//===- AArch64InstrInfo.h - AArch64 Instruction Information -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the AArch64 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AARCH64_AARCH64INSTRINFO_H #define LLVM_LIB_TARGET_AARCH64_AARCH64INSTRINFO_H #include "AArch64.h" #include "AArch64RegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/Support/TypeSize.h" #include #define GET_INSTRINFO_HEADER #include "AArch64GenInstrInfo.inc" namespace llvm { class AArch64Subtarget; static const MachineMemOperand::Flags MOSuppressPair = MachineMemOperand::MOTargetFlag1; static const MachineMemOperand::Flags MOStridedAccess = MachineMemOperand::MOTargetFlag2; #define FALKOR_STRIDED_ACCESS_MD "falkor.strided.access" class AArch64InstrInfo final : public AArch64GenInstrInfo { const AArch64RegisterInfo RI; const AArch64Subtarget &Subtarget; public: explicit AArch64InstrInfo(const AArch64Subtarget &STI); /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As /// such, whenever a client has an instance of instruction info, it should /// always be able to get register info as well (through this method). const AArch64RegisterInfo &getRegisterInfo() const { return RI; } unsigned getInstSizeInBytes(const MachineInstr &MI) const override; bool isAsCheapAsAMove(const MachineInstr &MI) const override; bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const override; bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override; unsigned isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override; unsigned isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override; /// Does this instruction set its full destination register to zero? static bool isGPRZero(const MachineInstr &MI); /// Does this instruction rename a GPR without modifying bits? static bool isGPRCopy(const MachineInstr &MI); /// Does this instruction rename an FPR without modifying bits? static bool isFPRCopy(const MachineInstr &MI); /// Return true if pairing the given load or store is hinted to be /// unprofitable. static bool isLdStPairSuppressed(const MachineInstr &MI); /// Return true if the given load or store is a strided memory access. static bool isStridedAccess(const MachineInstr &MI); /// Return true if it has an unscaled load/store offset. static bool hasUnscaledLdStOffset(unsigned Opc); static bool hasUnscaledLdStOffset(MachineInstr &MI) { return hasUnscaledLdStOffset(MI.getOpcode()); } /// Returns the unscaled load/store for the scaled load/store opcode, /// if there is a corresponding unscaled variant available. static std::optional getUnscaledLdSt(unsigned Opc); /// Scaling factor for (scaled or unscaled) load or store. static int getMemScale(unsigned Opc); static int getMemScale(const MachineInstr &MI) { return getMemScale(MI.getOpcode()); } /// Returns whether the instruction is a pre-indexed load. static bool isPreLd(const MachineInstr &MI); /// Returns whether the instruction is a pre-indexed store. static bool isPreSt(const MachineInstr &MI); /// Returns whether the instruction is a pre-indexed load/store. static bool isPreLdSt(const MachineInstr &MI); /// Returns whether the instruction is a paired load/store. static bool isPairedLdSt(const MachineInstr &MI); /// Returns the base register operator of a load/store. static const MachineOperand &getLdStBaseOp(const MachineInstr &MI); /// Returns the immediate offset operator of a load/store. static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI); /// Returns the shift amount operator of a load/store. static const MachineOperand &getLdStAmountOp(const MachineInstr &MI); /// Returns whether the instruction is FP or NEON. static bool isFpOrNEON(const MachineInstr &MI); /// Returns whether the instruction is in H form (16 bit operands) static bool isHForm(const MachineInstr &MI); /// Returns whether the instruction is