//===- AArch6464FastISel.cpp - AArch64 FastISel implementation ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the AArch64-specific support for the FastISel class. Some // of the target-specific code is generated by tablegen in the file // AArch64GenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64CallingConvention.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64RegisterInfo.h" #include "AArch64Subtarget.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcallUtil.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGenTypes/MachineValueType.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include using namespace llvm; namespace { class AArch64FastISel final : public FastISel { class Address { public: using BaseKind = enum { RegBase, FrameIndexBase }; private: BaseKind Kind = RegBase; AArch64_AM::ShiftExtendType ExtType = AArch64_AM::InvalidShiftExtend; union { unsigned Reg; int FI; } Base; unsigned OffsetReg = 0; unsigned Shift = 0; int64_t Offset = 0; const GlobalValue *GV = nullptr; public: Address() { Base.Reg = 0; } void setKind(BaseKind K) { Kind = K; } BaseKind getKind() const { return Kind; } void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; } AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; } bool isRegBase() const { return Kind == RegBase; } bool isFIBase() const { return Kind == FrameIndexBase; } void setReg(unsigned Reg) { assert(isRegBase() && "Invalid base register access!"); Base.Reg = Reg; } unsigned getReg() const { assert(isRegBase() && "Invalid base register access!"); return Base.Reg; } void setOffsetReg(unsigned Reg) { OffsetReg = Reg; } unsigned getOffsetReg() const { return OffsetReg; } void setFI(unsigned FI) { assert(isFIBase() && "Invalid base frame index access!"); Base.FI = FI; } unsigned getFI() const { assert(isFIBase() && "Invalid base frame index access!"); return Base.FI; } void setOffset(int64_t O) { Offset = O; } int64_t getOffset() { return Offset; } void setShift(unsigned S) { Shift = S; } unsigned getShift() { return Shift; } void setGlobalValue(const GlobalValue *G) { GV = G; } const GlobalValue *getGlobalValue() { return GV; } }; /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can /// make the right decision when generating code for different targets. const AArch64Subtarget *Subtarget; LLVMContext *Context; bool fastLowerArguments() override; bool fastLowerCall(CallLoweringInfo &CLI) override; bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; private: // Selection routines. bool selectAddSub(const Instruction *I); bool selectLogicalOp(const Instruction *I); bool selectLoad(const Instruction *I); bool selectStore(const Instruction *I); bool selectBranch(const Instruction *I); bool selectIndirectBr(const Instruction *I); bool selectCmp(const Instruction *I); bool selectSelect(const Instruction *I); bool selectFPExt(const Instruction *I); bool selectFPTrunc(const Instruction *I); bool selectFPToInt(const Instruction *I, bool Signed); bool selectIntToFP(const Instruction *I, bool Signed); bool selectRem(const Instruction *I, unsigned ISDOpcode); bool selectRet(const Instruction *I); bool selectTrunc(const Instruction *I); bool selectIntExt(const Instruction *I); bool selectMul(const Instruction *I); bool selectShift(const Instruction *I); bool selectBitCast(const Instruction *I); bool selectFRem(const Instruction *I); bool selectSDiv(const Instruction *I); bool selectGetElementPtr(const Instruction *I); bool selectAtomicCmpXchg(const AtomicCmpXchgInst *I); // Utility helper routines. bool isTypeLegal(Type *Ty, MVT &VT); bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false); bool isValueAvailable(const Value *V) const; bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr); bool computeCallAddress(const Value *V, Address &Addr); bool simplifyAddress(Address &Addr, MVT VT); void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB, MachineMemOperand::Flags Flags, unsigned ScaleFactor, MachineMemOperand *MMO); bool isMemCpySmall(uint64_t Len, MaybeAlign Alignment); bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, MaybeAlign Alignment); bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I, const Value *Cond); bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT); bool optimizeSelect(const SelectInst *SI); unsigned getRegForGEPIndex(const Value *Idx); // Emit helper routines. unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS, const Value *RHS, bool SetFlags = false, bool WantResult = true, bool IsZExt = false); unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg, unsigned RHSReg, bool SetFlags = false, bool WantResult = true); unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg, uint64_t Imm, bool SetFlags = false, bool WantResult = true); unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg, unsigned RHSReg, AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm, bool SetFlags = false, bool WantResult = true); unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg, unsigned RHSReg, AArch64_AM::ShiftExtendType ExtType, uint64_t ShiftImm, bool SetFlags = false, bool WantResult = true); // Emit functions. bool emitCompareAndBranch(const BranchInst *BI); bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt); bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt); bool emitICmp_ri(MVT RetVT, unsigned LHSReg, uint64_t Imm); bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS); unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true, MachineMemOperand *MMO = nullptr); bool emitStore(MVT VT, unsigned SrcReg, Address Addr, MachineMemOperand *MMO = nullptr); bool