//=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // AArch64 Atomic operand code-gen constructs. // //===----------------------------------------------------------------------===// //===---------------------------------- // Atomic fences //===---------------------------------- let AddedComplexity = 15 in def : Pat<(atomic_fence (timm), 0), (MEMBARRIER)>; def : Pat<(atomic_fence (i64 4), (timm)), (DMB (i32 0x9))>; def : Pat<(atomic_fence (timm), (timm)), (DMB (i32 0xb))>; //===---------------------------------- // Atomic loads //===---------------------------------- // When they're actually atomic, only one addressing mode (GPR64sp) is // supported, but when they're relaxed and anything can be used, all the // standard modes would be valid and may give efficiency gains. // An atomic load operation that does not need either acquire or release // semantics. class relaxed_load : PatFrag<(ops node:$ptr), (base node:$ptr)> { let IsAtomic = 1; let IsAtomicOrderingAcquireOrStronger = 0; } // A atomic load operation that actually needs acquire semantics. class acquiring_load : PatFrag<(ops node:$ptr), (base node:$ptr)> { let IsAtomic = 1; let IsAtomicOrderingAcquire = 1; } // An atomic load operation that needs sequential consistency. class seq_cst_load : PatFrag<(ops node:$ptr), (base node:$ptr)> { let IsAtomic = 1; let IsAtomicOrderingSequentiallyConsistent = 1; } let Predicates = [HasRCPC] in { // v8.3 Release Consistent Processor Consistent support, optional in v8.2. // 8-bit loads def : Pat<(acquiring_load GPR64sp:$ptr), (LDAPRB GPR64sp:$ptr)>; // 16-bit loads def : Pat<(acquiring_load GPR64sp:$ptr), (LDAPRH GPR64sp:$ptr)>; // 32-bit loads def : Pat<(acquiring_load GPR64sp:$ptr), (LDAPRW GPR64sp:$ptr)>; // 64-bit loads def : Pat<(acquiring_load GPR64sp:$ptr), (LDAPRX GPR64sp:$ptr)>; } // 8-bit loads def : Pat<(seq_cst_load GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>; def : Pat<(acquiring_load GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>; def : Pat<(relaxed_load (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)), (LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>; def : Pat<(relaxed_load (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)), (LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>; def : Pat<(relaxed_load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; def : Pat<(relaxed_load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)), (LDURBBi GPR64sp:$Rn, simm9:$offset)>; // 16-bit loads def : Pat<(seq_cst_load GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>; def : Pat<(acquiring_load GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>; def : Pat<(relaxed_load (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)), (LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>; def : Pat<(relaxed_load (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)), (LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>; def : Pat<(relaxed_load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>; def : Pat<(relaxed_load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), (LDURHHi GPR64sp:$Rn, simm9:$offset)>; // 32-bit loads def : Pat<(seq_cst_load GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>; def : Pat<(acquiring_load GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>; def : Pat<(relaxed_load (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)), (LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>; def : Pat<(relaxed_load (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)), (LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>; def : Pat<(relaxed_load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)), (LDRWui GPR64sp:$Rn, uimm12s4:$offset)>; def : Pat<(relaxed_load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)), (LDURWi GPR64sp:$Rn, simm9:$offset)>; // 64-bit loads def : Pat<(seq_cst_load GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>; def : Pat<(acquiring_load GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>; def : Pat<(relaxed_load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)), (LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; def : Pat<(relaxed_load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)), (LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; def : Pat<(relaxed_load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), (LDRXui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(relaxed_load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), (LDURXi GPR64sp:$Rn, simm9:$offset)>; // FP 32-bit loads def : Pat<(f32 (bitconvert (i32 (relaxed_load (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend))))), (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>; def : Pat<(f32 (bitconvert (i32 (relaxed_load (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend))))), (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>; def : Pat<(f32 (bitconvert (i32 (relaxed_load (am_indexed32 GPR64sp:$Rn, uimm12s8:$offset))))), (LDRSui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(f32 (bitconvert (i32 (relaxed_load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))), (LDURSi GPR64sp:$Rn, simm9:$offset)>; // FP 64-bit loads def : Pat<(f64 (bitconvert (i64 (relaxed_load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend))))), (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; def : Pat<(f64 (bitconvert (i64 (relaxed_load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend))))), (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; def : Pat<(f64 (bitconvert (i64 (relaxed_load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(f64 (bitconvert (i64 (relaxed_load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))))), (LDURDi GPR64sp:$Rn, simm9:$offset)>; //===---------------------------------- // Atomic stores //===---------------------------------- // When they're actually atomic, only one addressing mode (GPR64sp) is // supported, but when they're relaxed and anything can be used, all the // standard modes would be valid and may give efficiency gains. // A store operation that actually needs release semantics. class releasing_store : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingReleaseOrStronger = 1; } // An atomic store operation that doesn't actually need to be atomic on AArch64. class relaxed_store : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingReleaseOrStronger = 0; } // 8-bit stores def : Pat<(releasing_store GPR64sp:$ptr, GPR32:$val), (STLRB GPR32:$val, GPR64sp:$ptr)>; def : Pat<(relaxed_store (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend), GPR32:$val), (STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>; def : Pat<(relaxed_store (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend), GPR32:$val), (STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>; def : Pat<(relaxed_store (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val), (STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>; def : Pat<(relaxed_store (am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val), (STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>; // 16-bit stores def : Pat<(releasing_store GPR64sp:$ptr, GPR32:$val), (STLRH GPR32:$val, GPR64sp:$ptr)>; def : Pat<(relaxed_store (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend), GPR32:$val), (STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>; def : Pat<(relaxed_store (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend), GPR32:$val), (STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>; def : Pat<(relaxed_store (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val), (STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>; def : Pat<(relaxed_store (am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val), (STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>; // 32-bit stores def : Pat<(releasing_store GPR64sp:$ptr, GPR32:$val), (STLRW GPR32:$val, GPR64sp:$ptr)>; def : Pat<(relaxed_store (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend), GPR32:$val), (STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>; def : Pat<(relaxed_store (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend), GPR32:$val), (STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>; def : Pat<(relaxed_store (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val), (STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>; def : Pat<(relaxed_store (am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val), (STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>; // 64-bit stores def : Pat<(releasing_store GPR64sp:$ptr, GPR64:$val), (STLRX GPR64:$val, GPR64sp:$ptr)>; def : Pat<(relaxed_store (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend), GPR64:$val), (STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; def : Pat<(relaxed_store (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend), GPR64:$val), (STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; def : Pat<(relaxed_store (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val), (STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>; def : Pat<(relaxed_store (am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val), (STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>; // FP 32-bit stores def : Pat<(relaxed_store (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend), (i32 (bitconvert (f32 FPR32Op:$val)))), (STRSroW FPR32Op:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>; def : Pat<(relaxed_store (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend), (i32 (bitconvert (f32 FPR32Op:$val)))), (STRSroX FPR32Op:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>; def : Pat<(relaxed_store (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), (i32 (bitconvert (f32 FPR32Op:$val)))), (STRSui FPR32Op:$val, GPR64sp:$Rn, uimm12s4:$offset)>; def : Pat<(relaxed_store (am_unscaled32 GPR64sp:$Rn, simm9:$offset), (i32 (bitconvert (f32 FPR32Op:$val)))), (STURSi FPR32Op:$val, GPR64sp:$Rn, simm9:$offset)>; // FP 64-bit stores def : Pat<(relaxed_store (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend), (i64 (bitconvert (f64 FPR64Op:$val)))), (STRDroW FPR64Op:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; def : Pat<(relaxed_store (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend), (i64 (bitconvert (f64 FPR64Op:$val)))), (STRDroX FPR64Op:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; def : Pat<(relaxed_store (am_indexed64 GPR64sp:$Rn, uimm12s4:$offset), (i64 (bitconvert (f64 FPR64Op:$val)))), (STRDui FPR64Op:$val, GPR64sp:$Rn, uimm12s4:$offset)>; def : Pat<(relaxed_store (am_unscaled64 GPR64sp:$Rn, simm9:$offset), (i64 (bitconvert (f64 FPR64Op:$val)))), (STURDi FPR64Op:$val, GPR64sp:$Rn, simm9:$offset)>; //===---------------------------------- // Low-level exclusive operations //===---------------------------------- // Load-exclusives. def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; } def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; } def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; } def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i64; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; } def : Pat<(ldxr_1 GPR64sp:$addr), (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>; def : Pat<(ldxr_2 GPR64sp:$addr), (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>; def : Pat<(ldxr_4 GPR64sp:$addr), (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>; def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>; def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff), (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>; def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff), (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>; def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff), (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>; // Load-exclusives. def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; } def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; } def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; } def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i64; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; } def : Pat<(ldaxr_1 GPR64sp:$addr), (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>; def : Pat<(ldaxr_2 GPR64sp:$addr), (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>; def : Pat<(ldaxr_4 GPR64sp:$addr), (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>; def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>; def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff), (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>; def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff), (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>; def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff), (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>; // Store-exclusives. def stxr_1 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; } def stxr_2 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; } def stxr_4 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; } def stxr_8 