, GPR64>; def : ShiftAlias<"lslv", LSLVWr, GPR32>; def : ShiftAlias<"lslv", LSLVXr, GPR64>; def : ShiftAlias<"lsrv", LSRVWr, GPR32>; def : ShiftAlias<"lsrv", LSRVXr, GPR64>; def : ShiftAlias<"rorv", RORVWr, GPR32>; def : ShiftAlias<"rorv", RORVXr, GPR64>; // Multiply-add let AddedComplexity = 5 in { defm MADD : MulAccum<0, "madd">; defm MSUB : MulAccum<1, "msub">; def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)), (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)), (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))), (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))), (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)), (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)), (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; } // AddedComplexity = 5 let AddedComplexity = 5 in { def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>; def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>; def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>; def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>; def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext_inreg GPR64:$Rm, i32))), (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext GPR32:$Rm))), (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))), (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (and GPR64:$Rm, 0xFFFFFFFF))), (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (zext GPR32:$Rm))), (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))), (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))), (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))), (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))), (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))), (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))), (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), (MOVi32imm (trunc_imm imm:$C)), XZR)>; def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))), (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), (MOVi32imm (trunc_imm imm:$C)), XZR)>; def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)), (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)), (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)), GPR64:$Ra)), (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))), (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; } // AddedComplexity = 5 def : MulAccumWAlias<"mul", MADDWrrr>; def : MulAccumXAlias<"mul", MADDXrrr>; def : MulAccumWAlias<"mneg", MSUBWrrr>; def : MulAccumXAlias<"mneg", MSUBXrrr>; def : WideMulAccumAlias<"smull", SMADDLrrr>; def : WideMulAccumAlias<"smnegl", SMSUBLrrr>; def : WideMulAccumAlias<"umull", UMADDLrrr>; def : WideMulAccumAlias<"umnegl", UMSUBLrrr>; // Multiply-high def SMULHrr : MulHi<0b010, "smulh", mulhs>; def UMULHrr : MulHi<0b110, "umulh", mulhu>; // CRC32 def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">; def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">; def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">; def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">; def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">; def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">; def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">; def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">; // v8.1 atomic CAS defm CAS : CompareAndSwap<0, 0, "">; defm CASA : CompareAndSwap<1, 0, "a">; defm CASL : CompareAndSwap<0, 1, "l">; defm CASAL : CompareAndSwap<1, 1, "al">; // v8.1 atomic CASP defm CASP : CompareAndSwapPair<0, 0, "">; defm CASPA : CompareAndSwapPair<1, 0, "a">; defm CASPL : CompareAndSwapPair<0, 1, "l">; defm CASPAL : CompareAndSwapPair<1, 1, "al">; // v8.1 atomic SWP defm SWP : Swap<0, 0, "">; defm SWPA : Swap<1, 0, "a">; defm SWPL : Swap<0, 1, "l">; defm SWPAL : Swap<1, 1, "al">; // v8.1 atomic LD(register). Performs load and then ST(register) defm LDADD : LDOPregister<0b000, "add", 0, 0, "">; defm LDADDA : LDOPregister<0b000, "add", 1, 0, "a">; defm LDADDL : LDOPregister<0b000, "add", 0, 1, "l">; defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">; defm LDCLR : LDOPregister<0b001, "clr", 0, 0, "">; defm LDCLRA : LDOPregister<0b001, "clr", 1, 0, "a">; defm LDCLRL : LDOPregister<0b001, "clr", 0, 1, "l">; defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">; defm LDEOR : LDOPregister<0b010, "eor", 0, 0, "">; defm LDEORA : LDOPregister<0b010, "eor", 1, 0, "a">; defm LDEORL : LDOPregister<0b010, "eor", 0, 1, "l">; defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">; defm LDSET : LDOPregister<0b011, "set", 0, 0, "">; defm LDSETA : LDOPregister<0b011, "set", 1, 0, "a">; defm LDSETL : LDOPregister<0b011, "set", 0, 1, "l">; defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">; defm LDSMAX : LDOPregister<0b100, "smax", 0, 0, "">; defm LDSMAXA : LDOPregister<0b100, "smax", 1, 0, "a">; defm LDSMAXL : LDOPregister<0b100, "smax", 0, 1, "l">; defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">; defm LDSMIN : LDOPregister<0b101, "smin", 0, 0, "">; defm LDSMINA : LDOPregister<0b101, "smin", 1, 0, "a">; defm LDSMINL : LDOPregister<0b101, "smin", 0, 1, "l">; defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">; defm LDUMAX : LDOPregister<0b110, "umax", 0, 0, "">; defm LDUMAXA : LDOPregister<0b110, "umax", 1, 0, "a">; defm LDUMAXL : LDOPregister<0b110, "umax", 0, 1, "l">; defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">; defm LDUMIN : LDOPregister<0b111, "umin", 0, 0, "">; defm LDUMINA : LDOPregister<0b111, "umin", 1, 0, "a">; defm LDUMINL : LDOPregister<0b111, "umin", 0, 1, "l">; defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">; // v8.1 atomic ST(register) as aliases to "LD(register) when Rt=xZR" defm : STOPregister<"stadd","LDADD">; // STADDx defm : STOPregister<"stclr","LDCLR">; // STCLRx defm : STOPregister<"steor","LDEOR">; // STEORx defm : STOPregister<"stset","LDSET">; // STSETx defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx defm : STOPregister<"stsmin","LDSMIN">;// STSMINx defm : STOPregister<"stumax","LDUMAX">;// STUMAXx defm : STOPregister<"stumin","LDUMIN">;// STUMINx // v8.5 Memory Tagging Extension let Predicates = [HasMTE] in { def IRG : BaseTwoOperand<0b0100, GPR64sp, "irg", int_aarch64_irg, GPR64sp, GPR64>, Sched<[]>{ let Inst{31} = 1; } def GMI : BaseTwoOperand<0b0101, GPR64, "gmi", int_aarch64_gmi, GPR64sp>, Sched<[]>{ let Inst{31} = 1; let isNotDuplicable = 1; } def ADDG : AddSubG<0, "addg", null_frag>; def SUBG : AddSubG<1, "subg", null_frag>; def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>; def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>; def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{ let Defs = [NZCV]; } def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>; def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">; def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4), (ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>; def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)), (LDG GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>; def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>; def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]", (outs GPR64:$Rt), (ins GPR64sp:$Rn)>; def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]", (outs), (ins GPR64:$Rt, GPR64sp:$Rn)>; def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]", (outs), (ins GPR64:$Rt, GPR64sp:$Rn)> { let Inst{23} = 0; } defm STG : MemTagStore<0b00, "stg">; defm STZG : MemTagStore<0b01, "stzg">; defm ST2G : MemTagStore<0b10, "st2g">; defm STZ2G : MemTagStore<0b11, "stz2g">; def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), (STGOffset $Rn, $Rm, $imm)>; def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), (STZGOffset $Rn, $Rm, $imm)>; def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), (ST2GOffset $Rn, $Rm, $imm)>; def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), (STZ2GOffset $Rn, $Rm, $imm)>; defm STGP : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">; def STGPpre : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">; def STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">; def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)), (STGOffset GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>; def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2), (STGPi $Rt, $Rt2, $Rn, $imm)>; def IRGstack : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>, Sched<[]>; def TAGPstack : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>, Sched<[]>; // Explicit SP in the first operand prevents ShrinkWrap optimization // from leaving this instruction out of the stack frame. When IRGstack // is transformed into IRG, this operand is replaced with the actual // register / expression for the tagged base pointer of the current function. def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>; // Large STG to be expanded into a loop. $sz is the size, $Rn is start address. // $Rn_wback is one past the end of the range. $Rm is the loop counter. let isCodeGenOnly=1, mayStore=1 in { def STGloop_wback : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn), [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >, Sched<[WriteAdr, WriteST]>; def STZGloop_wback : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn), [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >, Sched<[WriteAdr, WriteST]>; // A variant of the above where $Rn2 is an independent register not tied to the input register $Rn. // Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back). def STGloop : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn), [], "@earlyclobber $Rn2,@earlyclobber $Rm" >, Sched<[WriteAdr, WriteST]>; def STZGloop : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn), [], "@earlyclobber $Rn2,@earlyclobber $Rm" >, Sched<[WriteAdr, WriteST]>; } } // Predicates = [HasMTE] //===----------------------------------------------------------------------===// // Logical instructions. //===----------------------------------------------------------------------===// // (immediate) defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">; defm AND : LogicalImm<0b00, "and", and, "bic">; defm EOR : LogicalImm<0b10, "eor", xor, "eon">; defm ORR : LogicalImm<0b01, "orr", or, "orn">; // FIXME: these aliases *are* canonical sometimes (when movz can't be // used). Actually, it seems to be working right now, but putting logical_immXX // here is a bit dodgy on the AsmParser side too. def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR, logical_imm32:$imm), 0>; def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR, logical_imm64:$imm), 0>; // (register) defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>; defm BICS : LogicalRegS<0b11, 1, "bics", BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>; defm AND : LogicalReg<0b00, 0, "and", and>; defm BIC : LogicalReg<0b00, 1, "bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>; defm EON : LogicalReg<0b10, 1, "eon", BinOpFrag<(not (xor node:$LHS, node:$RHS))>>; defm EOR : LogicalReg<0b10, 0, "eor", xor>; defm ORN : LogicalReg<0b01, 1, "orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>; defm ORR : LogicalReg<0b01, 0, "orr", or>; def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>; def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>; def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>; def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>; def : InstAlias<"mvn $Wd, $Wm$sh", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>; def : InstAlias<"mvn $Xd, $Xm$sh", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>; def : InstAlias<"tst $src1, $src2", (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>; def : InstAlias<"tst $src1, $src2", (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>; def : InstAlias<"tst $src1, $src2", (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>; def : InstAlias<"tst $src1, $src2", (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>; def : InstAlias<"tst $src1, $src2$sh", (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>; def : InstAlias<"tst $src1, $src2$sh", (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>; def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>; def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>; //===----------------------------------------------------------------------===// // One operand data processing instructions. //===----------------------------------------------------------------------===// defm CLS : OneOperandData<0b101, "cls">; defm CLZ : OneOperandData<0b100, "clz", ctlz>; defm RBIT : OneOperandData<0b000, "rbit", bitreverse>; def REV16Wr : OneWRegData<0b001, "rev16", UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>; def REV16Xr : OneXRegData<0b001, "rev16", null_frag>; def : Pat<(cttz GPR32:$Rn), (CLZWr (RBITWr GPR32:$Rn))>; def : Pat<(cttz GPR64:$Rn), (CLZXr (RBITXr GPR64:$Rn))>; def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)), (i32 1))), (CLSWr GPR32:$Rn)>; def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)), (i64 1))), (CLSXr GPR64:$Rn)>; def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>; def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>; // Unlike the other one operand instructions, the instructions with the "rev" // mnemonic do *not* just different in the size bit, but actually use different // opcode bits for the different sizes. def REVWr : OneWRegData<0b010, "rev", bswap>; def REVXr : OneXRegData<0b011, "rev", bswap>; def REV32Xr : OneXRegData<0b010, "rev32", UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>; def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>; // The bswap commutes with the rotr so we want a pattern for both possible // orders. def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>; def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>; // Match (srl (bswap x), C) -> revC if the upper bswap bits are known zero. def : Pat<(srl (bswap top16Zero:$Rn), (i64 16)), (REV16Wr GPR32:$Rn)>; def : Pat<(srl (bswap top32Zero:$Rn), (i64 32)), (REV32Xr GPR64:$Rn)>; //===----------------------------------------------------------------------===// // Bitfield immediate extraction instruction. //===----------------------------------------------------------------------===// let hasSideEffects = 0 in defm EXTR : ExtractImm<"extr">; def : InstAlias<"ror $dst, $src, $shift", (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>; def : InstAlias<"ror $dst, $src, $shift", (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>; def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)), (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>; def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)), (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>; //===----------------------------------------------------------------------===// // Other bitfield immediate instructions. //===----------------------------------------------------------------------===// let hasSideEffects = 0 in { defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">; defm SBFM : BitfieldImm<0b00, "sbfm">; defm UBFM : BitfieldImm<0b10, "ubfm">; } def i32shift_a : Operand, SDNodeXFormgetZExtValue()) & 0x1f; return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; def i32shift_b : Operand, SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; // min(7, 31 - shift_amt) def i32shift_sext_i8 : Operand, SDNodeXFormgetZExtValue(); enc = enc > 7 ? 7 : enc; return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; // min(15, 31 - shift_amt) def i32shift_sext_i16 : Operand, SDNodeXFormgetZExtValue(); enc = enc > 15 ? 15 : enc; return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; def i64shift_a : Operand, SDNodeXFormgetZExtValue()) & 0x3f; return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; def i64shift_b : Operand, SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; // min(7, 63 - shift_amt) def i64shift_sext_i8 : Operand, SDNodeXFormgetZExtValue(); enc = enc > 7 ? 7 : enc; return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; // min(15, 63 - shift_amt) def i64shift_sext_i16 : Operand, SDNodeXFormgetZExtValue(); enc = enc > 15 ? 15 : enc; return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; // min(31, 63 - shift_amt) def i64shift_sext_i32 : Operand, SDNodeXFormgetZExtValue(); enc = enc > 31 ? 31 : enc; return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); }]>; def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)), (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), (i64 (i32shift_b imm0_31:$imm)))>; def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)), (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), (i64 (i64shift_b imm0_63:$imm)))>; let AddedComplexity = 10 in { def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)), (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)), (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; } def : InstAlias<"asr $dst, $src, $shift", (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; def : InstAlias<"asr $dst, $src, $shift", (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)), (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)), (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; def : InstAlias<"lsr $dst, $src, $shift", (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; def : InstAlias<"lsr $dst, $src, $shift", (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; //===----------------------------------------------------------------------===// // Conditional comparison instructions. //===----------------------------------------------------------------------===// defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>; defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>; //===----------------------------------------------------------------------===// // Conditional select instructions. //===----------------------------------------------------------------------===// defm CSEL : CondSelect<0, 0b00, "csel">; def inc : PatFrag<(ops node:$in), (add node:$in, 1)>; defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>; defm CSINV : CondSelectOp<1, 0b00, "csinv", not>; defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>; def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV), (CSINCWr WZR, WZR, (i32 imm:$cc))>; def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV), (CSINCXr XZR, XZR, (i32 imm:$cc))>; def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV), (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>; def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV), (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>; def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV), (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>; def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV), (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>; def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV), (CSINVWr WZR, WZR, (i32 imm:$cc))>; def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV), (CSINVXr XZR, XZR, (i32 imm:$cc))>; def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV), (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>; def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV), (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>; def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV), (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>; def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV), (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>; def : Pat<(add GPR32:$val, (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)), (CSINCWr GPR32:$val, GPR32:$val, (i32 imm:$cc))>; def : Pat<(add GPR64:$val, (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))), (CSINCXr GPR64:$val, GPR64:$val, (i32 imm:$cc))>; // The inverse of the condition code from the alias instruction is what is used // in the aliased instruction. The parser all ready inverts the condition code // for these aliases. def : InstAlias<"cset $dst, $cc", (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; def : InstAlias<"cset $dst, $cc", (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; def : InstAlias<"csetm $dst, $cc", (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; def : InstAlias<"csetm $dst, $cc", (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; def : InstAlias<"cinc $dst, $src, $cc", (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; def : InstAlias<"cinc $dst, $src, $cc", (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; def : InstAlias<"cinv $dst, $src, $cc", (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; def : InstAlias<"cinv $dst, $src, $cc", (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; def : InstAlias<"cneg $dst, $src, $cc", (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; def : InstAlias<"cneg $dst, $src, $cc", (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; //===----------------------------------------------------------------------===// // PC-relative instructions. //===----------------------------------------------------------------------===// let isReMaterializable = 1 in { let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in { def ADR : ADRI<0, "adr", adrlabel, [(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>; } // hasSideEffects = 0 def ADRP : ADRI<1, "adrp", adrplabel, [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>; } // isReMaterializable = 1 // page address of a constant pool entry, block address def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>; def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>; def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>; def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>; def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>; def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>; def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>; //===----------------------------------------------------------------------===// // Unconditional branch (register) instructions. //===----------------------------------------------------------------------===// let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def RET : BranchReg<0b0010, "ret", []>; def DRPS : SpecialReturn<0b0101, "drps">; def ERET : SpecialReturn<0b0100, "eret">; } // isReturn = 1, isTerminator = 1, isBarrier = 1 // Default to the LR register. def : InstAlias<"ret", (RET LR)>; let isCall = 1, Defs = [LR], Uses = [SP] in { def BLR : BranchReg<0b0001, "blr", []>; def BLRNoIP : Pseudo<(outs), (ins GPR64noip:$Rn), []>, Sched<[WriteBrReg]>, PseudoInstExpansion<(BLR GPR64:$Rn)>; def BLR_RVMARKER : Pseudo<(outs), (ins variable_ops), []>, Sched<[WriteBrReg]>; def BLR_BTI : Pseudo<(outs), (ins variable_ops), []>, Sched<[WriteBrReg]>; } // isCall def : Pat<(AArch64call GPR64:$Rn), (BLR GPR64:$Rn)>, Requires<[NoSLSBLRMitigation]>; def : Pat<(AArch64call GPR64noip:$Rn), (BLRNoIP GPR64noip:$Rn)>, Requires<[SLSBLRMitigation]>; def : Pat<(AArch64call_rvmarker (i64 tglobaladdr:$rvfunc), GPR64:$Rn), (BLR_RVMARKER tglobaladdr:$rvfunc, GPR64:$Rn)>, Requires<[NoSLSBLRMitigation]>; def : Pat<(AArch64call_bti GPR64:$Rn), (BLR_BTI GPR64:$Rn)>, Requires<[NoSLSBLRMitigation]>; let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>; } // isBranch, isTerminator, isBarrier, isIndirectBranch // Create a separate pseudo-instruction for codegen to use so that we don't // flag lr as used in every function. It'll be restored before the RET by the // epilogue if it's legitimately used. def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>, Sched<[WriteBrReg]> { let isTerminator = 1; let isBarrier = 1; let isReturn = 1; } // This is a directive-like pseudo-instruction. The purpose is to insert an // R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction // (which in the usual case is a BLR). let hasSideEffects = 1 in def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> { let AsmString = ".tlsdesccall $sym"; } // Pseudo instruction to tell the streamer to emit a 'B' character into the // augmentation string. def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {} // FIXME: maybe the scratch register used shouldn't be fixed to X1? // FIXME: can "hasSideEffects be dropped? // This gets lowered to an instruction sequence which takes 16 bytes let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1, Size = 16, isCodeGenOnly = 1 in def TLSDESC_CALLSEQ : Pseudo<(outs), (ins i64imm:$sym), [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>, Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>; def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym), (TLSDESC_CALLSEQ texternalsym:$sym)>; //===----------------------------------------------------------------------===// // Conditional branch (immediate) instruction. //===----------------------------------------------------------------------===// def Bcc : BranchCond<0, "b">; // Armv8.8-A variant form which hints to the branch predictor that // this branch is very likely to go the same way nearly all the time // (even though it is not known at compile time _which_ way that is). def BCcc : BranchCond<1, "bc">, Requires<[HasHBC]>; //===----------------------------------------------------------------------===// // Compare-and-branch instructions. //===----------------------------------------------------------------------===// defm CBZ : CmpBranch<0, "cbz", AArch64cbz>; defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>; //===----------------------------------------------------------------------===// // Test-bit-and-branch instructions. //===----------------------------------------------------------------------===// defm TBZ : TestBranch<0, "tbz", AArch64tbz>; defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>; //===----------------------------------------------------------------------===// // Unconditional branch (immediate) instructions. //===----------------------------------------------------------------------===// let isBranch = 1, isTerminator = 1, isBarrier = 1 in { def B : BranchImm<0, "b", [(br bb:$addr)]>; } // isBranch, isTerminator, isBarrier let isCall = 1, Defs = [LR], Uses = [SP] in { def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>; } // isCall def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>; //===----------------------------------------------------------------------===// // Exception generation instructions. //===----------------------------------------------------------------------===// let isTrap = 1 in { def BRK : ExceptionGeneration<0b001, 0b00, "brk">; } def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">; def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">; def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">, Requires<[HasEL3]>; def HLT : ExceptionGeneration<0b010, 0b00, "hlt">; def HVC : ExceptionGeneration<0b000, 0b10, "hvc">; def SMC : ExceptionGeneration<0b000, 0b11, "smc">, Requires<[HasEL3]>; def SVC : ExceptionGeneration<0b000, 0b01, "svc">; // DCPSn defaults to an immediate operand of zero if unspecified. def : InstAlias<"dcps1", (DCPS1 0)>; def : InstAlias<"dcps2", (DCPS2 0)>; def : InstAlias<"dcps3", (DCPS3 0)>, Requires<[HasEL3]>; def UDF : UDFType<0, "udf">; //===----------------------------------------------------------------------===// // Load instructions. //===----------------------------------------------------------------------===// // Pair (indexed, offset) defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">; defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">; defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">; defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">; defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">; defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">; // Pair (pre-indexed) def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">; def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">; def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">; def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">; def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">; def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">; // Pair (post-indexed) def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">; def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">; def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">; def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">; def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">; def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">; // Pair (no allocate) defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">; defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">; defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">; defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">; defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">; def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), (LDPXi GPR64sp:$Rn, simm7s8:$offset)>; //--- // (register offset) //--- // Integer defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>; defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>; defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>; defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>; // Floating-point defm LDRB : Load8RO<0b00, 1, 0b01, FPR8Op, "ldr", untyped, load>; defm LDRH : Load16RO<0b01, 1, 0b01, FPR16Op, "ldr", f16, load>; defm LDRS : Load32RO<0b10, 1, 0b01, FPR32Op, "ldr", f32, load>; defm LDRD : Load64RO<0b11, 1, 0b01, FPR64Op, "ldr", f64, load>; defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>; // Load sign-extended half-word defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>; defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>; // Load sign-extended byte defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>; defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>; // Load sign-extended word defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>; // Pre-fetch. defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">; // For regular load, we do not have any alignment requirement. // Thus, it is safe to directly map the vector loads with interesting // addressing modes. // FIXME: We could do the same for bitconvert to floating point vectors. multiclass ScalToVecROLoadPat { def : Pat<(VecTy (scalar_to_vector (ScalTy (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))), (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset), sub)>; def : Pat<(VecTy (scalar_to_vector (ScalTy (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))), (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset), sub)>; } let AddedComplexity = 10 in { defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; defm : ScalToVecROLoadPat; def : Pat <(v1i64 (scalar_to_vector (i64 (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend))))), (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; def : Pat <(v1i64 (scalar_to_vector (i64 (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend))))), (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; } // Match all load 64 bits width whose type is compatible with FPR64 multiclass VecROLoadPat { def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; } let AddedComplexity = 10 in { let Predicates = [IsLE] in { // We must do vector loads with LD1 in big-endian. defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; } defm : VecROLoadPat; defm : VecROLoadPat; // Match all load 128 bits width whose type is compatible with FPR128 let Predicates = [IsLE] in { // We must do vector loads with LD1 in big-endian. defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; defm : VecROLoadPat; } } // AddedComplexity = 10 // zextload -> i64 multiclass ExtLoadTo64ROPat { def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), (SUBREG_TO_REG (i64 0), (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), sub_32)>; def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), (SUBREG_TO_REG (i64 0), (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), sub_32)>; } let AddedComplexity = 10 in { defm : ExtLoadTo64ROPat; defm : ExtLoadTo64ROPat; defm : ExtLoadTo64ROPat; // zextloadi1 -> zextloadi8 defm : ExtLoadTo64ROPat; // extload -> zextload defm : ExtLoadTo64ROPat; defm : ExtLoadTo64ROPat; defm : ExtLoadTo64ROPat; // extloadi1 -> zextloadi8 defm : ExtLoadTo64ROPat; } // zextload -> i64 multiclass ExtLoadTo32ROPat { def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; } let AddedComplexity = 10 in { // extload -> zextload defm : ExtLoadTo32ROPat; defm : ExtLoadTo32ROPat; defm : ExtLoadTo32ROPat; // zextloadi1 -> zextloadi8 defm : ExtLoadTo32ROPat; } //--- // (unsigned immediate) //--- defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr", [(set GPR64z:$Rt, (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr", [(set GPR32z:$Rt, (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr", [(set FPR8Op:$Rt, (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>; defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr", [(set (f16 FPR16Op:$Rt), (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>; defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr", [(set (f32 FPR32Op:$Rt), (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr", [(set (f64 FPR64Op:$Rt), (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr", [(set (f128 FPR128Op:$Rt), (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>; // bf16 load pattern def : Pat <(bf16 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; // For regular load, we do not have any alignment requirement. // Thus, it is safe to directly map the vector loads with interesting // addressing modes. // FIXME: We could do the same for bitconvert to floating point vectors. def : Pat <(v8i8 (scalar_to_vector (i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; def : Pat <(v16i8 (scalar_to_vector (i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; def : Pat <(v4i16 (scalar_to_vector (i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; def : Pat <(v8i16 (scalar_to_vector (i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; def : Pat <(v2i32 (scalar_to_vector (i32 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; def : Pat <(v4i32 (scalar_to_vector (i32 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; def : Pat <(v1i64 (scalar_to_vector (i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat <(v2i64 (scalar_to_vector (i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>; // Match all load 64 bits width whose type is compatible with FPR64 let Predicates = [IsLE] in { // We must use LD1 to perform vector loads in big-endian. def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(v4bf16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; } def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; // Match all load 128 bits width whose type is compatible with FPR128 let Predicates = [IsLE] in { // We must use LD1 to perform vector loads in big-endian. def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(v8bf16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; } def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh", [(set GPR32:$Rt, (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>; defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb", [(set GPR32:$Rt, (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>; // zextload -> i64 def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; // zextloadi1 -> zextloadi8 def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; // extload -> zextload def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>; def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; // load sign-extended half-word defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh", [(set GPR32:$Rt, (sextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>; defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh", [(set GPR64:$Rt, (sextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>; // load sign-extended byte defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb", [(set GPR32:$Rt, (sextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>; defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb", [(set GPR64:$Rt, (sextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>; // load sign-extended word defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw", [(set GPR64:$Rt, (sextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; // load zero-extended word def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; // Pre-fetch. def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm", [(AArch64Prefetch imm:$Rt, (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>; //--- // (literal) def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{ if (auto *G = dyn_cast(N)) { const DataLayout &DL = MF->getDataLayout(); Align Align = G->getGlobal()->getPointerAlignment(DL); return Align >= 4 && G->getOffset() % 4 == 0; } if (auto *C = dyn_cast(N)) return C->getAlign() >= 4 && C->getOffset() % 4 == 0; return false; }]>; def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr", [(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>; def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr", [(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>; def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr", [(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr", [(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr", [(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; // load sign-extended word def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw", [(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>; let AddedComplexity = 20 in { def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))), (SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>; } // prefetch def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>; // [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>; //--- // (unscaled immediate) defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur", [(set GPR64z:$Rt, (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur", [(set GPR32z:$Rt, (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur", [(set FPR8Op:$Rt, (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur", [(set (f16 FPR16Op:$Rt), (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur", [(set (f32 FPR32Op:$Rt), (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur", [(set (f64 FPR64Op:$Rt), (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur", [(set (f128 FPR128Op:$Rt), (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURHH : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh", [(set GPR32:$Rt, (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURBB : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb", [(set GPR32:$Rt, (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; // Match all load 64 bits width whose type is compatible with FPR64 let Predicates = [IsLE] in { def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; } def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; // Match all load 128 bits width whose type is compatible with FPR128 let Predicates = [IsLE] in { def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), (LDURQi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), (LDURQi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), (LDURQi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), (LDURQi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), (LDURQi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), (LDURQi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), (LDURQi GPR64sp:$Rn, simm9:$offset)>; } // anyext -> zext def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), (LDURHHi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (LDURBBi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (LDURBBi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; // unscaled zext def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), (LDURHHi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (LDURBBi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (LDURBBi GPR64sp:$Rn, simm9:$offset)>; def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; //--- // LDR mnemonics fall back to LDUR for negative or unaligned offsets. // Define new assembler match classes as we want to only match these when // the don't otherwise match the scaled addressing mode for LDR/STR. Don't // associate a DiagnosticType either, as we want the diagnostic for the // canonical form (the scaled operand) to take precedence. class SImm9OffsetOperand : AsmOperandClass { let Name = "SImm9OffsetFB" # Width; let PredicateMethod = "isSImm9OffsetFB<" # Width # ">"; let RenderMethod = "addImmOperands"; } def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>; def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>; def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>; def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>; def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>; def simm9_offset_fb8 : Operand { let ParserMatchClass = SImm9OffsetFB8Operand; } def simm9_offset_fb16 : Operand { let ParserMatchClass = SImm9OffsetFB16Operand; } def simm9_offset_fb32 : Operand { let ParserMatchClass = SImm9OffsetFB32Operand; } def simm9_offset_fb64 : Operand { let ParserMatchClass = SImm9OffsetFB64Operand; } def simm9_offset_fb128 : Operand { let ParserMatchClass = SImm9OffsetFB128Operand; } def : InstAlias<"ldr $Rt, [$Rn, $offset]", (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; def : InstAlias<"ldr $Rt, [$Rn, $offset]", (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; def : InstAlias<"ldr $Rt, [$Rn, $offset]", (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; def : InstAlias<"ldr $Rt, [$Rn, $offset]", (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; def : InstAlias<"ldr $Rt, [$Rn, $offset]", (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; def : InstAlias<"ldr $Rt, [$Rn, $offset]", (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; def : InstAlias<"ldr $Rt, [$Rn, $offset]", (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; // zextload -> i64 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; // load sign-extended half-word defm LDURSHW : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh", [(set GPR32:$Rt, (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURSHX : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh", [(set GPR64:$Rt, (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; // load sign-extended byte defm LDURSBW : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb", [(set GPR32:$Rt, (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; defm LDURSBX : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb", [(set GPR64:$Rt, (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; // load sign-extended word defm LDURSW : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw", [(set GPR64:$Rt, (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; // zero and sign extending aliases from generic LDR* mnemonics to LDUR*. def : InstAlias<"ldrb $Rt, [$Rn, $offset]", (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; def : InstAlias<"ldrh $Rt, [$Rn, $offset]", (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; def : InstAlias<"ldrsw $Rt, [$Rn, $offset]", (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; // Pre-fetch. defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum", [(AArch64Prefetch imm:$Rt, (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; //--- // (unscaled immediate, unprivileged) defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">; defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">; defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">; defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">; // load sign-extended half-word defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">; defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">; // load sign-extended byte defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">; defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">; // load sign-extended word defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">; //--- // (immediate pre-indexed) def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">; def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">; def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op, "ldr">; def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">; def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">; def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">; def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">; // load sign-extended half-word def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">; def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">; // load sign-extended byte def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">; def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">; // load zero-extended byte def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">; def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">; // load sign-extended word def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">; //--- // (immediate post-indexed) def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">; def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">; def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op, "ldr">; def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">; def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">; def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">; def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">; // load sign-extended half-word def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">; def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">; // load sign-extended byte def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">; def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">; // load zero-extended byte def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">; def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">; // load sign-extended word def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">; //===----------------------------------------------------------------------===// // Store instructions. //===----------------------------------------------------------------------===// // Pair (indexed, offset) // FIXME: Use dedicated range-checked addressing mode operand here. defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">; defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">; defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">; defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">; defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">; // Pair (pre-indexed) def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">; def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">; def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">; def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">; def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">; // Pair (pre-indexed) def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">; def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">; def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">; def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">; def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">; // Pair (no allocate) defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">; defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">; defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">; defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">; defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">; def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), (STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>; def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)), (STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>; //--- // (Register offset) // Integer defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>; defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>; defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>; defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>; // Floating-point defm STRB : Store8RO< 0b00, 1, 0b00, FPR8Op, "str", untyped, store>; defm STRH : Store16RO<0b01, 1, 0b00, FPR16Op, "str", f16, store>; defm STRS : Store32RO<0b10, 1, 0b00, FPR32Op, "str", f32, store>; defm STRD : Store64RO<0b11, 1, 0b00, FPR64Op, "str", f64, store>; defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str">; let Predicates = [UseSTRQro], AddedComplexity = 10 in { def : Pat<(store (f128 FPR128:$Rt), (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)), (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>; def : Pat<(store (f128 FPR128:$Rt), (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend)), (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>; } multiclass TruncStoreFrom64ROPat { def : Pat<(storeop GPR64:$Rt, (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; def : Pat<(storeop GPR64:$Rt, (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; } let AddedComplexity = 10 in { // truncstore i64 defm : TruncStoreFrom64ROPat; defm : TruncStoreFrom64ROPat; defm : TruncStoreFrom64ROPat; } multiclass VecROStorePat { def : Pat<(store (VecTy FPR:$Rt), (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; def : Pat<(store (VecTy FPR:$Rt), (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; } let AddedComplexity = 10 in { // Match all store 64 bits width whose type is compatible with FPR64 let Predicates = [IsLE] in { // We must use ST1 to store vectors in big-endian. defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; } defm : VecROStorePat; defm : VecROStorePat; // Match all store 128 bits width whose type is compatible with FPR128 let Predicates = [IsLE, UseSTRQro] in { // We must use ST1 to store vectors in big-endian. defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; defm : VecROStorePat; } } // AddedComplexity = 10 // Match stores from lane 0 to the appropriate subreg's store. multiclass VecROStoreLane0Pat { def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)), (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx), GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)), (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx), GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; } let AddedComplexity = 19 in { defm : VecROStoreLane0Pat; defm : VecROStoreLane0Pat; defm : VecROStoreLane0Pat; defm : VecROStoreLane0Pat; defm : VecROStoreLane0Pat; defm : VecROStoreLane0Pat; } //--- // (unsigned immediate) defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str", [(store GPR64z:$Rt, (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str", [(store GPR32z:$Rt, (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str", [(store FPR8Op:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>; defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str", [(store (f16 FPR16Op:$Rt), (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>; defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str", [(store (f32 FPR32Op:$Rt), (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str", [(store (f64 FPR64Op:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>; defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh", [(truncstorei16 GPR32z:$Rt, (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>; defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1, "strb", [(truncstorei8 GPR32z:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>; // bf16 store pattern def : Pat<(store (bf16 FPR16Op:$Rt), (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), (STRHui FPR16:$Rt, GPR64sp:$Rn, uimm12s2:$offset)>; let AddedComplexity = 10 in { // Match all store 64 bits width whose type is compatible with FPR64 def : Pat<(store (v1i64 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(store (v1f64 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; let Predicates = [IsLE] in { // We must use ST1 to store vectors in big-endian. def : Pat<(store (v2f32 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(store (v8i8 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(store (v4i16 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(store (v2i32 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(store (v4f16 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(store (v4bf16 FPR64:$Rt), (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; } // Match all store 128 bits width whose type is compatible with FPR128 def : Pat<(store (f128 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; let Predicates = [IsLE] in { // We must use ST1 to store vectors in big-endian. def : Pat<(store (v4f32 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(store (v2f64 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(store (v16i8 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(store (v8i16 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(store (v4i32 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(store (v2i64 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(store (v8f16 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; def : Pat<(store (v8bf16 FPR128:$Rt), (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; } // truncstore i64 def : Pat<(truncstorei32 GPR64:$Rt, (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)), (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>; def : Pat<(truncstorei16 GPR64:$Rt, (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>; def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)), (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>; } // AddedComplexity = 10 // Match stores from lane 0 to the appropriate subreg's store. multiclass VecStoreLane0Pat { def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)), (UIAddrMode GPR64sp:$Rn, IndexType:$offset)), (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx), GPR64sp:$Rn, IndexType:$offset)>; } let AddedComplexity = 19 in { defm : VecStoreLane0Pat; defm : VecStoreLane0Pat; defm : VecStoreLane0Pat; defm : VecStoreLane0Pat; defm : VecStoreLane0Pat; defm : VecStoreLane0Pat; } //--- // (unscaled immediate) defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur", [(store GPR64z:$Rt, (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur", [(store GPR32z:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur", [(store FPR8Op:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur", [(store (f16 FPR16Op:$Rt), (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur", [(store (f32 FPR32Op:$Rt), (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur", [(store (f64 FPR64Op:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur", [(store (f128 FPR128Op:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>; defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh", [(truncstorei16 GPR32z:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb", [(truncstorei8 GPR32z:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; // Armv8.4 Weaker Release Consistency enhancements // LDAPR & STLR with Immediate Offset instructions let Predicates = [HasRCPC_IMMO] in { defm STLURB : BaseStoreUnscaleV84<"stlurb", 0b00, 0b00, GPR32>; defm STLURH : BaseStoreUnscaleV84<"stlurh", 0b01, 0b00, GPR32>; defm STLURW : BaseStoreUnscaleV84<"stlur", 0b10, 0b00, GPR32>; defm STLURX : BaseStoreUnscaleV84<"stlur", 0b11, 0b00, GPR64>; defm LDAPURB : BaseLoadUnscaleV84<"ldapurb", 0b00, 0b01, GPR32>; defm LDAPURSBW : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>; defm LDAPURSBX : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>; defm