in Q form (128 bit operands) static bool isQForm(const MachineInstr &MI); /// Returns whether the instruction can be compatible with non-zero BTYPE. static bool hasBTISemantics(const MachineInstr &MI); /// Returns the index for the immediate for a given instruction. static unsigned getLoadStoreImmIdx(unsigned Opc); /// Return true if pairing the given load or store may be paired with another. static bool isPairableLdStInst(const MachineInstr &MI); /// Returns true if MI is one of the TCRETURN* instructions. static bool isTailCallReturnInst(const MachineInstr &MI); /// Return the opcode that set flags when possible. The caller is /// responsible for ensuring the opc has a flag setting equivalent. static unsigned convertToFlagSettingOpc(unsigned Opc); /// Return true if this is a load/store that can be potentially paired/merged. bool isCandidateToMergeOrPair(const MachineInstr &MI) const; /// Hint that pairing the given load or store is unprofitable. static void suppressLdStPair(MachineInstr &MI); std::optional getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const override; bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, const MachineInstr &AddrI, ExtAddrMode &AM) const override; MachineInstr *emitLdStWithAddr(MachineInstr &MemI, const ExtAddrMode &AM) const override; bool getMemOperandsWithOffsetWidth( const MachineInstr &MI, SmallVectorImpl &BaseOps, int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, const TargetRegisterInfo *TRI) const override; /// If \p OffsetIsScalable is set to 'true', the offset is scaled by `vscale`. /// This is true for some SVE instructions like ldr/str that have a /// 'reg + imm' addressing mode where the immediate is an index to the /// scalable vector located at 'reg + imm * vscale x #bytes'. bool getMemOperandWithOffsetWidth(const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, bool &OffsetIsScalable, TypeSize &Width, const TargetRegisterInfo *TRI) const; /// Return the immediate offset of the base register in a load/store \p LdSt. MachineOperand &getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const; /// Returns true if opcode \p Opc is a memory operation. If it is, set /// \p Scale, \p Width, \p MinOffset, and \p MaxOffset accordingly. /// /// For unscaled instructions, \p Scale is set to 1. static bool getMemOpInfo(unsigned Opcode, TypeSize &Scale, TypeSize &Width, int64_t &MinOffset, int64_t &MaxOffset); bool shouldClusterMemOps(ArrayRef BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const override; void copyPhysRegTuple(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, unsigned Opcode, llvm::ArrayRef Indices) const; void copyGPRRegTuple(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode, unsigned ZeroReg, llvm::ArrayRef Indices) const; void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const override; void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override; void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override; // This tells target independent code that it is okay to pass instructions // with subreg operands to foldMemoryOperandImpl. bool isSubregFoldable() const override { return true; } using TargetInstrInfo::foldMemoryOperandImpl; MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS = nullptr, VirtRegMap *VRM = nullptr) const override; /// \returns true if a branch from an instruction with opcode \p BranchOpc /// bytes is capable of jumping to a position \p BrOffset bytes away. bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const override; MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const override; void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset, RegScavenger *RS) const override; bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify = false) const override; bool analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify) const override; unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved = nullptr) const override; unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded = nullptr) const override; bool reverseBranchCondition(SmallVectorImpl &Cond) const override; bool canInsertSelect(const MachineBasicBlock &, ArrayRef Cond, Register, Register, Register, int &, int &, int &) const override; void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DstReg, ArrayRef Cond, Register TrueReg, Register FalseReg) const override; void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override; MCInst getNop() const override; bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override; /// analyzeCompare - For a comparison instruction, return the source registers /// in SrcReg and SrcReg2, and the value it compares against in CmpValue. /// Return true if the comparison instruction can be analyzed. bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const override; /// optimizeCompareInstr - Convert the instruction supplying the argument to /// the comparison into one that sets the zero bit in the flags register. bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const override; bool optimizeCondBranch(MachineInstr &MI) const override; /// Return true when a code sequence can improve throughput. It /// should be called only for instructions in loops. /// \param Pattern - combiner pattern bool isThroughputPattern(MachineCombinerPattern Pattern) const override; /// Return true when there is potentially a faster code sequence /// for an instruction chain ending in ``Root``. All potential patterns are /// listed in the ``Patterns`` array. bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl &Patterns, bool DoRegPressureReduce) const override; /// Return true when Inst is associative and commutative so that it can be /// reassociated. If Invert is true, then the inverse of Inst operation must /// be checked. bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override; /// When getMachineCombinerPatterns() finds patterns, this function generates /// the instructions that could replace the original code sequence void genAlternativeCodeSequence( MachineInstr &Root, MachineCombinerPattern Pattern, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstrIdxForVirtReg) const override; /// AArch64 supports MachineCombiner. bool useMachineCombiner() const override; bool expandPostRAPseudo(MachineInstr &MI) const override; std::pair decomposeMachineOperandsTargetFlags(unsigned TF) const override; ArrayRef> getSerializableDirectMachineOperandTargetFlags() const override; ArrayRef> getSerializableBitmaskMachineOperandTargetFlags() const override; ArrayRef> getSerializableMachineMemOperandTargetFlags() const override; bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const override; std::optional getOutliningCandidateInfo( std::vector &RepeatedSequenceLocs) const override; void mergeOutliningCandidateAttributes( Function &F, std::vector &Candidates) const override; outliner::InstrType getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const override; SmallVector< std::pair> getOutlinableRanges(MachineBasicBlock &MBB, unsigned &Flags) const override; void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const override; MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const override; bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const override; void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects = true) const override; /// Returns the vector element size (B, H, S or D) of an SVE opcode. uint64_t getElementSizeForOpcode(unsigned Opc) const; /// Returns true if the opcode is for an SVE instruction that sets the /// condition codes as if it's results had been fed to a PTEST instruction /// along with the same general