emitStoreRelease(MVT VT, unsigned SrcReg, unsigned AddrReg, MachineMemOperand *MMO = nullptr); unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt); unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS, bool SetFlags = false, bool WantResult = true, bool IsZExt = false); unsigned emitAdd_ri_(MVT VT, unsigned Op0, int64_t Imm); unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS, bool SetFlags = false, bool WantResult = true, bool IsZExt = false); unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, unsigned RHSReg, bool WantResult = true); unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, unsigned RHSReg, AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm, bool WantResult = true); unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, const Value *RHS); unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg, uint64_t Imm); unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg, unsigned RHSReg, uint64_t ShiftImm); unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, uint64_t Imm); unsigned emitMul_rr(MVT RetVT, unsigned Op0, unsigned Op1); unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, unsigned Op1); unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, unsigned Op1); unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, unsigned Op1Reg); unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, uint64_t Imm, bool IsZExt = true); unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, unsigned Op1Reg); unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, uint64_t Imm, bool IsZExt = true); unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, unsigned Op1Reg); unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, uint64_t Imm, bool IsZExt = false); unsigned materializeInt(const ConstantInt *CI, MVT VT); unsigned materializeFP(const ConstantFP *CFP, MVT VT); unsigned materializeGV(const GlobalValue *GV); // Call handling routines. private: CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl &ArgVTs, unsigned &NumBytes); bool finishCall(CallLoweringInfo &CLI, unsigned NumBytes); public: // Backend specific FastISel code. unsigned fastMaterializeAlloca(const AllocaInst *AI) override; unsigned fastMaterializeConstant(const Constant *C) override; unsigned fastMaterializeFloatZero(const ConstantFP* CF) override; explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) { Subtarget = &FuncInfo.MF->getSubtarget(); Context = &FuncInfo.Fn->getContext(); } bool fastSelectInstruction(const Instruction *I) override; #include "AArch64GenFastISel.inc" }; } // end anonymous namespace /// Check if the sign-/zero-extend will be a noop. static bool isIntExtFree(const Instruction *I) { assert((isa(I) || isa(I)) && "Unexpected integer extend instruction."); assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() && "Unexpected value type."); bool IsZExt = isa(I); if (const auto *LI = dyn_cast(I->getOperand(0))) if (LI->hasOneUse()) return true; if (const auto *Arg = dyn_cast(I->getOperand(0))) if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) return true; return false; } /// Determine the implicit scale factor that is applied by a memory /// operation for a given value type. static unsigned getImplicitScaleFactor(MVT VT) { switch (VT.SimpleTy) { default: return 0; // invalid case MVT::i1: // fall-through case MVT::i8: return 1; case MVT::i16: return 2; case MVT::i32: // fall-through case MVT::f32: return 4; case MVT::i64: // fall-through case MVT::f64: return 8; } } CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const { if (CC == CallingConv::GHC) return CC_AArch64_GHC; if (CC == CallingConv::CFGuard_Check) return CC_AArch64_Win64_CFGuard_Check; if (Subtarget->isTargetDarwin()) return CC_AArch64_DarwinPCS; if (Subtarget->isTargetWindows()) return CC_AArch64_Win64PCS; return CC_AArch64_AAPCS; } unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) { assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i64 && "Alloca should always return a pointer."); // Don't handle dynamic allocas. if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { Register ResultReg = createResultReg(&AArch64::GPR64spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADDXri), ResultReg) .addFrameIndex(SI->second) .addImm(0) .addImm(0); return ResultReg; } return 0; } unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) { if (VT > MVT::i64) return 0; if (!CI->isZero()) return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); // Create a copy from the zero register to materialize a "0" value. const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg).addReg(ZeroReg, getKillRegState(true)); return ResultReg; } unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) { // Positive zero (+0.0) has to be materialized with a fmov from the zero // register, because the immediate version of fmov cannot encode zero. if (CFP->isNullValue()) return fastMaterializeFloatZero(CFP); if (VT != MVT::f32 && VT != MVT::f64) return 0; const APFloat Val = CFP->getValueAPF(); bool Is64Bit = (VT == MVT::f64); // This checks to see if we can use FMOV instructions to materialize // a constant, otherwise we have to materialize via the constant pool. int Imm = Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val); if (Imm != -1) { unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi; return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); } // For the large code model materialize the FP constant in code. if (TM.getCodeModel() == CodeModel::Large) { unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm; const TargetRegisterClass *RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; Register TmpReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc1), TmpReg) .addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(TmpReg, getKillRegState(true)); return ResultReg; } // Materialize via constant pool. MachineConstantPool wants an explicit // alignment. Align Alignment = DL.getPrefTypeAlign(CFP->getType()); unsigned CPI = MCP.getConstantPoolIndex(cast(CFP), Alignment); Register ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADRP), ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE); unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui; Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) .addReg(ADRPReg) .addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); return ResultReg; } unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) { // We can't handle thread-local variables quickly yet. if (GV->isThreadLocal()) return 0; // MachO still uses GOT for large code-model accesses, but ELF requires // movz/movk sequences, which FastISel doesn't handle yet. if (!Subtarget->useSmallAddressing() && !Subtarget->isTargetMachO()) return 0; unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, TM); EVT DestEVT = TLI.getValueType(DL, GV->getType(), true); if (!DestEVT.isSimple()) return 0; Register ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); unsigned ResultReg; if (OpFlags & AArch64II::MO_GOT) { // ADRP + LDRX BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADRP), ADRPReg) .addGlobalAddress(GV, 0, AArch64II::MO_PAGE | OpFlags); unsigned LdrOpc; if (Subtarget->isTargetILP32()) { ResultReg = createResultReg(&AArch64::GPR32RegClass); LdrOpc = AArch64::LDRWui; } else { ResultReg = createResultReg(&AArch64::GPR64RegClass); LdrOpc = AArch64::LDRXui; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(LdrOpc), ResultReg) .addReg(ADRPReg) .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC | OpFlags); if (!Subtarget->isTargetILP32()) return ResultReg; // LDRWui produces a 32-bit register, but pointers in-register are 64-bits // so we must extend the result on ILP32. Register Result64 = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG)) .addDef(Result64) .addImm(0) .addReg(ResultReg, RegState::Kill) .addImm(AArch64::sub_32); return Result64; } else { // ADRP + ADDX BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADRP), ADRPReg) .addGlobalAddress(GV, 0, AArch64II::MO_PAGE | OpFlags); if (OpFlags & AArch64II::MO_TAGGED) { // MO_TAGGED on the page indicates a tagged address. Set the tag now. // We do so by creating a MOVK that sets bits 48-63 of the register to // (global address + 0x100000000 - PC) >> 48. This assumes that we're in // the small code model so we can assume a binary size of <= 4GB, which // makes the untagged PC relative offset positive. The binary must also be // loaded into address range [0, 2^48). Both of these properties need to // be ensured at runtime when using tagged addresses. // // TODO: There is duplicate logic in AArch64ExpandPseudoInsts.cpp that // also uses BuildMI for making an ADRP (+ MOVK) + ADD, but the operands // are not exactly 1:1 with FastISel so we cannot easily abstract this // out. At some point, it would be nice to find a way to not have this // duplciate code. unsigned DstReg = createResultReg(&AArch64::GPR64commonRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::MOVKXi), DstReg) .addReg(ADRPReg) .addGlobalAddress(GV, /*Offset=*/0x100000000, AArch64II::MO_PREL | AArch64II::MO_G3) .addImm(48); ADRPReg = DstReg; } ResultReg = createResultReg(&AArch64::GPR64spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADDXri), ResultReg) .addReg(ADRPReg) .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC | OpFlags) .addImm(0); } return ResultReg; } unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) { EVT CEVT = TLI.getValueType(DL, C->getType(), true); // Only handle simple types. if (!CEVT.isSimple()) return 0; MVT VT = CEVT.getSimpleVT(); // arm64_32 has 32-bit pointers held in 64-bit registers. Because of that, // 'null' pointers need to have a somewhat special treatment. if (isa(C)) { assert(VT == MVT::i64 && "Expected 64-bit pointers"); return materializeInt(ConstantInt::get(Type::getInt64Ty(*Context), 0), VT); } if (const auto *CI = dyn_cast(C)) return materializeInt(CI, VT); else if (const ConstantFP *CFP = dyn_cast(C)) return materializeFP(CFP, VT); else if (const GlobalValue *GV = dyn_cast(C)) return materializeGV(GV); return 0; } unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) { assert(CFP->isNullValue() && "Floating-point constant is not a positive zero."); MVT VT; if (!isTypeLegal(CFP->getType(), VT)) return 0; if (VT != MVT::f32 && VT != MVT::f64) return 0; bool Is64Bit = (VT == MVT::f64); unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR; unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr; return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg); } /// Check if the multiply is by a power-of-2 constant. static bool isMulPowOf2(const Value *I) { if (const auto *MI = dyn_cast(I)) { if (const auto *C = dyn_cast(MI->getOperand(0))) if (C->getValue().isPowerOf2()) return true; if (const auto *C = dyn_cast(MI->getOperand(1))) if (C->getValue().isPowerOf2()) return true; } return false; } // Computes the address to get to an object. bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty) { const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast(Obj)) { // Don't walk into other basic blocks unless the object is an alloca from // another block, otherwise it may not have a virtual register assigned. if (FuncInfo.StaticAllocaMap.count(static_cast(Obj)) || FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { Opcode = I->getOpcode(); U = I; } } else if (const ConstantExpr *C = dyn_cast(Obj)) { Opcode = C->getOpcode(); U = C; } if (auto *Ty = dyn_cast(Obj->getType())) if (Ty->getAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; switch (Opcode) { default: break; case Instruction::BitCast: // Look through bitcasts. return computeAddress(U->getOperand(0), Addr, Ty); case Instruction::IntToPtr: // Look past no-op inttoptrs. if (TLI.getValueType(DL, U->getOperand(0)->getType()) == TLI.getPointerTy(DL)) return computeAddress(U->getOperand(0), Addr, Ty); break; case Instruction::PtrToInt: // Look past no-op ptrtoints. if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) return computeAddress(U->getOperand(0), Addr, Ty); break; case Instruction::GetElementPtr: { Address SavedAddr = Addr; uint64_t TmpOffset = Addr.getOffset(); // Iterate through the GEP folding the constants into offsets where // we can. for (gep_type_iterator GTI = gep_type_begin(U), E = gep_type_end(U); GTI != E; ++GTI) { const Value *Op = GTI.getOperand(); if (StructType *STy = GTI.getStructTypeOrNull()) { const StructLayout *SL = DL.getStructLayout(STy); unsigned Idx = cast(Op)->getZExtValue(); TmpOffset += SL->getElementOffset(Idx); } else { uint64_t S = GTI.getSequentialElementStride(DL); while (true) { if (const ConstantInt *CI = dyn_cast(Op)) { // Constant-offset addressing. TmpOffset += CI->getSExtValue() * S; break; } if (canFoldAddIntoGEP(U, Op)) { // A compatible add with a constant operand. Fold the constant. ConstantInt *CI = cast(cast(Op)->getOperand(1)); TmpOffset += CI->getSExtValue() * S; // Iterate on the other operand. Op = cast(Op)->getOperand(0); continue; } // Unsupported goto unsupported_gep; } } } // Try to grab the base operand now. Addr.setOffset(TmpOffset); if (computeAddress(U->getOperand(0), Addr, Ty)) return true; // We failed, restore everything and try the other options. Addr = SavedAddr; unsupported_gep: break; } case Instruction::Alloca: { const AllocaInst *AI = cast(Obj); DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { Addr.setKind(Address::FrameIndexBase); Addr.setFI(SI->second); return true; } break; } case Instruction::Add: { // Adds of constants are common and easy enough. const Value *LHS = U->getOperand(0); const Value *RHS = U->getOperand(1); if (isa(LHS)) std::swap(LHS, RHS); if (const ConstantInt *CI = dyn_cast(RHS)) { Addr.setOffset(Addr.getOffset() + CI->getSExtValue()); return computeAddress(LHS, Addr, Ty); } Address Backup = Addr; if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty)) return true; Addr = Backup; break; } case Instruction::Sub: { // Subs of constants are common and easy enough. const Value *LHS = U->getOperand(0); const Value *RHS = U->getOperand(1); if (const ConstantInt *CI = dyn_cast(RHS)) { Addr.setOffset(Addr.getOffset() - CI->getSExtValue()); return computeAddress(LHS, Addr, Ty); } break; } case Instruction::Shl: { if (Addr.getOffsetReg()) break; const auto *CI = dyn_cast(U->getOperand(1)); if (!CI) break; unsigned Val = CI->getZExtValue(); if (Val < 1 || Val > 3) break; uint64_t NumBytes = 0; if (Ty && Ty->isSized()) { uint64_t NumBits = DL.getTypeSizeInBits(Ty); NumBytes = NumBits / 8; if (!isPowerOf2_64(NumBits)) NumBytes = 0; } if (NumBytes != (1ULL << Val)) break; Addr.setShift(Val); Addr.setExtendType(AArch64_AM::LSL); const Value *Src = U->getOperand(0); if (const auto *I = dyn_cast(Src)) { if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { // Fold the zext or sext when it won't become a noop. if (const auto *ZE = dyn_cast(I)) { if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) { Addr.setExtendType(AArch64_AM::UXTW); Src = ZE->getOperand(0); } } else if (const auto *SE = dyn_cast(I)) { if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) { Addr.setExtendType(AArch64_AM::SXTW); Src = SE->getOperand(0); } } } } if (const auto *AI = dyn_cast(Src)) if (AI->getOpcode() == Instruction::And) { const Value *LHS = AI->getOperand(0); const Value *RHS = AI->getOperand(1); if (const auto *C = dyn_cast(LHS)) if (C->getValue() == 0xffffffff) std::swap(LHS, RHS); if (const auto *C = dyn_cast(RHS)) if (C->getValue() == 0xffffffff) { Addr.setExtendType(AArch64_AM::UXTW); Register Reg = getRegForValue(LHS); if (!Reg) return false; Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, AArch64::sub_32); Addr.setOffsetReg(Reg); return true; } } Register Reg = getRegForValue(Src); if (!Reg) return false; Addr.setOffsetReg(Reg); return true; } case Instruction::Mul: { if (Addr.getOffsetReg()) break; if (!isMulPowOf2(U)) break; const Value *LHS = U->getOperand(0); const Value *RHS = U->getOperand(1); // Canonicalize power-of-2 value to the RHS. if (const auto *C = dyn_cast(LHS)) if (C->getValue().isPowerOf2()) std::swap(LHS, RHS); assert(isa(RHS) && "Expected an ConstantInt."); const auto *C = cast(RHS); unsigned Val = C->getValue().logBase2(); if (Val < 1 || Val > 3) break; uint64_t NumBytes = 0; if (Ty && Ty->isSized()) { uint64_t NumBits = DL.getTypeSizeInBits(Ty); NumBytes = NumBits / 8; if (!isPowerOf2_64(NumBits)) NumBytes = 0; } if (NumBytes != (1ULL << Val)) break; Addr.setShift(Val); Addr.setExtendType(AArch64_AM::LSL); const Value *Src = LHS; if (const auto *I = dyn_cast(Src)) { if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { // Fold the zext or sext when it won't become a noop. if (const auto *ZE = dyn_cast(I)) { if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) { Addr.setExtendType(AArch64_AM::UXTW); Src = ZE->getOperand(0); } } else if (const auto *SE = dyn_cast(I)) { if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) { Addr.setExtendType(AArch64_AM::SXTW); Src = SE->getOperand(0); } } } } Register Reg = getRegForValue(Src); if (!Reg) return false; Addr.setOffsetReg(Reg); return true; } case Instruction::And: { if (Addr.getOffsetReg()) break; if (!Ty || DL.getTypeSizeInBits(Ty) != 8) break; const Value *LHS = U->getOperand(0); const Value *RHS = U->getOperand(1); if (const auto *C = dyn_cast(LHS)) if (C->getValue() == 0xffffffff) std::swap(LHS, RHS); if (const auto *C = dyn_cast(RHS)) if (C->getValue() == 0xffffffff) { Addr.setShift(0); Addr.setExtendType(AArch64_AM::LSL); Addr.setExtendType(AArch64_AM::UXTW); Register Reg = getRegForValue(LHS); if (!Reg) return false; Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, AArch64::sub_32); Addr.setOffsetReg(Reg); return true; } break; } case Instruction::SExt: case Instruction::ZExt: { if (!Addr.getReg() || Addr.getOffsetReg()) break; const Value *Src = nullptr; // Fold the zext or sext when it won't become a noop. if (const auto *ZE = dyn_cast(U)) { if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) { Addr.setExtendType(AArch64_AM::UXTW); Src = ZE->getOperand(0); } } else if (const auto *SE = dyn_cast(U)) { if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) { Addr.setExtendType(AArch64_AM::SXTW); Src = SE->getOperand(0); } } if (!Src) break; Addr.setShift(0); Register Reg = getRegForValue(Src); if (!Reg) return false; Addr.setOffsetReg(Reg); return true; } } // end switch if (Addr.isRegBase() && !Addr.getReg()) { Register Reg = getRegForValue(Obj); if (!Reg) return false; Addr.setReg(Reg); return true; } if (!Addr.getOffsetReg()) { Register Reg = getRegForValue(Obj); if (!Reg) return false; Addr.setOffsetReg(Reg); return true; } return false; } bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) { const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; bool InMBB = true; if (const auto *I = dyn_cast(V)) { Opcode = I->getOpcode(); U = I; InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); } else if (const auto *C = dyn_cast(V)) { Opcode = C->getOpcode(); U = C; } switch (Opcode) { default: break; case Instruction::BitCast: // Look past bitcasts if its operand is in the same BB. if (InMBB) return computeCallAddress(U->getOperand(0), Addr); break; case Instruction::IntToPtr: // Look past no-op inttoptrs if its operand is in the same BB. if (InMBB && TLI.getValueType(DL, U->getOperand(0)->getType()) == TLI.getPointerTy(DL)) return computeCallAddress(U->getOperand(0), Addr); break; case Instruction::PtrToInt: // Look past no-op ptrtoints if its operand is in the same BB. if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) return computeCallAddress(U->getOperand(0), Addr); break; } if (const GlobalValue *GV = dyn_cast(V)) { Addr.setGlobalValue(GV); return true; } // If all else fails, try to materialize the value in a register. if (!Addr.getGlobalValue()) { Addr.setReg(getRegForValue(V)); return Addr.getReg() != 0; } return false; } bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) { EVT evt = TLI.getValueType(DL, Ty, true); if (Subtarget->isTargetILP32() && Ty->isPointerTy()) return false; // Only handle simple types. if (evt == MVT::Other || !evt.isSimple()) return false; VT = evt.getSimpleVT(); // This is a legal type, but it's not something we handle in fast-isel. if (VT == MVT::f128) return false; // Handle all other legal types, i.e. a register that will directly hold this // value. return TLI.isTypeLegal(VT); } /// Determine if the value type is supported by FastISel. /// /// FastISel for AArch64 can handle more value types than are legal. This adds /// simple value type such as i1, i8, and i16. bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) { if (Ty->isVectorTy() && !IsVectorAllowed) return false; if (isTypeLegal(Ty, VT)) return true; // If this is a type than can be sign or zero-extended to a basic operation // go ahead and accept it now. if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) return true; return false; } bool AArch64FastISel::isValueAvailable(const Value *V) const { if (!isa(V)) return true; const auto *I = cast(V); return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; } bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) { if (Subtarget->isTargetILP32()) return false; unsigned ScaleFactor = getImplicitScaleFactor(VT); if (!ScaleFactor) return false; bool ImmediateOffsetNeedsLowering = false; bool RegisterOffsetNeedsLowering = false; int64_t Offset = Addr.getOffset(); if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset)) ImmediateOffsetNeedsLowering = true; else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) && !isUInt<12>(Offset / ScaleFactor)) ImmediateOffsetNeedsLowering = true; // Cannot encode an offset register and an immediate offset in the same // instruction. Fold the immediate offset into the load/store instruction and // emit an additional add to take care of the offset register. if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg()) RegisterOffsetNeedsLowering = true; // Cannot encode zero register as base. if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg()) RegisterOffsetNeedsLowering = true; // If this is a stack pointer and the offset needs to be simplified then put // the alloca address into a register, set the base type back to register and // continue. This should almost never happen. if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase()) { Register ResultReg = createResultReg(&AArch64::GPR64spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADDXri), ResultReg) .addFrameIndex(Addr.getFI()) .addImm(0) .addImm(0); Addr.setKind(Address::RegBase); Addr.setReg(ResultReg); } if (RegisterOffsetNeedsLowering) { unsigned ResultReg = 0; if (Addr.getReg()) { if (Addr.getExtendType() == AArch64_AM::SXTW || Addr.getExtendType() == AArch64_AM::UXTW ) ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(), Addr.getOffsetReg(), Addr.getExtendType(), Addr.getShift()); else ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(), Addr.getOffsetReg(), AArch64_AM::LSL, Addr.getShift()); } else { if (Addr.getExtendType() == AArch64_AM::UXTW) ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(), Addr.getShift(), /*IsZExt=*/true); else if (Addr.getExtendType() == AArch64_AM::SXTW) ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(), Addr.getShift(), /*IsZExt=*/false); else ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(), Addr.getShift()); } if (!ResultReg) return false; Addr.setReg(ResultReg); Addr.setOffsetReg(0); Addr.setShift(0); Addr.setExtendType(AArch64_AM::InvalidShiftExtend); } // Since the offset is too large for the load/store instruction get the // reg+offset into a register. if (ImmediateOffsetNeedsLowering) { unsigned ResultReg; if (Addr.getReg()) // Try to fold the immediate into the add instruction. ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), Offset); else ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset); if (!ResultReg) return false; Addr.setReg(ResultReg); Addr.setOffset(0); } return true; } void AArch64FastISel::addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB, MachineMemOperand::Flags Flags, unsigned ScaleFactor, MachineMemOperand *MMO) { int64_t Offset = Addr.getOffset() / ScaleFactor; // Frame base works a bit differently. Handle it separately. if (Addr.isFIBase()) { int FI = Addr.getFI(); // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size // and alignment should be based on the VT. MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); // Now add the rest of the operands. MIB.addFrameIndex(FI).addImm(Offset); } else { assert(Addr.isRegBase() && "Unexpected address kind."); const MCInstrDesc &II = MIB->getDesc(); unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0; Addr.setReg( constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx)); Addr.setOffsetReg( constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1)); if (Addr.getOffsetReg()) { assert(Addr.getOffset() == 0 && "Unexpected offset"); bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW || Addr.getExtendType() == AArch64_AM::SXTX; MIB.addReg(Addr.getReg()); MIB.addReg(Addr.getOffsetReg()); MIB.addImm(IsSigned); MIB.addImm(Addr.getShift() != 0); } else MIB.addReg(Addr.getReg()).addImm(Offset); } if (MMO) MIB.addMemOperand(MMO); } unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS, const Value *RHS, bool SetFlags, bool WantResult, bool IsZExt) { AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend; bool NeedExtend = false; switch (RetVT.SimpleTy) { default: return 0; case MVT::i1: NeedExtend = true; break; case MVT::i8: NeedExtend = true; ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB; break; case MVT::i16: NeedExtend = true; ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH; break; case MVT::i32: // fall-through case MVT::i64: break; } MVT SrcVT = RetVT; RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32); // Canonicalize immediates to the RHS first. if (UseAdd && isa(LHS) && !isa(RHS)) std::swap(LHS, RHS); // Canonicalize mul by power of 2 to the RHS. if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS)) if (isMulPowOf2(LHS)) std::swap(LHS, RHS); // Canonicalize shift immediate to the RHS. if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS)) if (const auto *SI = dyn_cast(LHS)) if (isa(SI->getOperand(1))) if (SI->getOpcode() == Instruction::Shl || SI->getOpcode() == Instruction::LShr || SI->getOpcode() == Instruction::AShr ) std::swap(LHS, RHS); Register LHSReg = getRegForValue(LHS); if (!LHSReg) return 0; if (NeedExtend) LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt); unsigned ResultReg = 0; if (const auto *C = dyn_cast(RHS)) { uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue(); if (C->isNegative()) ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, -Imm, SetFlags, WantResult); else ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, Imm, SetFlags, WantResult); } else if (const auto *C = dyn_cast(RHS)) if (C->isNullValue()) ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, 0, SetFlags, WantResult); if (ResultReg) return ResultReg; // Only extend the RHS within the instruction if there is a valid extend type. if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() && isValueAvailable(RHS)) { Register RHSReg = getRegForValue(RHS); if (!RHSReg) return 0; return emitAddSub_rx(UseAdd, RetVT, LHSReg, RHSReg, ExtendType, 0, SetFlags, WantResult); } // Check if the mul can be folded into the instruction. if (RHS->hasOneUse() && isValueAvailable(RHS)) { if (isMulPowOf2(RHS)) { const Value *MulLHS = cast(RHS)->getOperand(0); const Value *MulRHS = cast(RHS)->getOperand(1); if (const auto *C = dyn_cast(MulLHS)) if (C->getValue().isPowerOf2()) std::swap(MulLHS, MulRHS); assert(isa(MulRHS) && "Expected a ConstantInt."); uint64_t ShiftVal = cast(MulRHS)->getValue().logBase2(); Register RHSReg = getRegForValue(MulLHS); if (!RHSReg) return 0; ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, RHSReg, AArch64_AM::LSL, ShiftVal, SetFlags, WantResult); if (ResultReg) return ResultReg; } } // Check if the