LDAPURH : BaseLoadUnscaleV84<"ldapurh", 0b01, 0b01, GPR32>; defm LDAPURSHW : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>; defm LDAPURSHX : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>; defm LDAPUR : BaseLoadUnscaleV84<"ldapur", 0b10, 0b01, GPR32>; defm LDAPURSW : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>; defm LDAPURX : BaseLoadUnscaleV84<"ldapur", 0b11, 0b01, GPR64>; } // Match all store 64 bits width whose type is compatible with FPR64 def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; let AddedComplexity = 10 in { let Predicates = [IsLE] in { // We must use ST1 to store vectors in big-endian. def : Pat<(store (v2f32 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v8i8 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v4i16 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v2i32 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v4f16 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v4bf16 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; } // Match all store 128 bits width whose type is compatible with FPR128 def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; let Predicates = [IsLE] in { // We must use ST1 to store vectors in big-endian. def : Pat<(store (v4f32 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v2f64 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v16i8 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v8i16 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v4i32 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v2i64 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v2f64 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v8f16 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; def : Pat<(store (v8bf16 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; } } // AddedComplexity = 10 // unscaled i64 truncating stores def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)), (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)), (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; // Match stores from lane 0 to the appropriate subreg's store. multiclass VecStoreULane0Pat { defm : VecStoreLane0Pat; } let AddedComplexity = 19 in { defm : VecStoreULane0Pat; defm : VecStoreULane0Pat; defm : VecStoreULane0Pat; defm : VecStoreULane0Pat; defm : VecStoreULane0Pat; defm : VecStoreULane0Pat; } //--- // STR mnemonics fall back to STUR for negative or unaligned offsets. def : InstAlias<"str $Rt, [$Rn, $offset]", (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; def : InstAlias<"str $Rt, [$Rn, $offset]", (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; def : InstAlias<"str $Rt, [$Rn, $offset]", (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; def : InstAlias<"str $Rt, [$Rn, $offset]", (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; def : InstAlias<"str $Rt, [$Rn, $offset]", (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; def : InstAlias<"str $Rt, [$Rn, $offset]", (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; def : InstAlias<"str $Rt, [$Rn, $offset]", (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; def : InstAlias<"strb $Rt, [$Rn, $offset]", (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; def : InstAlias<"strh $Rt, [$Rn, $offset]", (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; //--- // (unscaled immediate, unprivileged) defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">; defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">; defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">; defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">; //--- // (immediate pre-indexed) def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str", pre_store, i32>; def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str", pre_store, i64>; def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op, "str", pre_store, untyped>; def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str", pre_store, f16>; def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str", pre_store, f32>; def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str", pre_store, f64>; def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>; def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8, i32>; def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>; // truncstore i64 def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; //--- // (immediate post-indexed) def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z, "str", post_store, i32>; def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z, "str", post_store, i64>; def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op, "str", post_store, untyped>; def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op, "str", post_store, f16>; def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op, "str", post_store, f32>; def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op, "str", post_store, f64>; def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>; def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>; def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>; // truncstore i64 def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, simm9:$off)>; def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, simm9:$off)>; def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (bf16 FPR16:$Rt), GPR64sp:$addr, simm9:$off), (STRHpost FPR16:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v4bf16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; def : Pat<(post_store (v8bf16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; //===----------------------------------------------------------------------===// // Load/store exclusive instructions. //===----------------------------------------------------------------------===// def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">; def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">; def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">; def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">; def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">; def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">; def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">; def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">; def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">; def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">; def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">; def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">; def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">; def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">; def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">; def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">; def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">; def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">; def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">; def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">; def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">; def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">; def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">; def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">; def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">; def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">; def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">; def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">; def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">; def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">; def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">; def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">; let Predicates = [HasLOR] in { // v8.1a "Limited Order Region" extension load-acquire instructions def LDLARW : LoadAcquire <0b10, 1, 1, 0, 0, GPR32, "ldlar">; def LDLARX : LoadAcquire <0b11, 1, 1, 0, 0, GPR64, "ldlar">; def LDLARB : LoadAcquire <0b00, 1, 1, 0, 0, GPR32, "ldlarb">; def LDLARH : LoadAcquire <0b01, 1, 1, 0, 0, GPR32, "ldlarh">; // v8.1a "Limited Order Region" extension store-release instructions def STLLRW : StoreRelease <0b10, 1, 0, 0, 0, GPR32, "stllr">; def STLLRX : StoreRelease <0b11, 1, 0, 0, 0, GPR64, "stllr">; def STLLRB : StoreRelease <0b00, 1, 0, 0, 0, GPR32, "stllrb">; def STLLRH : StoreRelease <0b01, 1, 0, 0, 0, GPR32, "stllrh">; } //===----------------------------------------------------------------------===// // Scaled floating point to integer conversion instructions. //===----------------------------------------------------------------------===// defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>; defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>; defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>; defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>; defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>; defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>; defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>; defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>; defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>; defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>; defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>; defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>; // AArch64's FCVT instructions saturate when out of range. multiclass FPToIntegerSatPats { let Predicates = [HasFullFP16] in { def : Pat<(i32 (to_int_sat f16:$Rn, i32)), (!cast(INST # UWHr) f16:$Rn)>; def : Pat<(i64 (to_int_sat f16:$Rn, i64)), (!cast(INST # UXHr) f16:$Rn)>; } def : Pat<(i32 (to_int_sat f32:$Rn, i32)), (!cast(INST # UWSr) f32:$Rn)>; def : Pat<(i64 (to_int_sat f32:$Rn, i64)), (!cast(INST # UXSr) f32:$Rn)>; def : Pat<(i32 (to_int_sat f64:$Rn, i32)), (!cast(INST # UWDr) f64:$Rn)>; def : Pat<(i64 (to_int_sat f64:$Rn, i64)), (!cast(INST # UXDr) f64:$Rn)>; let Predicates = [HasFullFP16] in { def : Pat<(i32 (to_int_sat (fmul f16:$Rn, fixedpoint_f16_i32:$scale), i32)), (!cast(INST # SWHri) $Rn, $scale)>; def : Pat<(i64 (to_int_sat (fmul f16:$Rn, fixedpoint_f16_i64:$scale), i64)), (!cast(INST # SXHri) $Rn, $scale)>; } def : Pat<(i32 (to_int_sat (fmul f32:$Rn, fixedpoint_f32_i32:$scale), i32)), (!cast(INST # SWSri) $Rn, $scale)>; def : Pat<(i64 (to_int_sat (fmul f32:$Rn, fixedpoint_f32_i64:$scale), i64)), (!cast(INST # SXSri) $Rn, $scale)>; def : Pat<(i32 (to_int_sat (fmul f64:$Rn, fixedpoint_f64_i32:$scale), i32)), (!cast(INST # SWDri) $Rn, $scale)>; def : Pat<(i64 (to_int_sat (fmul f64:$Rn, fixedpoint_f64_i64:$scale), i64)), (!cast(INST # SXDri) $Rn, $scale)>; } defm : FPToIntegerSatPats; defm : FPToIntegerSatPats; multiclass FPToIntegerIntPats { let Predicates = [HasFullFP16] in { def : Pat<(i32 (round f16:$Rn)), (!cast(INST # UWHr) $Rn)>; def : Pat<(i64 (round f16:$Rn)), (!cast(INST # UXHr) $Rn)>; } def : Pat<(i32 (round f32:$Rn)), (!cast(INST # UWSr) $Rn)>; def : Pat<(i64 (round f32:$Rn)), (!cast(INST # UXSr) $Rn)>; def : Pat<(i32 (round f64:$Rn)), (!cast(INST # UWDr) $Rn)>; def : Pat<(i64 (round f64:$Rn)), (!cast(INST # UXDr) $Rn)>; let Predicates = [HasFullFP16] in { def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))), (!cast(INST # SWHri) $Rn, $scale)>; def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))), (!cast(INST # SXHri) $Rn, $scale)>; } def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))), (!cast(INST # SWSri) $Rn, $scale)>; def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))), (!cast(INST # SXSri) $Rn, $scale)>; def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))), (!cast(INST # SWDri) $Rn, $scale)>; def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))), (!cast(INST # SXDri) $Rn, $scale)>; } defm : FPToIntegerIntPats; defm : FPToIntegerIntPats; multiclass FPToIntegerPats { def : Pat<(i32 (to_int (round f32:$Rn))), (!cast(INST # UWSr) f32:$Rn)>; def : Pat<(i64 (to_int (round f32:$Rn))), (!cast(INST # UXSr) f32:$Rn)>; def : Pat<(i32 (to_int (round f64:$Rn))), (!cast(INST # UWDr) f64:$Rn)>; def : Pat<(i64 (to_int (round f64:$Rn))), (!cast(INST # UXDr) f64:$Rn)>; // These instructions saturate like fp_to_[su]int_sat. let Predicates = [HasFullFP16] in { def : Pat<(i32 (to_int_sat (round f16:$Rn), i32)), (!cast(INST # UWHr) f16:$Rn)>; def : Pat<(i64 (to_int_sat (round f16:$Rn), i64)), (!cast(INST # UXHr) f16:$Rn)>; } def : Pat<(i32 (to_int_sat (round f32:$Rn), i32)), (!cast(INST # UWSr) f32:$Rn)>; def : Pat<(i64 (to_int_sat (round f32:$Rn), i64)), (!cast(INST # UXSr) f32:$Rn)>; def : Pat<(i32 (to_int_sat (round f64:$Rn), i32)), (!cast(INST # UWDr) f64:$Rn)>; def : Pat<(i64 (to_int_sat (round f64:$Rn), i64)), (!cast(INST # UXDr) f64:$Rn)>; } defm : FPToIntegerPats; defm : FPToIntegerPats; defm : FPToIntegerPats; defm : FPToIntegerPats; defm : FPToIntegerPats; defm : FPToIntegerPats; defm : FPToIntegerPats; defm : FPToIntegerPats; let Predicates = [HasFullFP16] in { def : Pat<(i32 (lround f16:$Rn)), (!cast(FCVTASUWHr) f16:$Rn)>; def : Pat<(i64 (lround f16:$Rn)), (!cast(FCVTASUXHr) f16:$Rn)>; def : Pat<(i64 (llround f16:$Rn)), (!cast(FCVTASUXHr) f16:$Rn)>; } def : Pat<(i32 (lround f32:$Rn)), (!cast(FCVTASUWSr) f32:$Rn)>; def : Pat<(i32 (lround f64:$Rn)), (!cast(FCVTASUWDr) f64:$Rn)>; def : Pat<(i64 (lround f32:$Rn)), (!cast(FCVTASUXSr) f32:$Rn)>; def : Pat<(i64 (lround f64:$Rn)), (!cast(FCVTASUXDr) f64:$Rn)>; def : Pat<(i64 (llround f32:$Rn)), (!cast(FCVTASUXSr) f32:$Rn)>; def : Pat<(i64 (llround f64:$Rn)), (!cast(FCVTASUXDr) f64:$Rn)>; //===----------------------------------------------------------------------===// // Scaled integer to floating point conversion instructions. //===----------------------------------------------------------------------===// defm SCVTF : IntegerToFP<0, "scvtf", any_sint_to_fp>; defm UCVTF : IntegerToFP<1, "ucvtf", any_uint_to_fp>; //===----------------------------------------------------------------------===// // Unscaled integer to floating point conversion instruction. //===----------------------------------------------------------------------===// defm FMOV : UnscaledConversion<"fmov">; // Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in { def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>, Sched<[WriteF]>, Requires<[HasFullFP16]>; def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>, Sched<[WriteF]>; def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>, Sched<[WriteF]>; } // Similarly add aliases def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>, Requires<[HasFullFP16]>; def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>; def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>; //===----------------------------------------------------------------------===// // Floating point conversion instruction. //===----------------------------------------------------------------------===// defm FCVT : FPConversion<"fcvt">; //===----------------------------------------------------------------------===// // Floating point single operand instructions. //===----------------------------------------------------------------------===// defm FABS : SingleOperandFPData<0b0001, "fabs", fabs>; defm FMOV : SingleOperandFPData<0b0000, "fmov">; defm FNEG : SingleOperandFPData<0b0010, "fneg", fneg>; defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>; defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>; defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>; defm FRINTN : SingleOperandFPData<0b1000, "frintn", froundeven>; defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>; defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>; defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>; let SchedRW = [WriteFDiv] in { defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", fsqrt>; } let Predicates = [HasFRInt3264] in { defm FRINT32Z : FRIntNNT<0b00, "frint32z", int_aarch64_frint32z>; defm FRINT64Z : FRIntNNT<0b10, "frint64z", int_aarch64_frint64z>; defm FRINT32X : FRIntNNT<0b01, "frint32x", int_aarch64_frint32x>; defm FRINT64X : FRIntNNT<0b11, "frint64x", int_aarch64_frint64x>; } // HasFRInt3264 let Predicates = [HasFullFP16] in { def : Pat<(i32 (lrint f16:$Rn)), (FCVTZSUWHr (!cast(FRINTXHr) f16:$Rn))>; def : Pat<(i64 (lrint f16:$Rn)), (FCVTZSUXHr (!cast(FRINTXHr) f16:$Rn))>; def : Pat<(i64 (llrint f16:$Rn)), (FCVTZSUXHr (!cast(FRINTXHr) f16:$Rn))>; } def : Pat<(i32 (lrint f32:$Rn)), (FCVTZSUWSr (!cast(FRINTXSr) f32:$Rn))>; def : Pat<(i32 (lrint f64:$Rn)), (FCVTZSUWDr (!cast(FRINTXDr) f64:$Rn))>; def : Pat<(i64 (lrint f32:$Rn)), (FCVTZSUXSr (!cast(FRINTXSr) f32:$Rn))>; def : Pat<(i64 (lrint f64:$Rn)), (FCVTZSUXDr (!cast(FRINTXDr) f64:$Rn))>; def : Pat<(i64 (llrint f32:$Rn)), (FCVTZSUXSr (!cast(FRINTXSr) f32:$Rn))>; def : Pat<(i64 (llrint f64:$Rn)), (FCVTZSUXDr (!cast(FRINTXDr) f64:$Rn))>; //===----------------------------------------------------------------------===// // Floating point two operand instructions. //===----------------------------------------------------------------------===// defm FADD : TwoOperandFPData<0b0010, "fadd", fadd>; let SchedRW = [WriteFDiv] in { defm FDIV : TwoOperandFPData<0b0001, "fdiv", fdiv>; } defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>; defm FMAX : TwoOperandFPData<0b0100, "fmax", fmaximum>; defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>; defm FMIN : TwoOperandFPData<0b0101, "fmin", fminimum>; let SchedRW = [WriteFMul] in { defm FMUL : TwoOperandFPData<0b0000, "fmul", fmul>; defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>; } defm FSUB : TwoOperandFPData<0b0011, "fsub", fsub>; def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (FMAXDrr FPR64:$Rn, FPR64:$Rm)>; def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (FMINDrr FPR64:$Rn, FPR64:$Rm)>; def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>; def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>; //===----------------------------------------------------------------------===// // Floating point three operand instructions. //===----------------------------------------------------------------------===// defm FMADD : ThreeOperandFPData<0, 0, "fmadd", fma>; defm FMSUB : ThreeOperandFPData<0, 1, "fmsub", TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >; defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd", TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >; defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub", TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >; // The following def pats catch the case where the LHS of an FMA is negated. // The TriOpFrag above catches the case where the middle operand is negated. // N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike // the NEON variant. // Here we handle first -(a + b*c) for FNMADD: let Predicates = [HasNEON, HasFullFP16] in def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)), (FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>; def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)), (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)), (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; // Now it's time for "(-a) + (-b)*c" let Predicates = [HasNEON, HasFullFP16] in def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))), (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>; def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))), (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))), (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; //===----------------------------------------------------------------------===// // Floating point comparison instructions. //===----------------------------------------------------------------------===// defm FCMPE : FPComparison<1, "fcmpe", AArch64strict_fcmpe>; defm FCMP : FPComparison<0, "fcmp", AArch64any_fcmp>; //===----------------------------------------------------------------------===// // Floating point conditional comparison instructions. //===----------------------------------------------------------------------===// defm FCCMPE : FPCondComparison<1, "fccmpe">; defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>; //===----------------------------------------------------------------------===// // Floating point conditional select instruction. //===----------------------------------------------------------------------===// defm FCSEL : FPCondSelect<"fcsel">; // CSEL instructions providing f128 types need to be handled by a // pseudo-instruction since the eventual code will need to introduce basic // blocks and control flow. def F128CSEL : Pseudo<(outs FPR128:$Rd), (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond), [(set (f128 FPR128:$Rd), (AArch64csel FPR128:$Rn, FPR128:$Rm, (i32 imm:$cond), NZCV))]> { let Uses = [NZCV]; let usesCustomInserter = 1; let hasNoSchedulingInfo = 1; } //===----------------------------------------------------------------------===// // Instructions used for emitting unwind opcodes on ARM64 Windows. //===----------------------------------------------------------------------===// let isPseudo = 1 in { def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>; def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; def SEH_SaveFReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>; def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>; def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>; def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>; def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>; } // Pseudo instructions for Windows EH //===----------------------------------------------------------------------===// let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in { def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret)]>, Sched<[]>; let usesCustomInserter = 1 in def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>, Sched<[]>; } // Pseudo instructions for homogeneous prolog/epilog let isPseudo = 1 in { // Save CSRs in order, {FPOffset} def HOM_Prolog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>; // Restore CSRs in order def HOM_Epilog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>; } //===----------------------------------------------------------------------===// // Floating point immediate move. //===----------------------------------------------------------------------===// let isReMaterializable = 1, isAsCheapAsAMove = 1 in { defm FMOV : FPMoveImmediate<"fmov">; } //===----------------------------------------------------------------------===// // Advanced SIMD two vector instructions. //===----------------------------------------------------------------------===// defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl", AArch64uabd>; // Match UABDL in log2-shuffle patterns. def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)), (zext (v8i8 V64:$opB))))), (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>; def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))), (v8i16 (add (sub (zext (v8i8 V64:$opA)), (zext (v8i8 V64:$opB))), (AArch64vashr v8i16:$src, (i32 15))))), (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>; def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)), (zext (extract_high_v16i8 V128:$opB))))), (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>; def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))), (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)), (zext (extract_high_v16i8 V128:$opB))), (AArch64vashr v8i16:$src, (i32 15))))), (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>; def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)), (zext (v4i16 V64:$opB))))), (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>; def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)), (zext (extract_high_v8i16 V128:$opB))))), (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>; def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)), (zext (v2i32 V64:$opB))))), (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>; def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)), (zext (extract_high_v4i32 V128:$opB))))), (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>; defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>; defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>; defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>; defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>; defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>; defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>; defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>; defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>; defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>; defm FABS : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>; def : Pat<(v8i8 (AArch64vashr (v8i8 V64:$Rn), (i32 7))), (CMLTv8i8rz V64:$Rn)>; def : Pat<(v4i16 (AArch64vashr (v4i16 V64:$Rn), (i32 15))), (CMLTv4i16rz V64:$Rn)>; def : Pat<(v2i32 (AArch64vashr (v2i32 V64:$Rn), (i32 31))), (CMLTv2i32rz V64:$Rn)>; def : Pat<(v16i8 (AArch64vashr (v16i8 V128:$Rn), (i32 7))), (CMLTv16i8rz V128:$Rn)>; def : Pat<(v8i16 (AArch64vashr (v8i16 V128:$Rn), (i32 15))), (CMLTv8i16rz V128:$Rn)>; def : Pat<(v4i32 (AArch64vashr (v4i32 V128:$Rn), (i32 31))), (CMLTv4i32rz V128:$Rn)>; def : Pat<(v2i64 (AArch64vashr (v2i64 V128:$Rn), (i32 63))), (CMLTv2i64rz V128:$Rn)>; defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>; defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>; defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>; defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>; defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">; def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>; def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn), (i64 4)))), (FCVTLv8i16 V128:$Rn)>; def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>; def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>; defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>; defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>; defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>; defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>; defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">; def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>; def : Pat<(concat_vectors V64:$Rd, (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))), (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>; def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>; def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))), (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>; defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>; defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn", int_aarch64_neon_fcvtxn>; defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>; defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>; // AArch64's FCVT instructions saturate when out of range. multiclass SIMDTwoVectorFPToIntSatPats { def : Pat<(v4i16 (to_int_sat v4f16:$Rn, i16)), (!cast(INST # v4f16) v4f16:$Rn)>; def : Pat<(v8i16 (to_int_sat v8f16:$Rn, i16)), (!cast(INST # v8f16) v8f16:$Rn)>; def : Pat<(v2i32 (to_int_sat v2f32:$Rn, i32)), (!cast(INST # v2f32) v2f32:$Rn)>; def : Pat<(v4i32 (to_int_sat v4f32:$Rn, i32)), (!cast(INST # v4f32) v4f32:$Rn)>; def : Pat<(v2i64 (to_int_sat v2f64:$Rn, i64)), (!cast(INST # v2f64) v2f64:$Rn)>; } defm : SIMDTwoVectorFPToIntSatPats; defm : SIMDTwoVectorFPToIntSatPats; def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>; def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>; def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>; def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>; def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>; def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>; def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>; def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>; def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>; def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>; defm