predicate. bool isPTestLikeOpcode(unsigned Opc) const; /// Returns true if the opcode is for an SVE WHILE## instruction. bool isWhileOpcode(unsigned Opc) const; /// Returns true if the instruction has a shift by immediate that can be /// executed in one cycle less. static bool isFalkorShiftExtFast(const MachineInstr &MI); /// Return true if the instructions is a SEH instruciton used for unwinding /// on Windows. static bool isSEHInstruction(const MachineInstr &MI); std::optional isAddImmediate(const MachineInstr &MI, Register Reg) const override; bool isFunctionSafeToSplit(const MachineFunction &MF) const override; bool isMBBSafeToSplitToCold(const MachineBasicBlock &MBB) const override; std::optional describeLoadedValue(const MachineInstr &MI, Register Reg) const override; unsigned int getTailDuplicateSize(CodeGenOptLevel OptLevel) const override; bool isExtendLikelyToBeFolded(MachineInstr &ExtMI, MachineRegisterInfo &MRI) const override; static void decomposeStackOffsetForFrameOffsets(const StackOffset &Offset, int64_t &NumBytes, int64_t &NumPredicateVectors, int64_t &NumDataVectors); static void decomposeStackOffsetForDwarfOffsets(const StackOffset &Offset, int64_t &ByteSized, int64_t &VGSized); bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override; // Return true if address of the form BaseReg + Scale * ScaledReg + Offset can // be used for a load/store of NumBytes. BaseReg is always present and // implicit. bool isLegalAddressingMode(unsigned NumBytes, int64_t Offset, unsigned Scale) const; // Decrement the SP, issuing probes along the way. `TargetReg` is the new top // of the stack. `FrameSetup` is passed as true, if the allocation is a part // of constructing the activation frame of a function. MachineBasicBlock::iterator probedStackAlloc(MachineBasicBlock::iterator MBBI, Register TargetReg, bool FrameSetup) const; #define GET_INSTRINFO_HELPER_DECLS #include "AArch64GenInstrInfo.inc" protected: /// If the specific machine instruction is an instruction that moves/copies /// value from one register to another register return destination and source /// registers as machine operands. std::optional isCopyInstrImpl(const MachineInstr &MI) const override; std::optional isCopyLikeInstrImpl(const MachineInstr &MI) const override; private: unsigned getInstBundleLength(const MachineInstr &MI) const; /// Sets the offsets on outlined instructions in \p MBB which use SP /// so that they will be valid post-outlining. /// /// \param MBB A \p MachineBasicBlock in an outlined function. void fixupPostOutline(MachineBasicBlock &MBB) const; void instantiateCondBranch(MachineBasicBlock &MBB, const DebugLoc &DL, MachineBasicBlock *TBB, ArrayRef Cond) const; bool substituteCmpToZero(MachineInstr &CmpInstr, unsigned SrcReg, const MachineRegisterInfo &MRI) const; bool removeCmpToZeroOrOne(MachineInstr &CmpInstr, unsigned SrcReg, int CmpValue, const MachineRegisterInfo &MRI) const; /// Returns an unused general-purpose register which can be used for /// constructing an outlined call if one exists. Returns 0 otherwise. Register findRegisterToSaveLRTo(outliner::Candidate &C) const; /// Remove a ptest of a predicate-generating operation that already sets, or /// can be made to set, the condition codes in an identical manner bool optimizePTestInstr(MachineInstr *PTest, unsigned MaskReg, unsigned PredReg, const MachineRegisterInfo *MRI) const; }; struct UsedNZCV { bool N = false; bool Z = false; bool C = false; bool V = false; UsedNZCV() = default; UsedNZCV &operator|=(const UsedNZCV &UsedFlags) { this->N |= UsedFlags.N; this->Z |= UsedFlags.Z; this->C |= UsedFlags.C; this->V |= UsedFlags.V; return *this; } }; /// \returns Conditions flags used after \p CmpInstr in its MachineBB if NZCV /// flags are not alive in successors of the same \p CmpInstr and \p MI parent. /// \returns