shift can be folded into the instruction. if (RHS->hasOneUse() && isValueAvailable(RHS)) { if (const auto *SI = dyn_cast(RHS)) { if (const auto *C = dyn_cast(SI->getOperand(1))) { AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend; switch (SI->getOpcode()) { default: break; case Instruction::Shl: ShiftType = AArch64_AM::LSL; break; case Instruction::LShr: ShiftType = AArch64_AM::LSR; break; case Instruction::AShr: ShiftType = AArch64_AM::ASR; break; } uint64_t ShiftVal = C->getZExtValue(); if (ShiftType != AArch64_AM::InvalidShiftExtend) { Register RHSReg = getRegForValue(SI->getOperand(0)); if (!RHSReg) return 0; ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, RHSReg, ShiftType, ShiftVal, SetFlags, WantResult); if (ResultReg) return ResultReg; } } } } Register RHSReg = getRegForValue(RHS); if (!RHSReg) return 0; if (NeedExtend) RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt); return emitAddSub_rr(UseAdd, RetVT, LHSReg, RHSReg, SetFlags, WantResult); } unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg, unsigned RHSReg, bool SetFlags, bool WantResult) { assert(LHSReg && RHSReg && "Invalid register number."); if (LHSReg == AArch64::SP || LHSReg == AArch64::WSP || RHSReg == AArch64::SP || RHSReg == AArch64::WSP) return 0; if (RetVT != MVT::i32 && RetVT != MVT::i64) return 0; static const unsigned OpcTable[2][2][2] = { { { AArch64::SUBWrr, AArch64::SUBXrr }, { AArch64::ADDWrr, AArch64::ADDXrr } }, { { AArch64::SUBSWrr, AArch64::SUBSXrr }, { AArch64::ADDSWrr, AArch64::ADDSXrr } } }; bool Is64Bit = RetVT == MVT::i64; unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; const TargetRegisterClass *RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; unsigned ResultReg; if (WantResult) ResultReg = createResultReg(RC); else ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; const MCInstrDesc &II = TII.get(Opc); LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs()); RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(LHSReg) .addReg(RHSReg); return ResultReg; } unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg, uint64_t Imm, bool SetFlags, bool WantResult) { assert(LHSReg && "Invalid register number."); if (RetVT != MVT::i32 && RetVT != MVT::i64) return 0; unsigned ShiftImm; if (isUInt<12>(Imm)) ShiftImm = 0; else if ((Imm & 0xfff000) == Imm) { ShiftImm = 12; Imm >>= 12; } else return 0; static const unsigned OpcTable[2][2][2] = { { { AArch64::SUBWri, AArch64::SUBXri }, { AArch64::ADDWri, AArch64::ADDXri } }, { { AArch64::SUBSWri, AArch64::SUBSXri }, { AArch64::ADDSWri, AArch64::ADDSXri } } }; bool Is64Bit = RetVT == MVT::i64; unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; const TargetRegisterClass *RC; if (SetFlags) RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; else RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass; unsigned ResultReg; if (WantResult) ResultReg = createResultReg(RC); else ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; const MCInstrDesc &II = TII.get(Opc); LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs()); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(LHSReg) .addImm(Imm) .addImm(getShifterImm(AArch64_AM::LSL, ShiftImm)); return ResultReg; } unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg, unsigned RHSReg, AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm, bool SetFlags, bool WantResult) { assert(LHSReg && RHSReg && "Invalid register number."); assert(LHSReg != AArch64::SP && LHSReg != AArch64::WSP && RHSReg != AArch64::SP && RHSReg != AArch64::WSP); if (RetVT != MVT::i32 && RetVT != MVT::i64) return 0; // Don't deal with undefined shifts. if (ShiftImm >= RetVT.getSizeInBits()) return 0; static const unsigned OpcTable[2][2][2] = { { { AArch64::SUBWrs, AArch64::SUBXrs }, { AArch64::ADDWrs, AArch64::ADDXrs } }, { { AArch64::SUBSWrs, AArch64::SUBSXrs }, { AArch64::ADDSWrs, AArch64::ADDSXrs } } }; bool Is64Bit = RetVT == MVT::i64; unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; const TargetRegisterClass *RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; unsigned ResultReg; if (WantResult) ResultReg = createResultReg(RC); else ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; const MCInstrDesc &II = TII.get(Opc); LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs()); RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(LHSReg) .addReg(RHSReg) .addImm(getShifterImm(ShiftType, ShiftImm)); return ResultReg; } unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg, unsigned RHSReg, AArch64_AM::ShiftExtendType ExtType, uint64_t ShiftImm, bool SetFlags, bool WantResult) { assert(LHSReg && RHSReg && "Invalid register number."); assert(LHSReg != AArch64::XZR && LHSReg != AArch64::WZR && RHSReg != AArch64::XZR && RHSReg != AArch64::WZR); if (RetVT != MVT::i32 && RetVT != MVT::i64) return 0; if (ShiftImm >= 4) return 0; static const unsigned OpcTable[2][2][2] = { { { AArch64::SUBWrx, AArch64::SUBXrx }, { AArch64::ADDWrx, AArch64::ADDXrx } }, { { AArch64::SUBSWrx, AArch64::SUBSXrx }, { AArch64::ADDSWrx, AArch64::ADDSXrx } } }; bool Is64Bit = RetVT == MVT::i64; unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; const TargetRegisterClass *RC = nullptr; if (SetFlags) RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; else RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass; unsigned ResultReg; if (WantResult) ResultReg = createResultReg(RC); else ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; const MCInstrDesc &II = TII.get(Opc); LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs()); RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) .addReg(LHSReg) .addReg(RHSReg) .addImm(getArithExtendImm(ExtType, ShiftImm)); return