FNEG : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>; defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>; defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>; defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>; defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>; defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", froundeven>; defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>; defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>; defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>; let Predicates = [HasFRInt3264] in { defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z", int_aarch64_neon_frint32z>; defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z", int_aarch64_neon_frint64z>; defm FRINT32X : FRIntNNTVector<1, 0, "frint32x", int_aarch64_neon_frint32x>; defm FRINT64X : FRIntNNTVector<1, 1, "frint64x", int_aarch64_neon_frint64x>; } // HasFRInt3264 defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>; defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>; defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg", UnOpFrag<(sub immAllZerosV, node:$LHS)> >; defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>; // Aliases for MVN -> NOT. def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}", (NOTv8i8 V64:$Vd, V64:$Vn)>; def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}", (NOTv16i8 V128:$Vd, V128:$Vn)>; def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>; def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>; def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>; def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>; def : Pat<(vnot (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>; def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>; defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", bitreverse>; defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>; defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>; defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>; defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp", BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >; defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>; defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>; defm SHLL : SIMDVectorLShiftLongBySizeBHS; defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>; defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>; defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>; defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp", BinOpFrag<(add node:$LHS, (AArch64uaddlp node:$RHS))> >; defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp", AArch64uaddlp>; defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>; defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>; defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>; defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>; defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>; defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>; def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>; def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>; def : Pat<(v4bf16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>; def : Pat<(v4bf16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>; def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>; def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>; def : Pat<(v8bf16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>; def : Pat<(v8bf16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>; def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>; def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>; // Patterns for vector long shift (by element width). These need to match all // three of zext, sext and anyext so it's easier to pull the patterns out of the // definition. multiclass SIMDVectorLShiftLongBySizeBHSPats { def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)), (SHLLv8i8 V64:$Rn)>; def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)), (SHLLv16i8 V128:$Rn)>; def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)), (SHLLv4i16 V64:$Rn)>; def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)), (SHLLv8i16 V128:$Rn)>; def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)), (SHLLv2i32 V64:$Rn)>; def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)), (SHLLv4i32 V128:$Rn)>; } defm : SIMDVectorLShiftLongBySizeBHSPats; defm : SIMDVectorLShiftLongBySizeBHSPats; defm : SIMDVectorLShiftLongBySizeBHSPats; // Constant vector values, used in the S/UQXTN patterns below. def VImmFF: PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 85))))>; def VImmFFFF: PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 51))))>; def VImm7F: PatLeaf<(AArch64movi_shift (i32 127), (i32 0))>; def VImm80: PatLeaf<(AArch64mvni_shift (i32 127), (i32 0))>; def VImm7FFF: PatLeaf<(AArch64movi_msl (i32 127), (i32 264))>; def VImm8000: PatLeaf<(AArch64mvni_msl (i32 127), (i32 264))>; // trunc(umin(X, 255)) -> UQXTRN v8i8 def : Pat<(v8i8 (trunc (umin (v8i16 V128:$Vn), (v8i16 VImmFF)))), (UQXTNv8i8 V128:$Vn)>; // trunc(umin(X, 65535)) -> UQXTRN v4i16 def : Pat<(v4i16 (trunc (umin (v4i32 V128:$Vn), (v4i32 VImmFFFF)))), (UQXTNv4i16 V128:$Vn)>; // trunc(smin(smax(X, -128), 128)) -> SQXTRN // with reversed min/max def : Pat<(v8i8 (trunc (smin (smax (v8i16 V128:$Vn), (v8i16 VImm80)), (v8i16 VImm7F)))), (SQXTNv8i8 V128:$Vn)>; def : Pat<(v8i8 (trunc (smax (smin (v8i16 V128:$Vn), (v8i16 VImm7F)), (v8i16 VImm80)))), (SQXTNv8i8 V128:$Vn)>; // trunc(smin(smax(X, -32768), 32767)) -> SQXTRN // with reversed min/max def : Pat<(v4i16 (trunc (smin (smax (v4i32 V128:$Vn), (v4i32 VImm8000)), (v4i32 VImm7FFF)))), (SQXTNv4i16 V128:$Vn)>; def : Pat<(v4i16 (trunc (smax (smin (v4i32 V128:$Vn), (v4i32 VImm7FFF)), (v4i32 VImm8000)))), (SQXTNv4i16 V128:$Vn)>; // concat_vectors(Vd, trunc(smin(smax Vm, -128), 127) ~> SQXTN2(Vd, Vn) // with reversed min/max def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Vd), (v8i8 (trunc (smin (smax (v8i16 V128:$Vn), (v8i16 VImm80)), (v8i16 VImm7F)))))), (SQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Vd), (v8i8 (trunc (smax (smin (v8i16 V128:$Vn), (v8i16 VImm7F)), (v8i16 VImm80)))))), (SQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; // concat_vectors(Vd, trunc(smin(smax Vm, -32768), 32767) ~> SQXTN2(Vd, Vn) // with reversed min/max def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Vd), (v4i16 (trunc (smin (smax (v4i32 V128:$Vn), (v4i32 VImm8000)), (v4i32 VImm7FFF)))))), (SQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Vd), (v4i16 (trunc (smax (smin (v4i32 V128:$Vn), (v4i32 VImm7FFF)), (v4i32 VImm8000)))))), (SQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; //===----------------------------------------------------------------------===// // Advanced SIMD three vector instructions. //===----------------------------------------------------------------------===// defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>; defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>; defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>; defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>; defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>; defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>; defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>; defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>; foreach VT = [ v8i8, v16i8, v4i16, v8i16, v2i32, v4i32, v2i64 ] in { def : Pat<(vnot (AArch64cmeqz VT:$Rn)), (!cast("CMTST"#VT) VT:$Rn, VT:$Rn)>; } defm FABD : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>; let Predicates = [HasNEON] in { foreach VT = [ v2f32, v4f32, v2f64 ] in def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast("FABD"#VT) VT:$Rn, VT:$Rm)>; } let Predicates = [HasNEON, HasFullFP16] in { foreach VT = [ v4f16, v8f16 ] in def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast("FABD"#VT) VT:$Rn, VT:$Rm)>; } defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>; defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>; defm FADDP : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_faddp>; defm FADD : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>; defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; defm FDIV : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>; defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>; defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>; defm FMAXP : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>; defm FMAX : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaximum>; defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>; defm FMINNM : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>; defm FMINP : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>; defm FMIN : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminimum>; // NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the // instruction expects the addend first, while the fma intrinsic puts it last. defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla", TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >; defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls", TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; defm FMULX : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>; defm FMUL : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>; defm FRECPS : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>; defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>; defm FSUB : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>; // MLA and MLS are generated in MachineCombine defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>; defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>; defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>; defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>; defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba", TriOpFrag<(add node:$LHS, (AArch64sabd node:$MHS, node:$RHS))> >; defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", AArch64sabd>; defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", AArch64shadd>; defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>; defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>; defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>; defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>; defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>; defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>; defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>; defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>; defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>; defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>; defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>; defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd", AArch64srhadd>; defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>; defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>; defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>; defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba", TriOpFrag<(add node:$LHS, (AArch64uabd node:$MHS, node:$RHS))> >; defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", AArch64uabd>; defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", AArch64uhadd>; defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>; defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>; defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>; defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>; defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>; defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>; defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>; defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>; defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>; defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", AArch64urhadd>; defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>; defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>; defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah", int_aarch64_neon_sqrdmlah>; defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh", int_aarch64_neon_sqrdmlsh>; // Extra saturate patterns, other than the intrinsics matches above defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>; defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>; defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>; defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>; defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>; defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic", BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >; defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>; defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn", BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >; defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>; // Pseudo bitwise select pattern BSP. // It is expanded into BSL/BIT/BIF after register allocation. defm BSP : SIMDLogicalThreeVectorPseudo>; defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl">; defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>; defm BIF : SIMDLogicalThreeVectorTied<1, 0b11, "bif">; def : Pat<(AArch64bsp (v8i8 V64:$Rd), V64:$Rn, V64:$Rm), (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; def : Pat<(AArch64bsp (v4i16 V64:$Rd), V64:$Rn, V64:$Rm), (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; def : Pat<(AArch64bsp (v2i32 V64:$Rd), V64:$Rn, V64:$Rm), (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; def : Pat<(AArch64bsp (v1i64 V64:$Rd), V64:$Rn, V64:$Rm), (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; def : Pat<(AArch64bsp (v16i8 V128:$Rd), V128:$Rn, V128:$Rm), (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; def : Pat<(AArch64bsp (v8i16 V128:$Rd), V128:$Rn, V128:$Rm), (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; def : Pat<(AArch64bsp (v4i32 V128:$Rd), V128:$Rn, V128:$Rm), (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; def : Pat<(AArch64bsp (v2i64 V128:$Rd), V128:$Rn, V128:$Rm), (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}", (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>; def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}", (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}", (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}", (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}", (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>; def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}", (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}", (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}", (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" # "|cmls.8b\t$dst, $src1, $src2}", (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" # "|cmls.16b\t$dst, $src1, $src2}", (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" # "|cmls.4h\t$dst, $src1, $src2}", (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" # "|cmls.8h\t$dst, $src1, $src2}", (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" # "|cmls.2s\t$dst, $src1, $src2}", (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" # "|cmls.4s\t$dst, $src1, $src2}", (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" # "|cmls.2d\t$dst, $src1, $src2}", (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" # "|cmlo.8b\t$dst, $src1, $src2}", (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" # "|cmlo.16b\t$dst, $src1, $src2}", (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" # "|cmlo.4h\t$dst, $src1, $src2}", (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" # "|cmlo.8h\t$dst, $src1, $src2}", (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" # "|cmlo.2s\t$dst, $src1, $src2}", (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" # "|cmlo.4s\t$dst, $src1, $src2}", (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" # "|cmlo.2d\t$dst, $src1, $src2}", (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" # "|cmle.8b\t$dst, $src1, $src2}", (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" # "|cmle.16b\t$dst, $src1, $src2}", (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" # "|cmle.4h\t$dst, $src1, $src2}", (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" # "|cmle.8h\t$dst, $src1, $src2}", (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" # "|cmle.2s\t$dst, $src1, $src2}", (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" # "|cmle.4s\t$dst, $src1, $src2}", (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" # "|cmle.2d\t$dst, $src1, $src2}", (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" # "|cmlt.8b\t$dst, $src1, $src2}", (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" # "|cmlt.16b\t$dst, $src1, $src2}", (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" # "|cmlt.4h\t$dst, $src1, $src2}", (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" # "|cmlt.8h\t$dst, $src1, $src2}", (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" # "|cmlt.2s\t$dst, $src1, $src2}", (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" # "|cmlt.4s\t$dst, $src1, $src2}", (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" # "|cmlt.2d\t$dst, $src1, $src2}", (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; let Predicates = [HasNEON, HasFullFP16] in { def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" # "|fcmle.4h\t$dst, $src1, $src2}", (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" # "|fcmle.8h\t$dst, $src1, $src2}", (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; } def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" # "|fcmle.2s\t$dst, $src1, $src2}", (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" # "|fcmle.4s\t$dst, $src1, $src2}", (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" # "|fcmle.2d\t$dst, $src1, $src2}", (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; let Predicates = [HasNEON, HasFullFP16] in { def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" # "|fcmlt.4h\t$dst, $src1, $src2}", (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" # "|fcmlt.8h\t$dst, $src1, $src2}", (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; } def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" # "|fcmlt.2s\t$dst, $src1, $src2}", (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" # "|fcmlt.4s\t$dst, $src1, $src2}", (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" # "|fcmlt.2d\t$dst, $src1, $src2}", (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; let Predicates = [HasNEON, HasFullFP16] in { def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" # "|facle.4h\t$dst, $src1, $src2}", (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" # "|facle.8h\t$dst, $src1, $src2}", (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; } def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" # "|facle.2s\t$dst, $src1, $src2}", (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" # "|facle.4s\t$dst, $src1, $src2}", (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" # "|facle.2d\t$dst, $src1, $src2}", (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; let Predicates = [HasNEON, HasFullFP16] in { def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" # "|faclt.4h\t$dst, $src1, $src2}", (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" # "|faclt.8h\t$dst, $src1, $src2}", (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; } def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" # "|faclt.2s\t$dst, $src1, $src2}", (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" # "|faclt.4s\t$dst, $src1, $src2}", (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" # "|faclt.2d\t$dst, $src1, $src2}", (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; //===----------------------------------------------------------------------===// // Advanced SIMD three scalar instructions. //===----------------------------------------------------------------------===// defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>; defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>; defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>; defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>; defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>; defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>; defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>; defm FABD : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>; def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (FABD64 FPR64:$Rn, FPR64:$Rm)>; let Predicates = [HasFullFP16] in { def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>; } def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>; def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>; defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge", int_aarch64_neon_facge>; defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt", int_aarch64_neon_facgt>; defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; defm FMULX : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx, HasNEONorStreamingSVE>; defm FRECPS : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps, HasNEONorStreamingSVE>; defm FRSQRTS : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts, HasNEONorStreamingSVE>; defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>; defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>; defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>; defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>; defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>; defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>; defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>; defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>; defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>; defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>; defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>; defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>; defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>; defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>; defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>; let Predicates = [HasRDM] in { defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">; defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">; def : Pat<(i32 (int_aarch64_neon_sqrdmlah (i32 FPR32:$Rd), (i32 FPR32:$Rn), (i32 FPR32:$Rm))), (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; def : Pat<(i32 (int_aarch64_neon_sqrdmlsh (i32 FPR32:$Rd), (i32 FPR32:$Rn), (i32 FPR32:$Rm))), (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; } def : InstAlias<"cmls $dst, $src1, $src2", (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; def : InstAlias<"cmle $dst, $src1, $src2", (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; def : InstAlias<"cmlo $dst, $src1, $src2", (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; def : InstAlias<"cmlt $dst, $src1, $src2", (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; def : InstAlias<"fcmle $dst, $src1, $src2", (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; def : InstAlias<"fcmle $dst, $src1, $src2", (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; def : InstAlias<"fcmlt $dst, $src1, $src2", (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; def : InstAlias<"fcmlt $dst, $src1, $src2", (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; def : InstAlias<"facle $dst, $src1, $src2", (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; def : InstAlias<"facle $dst, $src1, $src2", (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; def : InstAlias<"faclt $dst, $src1, $src2", (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; def : InstAlias<"faclt $dst, $src1, $src2", (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; //===----------------------------------------------------------------------===// // Advanced SIMD three scalar instructions (mixed operands). //===----------------------------------------------------------------------===// defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull", int_aarch64_neon_sqdmulls_scalar>; defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">; defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">; def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd), (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), (i32 FPR32:$Rm))))), (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd), (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), (i32 FPR32:$Rm))))), (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; //===----------------------------------------------------------------------===// // Advanced SIMD two scalar instructions. //===----------------------------------------------------------------------===// defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", abs>; defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>; defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>; defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>; defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>; defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>; defm FCMEQ : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; defm FCMGE : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>; defm FCMGT : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; defm FCMLE : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>; defm FCMLT : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; defm FCVTAS : SIMDFPTwoScalar< 0, 0, 0b11100, "fcvtas">; defm FCVTAU : SIMDFPTwoScalar< 1, 0, 0b11100, "fcvtau">; defm FCVTMS : SIMDFPTwoScalar< 0, 0, 0b11011, "fcvtms">; defm FCVTMU : SIMDFPTwoScalar< 1, 0, 0b11011, "fcvtmu">; defm FCVTNS : SIMDFPTwoScalar< 0, 0, 0b11010, "fcvtns">; defm FCVTNU : SIMDFPTwoScalar< 1, 0, 0b11010, "fcvtnu">; defm FCVTPS : SIMDFPTwoScalar< 0, 1, 0b11010, "fcvtps">; defm FCVTPU : SIMDFPTwoScalar< 1, 1, 0b11010, "fcvtpu">; def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">; defm FCVTZS : SIMDFPTwoScalar< 0, 1, 0b11011, "fcvtzs">; defm FCVTZU : SIMDFPTwoScalar< 1, 1, 0b11011, "fcvtzu">; defm FRECPE : SIMDFPTwoScalar< 0, 1, 0b11101, "frecpe", HasNEONorStreamingSVE>; defm FRECPX : SIMDFPTwoScalar< 0, 1, 0b11111, "frecpx", HasNEONorStreamingSVE>; defm FRSQRTE : SIMDFPTwoScalar< 1, 1, 0b11101, "frsqrte", HasNEONorStreamingSVE>; defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg", UnOpFrag<(sub immAllZerosV, node:$LHS)> >; defm SCVTF : SIMDFPTwoScalarCVT< 0, 0, 0b11101, "scvtf", AArch64sitof>; defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>; defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>; defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd", int_aarch64_neon_suqadd>; defm UCVTF : SIMDFPTwoScalarCVT< 1, 0, 0b11101, "ucvtf", AArch64uitof>; defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>; defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd", int_aarch64_neon_usqadd>; def : Pat<(v1i64 (AArch64vashr (v1i64 V64:$Rn), (i32 63))), (CMLTv1i64rz V64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))), (FCVTASv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))), (FCVTAUv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))), (FCVTMSv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))), (FCVTMUv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))), (FCVTNSv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))), (FCVTNUv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))), (FCVTPSv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))), (FCVTPUv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtzs (v1f64 FPR64:$Rn))), (FCVTZSv1i64 FPR64:$Rn)>; def : Pat<(v1i64 (int_aarch64_neon_fcvtzu (v1f64 FPR64:$Rn))), (FCVTZUv1i64 FPR64:$Rn)>; def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))), (FRECPEv1f16 