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i64; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; } def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr), (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr), (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr), (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr), (STXRX GPR64:$val, GPR64sp:$addr)>; def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr), (STXRB GPR32:$val, GPR64sp:$addr)>; def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr), (STXRH GPR32:$val, GPR64sp:$addr)>; def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr), (STXRW GPR32:$val, GPR64sp:$addr)>; def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr), (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr), (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr), (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; // Store-release-exclusives. def stlxr_1 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stlxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; } def stlxr_2 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stlxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; } def stlxr_4 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stlxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; } def stlxr_8 : PatFrag<(ops node:$val, node:$ptr), (int_aarch64_stlxr node:$val, node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i64; }]> { let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; } def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr), (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr), (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr), (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr), (STLXRX GPR64:$val, GPR64sp:$addr)>; def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr), (STLXRB GPR32:$val, GPR64sp:$addr)>; def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr), (STLXRH GPR32:$val, GPR64sp:$addr)>; def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr), (STLXRW GPR32:$val, GPR64sp:$addr)>; def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr), (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr), (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr), (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; // And clear exclusive. def : Pat<(int_aarch64_clrex), (CLREX 0xf)>; //===---------------------------------- // Atomic cmpxchg for -O0 //===---------------------------------- // The fast register allocator used during -O0 inserts spills to cover any VRegs // live across basic block boundaries. When this happens between an LDXR and an // STXR it can clear the exclusive monitor, causing all cmpxchg attempts to // fail. // Unfortunately, this means we have to have an alternative (expanded // post-regalloc) path for -O0 compilations. Fortunately this path can be // significantly more naive than the standard expansion: we conservatively // assume seq_cst, strong cmpxchg and omit clrex on failure. let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch", mayLoad = 1, mayStore = 1 in { def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch), (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>, Sched<[WriteAtomic]>; def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch), (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>, Sched<[WriteAtomic]>; def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch), (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>, Sched<[WriteAtomic]>; def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch), (ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>, Sched<[WriteAtomic]>; } let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch", mayLoad = 1, mayStore = 1 in { class cmp_swap_128 : Pseudo<(outs GPR64common:$RdLo, GPR64common:$RdHi, GPR32common:$scratch), (ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi, GPR64:$newLo, GPR64:$newHi), []>, Sched<[WriteAtomic]>; def CMP_SWAP_128 : cmp_swap_128; def CMP_SWAP_128_RELEASE : cmp_swap_128; def CMP_SWAP_128_ACQUIRE : cmp_swap_128; def CMP_SWAP_128_MONOTONIC : cmp_swap_128; } // v8.1 Atomic instructions: let Predicates = [HasLSE] in { defm : LDOPregister_patterns<"LDADD", "atomic_load_add">; defm : LDOPregister_patterns<"LDSET", "atomic_load_or">; defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">; defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">; defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">; defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">; defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">; defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">; defm : LDOPregister_patterns<"SWP", "atomic_swap">; defm : CASregister_patterns<"CAS", "atomic_cmp_swap">; // These two patterns are only needed for global isel, selection dag isel // converts atomic load-sub into a sub and atomic load-add, and likewise for // and -> clr. defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">; defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">; } // v8.9a/v9.4a FEAT_LRCPC patterns let Predicates = [HasRCPC3, HasNEON] in { // LDAP1 loads def : Pat<(vector_insert (v2i64 VecListOne128:$Rd), (i64 (acquiring_load GPR64sp:$Rn)), VectorIndexD:$idx), (LDAP1 VecListOne128:$Rd, VectorIndexD:$idx, GPR64sp:$Rn)>; def : Pat<(vector_insert (v2f64 VecListOne128:$Rd), (f64 (bitconvert (i64 (acquiring_load GPR64sp:$Rn)))), VectorIndexD:$idx), (LDAP1 VecListOne128:$Rd, VectorIndexD:$idx, GPR64sp:$Rn)>; def : Pat<(v1i64 (scalar_to_vector (i64 (acquiring_load GPR64sp:$Rn)))), (EXTRACT_SUBREG (LDAP1 (v2i64 (IMPLICIT_DEF)), (i64 0), GPR64sp:$Rn), dsub)>; def : Pat<(v1f64 (scalar_to_vector (f64 (bitconvert (i64 (acquiring_load GPR64sp:$Rn)))))), (EXTRACT_SUBREG (LDAP1 (v2f64 (IMPLICIT_DEF)), (i64 0), GPR64sp:$Rn), dsub)>; // STL1 stores def : Pat<(releasing_store GPR64sp:$Rn, (i64 (vector_extract (v2i64 VecListOne128:$Vt), VectorIndexD:$idx))), (STL1 VecListOne128:$Vt, VectorIndexD:$idx, GPR64sp:$Rn)>; def : Pat<(releasing_store GPR64sp:$Rn, (i64 (bitconvert (f64 (vector_extract (v2f64 VecListOne128:$Vt), VectorIndexD:$idx))))), (STL1 VecListOne128:$Vt, VectorIndexD:$idx, GPR64sp:$Rn)>; // The v1i64 version of the vldap1_lane_* intrinsic is represented as a // vector_insert -> vector_extract -> atomic store sequence, which is captured // by the patterns above. We only need to cover the v1f64 case manually. def : Pat<(releasing_store GPR64sp:$Rn, (i64 (bitconvert (v1f64 VecListOne64:$Vt)))), (STL1 (SUBREG_TO_REG (i64 0), VecListOne64:$Vt, dsub), (i64 0), GPR64sp:$Rn)>; }