std::nullopt otherwise. /// /// Collect instructions using that flags in \p CCUseInstrs if provided. std::optional examineCFlagsUse(MachineInstr &MI, MachineInstr &CmpInstr, const TargetRegisterInfo &TRI, SmallVectorImpl *CCUseInstrs = nullptr); /// Return true if there is an instruction /after/ \p DefMI and before \p UseMI /// which either reads or clobbers NZCV. bool isNZCVTouchedInInstructionRange(const MachineInstr &DefMI, const MachineInstr &UseMI, const TargetRegisterInfo *TRI); MCCFIInstruction createDefCFA(const TargetRegisterInfo &TRI, unsigned FrameReg, unsigned Reg, const StackOffset &Offset, bool LastAdjustmentWasScalable = true); MCCFIInstruction createCFAOffset(const TargetRegisterInfo &MRI, unsigned Reg, const StackOffset &OffsetFromDefCFA); /// emitFrameOffset - Emit instructions as needed to set DestReg to SrcReg /// plus Offset. This is intended to be used from within the prolog/epilog /// insertion (PEI) pass, where a virtual scratch register may be allocated /// if necessary, to be replaced by the scavenger at the end of PEI. void emitFrameOffset(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, StackOffset Offset, const TargetInstrInfo *TII, MachineInstr::MIFlag = MachineInstr::NoFlags, bool SetNZCV = false, bool NeedsWinCFI = false, bool *HasWinCFI = nullptr, bool EmitCFAOffset = false, StackOffset InitialOffset = {}, unsigned FrameReg = AArch64::SP); /// rewriteAArch64FrameIndex - Rewrite MI to access 'Offset' bytes from the /// FP. Return false if the offset could not be handled directly in MI, and /// return the left-over portion by reference. bool rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx, unsigned FrameReg, StackOffset &Offset, const AArch64InstrInfo *TII); /// Use to report the frame offset status in isAArch64FrameOffsetLegal. enum AArch64FrameOffsetStatus { AArch64FrameOffsetCannotUpdate = 0x0, ///< Offset cannot apply. AArch64FrameOffsetIsLegal = 0x1, ///< Offset is legal. AArch64FrameOffsetCanUpdate = 0x2 ///< Offset can apply, at least partly. }; /// Check if the @p Offset is a valid frame offset for @p MI. /// The returned value reports the validity of the frame offset for @p MI. /// It uses the values defined by AArch64FrameOffsetStatus for that. /// If result == AArch64FrameOffsetCannotUpdate, @p MI cannot be updated to /// use an offset.eq /// If result & AArch64FrameOffsetIsLegal, @p Offset can completely be /// rewritten in @p MI. /// If result & AArch64FrameOffsetCanUpdate, @p Offset contains the /// amount that is off the limit of the legal offset. /// If set, @p OutUseUnscaledOp will contain the whether @p MI should be /// turned into an unscaled operator, which opcode is in @p OutUnscaledOp. /// If set, @p EmittableOffset contains the amount that can be set in @p MI /// (possibly with @p OutUnscaledOp if OutUseUnscaledOp is true) and that /// is a legal offset. int isAArch64FrameOffsetLegal(const MachineInstr &MI, StackOffset &Offset, bool *OutUseUnscaledOp = nullptr, unsigned *OutUnscaledOp = nullptr, int64_t *EmittableOffset = nullptr); static inline bool isUncondBranchOpcode(int Opc) { return Opc == AArch64::B; } static inline bool isCondBranchOpcode(int Opc) { switch (Opc) { case AArch64::Bcc: case AArch64::CBZW: case AArch64::CBZX: case AArch64::CBNZW: case AArch64::CBNZX: case AArch64::TBZW: case AArch64::TBZX: case AArch64::TBNZW: case AArch64::TBNZX: return true; default: return false; } } static inline bool isIndirectBranchOpcode(int Opc) { switch (Opc) { case AArch64::BR: case AArch64::BRAA: case AArch64::BRAB: case AArch64::BRAAZ: case AArch64::BRABZ: return true; } return false; } static inline bool isPTrueOpcode(unsigned Opc) { switch (Opc) { case AArch64::PTRUE_B: case AArch64::PTRUE_H: case AArch64::PTRUE_S: case AArch64::PTRUE_D: return true; default: return false; } } /// Return