FPR16:$Rn)>; def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))), (FRECPEv1i32 FPR32:$Rn)>; def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))), (FRECPEv1i64 FPR64:$Rn)>; def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))), (FRECPEv1i64 FPR64:$Rn)>; def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))), (FRECPEv1i32 FPR32:$Rn)>; def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))), (FRECPEv2f32 V64:$Rn)>; def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))), (FRECPEv4f32 FPR128:$Rn)>; def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))), (FRECPEv1i64 FPR64:$Rn)>; def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))), (FRECPEv1i64 FPR64:$Rn)>; def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))), (FRECPEv2f64 FPR128:$Rn)>; def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))), (FRECPS32 FPR32:$Rn, FPR32:$Rm)>; def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))), (FRECPSv2f32 V64:$Rn, V64:$Rm)>; def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>; def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))), (FRECPS64 FPR64:$Rn, FPR64:$Rm)>; def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>; def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))), (FRECPXv1f16 FPR16:$Rn)>; def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))), (FRECPXv1i32 FPR32:$Rn)>; def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))), (FRECPXv1i64 FPR64:$Rn)>; def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))), (FRSQRTEv1f16 FPR16:$Rn)>; def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))), (FRSQRTEv1i32 FPR32:$Rn)>; def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))), (FRSQRTEv1i64 FPR64:$Rn)>; def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))), (FRSQRTEv1i64 FPR64:$Rn)>; def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))), (FRSQRTEv1i32 FPR32:$Rn)>; def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))), (FRSQRTEv2f32 V64:$Rn)>; def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))), (FRSQRTEv4f32 FPR128:$Rn)>; def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))), (FRSQRTEv1i64 FPR64:$Rn)>; def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))), (FRSQRTEv1i64 FPR64:$Rn)>; def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))), (FRSQRTEv2f64 FPR128:$Rn)>; def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))), (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>; def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))), (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>; def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>; def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))), (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>; def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>; // Some float -> int -> float conversion patterns for which we want to keep the // int values in FP registers using the corresponding NEON instructions to // avoid more costly int <-> fp register transfers. let Predicates = [HasNEON] in { def : Pat<(f64 (sint_to_fp (i64 (fp_to_sint f64:$Rn)))), (SCVTFv1i64 (i64 (FCVTZSv1i64 f64:$Rn)))>; def : Pat<(f32 (sint_to_fp (i32 (fp_to_sint f32:$Rn)))), (SCVTFv1i32 (i32 (FCVTZSv1i32 f32:$Rn)))>; def : Pat<(f64 (uint_to_fp (i64 (fp_to_uint f64:$Rn)))), (UCVTFv1i64 (i64 (FCVTZUv1i64 f64:$Rn)))>; def : Pat<(f32 (uint_to_fp (i32 (fp_to_uint f32:$Rn)))), (UCVTFv1i32 (i32 (FCVTZUv1i32 f32:$Rn)))>; let Predicates = [HasFullFP16] in { def : Pat<(f16 (sint_to_fp (i32 (fp_to_sint f16:$Rn)))), (SCVTFv1i16 (f16 (FCVTZSv1f16 f16:$Rn)))>; def : Pat<(f16 (uint_to_fp (i32 (fp_to_uint f16:$Rn)))), (UCVTFv1i16 (f16 (FCVTZUv1f16 f16:$Rn)))>; } } // If an integer is about to be converted to a floating point value, // just load it on the floating point unit. // Here are the patterns for 8 and 16-bits to float. // 8-bits -> float. multiclass UIntToFPROLoadPat { def : Pat<(DstTy (uint_to_fp (SrcTy (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))))), (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), sub))>; def : Pat<(DstTy (uint_to_fp (SrcTy (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Wext:$extend))))), (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), sub))>; } defm : UIntToFPROLoadPat; def : Pat <(f32 (uint_to_fp (i32 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; def : Pat <(f32 (uint_to_fp (i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; // 16-bits -> float. defm : UIntToFPROLoadPat; def : Pat <(f32 (uint_to_fp (i32 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; def : Pat <(f32 (uint_to_fp (i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; // 32-bits are handled in target specific dag combine: // performIntToFpCombine. // 64-bits integer to 32-bits floating point, not possible with // UCVTF on floating point registers (both source and destination // must have the same size). // Here are the patterns for 8, 16, 32, and 64-bits to double. // 8-bits -> double. defm : UIntToFPROLoadPat; def : Pat <(f64 (uint_to_fp (i32 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; def : Pat <(f64 (uint_to_fp (i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; // 16-bits -> double. defm : UIntToFPROLoadPat; def : Pat <(f64 (uint_to_fp (i32 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; def : Pat <(f64 (uint_to_fp (i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; // 32-bits -> double. defm : UIntToFPROLoadPat; def : Pat <(f64 (uint_to_fp (i32 (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>; def : Pat <(f64 (uint_to_fp (i32 (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))), (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>; // 64-bits -> double are handled in target specific dag combine: // performIntToFpCombine. //===----------------------------------------------------------------------===// // Advanced SIMD three different-sized vector instructions. //===----------------------------------------------------------------------===// defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>; defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>; defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>; defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>; defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>; defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal", AArch64sabd>; defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl", AArch64sabd>; defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl", BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>; defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw", BinOpFrag<(add node:$LHS, (sext node:$RHS))>>; defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal", TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl", TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>; defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal", int_aarch64_neon_sqadd>; defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl", int_aarch64_neon_sqsub>; defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull", int_aarch64_neon_sqdmull>; defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl", BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>; defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw", BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>; defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal", AArch64uabd>; defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl", BinOpFrag<(add (zanyext node:$LHS), (zanyext node:$RHS))>>; defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw", BinOpFrag<(add node:$LHS, (zanyext node:$RHS))>>; defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal", TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl", TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>; defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl", BinOpFrag<(sub (zanyext node:$LHS), (zanyext node:$RHS))>>; defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw", BinOpFrag<(sub node:$LHS, (zanyext node:$RHS))>>; // Additional patterns for [SU]ML[AS]L multiclass Neon_mul_acc_widen_patterns { def : Pat<(v4i16 (opnode V64:$Ra, (v4i16 (extract_subvector (vecopnode (v8i8 V64:$Rn),(v8i8 V64:$Rm)), (i64 0))))), (EXTRACT_SUBREG (v8i16 (INST8B (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Ra, dsub), V64:$Rn, V64:$Rm)), dsub)>; def : Pat<(v2i32 (opnode V64:$Ra, (v2i32 (extract_subvector (vecopnode (v4i16 V64:$Rn),(v4i16 V64:$Rm)), (i64 0))))), (EXTRACT_SUBREG (v4i32 (INST4H (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Ra, dsub), V64:$Rn, V64:$Rm)), dsub)>; def : Pat<(v1i64 (opnode V64:$Ra, (v1i64 (extract_subvector (vecopnode (v2i32 V64:$Rn),(v2i32 V64:$Rm)), (i64 0))))), (EXTRACT_SUBREG (v2i64 (INST2S (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), V64:$Ra, dsub), V64:$Rn, V64:$Rm)), dsub)>; } defm : Neon_mul_acc_widen_patterns; defm : Neon_mul_acc_widen_patterns; defm : Neon_mul_acc_widen_patterns; defm : Neon_mul_acc_widen_patterns; // Additional patterns for SMULL and UMULL multiclass Neon_mul_widen_patterns { def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))), (INST8B V64:$Rn, V64:$Rm)>; def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))), (INST4H V64:$Rn, V64:$Rm)>; def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))), (INST2S V64:$Rn, V64:$Rm)>; } defm : Neon_mul_widen_patterns; defm : Neon_mul_widen_patterns; // Patterns for smull2/umull2. multiclass Neon_mul_high_patterns { def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn), (extract_high_v16i8 V128:$Rm))), (INST8B V128:$Rn, V128:$Rm)>; def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 V128:$Rm))), (INST4H V128:$Rn, V128:$Rm)>; def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 V128:$Rm))), (INST2S V128:$Rn, V128:$Rm)>; } defm : Neon_mul_high_patterns; defm : Neon_mul_high_patterns; // Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL multiclass Neon_mulacc_widen_patterns { def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))), (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>; def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))), (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>; def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))), (INST2S V128:$Rd, V64:$Rn, V64:$Rm)>; } defm : Neon_mulacc_widen_patterns< TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>, SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>; defm : Neon_mulacc_widen_patterns< TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>, UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>; defm : Neon_mulacc_widen_patterns< TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>, SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>; defm : Neon_mulacc_widen_patterns< TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>, UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>; // Patterns for 64-bit pmull def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm), (PMULLv1i64 V64:$Rn, V64:$Rm)>; def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)), (extractelt (v2i64 V128:$Rm), (i64 1))), (PMULLv2i64 V128:$Rn, V128:$Rm)>; // CodeGen patterns for addhn and subhn instructions, which can actually be // written in LLVM IR without too much difficulty. // ADDHN def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))), (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 16))))), (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 32))))), (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v8i8 V64:$Rd), (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))), (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 16))))), (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 32))))), (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; // SUBHN def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))), (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 16))))), (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 32))))), (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v8i8 V64:$Rd), (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))), (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 16))))), (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 32))))), (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; //---------------------------------------------------------------------------- // AdvSIMD bitwise extract from vector instruction. //---------------------------------------------------------------------------- defm EXT : SIMDBitwiseExtract<"ext">; def AdjustExtImm : SDNodeXFormgetTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32); }]>; multiclass ExtPat { def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))), (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>; def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; // We use EXT to handle extract_subvector to copy the upper 64-bits of a // 128-bit vector. def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))), (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; // A 64-bit EXT of two halves of the same 128-bit register can be done as a // single 128-bit EXT. def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)), (extract_subvector V128:$Rn, (i64 N)), (i32 imm:$imm))), (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>; // A 64-bit EXT of the high half of a 128-bit register can be done using a // 128-bit EXT of the whole register with an adjustment to the immediate. The // top half of the other operand will be unset, but that doesn't matter as it // will not be used. def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)), V64:$Rm, (i32 imm:$imm))), (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), (AdjustExtImm imm:$imm)), dsub)>; } defm : ExtPat; defm : ExtPat; defm : ExtPat; defm : ExtPat; defm : ExtPat; defm : ExtPat; defm : ExtPat; defm : ExtPat; //---------------------------------------------------------------------------- // AdvSIMD zip vector //---------------------------------------------------------------------------- defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>; defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>; defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>; defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>; defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>; defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>; def : Pat<(v16i8 (concat_vectors (v8i8 (trunc (v8i16 V128:$Vn))), (v8i8 (trunc (v8i16 V128:$Vm))))), (UZP1v16i8 V128:$Vn, V128:$Vm)>; def : Pat<(v8i16 (concat_vectors (v4i16 (trunc (v4i32 V128:$Vn))), (v4i16 (trunc (v4i32 V128:$Vm))))), (UZP1v8i16 V128:$Vn, V128:$Vm)>; def : Pat<(v4i32 (concat_vectors (v2i32 (trunc (v2i64 V128:$Vn))), (v2i32 (trunc (v2i64 V128:$Vm))))), (UZP1v4i32 V128:$Vn, V128:$Vm)>; //---------------------------------------------------------------------------- // AdvSIMD TBL/TBX instructions //---------------------------------------------------------------------------- defm TBL : SIMDTableLookup< 0, "tbl">; defm TBX : SIMDTableLookupTied<1, "tbx">; def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>; def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))), (TBLv16i8One V128:$Ri, V128:$Rn)>; def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd), (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>; def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd), (v16i8 V128:$Ri), (v16i8 V128:$Rn))), (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>; //---------------------------------------------------------------------------- // AdvSIMD scalar DUP instruction //---------------------------------------------------------------------------- defm DUP : SIMDScalarDUP<"mov">; //---------------------------------------------------------------------------- // AdvSIMD scalar pairwise instructions //---------------------------------------------------------------------------- defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">; defm FADDP : SIMDFPPairwiseScalar<0, 0b01101, "faddp">; defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">; defm FMAXP : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">; defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">; defm FMINP : SIMDFPPairwiseScalar<1, 0b01111, "fminp">; let Predicates = [HasFullFP16] in { def : Pat<(f16 (vecreduce_fadd (v8f16 V128:$Rn))), (FADDPv2i16p (EXTRACT_SUBREG (FADDPv8f16 (FADDPv8f16 V128:$Rn, (v8f16 (IMPLICIT_DEF))), (v8f16 (IMPLICIT_DEF))), dsub))>; def : Pat<(f16 (vecreduce_fadd (v4f16 V64:$Rn))), (FADDPv2i16p (FADDPv4f16 V64:$Rn, (v4f16 (IMPLICIT_DEF))))>; } def : Pat<(f32 (vecreduce_fadd (v4f32 V128:$Rn))), (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, (v4f32 (IMPLICIT_DEF))), dsub))>; def : Pat<(f32 (vecreduce_fadd (v2f32 V64:$Rn))), (FADDPv2i32p V64:$Rn)>; def : Pat<(f64 (vecreduce_fadd (v2f64 V128:$Rn))), (FADDPv2i64p V128:$Rn)>; def : Pat<(v2i64 (AArch64saddv V128:$Rn)), (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; def : Pat<(v2i64 (AArch64uaddv V128:$Rn)), (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))), (FADDPv2i32p V64:$Rn)>; def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))), (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>; def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))), (FADDPv2i64p V128:$Rn)>; def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))), (FMAXNMPv2i32p V64:$Rn)>; def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))), (FMAXNMPv2i64p V128:$Rn)>; def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))), (FMAXPv2i32p V64:$Rn)>; def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))), (FMAXPv2i64p V128:$Rn)>; def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))), (FMINNMPv2i32p V64:$Rn)>; def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))), (FMINNMPv2i64p V128:$Rn)>; def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))), (FMINPv2i32p V64:$Rn)>; def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))), (FMINPv2i64p V128:$Rn)>; //---------------------------------------------------------------------------- // AdvSIMD INS/DUP instructions //---------------------------------------------------------------------------- def DUPv8i8gpr : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>; def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>; def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>; def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>; def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>; def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>; def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>; def DUPv2i64lane : SIMDDup64FromElement; def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>; def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>; def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>; def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>; def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>; def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>; // DUP from a 64-bit register to a 64-bit register is just a copy def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))), (COPY_TO_REGCLASS GPR64:$Rn, FPR64)>; def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))), (COPY_TO_REGCLASS FPR64:$Rn, FPR64)>; def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))), (v2f32 (DUPv2i32lane (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), (i64 0)))>; def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))), (v4f32 (DUPv4i32lane (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), (i64 0)))>; def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))), (v2f64 (DUPv2i64lane (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub), (i64 0)))>; def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))), (v4f16 (DUPv4i16lane (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), (i64 0)))>; def : Pat<(v4bf16 (AArch64dup (bf16 FPR16:$Rn))), (v4bf16 (DUPv4i16lane (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), (i64 0)))>; def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))), (v8f16 (DUPv8i16lane (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), (i64 0)))>; def : Pat<(v8bf16 (AArch64dup (bf16 FPR16:$Rn))), (v8bf16 (DUPv8i16lane (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), (i64 0)))>; def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>; def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>; def : Pat<(v4bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)), (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>; def : Pat<(v8bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)), (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>; def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>; def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>; def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)), (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>; // If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane // instruction even if the types don't match: we just have to remap the lane // carefully. N.b. this trick only applies to truncations. def VecIndex_x2 : SDNodeXFormgetTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64); }]>; def VecIndex_x4 : SDNodeXFormgetTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64); }]>; def VecIndex_x8 : SDNodeXFormgetTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64); }]>; multiclass DUPWithTruncPats { def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn), imm:$idx)))), (DUP V128:$Rn, (IdxXFORM imm:$idx))>; def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn), imm:$idx)))), (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; } defm : DUPWithTruncPats; defm : DUPWithTruncPats; defm : DUPWithTruncPats; defm : DUPWithTruncPats; defm : DUPWithTruncPats; defm : DUPWithTruncPats; multiclass DUPWithTrunci64Pats { def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn), imm:$idx))))), (DUP V128:$Rn, (IdxXFORM imm:$idx))>; def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn), imm:$idx))))), (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; } defm : DUPWithTrunci64Pats; defm : DUPWithTrunci64Pats; defm : DUPWithTrunci64Pats; defm : DUPWithTrunci64Pats; defm : DUPWithTrunci64Pats; defm : DUPWithTrunci64Pats; // SMOV and UMOV definitions, with some extra patterns for convenience defm SMOV : SMov; defm UMOV : UMov; def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>; def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))), (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>; def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx)))), i8), (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx)))), i16), (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; // Extracting i8 or i16 elements will have the zero-extend transformed to // an 'and' mask by type legalization since neither i8 nor i16 are legal types // for AArch64. Match these patterns here since UMOV already zeroes out the high // bits of the destination register. def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), (i32 0xff)), (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>; def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx), (i32 0xffff)), (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>; def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx)))), (i64 0xff))), (SUBREG_TO_REG (i64 0), (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx)), sub_32)>; def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx)))), (i64 0xffff))), (SUBREG_TO_REG (i64 0), (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx)), sub_32)>; defm INS : SIMDIns; def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)), (SUBREG_TO_REG (i32 0), (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)), (SUBREG_TO_REG (i32 0), (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)), (SUBREG_TO_REG (i32 0), (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)), (SUBREG_TO_REG (i32 0), (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))), (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))), (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))), (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))), (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))), (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 FPR32:$Rn), ssub))>; def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))), (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (i32 FPR32:$Rn), ssub))>; def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))), (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (i64 FPR64:$Rn), dsub))>; def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))), (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))), (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))), (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))), (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))), (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))), (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>; def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn), (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))), (EXTRACT_SUBREG (INSvi16lane (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)), VectorIndexS:$imm, (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), (i64 0)), dsub)>; def : Pat<(vector_insert (v8f16 v8f16:$Rn), (f16 fpimm0), (i64 VectorIndexH:$imm)), (INSvi16gpr V128:$Rn, VectorIndexH:$imm, WZR)>; def : Pat<(vector_insert v4f32:$Rn, (f32 fpimm0), (i64 VectorIndexS:$imm)), (INSvi32gpr V128:$Rn, VectorIndexS:$imm, WZR)>; def : Pat<(vector_insert v2f64:$Rn, (f64 fpimm0), (i64 VectorIndexD:$imm)), (INSvi64gpr V128:$Rn, VectorIndexS:$imm, XZR)>; def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn), (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))), (INSvi16lane V128:$Rn, VectorIndexH:$imm, (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), (i64 0))>; def : Pat<(v4bf16 (vector_insert (v4bf16 V64:$Rn), (bf16 FPR16:$Rm), (i64 VectorIndexS:$imm))), (EXTRACT_SUBREG (INSvi16lane (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), V64:$Rn, dsub)), VectorIndexS:$imm, (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), (i64 0)), dsub)>; def : Pat<(v8bf16 (vector_insert (v8bf16 V128:$Rn), (bf16 FPR16:$Rm), (i64 VectorIndexH:$imm))), (INSvi16lane V128:$Rn, VectorIndexH:$imm, (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), (i64 0))>; def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn), (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), (EXTRACT_SUBREG (INSvi32lane (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)), VectorIndexS:$imm, (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), (i64 0)), dsub)>; def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn), (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), (INSvi32lane V128:$Rn, VectorIndexS:$imm, (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), (i64 0))>; def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn), (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))), (INSvi64lane V128:$Rn, VectorIndexD:$imm, (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)), (i64 0))>; // Copy an element at a constant index in one vector into a constant indexed // element of another. // FIXME refactor to a shared class/dev parameterized on vector type, vector // index type and INS extension def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs), VectorIndexB:$idx2)), (v16i8 (INSvi8lane V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2) )>; def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs), VectorIndexH:$idx2)), (v8i16 (INSvi16lane V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2) )>; def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs), VectorIndexS:$idx2)), (v4i32 (INSvi32lane V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2) )>; def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs), VectorIndexD:$idx2)), (v2i64 (INSvi64lane V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2) )>; multiclass Neon_INS_elt_pattern { def : Pat<(VT128 (vector_insert V128:$src, (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)), imm:$Immd)), (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>; def : Pat<(VT128 (vector_insert V128:$src, (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)), imm:$Immd)), (INS V128:$src, imm:$Immd, (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>; def : Pat<(VT64 (vector_insert V64:$src, (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)), imm:$Immd)), (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd, V128:$Rn, imm:$Immn), dsub)>; def : Pat<(VT64 (vector_insert V64:$src, (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)), imm:$Immd)), (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd, (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn), dsub)>; } defm : Neon_INS_elt_pattern; defm : Neon_INS_elt_pattern; defm : Neon_INS_elt_pattern; defm : Neon_INS_elt_pattern; // Floating point vector extractions are codegen'd as either a sequence of // subregister extractions, or a MOV (aka DUP here) if // the lane number is anything other than zero. def : Pat<(vector_extract (v2f64 V128:$Rn), 0), (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>; def : Pat<(vector_extract (v4f32 V128:$Rn), 0), (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>; def : Pat<(vector_extract (v8f16 V128:$Rn), 0), (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>; def : Pat<(vector_extract (v8bf16 V128:$Rn), 0), (bf16 (EXTRACT_SUBREG V128:$Rn, hsub))>; def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx), (f64 (DUPi64 V128:$Rn, VectorIndexD:$idx))>; def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx), (f32 (DUPi32 V128:$Rn, VectorIndexS:$idx))>; def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx), (f16 (DUPi16 V128:$Rn, VectorIndexH:$idx))>; def : Pat<(vector_extract (v8bf16 V128:$Rn), VectorIndexH:$idx), (bf16 (DUPi16 V128:$Rn, VectorIndexH:$idx))>; // All concat_vectors operations are canonicalised to act on i64 vectors for // AArch64. In the general case we need an instruction, which had just as well be // INS. class ConcatPat : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)), (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1, (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>; def : ConcatPat; def : ConcatPat; def : ConcatPat; def : ConcatPat; def : ConcatPat; def : ConcatPat; def : ConcatPat; def : ConcatPat; // If the high lanes are undef, though, we can just ignore them: class ConcatUndefPat : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)), (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>; def : ConcatUndefPat; def : ConcatUndefPat; def : ConcatUndefPat; def : ConcatUndefPat; def : ConcatUndefPat; def : ConcatUndefPat; //---------------------------------------------------------------------------- // AdvSIMD across lanes instructions //---------------------------------------------------------------------------- defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">; defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">; defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">; defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">; defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">; defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">; defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">; defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>; defm FMAXV : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>; defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>; defm FMINV : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>; // Patterns for uaddv(uaddlp(x)) ==> uaddlv def : Pat<(i32 (vector_extract (v8i16 (insert_subvector undef, (v4i16 (AArch64uaddv (v4i16 (AArch64uaddlp (v8i8 V64:$op))))), (i64 0))), (i64 0))), (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), (UADDLVv8i8v V64:$op), hsub), ssub)>; def : Pat<(i32 (vector_extract (v8i16 (AArch64uaddv (v8i16 (AArch64uaddlp (v16i8 V128:$op))))), (i64 0))), (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), (UADDLVv16i8v V128:$op), hsub), ssub)>; def : Pat<(v4i32 (AArch64uaddv (v4i32 (AArch64uaddlp (v8i16 V128:$op))))), (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (UADDLVv8i16v V128:$op), ssub)>; // Patterns for addp(uaddlp(x))) ==> uaddlv def : Pat<(v2i32 (AArch64uaddv (v2i32 (AArch64uaddlp (v4i16 V64:$op))))), (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (UADDLVv4i16v V64:$op), ssub)>; def : Pat<(v2i64 (AArch64uaddv (v2i64 (AArch64uaddlp (v4i32 V128:$op))))), (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (UADDLVv4i32v V128:$op), dsub)>; // Patterns for across-vector intrinsics, that have a node equivalent, that // returns a vector (with only the low lane defined) instead of a scalar. // In effect, opNode is the same as (scalar_to_vector (IntNode)). multiclass SIMDAcrossLanesIntrinsic { // If a lane instruction caught the vector_extract around opNode, we can // directly match the latter to the instruction. def : Pat<(v8i8 (opNode V64:$Rn)), (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>; def : Pat<(v16i8 (opNode V128:$Rn)), (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>; def : Pat<(v4i16 (opNode V64:$Rn)), (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>; def : Pat<(v8i16 (opNode V128:$Rn)), (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>; def : Pat<(v4i32 (opNode V128:$Rn)), (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>; // If none did, fallback to the explicit patterns, consuming the vector_extract. def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)), (i64 0)), (i64 0))), (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), ssub)>; def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))), (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), ssub)>; def : Pat<(i32 (vector_extract (insert_subvector undef, (v4i16 (opNode V64:$Rn)), (i64 0)), (i64 0))), (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), ssub)>; def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))), (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), ssub)>; def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))), (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub), ssub)>; } multiclass SIMDAcrossLanesSignedIntrinsic : SIMDAcrossLanesIntrinsic { // If there is a sign extension after this intrinsic, consume it as smov already // performed it def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), i8)), (i32 (SMOVvi8to32 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), (i64 0)))>; def : Pat<(i32 (sext_inreg (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))), i8)), (i32 (SMOVvi8to32 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), (i64 0)))>; def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), i16)), (i32 (SMOVvi16to32 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), (i64 0)))>; def : Pat<(i32 (sext_inreg (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))), i16)), (i32 (SMOVvi16to32 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), (i64 0)))>; } multiclass SIMDAcrossLanesUnsignedIntrinsic : SIMDAcrossLanesIntrinsic { // If there is a masking operation keeping only what has been actually // generated, consume it. def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), maski8_or_more)), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), ssub))>; def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))), maski8_or_more)), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), ssub))>; def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), maski16_or_more)), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), ssub))>; def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))), maski16_or_more)), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), ssub))>; } defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", AArch64saddv>; // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))), (ADDPv2i32 V64:$Rn, V64:$Rn)>; defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>; // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))), (ADDPv2i32 V64:$Rn, V64:$Rn)>; defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>; def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))), (SMAXPv2i32 V64:$Rn, V64:$Rn)>; defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>; def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))), (SMINPv2i32 V64:$Rn, V64:$Rn)>; defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>; def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))), (UMAXPv2i32 V64:$Rn, V64:$Rn)>; defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>; def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))), (UMINPv2i32 V64:$Rn, V64:$Rn)>; multiclass SIMDAcrossLanesSignedLongIntrinsic { def : Pat<(i32 (intOp (v8i8 V64:$Rn))), (i32 (SMOVvi16to32 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), (i64 0)))>; def : Pat<(i32 (intOp (v16i8 V128:$Rn))), (i32 (SMOVvi16to32 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), (i64 0)))>; def : Pat<(i32 (intOp (v4i16 V64:$Rn))), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), ssub))>; def : Pat<(i32 (intOp (v8i16 V128:$Rn))), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), ssub))>; def : Pat<(i64 (intOp (v4i32 V128:$Rn))), (i64 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), dsub))>; } multiclass SIMDAcrossLanesUnsignedLongIntrinsic { def : Pat<(i32 (intOp (v8i8 V64:$Rn))), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), ssub))>; def : Pat<(i32 (intOp (v16i8 V128:$Rn))), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), ssub))>; def : Pat<(i32 (intOp (v4i16 V64:$Rn))), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), ssub))>; def : Pat<(i32 (intOp (v8i16 V128:$Rn))), (i32 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), ssub))>; def : Pat<(i64 (intOp (v4i32 V128:$Rn))), (i64 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (!cast(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), dsub))>; } defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>; defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>; // The vaddlv_s32 intrinsic gets mapped to SADDLP. def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))), (i64 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (SADDLPv2i32_v1i64 V64:$Rn), dsub), dsub))>; // The vaddlv_u32 intrinsic gets mapped to UADDLP. def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))), (i64 (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), (UADDLPv2i32_v1i64 V64:$Rn), dsub), dsub))>; //------------------------------------------------------------------------------ // AdvSIMD modified immediate instructions //------------------------------------------------------------------------------ // AdvSIMD BIC defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>; // AdvSIMD ORR defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>; def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>; def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>; // AdvSIMD FMOV def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8, "fmov", ".2d", [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64, fpimm8, "fmov", ".2s", [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8, "fmov", ".4s", [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; let Predicates = [HasNEON, HasFullFP16] in { def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64, fpimm8, "fmov", ".4h", [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8, "fmov", ".8h", [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; } // Predicates = [HasNEON, HasFullFP16] // AdvSIMD MOVI // EDIT byte mask: scalar let isReMaterializable = 1, isAsCheapAsAMove = 1 in def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi", [(set FPR64:$Rd, simdimmtype10:$imm8)]>; // The movi_edit node has the immediate value already encoded, so we use // a plain imm0_255 here. def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)), (MOVID imm0_255:$shift)>; // EDIT byte mask: 2d // The movi_edit node has the immediate value already encoded, so we use // a plain imm0_255 in the pattern let isReMaterializable = 1, isAsCheapAsAMove = 1 in def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128, simdimmtype10, "movi", ".2d", [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>; def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>; def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>; def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>; def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>; def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>; def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>; def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>; def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>; // Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the // extract is free and this gives better MachineCSE results. def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; def : Pat<(v8i8 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; def : Pat<(v8i8 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; // EDIT per word & halfword: 2s, 4h, 4s, & 8h let isReMaterializable = 1, isAsCheapAsAMove = 1 in defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">; def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), (MOVIv2i32 imm0_255:$imm8, imm:$shift)>; def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), (MOVIv4i32 imm0_255:$imm8, imm:$shift)>; def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), (MOVIv4i16 imm0_255:$imm8, imm:$shift)>; def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), (MOVIv8i16 imm0_255:$imm8, imm:$shift)>; let isReMaterializable = 1, isAsCheapAsAMove = 1 in { // EDIT per word: 2s & 4s with MSL shifter def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s", [(set (v2i32 V64:$Rd), (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s", [(set (v4i32 V128:$Rd), (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; // Per byte: 8b & 16b def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64, imm0_255, "movi", ".8b", [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>; def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255, "movi", ".16b", [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>; } // AdvSIMD MVNI // EDIT per word & halfword: 2s, 4h, 4s, & 8h let isReMaterializable = 1, isAsCheapAsAMove = 1 in defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">; def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), (MVNIv2i32 imm0_255:$imm8, imm:$shift)>; def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), (MVNIv4i32 imm0_255:$imm8, imm:$shift)>; def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), (MVNIv4i16 imm0_255:$imm8, imm:$shift)>; def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), (MVNIv8i16 imm0_255:$imm8, imm:$shift)>; // EDIT per word: 2s & 4s with MSL shifter let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s", [(set (v2i32 V64:$Rd), (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s", [(set (v4i32 V128:$Rd), (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; } //---------------------------------------------------------------------------- // AdvSIMD indexed element //---------------------------------------------------------------------------- let hasSideEffects = 0 in { defm FMLA : SIMDFPIndexedTied<0, 0b0001, "fmla">; defm FMLS : SIMDFPIndexedTied<0, 0b0101, "fmls">; } // NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the // instruction expects the addend first, while the intrinsic expects it last. // On the other hand, there are quite a few valid combinatorial options due to // the commutativity of multiplication and the fact that (-x) * y = x * (-y). defm : SIMDFPIndexedTiedPatterns<"FMLA", TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>; defm : SIMDFPIndexedTiedPatterns<"FMLA", TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>; defm : SIMDFPIndexedTiedPatterns<"FMLS", TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; defm : SIMDFPIndexedTiedPatterns<"FMLS", TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >; defm : SIMDFPIndexedTiedPatterns<"FMLS", TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >; defm : SIMDFPIndexedTiedPatterns<"FMLS", TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >; multiclass FMLSIndexedAfterNegPatterns { // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit // and DUP scalar. def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (AArch64duplane32 (v4f32 (fneg V128:$Rm)), VectorIndexS:$idx))), (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (v2f32 (AArch64duplane32 (v4f32 (insert_subvector undef, (v2f32 (fneg V64:$Rm)), (i64 0))), VectorIndexS:$idx)))), (FMLSv2i32_indexed V64:$Rd, V64:$Rn, (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (AArch64dup (f32 (fneg FPR32Op:$Rm))))), (FMLSv2i32_indexed V64:$Rd, V64:$Rn, (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit // and DUP scalar. def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (AArch64duplane32 (v4f32 (fneg V128:$Rm)), VectorIndexS:$idx))), (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (v4f32 (AArch64duplane32 (v4f32 (insert_subvector undef, (v2f32 (fneg V64:$Rm)), (i64 0))), VectorIndexS:$idx)))), (FMLSv4i32_indexed V128:$Rd, V128:$Rn, (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (AArch64dup (f32 (fneg FPR32Op:$Rm))))), (FMLSv4i32_indexed V128:$Rd, V128:$Rn, (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar // (DUPLANE from 64-bit would be trivial). def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (AArch64duplane64 (v2f64 (fneg V128:$Rm)), VectorIndexD:$idx))), (FMLSv2i64_indexed V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (AArch64dup (f64 (fneg FPR64Op:$Rm))))), (FMLSv2i64_indexed V128:$Rd, V128:$Rn, (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>; // 2 variants for 32-bit scalar version: extract from .2s or from .4s def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), (vector_extract (v4f32 (fneg V128:$Rm)), VectorIndexS:$idx))), (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), (vector_extract (v4f32 (insert_subvector undef, (v2f32 (fneg V64:$Rm)), (i64 0))), VectorIndexS:$idx))), (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; // 1 variant for 64-bit scalar version: extract from .1d or from .2d def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn), (vector_extract (v2f64 (fneg V128:$Rm)), VectorIndexS:$idx))), (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn, V128:$Rm, VectorIndexS:$idx)>; } defm : FMLSIndexedAfterNegPatterns< TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >; defm : FMLSIndexedAfterNegPatterns< TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >; defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>; defm FMUL : SIMDFPIndexed<0, 0b1001, "fmul", fmul>; def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))), (FMULv2i32_indexed V64:$Rn, (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), (i64 0))>; def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))), (FMULv4i32_indexed V128:$Rn, (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), (i64 0))>; def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))), (FMULv2i64_indexed V128:$Rn, (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub), (i64 0))>; defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>; defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>; defm SQDMULH : SIMDIndexedHSPatterns; defm SQRDMULH : SIMDIndexedHSPatterns; // Generated by MachineCombine defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>; defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>; defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>; defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal", TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl", TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>; defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull", int_aarch64_neon_smull>; defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal", int_aarch64_neon_sqadd>; defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl", int_aarch64_neon_sqsub>; defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah", int_aarch64_neon_sqrdmlah>; defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh", int_aarch64_neon_sqrdmlsh>; defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>; defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal", TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl", TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>; defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull", int_aarch64_neon_umull>; // A scalar sqdmull with the second operand being a vector lane can be // handled directly with the indexed instruction encoding. def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), (vector_extract (v4i32 V128:$Vm), VectorIndexS:$idx)), (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>; // Match add node and also treat an 'or' node is as an 'add' if the or'ed operands // have no common bits. def add_and_or_is_add : PatFrags<(ops node:$lhs, node:$rhs), [(add node:$lhs, node:$rhs), (or node:$lhs, node:$rhs)],[{ if (N->getOpcode() == ISD::ADD) return true; return CurDAG->haveNoCommonBitsSet(N->getOperand(0), N->getOperand(1)); }]> { let GISelPredicateCode = [{ // Only handle G_ADD for now. FIXME. build capability to compute whether // operands of G_OR have common bits set or not. return MI.getOpcode() == TargetOpcode::G_ADD; }]; } //---------------------------------------------------------------------------- // AdvSIMD scalar shift instructions //---------------------------------------------------------------------------- defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">; defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">; defm SCVTF : SIMDFPScalarRShift<0, 0b11100, "scvtf">; defm UCVTF : SIMDFPScalarRShift<1, 0b11100, "ucvtf">; // Codegen patterns for the above. We don't put these directly on the // instructions because TableGen's type inference can't handle the truth. // Having the same base pattern for fp <--> int totally freaks it out. def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm), (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>; def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm), (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>; def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)), (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)), (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn), vecshiftR64:$imm)), (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn), vecshiftR64:$imm)), (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm), (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>; def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn), vecshiftR64:$imm)), (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn), vecshiftR64:$imm)), (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm), (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>; // Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported. def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)), (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>; def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)), (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>; def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)), (SCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>; def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (and FPR32:$Rn, (i32 65535)), vecshiftR16:$imm)), (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>; def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)), (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>; def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)), (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>; def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)), (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), (FCVTZSh FPR16:$Rn, vecshiftR32:$imm), hsub))>; def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)), (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (FCVTZSh FPR16:$Rn, vecshiftR64:$imm), hsub))>; def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)), (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), (FCVTZUh FPR16:$Rn, vecshiftR32:$imm), hsub))>; def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)), (i64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (FCVTZUh FPR16:$Rn, vecshiftR64:$imm), hsub))>; def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))), (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), (FACGE16 FPR16:$Rn, FPR16:$Rm), hsub))>; def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))), (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), (FACGT16 FPR16:$Rn, FPR16:$Rm), hsub))>; defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>; defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">; defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn", int_aarch64_neon_sqrshrn>; defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun", int_aarch64_neon_sqrshrun>; defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn", int_aarch64_neon_sqshrn>; defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun", int_aarch64_neon_sqshrun>; defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">; defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>; defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra", TriOpFrag<(add node:$LHS, (AArch64srshri node:$MHS, node:$RHS))>>; defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>; defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra", TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>; defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn", int_aarch64_neon_uqrshrn>; defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn", int_aarch64_neon_uqshrn>; defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>; defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra", TriOpFrag<(add node:$LHS, (AArch64urshri node:$MHS, node:$RHS))>>; defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>; defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra", TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))>>; //---------------------------------------------------------------------------- // AdvSIMD vector shift instructions //---------------------------------------------------------------------------- defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>; defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>; defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf", int_aarch64_neon_vcvtfxs2fp>; defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn", int_aarch64_neon_rshrn>; defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>; defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn", BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>; defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", AArch64vsli>; def : Pat<(v1i64 (AArch64vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), (i32 vecshiftL64:$imm))), (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>; defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn", int_aarch64_neon_sqrshrn>; defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun", int_aarch64_neon_sqrshrun>; defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn", int_aarch64_neon_sqshrn>; defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun", int_aarch64_neon_sqshrun>; defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", AArch64vsri>; def : Pat<(v1i64 (AArch64vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), (i32 vecshiftR64:$imm))), (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>; defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>; defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra", TriOpFrag<(add node:$LHS, (AArch64srshri node:$MHS, node:$RHS))> >; defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll", BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>; defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>; defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra", TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>; defm UCVTF : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf", int_aarch64_neon_vcvtfxu2fp>; defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn", int_aarch64_neon_uqrshrn>; defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn", int_aarch64_neon_uqshrn>; defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>; defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra", TriOpFrag<(add node:$LHS, (AArch64urshri node:$MHS, node:$RHS))> >; defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll", BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>; defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>; defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra", TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >; // RADDHN patterns for when RSHRN shifts by half the size of the vector element def : Pat<(v8i8 (int_aarch64_neon_rshrn (v8i16 V128:$Vn), (i32 8))), (RADDHNv8i16_v8i8 V128:$Vn, (v8i16 (MOVIv2d_ns (i32 0))))>; def : Pat<(v4i16 (int_aarch64_neon_rshrn (v4i32 V128:$Vn), (i32 16))), (RADDHNv4i32_v4i16 V128:$Vn, (v4i32 (MOVIv2d_ns (i32 0))))>; def : Pat<(v2i32 (int_aarch64_neon_rshrn (v2i64 V128:$Vn), (i32 32))), (RADDHNv2i64_v2i32 V128:$Vn, (v2i64 (MOVIv2d_ns (i32 0))))>; // RADDHN2 patterns for when RSHRN shifts by half the size of the vector element def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Vd), (v8i8 (int_aarch64_neon_rshrn (v8i16 V128:$Vn), (i32 8))))), (RADDHNv8i16_v16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, (v8i16 (MOVIv2d_ns (i32 0))))>; def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Vd), (v4i16 (int_aarch64_neon_rshrn (v4i32 V128:$Vn), (i32 16))))), (RADDHNv4i32_v8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, (v4i32 (MOVIv2d_ns (i32 0))))>; def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Vd), (v2i32 (int_aarch64_neon_rshrn (v2i64 V128:$Vn), (i32 32))))), (RADDHNv2i64_v4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, (v2i64 (MOVIv2d_ns (i32 0))))>; // SHRN patterns for when a logical right shift was used instead of arithmetic // (the immediate guarantees no sign bits actually end up in the result so it // doesn't matter). def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))), (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>; def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))), (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>; def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))), (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>; def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd), (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm)))), (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR16Narrow:$imm)>; def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd), (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm)))), (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR32Narrow:$imm)>; def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd), (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm)))), (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR32Narrow:$imm)>; // Vector sign and zero extensions are implemented with SSHLL and USSHLL. // Anyexts are implemented as zexts. def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>; def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>; def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>; def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; // Also match an extend from the upper half of a 128 bit source register. def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))), (USHLLv16i8_shift V128:$Rn, (i32 0))>; def : Pat<(v8i16 (zext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))), (USHLLv16i8_shift V128:$Rn, (i32 0))>; def : Pat<(v8i16 (sext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))), (SSHLLv16i8_shift V128:$Rn, (i32 0))>; def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))), (USHLLv8i16_shift V128:$Rn, (i32 0))>; def : Pat<(v4i32 (zext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))), (USHLLv8i16_shift V128:$Rn, (i32 0))>; def : Pat<(v4i32 (sext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))), (SSHLLv8i16_shift V128:$Rn, (i32 0))>; def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))), (USHLLv4i32_shift V128:$Rn, (i32 0))>; def : Pat<(v2i64 (zext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))), (USHLLv4i32_shift V128:$Rn, (i32 0))>; def : Pat<(v2i64 (sext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))), (SSHLLv4i32_shift V128:$Rn, (i32 0))>; // Vector shift sxtl aliases def : InstAlias<"sxtl.8h $dst, $src1", (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"sxtl $dst.8h, $src1.8b", (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"sxtl.4s $dst, $src1", (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"sxtl $dst.4s, $src1.4h", (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"sxtl.2d $dst, $src1", (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"sxtl $dst.2d, $src1.2s", (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; // Vector shift sxtl2 aliases def : InstAlias<"sxtl2.8h $dst, $src1", (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"sxtl2 $dst.8h, $src1.16b", (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"sxtl2.4s $dst, $src1", (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"sxtl2 $dst.4s, $src1.8h", (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"sxtl2.2d $dst, $src1", (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"sxtl2 $dst.2d, $src1.4s", (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; // Vector shift uxtl aliases def : InstAlias<"uxtl.8h $dst, $src1", (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"uxtl $dst.8h, $src1.8b", (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"uxtl.4s $dst, $src1", (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"uxtl $dst.4s, $src1.4h", (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"uxtl.2d $dst, $src1", (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; def : InstAlias<"uxtl $dst.2d, $src1.2s", (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; // Vector shift uxtl2 aliases def : InstAlias<"uxtl2.8h $dst, $src1", (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"uxtl2 $dst.8h, $src1.16b", (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"uxtl2.4s $dst, $src1", (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"uxtl2 $dst.4s, $src1.8h", (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"uxtl2.2d $dst, $src1", (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; def : InstAlias<"uxtl2 $dst.2d, $src1.4s", (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; // If an integer is about to be converted to a floating point value, // just load it on the floating point unit. // These patterns are more complex because floating point loads do not // support sign extension. // The sign extension has to be explicitly added and is only supported for // one step: byte-to-half, half-to-word, word-to-doubleword. // SCVTF GPR -> FPR is 9 cycles. // SCVTF FPR -> FPR is 4 cyclces. // (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles. // Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR // and still being faster. // However, this is not good for code size. // 8-bits -> float. 2 sizes step-up. class SExtLoadi8CVTf32Pat : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))), (SCVTFv1i32 (f32 (EXTRACT_SUBREG (SSHLLv4i16_shift (f64 (EXTRACT_SUBREG (SSHLLv8i8_shift (INSERT_SUBREG (f64 (IMPLICIT_DEF)), INST, bsub), 0), dsub)), 0), ssub)))>, Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>; def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext), (LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>; def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext), (LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>; def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>; def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset), (LDURBi GPR64sp:$Rn, simm9:$offset)>; // 16-bits -> float. 1 size step-up. class SExtLoadi16CVTf32Pat : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))), (SCVTFv1i32 (f32 (EXTRACT_SUBREG (SSHLLv4i16_shift (INSERT_SUBREG (f64 (IMPLICIT_DEF)), INST, hsub), 0), ssub)))>, Requires<[NotForCodeSize]>; def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), (LDURHi GPR64sp:$Rn, simm9:$offset)>; // 32-bits to 32-bits are handled in target specific dag combine: // performIntToFpCombine. // 64-bits integer to 32-bits floating point, not possible with // SCVTF on floating point registers (both source and destination // must have the same size). // Here are the patterns for 8, 16, 32, and 64-bits to double. // 8-bits -> double. 3 size step-up: give up. // 16-bits -> double. 2 size step. class SExtLoadi16CVTf64Pat : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))), (SCVTFv1i64 (f64 (EXTRACT_SUBREG (SSHLLv2i32_shift (f64 (EXTRACT_SUBREG (SSHLLv4i16_shift (INSERT_SUBREG (f64 (IMPLICIT_DEF)), INST, hsub), 0), dsub)), 0), dsub)))>, Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>; def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), (LDURHi GPR64sp:$Rn, simm9:$offset)>; // 32-bits -> double. 1 size step-up. class SExtLoadi32CVTf64Pat : Pat <(f64 (sint_to_fp (i32 (load addrmode)))), (SCVTFv1i64 (f64 (EXTRACT_SUBREG (SSHLLv2i32_shift (INSERT_SUBREG (f64 (IMPLICIT_DEF)), INST, ssub), 0), dsub)))>, Requires<[NotForCodeSize]>; def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext), (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>; def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext), (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>; def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>; def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset), (LDURSi GPR64sp:$Rn, simm9:$offset)>; // 64-bits -> double are handled in target specific dag combine: // performIntToFpCombine. //---------------------------------------------------------------------------- // AdvSIMD Load-Store Structure //---------------------------------------------------------------------------- defm LD1 : SIMDLd1Multiple<"ld1">; defm LD2 : SIMDLd2Multiple<"ld2">; defm LD3 : SIMDLd3Multiple<"ld3">; defm LD4 : SIMDLd4Multiple<"ld4">; defm ST1 : SIMDSt1Multiple<"st1">; defm ST2 : SIMDSt2Multiple<"st2">; defm ST3 : SIMDSt3Multiple<"st3">; defm ST4 : SIMDSt4Multiple<"st4">; class Ld1Pat : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>; def : Ld1Pat; def : Ld1Pat; def : Ld1Pat; def : Ld1Pat; def : Ld1Pat; def : Ld1Pat; def : Ld1Pat; def : Ld1Pat; class St1Pat : Pat<(store ty:$Vt, GPR64sp:$Rn), (INST ty:$Vt, GPR64sp:$Rn)>; def : St1Pat; def : St1Pat; def : St1Pat; def : St1Pat; def : St1Pat; def : St1Pat; def : St1Pat; def : St1Pat; //--- // Single-element //--- defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>; defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>; defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>; defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>; let mayLoad = 1, hasSideEffects = 0 in { defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>; defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>; defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>; defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>; defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>; defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>; defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>; defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>; defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>; defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>; defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>; defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>; defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>; defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>; defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>; defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>; } def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), (LD1Rv8b GPR64sp:$Rn)>; def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), (LD1Rv16b GPR64sp:$Rn)>; def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), (LD1Rv4h GPR64sp:$Rn)>; def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), (LD1Rv8h GPR64sp:$Rn)>; def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), (LD1Rv2s GPR64sp:$Rn)>; def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), (LD1Rv4s GPR64sp:$Rn)>; def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), (LD1Rv2d GPR64sp:$Rn)>; def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), (LD1Rv1d GPR64sp:$Rn)>; // Grab the floating point version too def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), (LD1Rv2s GPR64sp:$Rn)>; def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), (LD1Rv4s GPR64sp:$Rn)>; def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), (LD1Rv2d GPR64sp:$Rn)>; def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), (LD1Rv1d GPR64sp:$Rn)>; def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), (LD1Rv4h GPR64sp:$Rn)>; def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), (LD1Rv8h GPR64sp:$Rn)>; def : Pat<(v4bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))), (LD1Rv4h GPR64sp:$Rn)>; def : Pat<(v8bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))), (LD1Rv8h GPR64sp:$Rn)>; class Ld1Lane128Pat : Pat<(vector_insert (VTy VecListOne128:$Rd), (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx), (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>; def : Ld1Lane128Pat; def : Ld1Lane128Pat; def : Ld1Lane128Pat; def : Ld1Lane128Pat; def : Ld1Lane128Pat; def : Ld1Lane128Pat; def : Ld1Lane128Pat; def : Ld1Lane128Pat; // Generate LD1 for extload if memory type does not match the // destination type, for example: // // (v4i32 (insert_vector_elt (load anyext from i8) idx)) // // In this case, the index must be adjusted to match LD1 type. // class Ld1Lane128IdxOpPat : Pat<(vector_insert (VTy VecListOne128:$Rd), (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx), (LD1 VecListOne128:$Rd, (IdxOp VecIndex:$idx), GPR64sp:$Rn)>; def VectorIndexStoH : SDNodeXFormgetTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64); }]>; def VectorIndexStoB : SDNodeXFormgetTargetConstant(N->getZExtValue() * 4, SDLoc(N), MVT::i64); }]>; def VectorIndexHtoB : SDNodeXFormgetTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64); }]>; def : Ld1Lane128IdxOpPat; def : Ld1Lane128IdxOpPat; def : Ld1Lane128IdxOpPat; // Same as above, but the first element is populated using // scalar_to_vector + insert_subvector instead of insert_vector_elt. class Ld1Lane128FirstElm : Pat<(ResultTy (scalar_to_vector (i32 (ExtLoad GPR64sp:$Rn)))), (ResultTy (EXTRACT_SUBREG (LD1 (VecTy (IMPLICIT_DEF)), 0, GPR64sp:$Rn), dsub))>; def : Ld1Lane128FirstElm; def : Ld1Lane128FirstElm; def : Ld1Lane128FirstElm; class Ld1Lane64Pat : Pat<(vector_insert (VTy VecListOne64:$Rd), (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx), (EXTRACT_SUBREG (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub), VecIndex:$idx, GPR64sp:$Rn), dsub)>; def : Ld1Lane64Pat; def : Ld1Lane64Pat; def : Ld1Lane64Pat; def : Ld1Lane64Pat; def : Ld1Lane64Pat; def : Ld1Lane64Pat; defm LD1 : SIMDLdSt1SingleAliases<"ld1">; defm LD2 : SIMDLdSt2SingleAliases<"ld2">; defm LD3 : SIMDLdSt3SingleAliases<"ld3">; defm LD4 : SIMDLdSt4SingleAliases<"ld4">; // Stores defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>; defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>; defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>; defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>; let AddedComplexity = 19 in class St1Lane128Pat : Pat<(scalar_store (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), GPR64sp:$Rn), (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>; def : St1Lane128Pat; def : St1Lane128Pat; def : St1Lane128Pat; def : St1Lane128Pat; def : St1Lane128Pat; def : St1Lane128Pat; def : St1Lane128Pat; def : St1Lane128Pat; let AddedComplexity = 19 in class St1Lane64Pat : Pat<(scalar_store (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), GPR64sp:$Rn), (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), VecIndex:$idx, GPR64sp:$Rn)>; def : St1Lane64Pat; def : St1Lane64Pat; def : St1Lane64Pat; def : St1Lane64Pat; def : St1Lane64Pat; def : St1Lane64Pat; multiclass St1LanePost64Pat { def : Pat<(scalar_store (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), GPR64sp:$Rn, offset), (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), VecIndex:$idx, GPR64sp:$Rn, XZR)>; def : Pat<(scalar_store (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), GPR64sp:$Rn, GPR64:$Rm), (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), VecIndex:$idx, GPR64sp:$Rn, $Rm)>; } defm : St1LanePost64Pat; defm : St1LanePost64Pat; defm : St1LanePost64Pat; defm : St1LanePost64Pat; defm : St1LanePost64Pat; defm : St1LanePost64Pat; defm : St1LanePost64Pat; defm : St1LanePost64Pat; multiclass St1LanePost128Pat { def : Pat<(scalar_store (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), GPR64sp:$Rn, offset), (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>; def : Pat<(scalar_store (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), GPR64sp:$Rn, GPR64:$Rm), (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>; } defm : St1LanePost128Pat; defm : St1LanePost128Pat; defm : St1LanePost128Pat; defm : St1LanePost128Pat; defm : St1LanePost128Pat; defm : St1LanePost128Pat; defm : St1LanePost128Pat; defm : St1LanePost128Pat; let mayStore = 1, hasSideEffects = 0 in { defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>; defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>; defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>; defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>; defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>; defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>; defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>; defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>; defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>; defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>; defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>; defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>; } defm ST1 : SIMDLdSt1SingleAliases<"st1">; defm ST2 : SIMDLdSt2SingleAliases<"st2">; defm ST3 : SIMDLdSt3SingleAliases<"st3">; defm ST4 : SIMDLdSt4SingleAliases<"st4">; //---------------------------------------------------------------------------- // Crypto extensions //---------------------------------------------------------------------------- let Predicates = [HasAES] in { def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>; def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>; def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>; def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>; } // Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required // for AES fusion on some CPUs. let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in { def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">, Sched<[WriteVq]>; def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">, Sched<[WriteVq]>; } // Only use constrained versions of AES(I)MC instructions if they are paired with // AESE/AESD. def : Pat<(v16i8 (int_aarch64_crypto_aesmc (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1), (v16i8 V128:$src2))))), (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1), (v16i8 V128:$src2)))))>, Requires<[HasFuseAES]>; def : Pat<(v16i8 (int_aarch64_crypto_aesimc (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1), (v16i8 V128:$src2))))), (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1), (v16i8 V128:$src2)))))>, Requires<[HasFuseAES]>; let Predicates = [HasSHA2] in { def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>; def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>; def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>; def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>; def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>; def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>; def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>; def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>; def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>; def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>; } //---------------------------------------------------------------------------- // Compiler-pseudos //---------------------------------------------------------------------------- // FIXME: Like for X86, these should go in their own separate .td file. def def32 : PatLeaf<(i32 GPR32:$src), [{ return isDef32(*N); }]>; // In the case of a 32-bit def that is known to implicitly zero-extend, // we can use a SUBREG_TO_REG. def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>; // For an anyext, we don't care what the high bits are, so we can perform an // INSERT_SUBREF into an IMPLICIT_DEF. def : Pat<(i64 (anyext GPR32:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>; // When we need to explicitly zero-extend, we use a 32-bit MOV instruction and // then assert the extension has happened. def : Pat<(i64 (zext GPR32:$src)), (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>; // To sign extend, we use a signed bitfield move instruction (SBFM) on the // containing super-reg. def : Pat<(i64 (sext GPR32:$src)), (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>; def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>; def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>; def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>; def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>; def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>; def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>; def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>; def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)), (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), (i64 (i32shift_sext_i8 imm0_31:$imm)))>; def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)), (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), (i64 (i64shift_sext_i8 imm0_63:$imm)))>; def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)), (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), (i64 (i32shift_sext_i16 imm0_31:$imm)))>; def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)), (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), (i64 (i64shift_sext_i16 imm0_63:$imm)))>; def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)), (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), (i64 (i64shift_a imm0_63:$imm)), (i64 (i64shift_sext_i32 imm0_63:$imm)))>; // sra patterns have an AddedComplexity of 10, so make sure we have a higher // AddedComplexity for the following patterns since we want to match sext + sra // patterns before we attempt to match a single sra node. let AddedComplexity = 20 in { // We support all sext + sra combinations which preserve at least one bit of the // original value which is to be sign extended. E.g. we support shifts up to // bitwidth-1 bits. def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)), (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>; def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)), (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>; def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)), (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>; def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)), (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>; def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)), (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), (i64 imm0_31:$imm), 31)>; } // AddedComplexity = 20 // To truncate, we can simply extract from a subregister. def : Pat<(i32 (trunc GPR64sp:$src)), (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>; // __builtin_trap() uses the BRK instruction on AArch64. def : Pat<(trap), (BRK 1)>; def : Pat<(debugtrap), (BRK 0xF000)>; def ubsan_trap_xform : SDNodeXFormgetTargetConstant(N->getZExtValue() | ('U' << 8), SDLoc(N), MVT::i32); }]>; def ubsan_trap_imm : TImmLeaf(Imm); }], ubsan_trap_xform>; def : Pat<(ubsantrap ubsan_trap_imm:$kind), (BRK ubsan_trap_imm:$kind)>; // Multiply high patterns which multiply the lower subvector using smull/umull // and the upper subvector with smull2/umull2. Then shuffle the high the high // part of both results together. def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)), (UZP2v16i8 (SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub), (EXTRACT_SUBREG V128:$Rm, dsub)), (SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>; def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)), (UZP2v8i16 (SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub), (EXTRACT_SUBREG V128:$Rm, dsub)), (SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>; def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)), (UZP2v4i32 (SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub), (EXTRACT_SUBREG V128:$Rm, dsub)), (SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>; def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)), (UZP2v16i8 (UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub), (EXTRACT_SUBREG V128:$Rm, dsub)), (UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>; def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)), (UZP2v8i16 (UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub), (EXTRACT_SUBREG V128:$Rm, dsub)), (UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>; def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)), (UZP2v4i32 (UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub), (EXTRACT_SUBREG V128:$Rm, dsub)), (UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>; // Conversions within AdvSIMD types in the same register size are free. // But because we need a consistent lane ordering, in big endian many // conversions require one or more REV instructions. // // Consider a simple memory load followed by a bitconvert then a store. // v0 = load v2i32 // v1 = BITCAST v2i32 v0 to v4i16 // store v4i16 v2 // // In big endian mode every memory access has an implicit byte swap. LDR and // STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that // is, they treat the vector as a sequence of elements to be byte-swapped. // The two pairs of instructions are fundamentally incompatible. We've decided // to use LD1/ST1 only to simplify compiler implementation. // // LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes // the original code sequence: // v0 = load v2i32 // v1 = REV v2i32 (implicit) // v2 = BITCAST v2i32 v1 to v4i16 // v3 = REV v4i16 v2 (implicit) // store v4i16 v3 // // But this is now broken - the value stored is different to the value loaded // due to lane reordering. To fix this, on every BITCAST we must perform two // other REVs: // v0 = load v2i32 // v1 = REV v2i32 (implicit) // v2 = REV v2i32 // v3 = BITCAST v2i32 v2 to v4i16 // v4 = REV v4i16 // v5 = REV v4i16 v4 (implicit) // store v4i16 v5 // // This means an extra two instructions, but actually in most cases the two REV // instructions can be combined into one. For example: // (REV64_2s (REV64_4h X)) === (REV32_4h X) // // There is also no 128-bit REV instruction. This must be synthesized with an // EXT instruction. // // Most bitconverts require some sort of conversion. The only exceptions are: // a) Identity conversions - vNfX <-> vNiX // b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX // // Natural vector casts (64 bit) def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4bf16 (AArch64NvCast (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4bf16 (AArch64NvCast (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4bf16 (AArch64NvCast (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4bf16 (AArch64NvCast (f64 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>; def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1f64 (AArch64NvCast (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>; // Natural vector casts (128 bit) def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (AArch64NvCast (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (AArch64NvCast (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (AArch64NvCast (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (AArch64NvCast (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (AArch64NvCast (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (AArch64NvCast (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>; let Predicates = [IsLE] in { def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; } let Predicates = [IsBE] in { def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))), (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; } def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>; def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))), (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>; def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))), (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>; def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))), (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>; def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), (COPY_TO_REGCLASS V64:$Vn, GPR64)>; def : Pat<(f16 (bitconvert (bf16 FPR16:$src))), (f16 FPR16:$src)>; def : Pat<(bf16 (bitconvert (f16 FPR16:$src))), (bf16 FPR16:$src)>; let Predicates = [IsLE] in { def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 (REV64v2i32 FPR64:$src))>; def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 (REV64v4i16 FPR64:$src))>; def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 (REV64v8i8 FPR64:$src))>; def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 (REV64v4i16 FPR64:$src))>; def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 (REV64v4i16 FPR64:$src))>; def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 (REV64v2i32 FPR64:$src))>; } def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>; def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>; let Predicates = [IsLE] in { def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>; def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 (REV64v2i32 FPR64:$src))>; def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 (REV32v4i16 FPR64:$src))>; def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 (REV32v8i8 FPR64:$src))>; def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 (REV64v2i32 FPR64:$src))>; def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 (REV64v2i32 FPR64:$src))>; def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 (REV32v4i16 FPR64:$src))>; def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 (REV32v4i16 FPR64:$src))>; } def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>; let Predicates = [IsLE] in { def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 (REV64v4i16 FPR64:$src))>; def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 (REV32v4i16 FPR64:$src))>; def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 (REV16v8i8 FPR64:$src))>; def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 (REV64v4i16 FPR64:$src))>; def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 (REV32v4i16 FPR64:$src))>; def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 (REV64v4i16 FPR64:$src))>; } def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>; def : Pat<(v4i16 (bitconvert (v4bf16 FPR64:$src))), (v4i16 FPR64:$src)>; let Predicates = [IsLE] in { def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 FPR64:$src)>; def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 (REV64v4i16 FPR64:$src))>; def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 (REV32v4i16 FPR64:$src))>; def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 (REV16v8i8 FPR64:$src))>; def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 (REV64v4i16 FPR64:$src))>; def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 (REV32v4i16 FPR64:$src))>; def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 (REV64v4i16 FPR64:$src))>; def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 (REV64v4i16 FPR64:$src))>; def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 (REV32v4i16 FPR64:$src))>; def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))), (v4bf16 (REV16v8i8 FPR64:$src))>; def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))), (v4bf16 (REV64v4i16 FPR64:$src))>; def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 (REV32v4i16 FPR64:$src))>; def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 (REV64v4i16 FPR64:$src))>; } def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>; def : Pat<(v4bf16 (bitconvert (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>; let Predicates = [IsLE] in { def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>; def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))), (v8i8 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 (REV64v8i8 FPR64:$src))>; def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 (REV32v8i8 FPR64:$src))>; def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 (REV16v8i8 FPR64:$src))>; def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 (REV64v8i8 FPR64:$src))>; def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 (REV32v8i8 FPR64:$src))>; def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 (REV64v8i8 FPR64:$src))>; def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 (REV16v8i8 FPR64:$src))>; def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))), (v8i8 (REV16v8i8 FPR64:$src))>; } let Predicates = [IsLE] in { def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>; def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>; def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>; def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>; def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>; def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))), (f64 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 (REV64v2i32 FPR64:$src))>; def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 (REV64v4i16 FPR64:$src))>; def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 (REV64v2i32 FPR64:$src))>; def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 (REV64v8i8 FPR64:$src))>; def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 (REV64v4i16 FPR64:$src))>; def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))), (f64 (REV64v4i16 FPR64:$src))>; } def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>; def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>; let Predicates = [IsLE] in { def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>; def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>; def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>; def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>; def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>; def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 (REV64v2i32 FPR64:$src))>; def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 (REV64v4i16 FPR64:$src))>; def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 (REV64v8i8 FPR64:$src))>; def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 (REV64v2i32 FPR64:$src))>; def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 (REV64v4i16 FPR64:$src))>; def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 (REV64v4i16 FPR64:$src))>; } def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>; def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>; let Predicates = [IsLE] in { def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>; def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 FPR64:$src)>; } let Predicates = [IsBE] in { def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 (REV64v2i32 FPR64:$src))>; def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 (REV32v4i16 FPR64:$src))>; def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 (REV32v8i8 FPR64:$src))>; def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 (REV64v2i32 FPR64:$src))>; def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 (REV64v2i32 FPR64:$src))>; def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 (REV32v4i16 FPR64:$src))>; def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 (REV32v4i16 FPR64:$src))>; } def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>; let Predicates = [IsLE] in { def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>; def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>; def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>; def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>; def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>; def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>; def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 FPR128:$src)>; def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), (REV64v4i32 FPR128:$src), (i32 8)))>; def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), (REV64v8i16 FPR128:$src), (i32 8)))>; def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), (REV64v8i16 FPR128:$src), (i32 8)))>; def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), (REV64v8i16 FPR128:$src), (i32 8)))>; def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), (REV64v4i32 FPR128:$src), (i32 8)))>; def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 (EXTv16i8 (REV64v16i8 FPR128:$src), (REV64v16i8 FPR128:$src), (i32 8)))>; } let Predicates = [IsLE] in { def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>; def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 (REV64v4i32 FPR128:$src))>; def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 (REV64v8i16 FPR128:$src))>; def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 (REV64v8i16 FPR128:$src))>; def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 (REV64v8i16 FPR128:$src))>; def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 (REV64v16i8 FPR128:$src))>; def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 (REV64v4i32 FPR128:$src))>; } def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>; let Predicates = [IsLE] in { def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src), (REV64v4i32 FPR128:$src), (i32 8)))>; def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 (REV32v8i16 FPR128:$src))>; def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 (REV32v8i16 FPR128:$src))>; def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 (REV32v8i16 FPR128:$src))>; def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 (REV32v16i8 FPR128:$src))>; def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 (REV64v4i32 FPR128:$src))>; def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 (REV64v4i32 FPR128:$src))>; } def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>; let Predicates = [IsLE] in { def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>; def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 (REV64v4i32 FPR128:$src))>; def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 (REV64v8i16 FPR128:$src))>; def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 (REV64v16i8 FPR128:$src))>; def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 (REV64v4i32 FPR128:$src))>; def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 (REV64v8i16 FPR128:$src))>; def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 (REV64v8i16 FPR128:$src))>; } def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>; let Predicates = [IsLE] in { def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>; def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src), (REV64v4i32 FPR128:$src), (i32 8)))>; def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 (REV64v4i32 FPR128:$src))>; def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 (REV32v8i16 FPR128:$src))>; def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 (REV32v16i8 FPR128:$src))>; def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 (REV64v4i32 FPR128:$src))>; def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 (REV32v8i16 FPR128:$src))>; def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 (REV32v8i16 FPR128:$src))>; } def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>; let Predicates = [IsLE] in { def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src), (REV64v8i16 FPR128:$src), (i32 8)))>; def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 (REV64v8i16 FPR128:$src))>; def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 (REV32v8i16 FPR128:$src))>; def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 (REV16v16i8 FPR128:$src))>; def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 (REV64v8i16 FPR128:$src))>; def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 (REV32v8i16 FPR128:$src))>; } def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>; def : Pat<(v8i16 (bitconvert (v8bf16 FPR128:$src))), (v8i16 FPR128:$src)>; let Predicates = [IsLE] in { def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>; def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src), (REV64v8i16 FPR128:$src), (i32 8)))>; def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 (REV64v8i16 FPR128:$src))>; def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 (REV32v8i16 FPR128:$src))>; def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 (REV16v16i8 FPR128:$src))>; def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 (REV64v8i16 FPR128:$src))>; def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 (REV32v8i16 FPR128:$src))>; def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))), (v8bf16 (EXTv16i8 (REV64v8i16 FPR128:$src), (REV64v8i16 FPR128:$src), (i32 8)))>; def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 (REV64v8i16 FPR128:$src))>; def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 (REV32v8i16 FPR128:$src))>; def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 (REV16v16i8 FPR128:$src))>; def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 (REV64v8i16 FPR128:$src))>; def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 (REV32v8i16 FPR128:$src))>; } def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>; def : Pat<(v8bf16 (bitconvert (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>; let Predicates = [IsLE] in { def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>; def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 FPR128:$src)>; } let Predicates = [IsBE] in { def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src), (REV64v16i8 FPR128:$src), (i32 8)))>; def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 (REV64v16i8 FPR128:$src))>; def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 (REV32v16i8 FPR128:$src))>; def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 (REV16v16i8 FPR128:$src))>; def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 (REV64v16i8 FPR128:$src))>; def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 (REV32v16i8 FPR128:$src))>; def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 (REV16v16i8 FPR128:$src))>; def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 (REV16v16i8 FPR128:$src))>; } def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v4bf16 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))), (EXTRACT_SUBREG V128:$Rn, dsub)>; def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))), (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))), (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))), (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))), (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; // A 64-bit subvector insert to the first 128-bit vector position // is a subregister copy that needs no instruction. multiclass InsertSubvectorUndef { def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; def : Pat<(insert_subvector undef, (v4bf16 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)), (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>; } defm : InsertSubvectorUndef; defm : InsertSubvectorUndef; // Use pair-wise add instructions when summing up the lanes for v2f64, v2i64 // or v2f32. def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)), (vector_extract (v2i64 FPR128:$Rn), (i64 1)))), (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>; def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)), (vector_extract (v2f64 FPR128:$Rn), (i64 1)))), (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>; // vector_extract on 64-bit vectors gets promoted to a 128 bit vector, // so we match on v4f32 here, not v2f32. This will also catch adding // the low two lanes of a true v4f32 vector. def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)), (vector_extract (v4f32 FPR128:$Rn), (i64 1))), (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>; def : Pat<(fadd (vector_extract (v8f16 FPR128:$Rn), (i64 0)), (vector_extract (v8f16 FPR128:$Rn), (i64 1))), (f16 (FADDPv2i16p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>; // Scalar 64-bit shifts in FPR64 registers. def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>; def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; // Patterns for nontemporal/no-allocate stores. // We have to resort to tricks to turn a single-input store into a store pair, // because there is no single-input nontemporal store, only STNP. let Predicates = [IsLE] in { let AddedComplexity = 15 in { class NTStore128Pat : Pat<(nontemporalstore (VT FPR128:$Rt), (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub), (DUPi64 FPR128:$Rt, (i64 1)), GPR64sp:$Rn, simm7s8:$offset)>; def : NTStore128Pat; def : NTStore128Pat; def : NTStore128Pat; def : NTStore128Pat; class NTStore64Pat : Pat<(nontemporalstore (VT FPR64:$Rt), (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub), (DUPi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)), GPR64sp:$Rn, simm7s4:$offset)>; // FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64? def : NTStore64Pat; def : NTStore64Pat; def : NTStore64Pat; def : NTStore64Pat; def : NTStore64Pat; def : Pat<(nontemporalstore GPR64:$Rt, (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32), GPR64sp:$Rn, simm7s4:$offset)>; } // AddedComplexity=10 } // Predicates = [IsLE] // Tail call return handling. These are all compiler pseudo-instructions, // so no encoding information or anything like that. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in { def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>, Sched<[WriteBrReg]>; def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>, Sched<[WriteBrReg]>; // Indirect tail-call with any register allowed, used by MachineOutliner when // this is proven safe. // FIXME: If we have to add any more hacks like this, we should instead relax // some verifier checks for outlined functions. def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>, Sched<[WriteBrReg]>; // Indirect tail-call limited to only use registers (x16 and x17) which are // allowed to tail-call a "BTI c" instruction. def TCRETURNriBTI : Pseudo<(outs), (ins rtcGPR64:$dst, i32imm:$FPDiff), []>, Sched<[WriteBrReg]>; } def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)), (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>, Requires<[NotUseBTI]>; def : Pat<(AArch64tcret rtcGPR64:$dst, (i32 timm:$FPDiff)), (TCRETURNriBTI rtcGPR64:$dst, imm:$FPDiff)>, Requires<[UseBTI]>; def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)), (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)), (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>; def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>; // Extracting lane zero is a special case where we can just use a plain // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the // rest of the compiler, especially the register allocator and copy propagation, // to reason about, so is preferred when it's possible to use it. let AddedComplexity = 10 in { def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>; def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>; def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>; } // dot_v4i8 class mul_v4i8 : PatFrag<(ops node:$Rn, node:$Rm, node:$offset), (mul (ldop (add node:$Rn, node:$offset)), (ldop (add node:$Rm, node:$offset)))>; class mulz_v4i8 : PatFrag<(ops node:$Rn, node:$Rm), (mul (ldop node:$Rn), (ldop node:$Rm))>; def load_v4i8 : OutPatFrag<(ops node:$R), (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)), ssub)>; class dot_v4i8 : Pat<(i32 (add (mul_v4i8 GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)), (add (mul_v4i8 GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)), (add (mul_v4i8 GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)), (mulz_v4i8 GPR64sp:$Rn, GPR64sp:$Rm))))), (EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR), (load_v4i8 GPR64sp:$Rn), (load_v4i8 GPR64sp:$Rm))), sub_32)>, Requires<[HasDotProd]>; // dot_v8i8 class ee_v8i8 : PatFrag<(ops node:$V, node:$K), (v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>; class mul_v8i8 : PatFrag<(ops node:$M, node:$N, node:$K), (mulop (v4i16 (ee_v8i8 node:$M, node:$K)), (v4i16 (ee_v8i8 node:$N, node:$K)))>; class idot_v8i8 : PatFrag<(ops node:$M, node:$N), (i32 (extractelt (v4i32 (AArch64uaddv (add (mul_v8i8 node:$M, node:$N, (i64 0)), (mul_v8i8 node:$M, node:$N, (i64 4))))), (i64 0)))>; // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>; class odot_v8i8 : OutPatFrag<(ops node:$Vm, node:$Vn), (EXTRACT_SUBREG (VADDV_32 (i64 (DOT (DUPv2i32gpr WZR), (v8i8 node:$Vm), (v8i8 node:$Vn)))), sub_32)>; class dot_v8i8 : Pat<(idot_v8i8 V64:$Vm, V64:$Vn), (odot_v8i8 V64:$Vm, V64:$Vn)>, Requires<[HasDotProd]>; // dot_v16i8 class ee_v16i8 : PatFrag<(ops node:$V, node:$K1, node:$K2), (v4i16 (extract_subvector (v8i16 (extend (v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>; class mul_v16i8 : PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2), (v4i32 (mulop (v4i16 (ee_v16i8 node:$M, node:$K1, node:$K2)), (v4i16 (ee_v16i8 node:$N, node:$K1, node:$K2))))>; class idot_v16i8 : PatFrag<(ops node:$M, node:$N), (i32 (extractelt (v4i32 (AArch64uaddv (add (add (mul_v16i8 node:$M, node:$N, (i64 0), (i64 0)), (mul_v16i8 node:$M, node:$N, (i64 8), (i64 0))), (add (mul_v16i8 node:$M, node:$N, (i64 0), (i64 4)), (mul_v16i8 node:$M, node:$N, (i64 8), (i64 4)))))), (i64 0)))>; class odot_v16i8 : OutPatFrag<(ops node:$Vm, node:$Vn), (i32 (ADDVv4i32v (DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>; class dot_v16i8 : Pat<(idot_v16i8 V128:$Vm, V128:$Vn), (odot_v16i8 V128:$Vm, V128:$Vn)>, Requires<[HasDotProd]>; let AddedComplexity = 10 in { def : dot_v4i8; def : dot_v4i8; def : dot_v8i8; def : dot_v8i8; def : dot_v16i8; def : dot_v16i8; // FIXME: add patterns to generate vector by element dot product. // FIXME: add SVE dot-product patterns. } // Custom DAG nodes and isel rules to make a 64-byte block out of eight GPRs, // so that it can be used as input to inline asm, and vice versa. def LS64_BUILD : SDNode<"AArch64ISD::LS64_BUILD", SDTypeProfile<1, 8, []>>; def LS64_EXTRACT : SDNode<"AArch64ISD::LS64_EXTRACT", SDTypeProfile<1, 2, []>>; def : Pat<(i64x8 (LS64_BUILD GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7)), (REG_SEQUENCE GPR64x8Class, $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7)>; foreach i = 0-7 in { def : Pat<(i64 (LS64_EXTRACT (i64x8 GPR64x8:$val), (i32 i))), (EXTRACT_SUBREG $val, !cast("x8sub_"#i))>; } let Predicates = [HasLS64] in { def LD64B: LoadStore64B<0b101, "ld64b", (ins GPR64sp:$Rn), (outs GPR64x8:$Rt)>; def ST64B: LoadStore64B<0b001, "st64b", (ins GPR64x8:$Rt, GPR64sp:$Rn), (outs)>; def ST64BV: Store64BV<0b011, "st64bv">; def ST64BV0: Store64BV<0b010, "st64bv0">; class ST64BPattern : Pat<(intrinsic GPR64sp:$addr, GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7), (instruction (REG_SEQUENCE GPR64x8Class, $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7), $addr)>; def : ST64BPattern; def : ST64BPattern; def : ST64BPattern; } let Predicates = [HasMOPS] in { let Defs = [NZCV] in { defm CPYFP : MOPSMemoryCopyInsns<0b00, "cpyfp">; defm CPYP : MOPSMemoryMoveInsns<0b00, "cpyp">; defm SETP : MOPSMemorySetInsns<0b00, "setp">; } let Uses = [NZCV] in { defm CPYFM : MOPSMemoryCopyInsns<0b01, "cpyfm">; defm CPYFE : MOPSMemoryCopyInsns<0b10, "cpyfe">; defm CPYM : MOPSMemoryMoveInsns<0b01, "cpym">; defm CPYE : MOPSMemoryMoveInsns<0b10, "cpye">; defm SETM : MOPSMemorySetInsns<0b01, "setm">; defm SETE : MOPSMemorySetInsns<0b10, "sete">; } } let Predicates = [HasMOPS, HasMTE] in { let Defs = [NZCV] in { defm SETGP : MOPSMemorySetTaggingInsns<0b00, "setgp">; } let Uses = [NZCV] in { defm SETGM : MOPSMemorySetTaggingInsns<0b01, "setgm">; // Can't use SETGE because it's a reserved name in TargetSelectionDAG.td defm MOPSSETGE : MOPSMemorySetTaggingInsns<0b10, "setge">; } } // MOPS Node operands: 0: Dst, 1: Src or Value, 2: Size, 3: Chain // MOPS Node results: 0: Dst writeback, 1: Size writeback, 2: Chain def SDT_AArch64mops : SDTypeProfile<2, 3, [ SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2> ]>; def AArch64mops_memset : SDNode<"AArch64ISD::MOPS_MEMSET", SDT_AArch64mops>; def AArch64mops_memset_tagging : SDNode<"AArch64ISD::MOPS_MEMSET_TAGGING", SDT_AArch64mops>; def AArch64mops_memcopy : SDNode<"AArch64ISD::MOPS_MEMCOPY", SDT_AArch64mops>; def AArch64mops_memmove : SDNode<"AArch64ISD::MOPS_MEMMOVE", SDT_AArch64mops>; // MOPS operations always contain three 4-byte instructions let Predicates = [HasMOPS], Defs = [NZCV], Size = 12, mayStore = 1 in { let mayLoad = 1 in { def MOPSMemoryCopyPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64common:$Rs_wb, GPR64:$Rn_wb), (ins GPR64common:$Rd, GPR64common:$Rs, GPR64:$Rn), [], "$Rd = $Rd_wb,$Rs = $Rs_wb,$Rn = $Rn_wb">, Sched<[]>; def MOPSMemoryMovePseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64common:$Rs_wb, GPR64:$Rn_wb), (ins GPR64common:$Rd, GPR64common:$Rs, GPR64:$Rn), [], "$Rd = $Rd_wb,$Rs = $Rs_wb,$Rn = $Rn_wb">, Sched<[]>; } let mayLoad = 0 in { def MOPSMemorySetPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64:$Rn_wb), (ins GPR64common:$Rd, GPR64:$Rn, GPR64:$Rm), [], "$Rd = $Rd_wb,$Rn = $Rn_wb">, Sched<[]>; } } let Predicates = [HasMOPS, HasMTE], Defs = [NZCV], Size = 12, mayLoad = 0, mayStore = 1 in { def MOPSMemorySetTaggingPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64:$Rn_wb), (ins GPR64common:$Rd, GPR64:$Rn, GPR64:$Rm), [], "$Rd = $Rd_wb,$Rn = $Rn_wb">, Sched<[]>; } // This gets lowered into an instruction sequence of 20 bytes let Defs = [X16, X17], mayStore = 1, isCodeGenOnly = 1, Size = 20 in def StoreSwiftAsyncContext : Pseudo<(outs), (ins GPR64:$ctx, GPR64sp:$base, simm9:$offset), []>, Sched<[]>; def AArch64AssertZExtBool : SDNode<"AArch64ISD::ASSERT_ZEXT_BOOL", SDT_assert>; def : Pat<(AArch64AssertZExtBool GPR32:$op), (i32 GPR32:$op)>; include "AArch64InstrAtomics.td" include "AArch64SVEInstrInfo.td" include "AArch64SMEInstrInfo.td" include "AArch64InstrGISel.td"