opcode to be used for indirect calls. unsigned getBLRCallOpcode(const MachineFunction &MF); /// Return XPAC opcode to be used for a ptrauth strip using the given key. static inline unsigned getXPACOpcodeForKey(AArch64PACKey::ID K) { using namespace AArch64PACKey; switch (K) { case IA: case IB: return AArch64::XPACI; case DA: case DB: return AArch64::XPACD; } llvm_unreachable("Unhandled AArch64PACKey::ID enum"); } /// Return AUT opcode to be used for a ptrauth auth using the given key, or its /// AUT*Z variant that doesn't take a discriminator operand, using zero instead. static inline unsigned getAUTOpcodeForKey(AArch64PACKey::ID K, bool Zero) { using namespace AArch64PACKey; switch (K) { case IA: return Zero ? AArch64::AUTIZA : AArch64::AUTIA; case IB: return Zero ? AArch64::AUTIZB : AArch64::AUTIB; case DA: return Zero ? AArch64::AUTDZA : AArch64::AUTDA; case DB: return Zero ? AArch64::AUTDZB : AArch64::AUTDB; } } /// Return PAC opcode to be used for a ptrauth sign using the given key, or its /// PAC*Z variant that doesn't take a discriminator operand, using zero instead. static inline unsigned getPACOpcodeForKey(AArch64PACKey::ID K, bool Zero) { using namespace AArch64PACKey; switch (K) { case IA: return Zero ? AArch64::PACIZA : AArch64::PACIA; case IB: return Zero ? AArch64::PACIZB : AArch64::PACIB; case DA: return Zero ? AArch64::PACDZA : AArch64::PACDA; case DB: return Zero ? AArch64::PACDZB : AArch64::PACDB; } } // struct TSFlags { #define TSFLAG_ELEMENT_SIZE_TYPE(X) (X) // 3-bits #define TSFLAG_DESTRUCTIVE_INST_TYPE(X) ((X) << 3) // 4-bits #define TSFLAG_FALSE_LANE_TYPE(X) ((X) << 7) // 2-bits #define TSFLAG_INSTR_FLAGS(X) ((X) << 9) // 2-bits #define TSFLAG_SME_MATRIX_TYPE(X) ((X) << 11) // 3-bits // } namespace AArch64 { enum ElementSizeType { ElementSizeMask = TSFLAG_ELEMENT_SIZE_TYPE(0x7), ElementSizeNone = TSFLAG_ELEMENT_SIZE_TYPE(0x0), ElementSizeB = TSFLAG_ELEMENT_SIZE_TYPE(0x1), ElementSizeH = TSFLAG_ELEMENT_SIZE_TYPE(0x2), ElementSizeS = TSFLAG_ELEMENT_SIZE_TYPE(0x3), ElementSizeD = TSFLAG_ELEMENT_SIZE_TYPE(0x4), }; enum DestructiveInstType { DestructiveInstTypeMask = TSFLAG_DESTRUCTIVE_INST_TYPE(0xf), NotDestructive = TSFLAG_DESTRUCTIVE_INST_TYPE(0x0), DestructiveOther = TSFLAG_DESTRUCTIVE_INST_TYPE(0x1), DestructiveUnary = TSFLAG_DESTRUCTIVE_INST_TYPE(0x2), DestructiveBinaryImm = TSFLAG_DESTRUCTIVE_INST_TYPE(0x3), DestructiveBinaryShImmUnpred = TSFLAG_DESTRUCTIVE_INST_TYPE(0x4), DestructiveBinary = TSFLAG_DESTRUCTIVE_INST_TYPE(0x5), DestructiveBinaryComm = TSFLAG_DESTRUCTIVE_INST_TYPE(0x6), DestructiveBinaryCommWithRev = TSFLAG_DESTRUCTIVE_INST_TYPE(0x7), DestructiveTernaryCommWithRev = TSFLAG_DESTRUCTIVE_INST_TYPE(0x8), DestructiveUnaryPassthru = TSFLAG_DESTRUCTIVE_INST_TYPE(0x9), }; enum FalseLaneType { FalseLanesMask = TSFLAG_FALSE_LANE_TYPE(0x3), FalseLanesZero = TSFLAG_FALSE_LANE_TYPE(0x1), FalseLanesUndef = TSFLAG_FALSE_LANE_TYPE(0x2), }; // NOTE: This is a bit field. static const uint64_t InstrFlagIsWhile = TSFLAG_INSTR_FLAGS(0x1); static const uint64_t InstrFlagIsPTestLike = TSFLAG_INSTR_FLAGS(0x2); enum SMEMatrixType { SMEMatrixTypeMask = TSFLAG_SME_MATRIX_TYPE(0x7), SMEMatrixNone = TSFLAG_SME_MATRIX_TYPE(0x0), SMEMatrixTileB = TSFLAG_SME_MATRIX_TYPE(0x1), SMEMatrixTileH = TSFLAG_SME_MATRIX_TYPE(0x2), SMEMatrixTileS = TSFLAG_SME_MATRIX_TYPE(0x3), SMEMatrixTileD = TSFLAG_SME_MATRIX_TYPE(0x4), SMEMatrixTileQ = TSFLAG_SME_MATRIX_TYPE(0x5), SMEMatrixArray = TSFLAG_SME_MATRIX_TYPE(0x6), }; #undef TSFLAG_ELEMENT_SIZE_TYPE #undef TSFLAG_DESTRUCTIVE_INST_TYPE #undef TSFLAG_FALSE_LANE_TYPE #undef TSFLAG_INSTR_FLAGS #undef TSFLAG_SME_MATRIX_TYPE int getSVEPseudoMap(uint16_t Opcode); int getSVERevInstr(uint16_t Opcode); int getSVENonRevInstr(uint16_t Opcode); int getSMEPseudoMap(uint16_t Opcode); } } // end namespace llvm #endif