ResultReg; } bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) { Type *Ty = LHS->getType(); EVT EVT = TLI.getValueType(DL, Ty, true); if (!EVT.isSimple()) return false; MVT VT = EVT.getSimpleVT(); switch (VT.SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: return emitICmp(VT, LHS, RHS, IsZExt); case MVT::f32: case MVT::f64: return emitFCmp(VT, LHS, RHS); } } bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt) { return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false, IsZExt) != 0; } bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, uint64_t Imm) { return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, Imm, /*SetFlags=*/true, /*WantResult=*/false) != 0; } bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) { if (RetVT != MVT::f32 && RetVT != MVT::f64) return false; // Check to see if the 2nd operand is a constant that we can encode directly // in the compare. bool UseImm = false; if (const auto *CFP = dyn_cast(RHS)) if (CFP->isZero() && !CFP->isNegative()) UseImm = true; Register LHSReg = getRegForValue(LHS); if (!LHSReg) return false; if (UseImm) { unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) .addReg(LHSReg); return true; } Register RHSReg = getRegForValue(RHS); if (!RHSReg) return false; unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) .addReg(LHSReg) .addReg(RHSReg); return true; } unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS, bool SetFlags, bool WantResult, bool IsZExt) { return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult, IsZExt); } /// This method is a wrapper to simplify add emission. /// /// First try to emit an add with an immediate operand using emitAddSub_ri. If /// that fails, then try to materialize the immediate into a register and use /// emitAddSub_rr instead. unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, int64_t Imm) { unsigned ResultReg; if (Imm < 0) ResultReg = emitAddSub_ri(false, VT, Op0, -Imm); else ResultReg = emitAddSub_ri(true, VT, Op0, Imm); if (ResultReg) return ResultReg; unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm); if (!CReg) return 0; ResultReg = emitAddSub_rr(true, VT, Op0, CReg); return ResultReg; } unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS, bool SetFlags, bool WantResult, bool IsZExt) { return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult, IsZExt); } unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg, unsigned RHSReg, bool WantResult) { return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, RHSReg, /*SetFlags=*/true, WantResult); } unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg, unsigned RHSReg, AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm, bool WantResult) { return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, RHSReg, ShiftType, ShiftImm, /*SetFlags=*/true, WantResult); } unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, const Value *RHS) { // Canonicalize immediates to the RHS first. if (isa(LHS) && !isa(RHS)) std::swap(LHS, RHS); // Canonicalize mul by power-of-2 to the RHS. if (LHS->hasOneUse() && isValueAvailable(LHS)) if (isMulPowOf2(LHS)) std::swap(LHS, RHS); // Canonicalize shift immediate to the RHS. if (LHS->hasOneUse() && isValueAvailable(LHS)) if (const auto *SI = dyn_cast(LHS)) if (isa(SI->getOperand(1))) std::swap(LHS, RHS); Register LHSReg = getRegForValue(LHS); if (!LHSReg) return 0; unsigned ResultReg = 0; if (const auto *C = dyn_cast(RHS)) { uint64_t Imm = C->getZExtValue(); ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, Imm); } if (ResultReg) return ResultReg; // Check if the mul can be folded into the instruction. if (RHS->hasOneUse() && isValueAvailable(RHS)) { if (isMulPowOf2(RHS)) { const Value *MulLHS = cast(RHS)->getOperand(0); const Value *MulRHS = cast(RHS)->getOperand(1); if (const auto *C = dyn_cast(MulLHS)) if (C->getValue().isPowerOf2()) std::swap(MulLHS, MulRHS); assert(isa(MulRHS) && "Expected a ConstantInt."); uint64_t ShiftVal = cast(MulRHS)->getValue().logBase2(); Register RHSReg = getRegForValue(MulLHS); if (!RHSReg) return 0; ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, RHSReg, ShiftVal); if (ResultReg) return ResultReg; } } // Check if the shift can be folded into the instruction. if (RHS->hasOneUse() && isValueAvailable(RHS)) { if (const auto *SI = dyn_cast(RHS)) if (const auto *C = dyn_cast(SI->getOperand(1))) { uint64_t ShiftVal = C->getZExtValue(); Register RHSReg = getRegForValue(SI->getOperand(0)); if (!RHSReg) return 0; ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, RHSReg, ShiftVal); if (ResultReg) return ResultReg; } } Register RHSReg = getRegForValue(RHS); if (!RHSReg) return 0; MVT VT = std::max(MVT::i32, RetVT.SimpleTy); ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, RHSReg); if (RetVT >= MVT::i8 && RetVT <= MVT::i16) { uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff; ResultReg = emitAnd_ri(MVT::i32, ResultReg, Mask); } return ResultReg; } unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg, uint64_t Imm) { static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR), "ISD nodes are not consecutive!"); static const unsigned OpcTable[3][2] = { { AArch64::ANDWri, AArch64::ANDXri }, { AArch64::ORRWri, AArch64::ORRXri }, { AArch64::EORWri, AArch64::EORXri } }; const TargetRegisterClass *RC; unsigned Opc; unsigned RegSize; switch (RetVT.SimpleTy) { default: return 0; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: { unsigned Idx = ISDOpc - ISD::AND; Opc = OpcTable[Idx][0]; RC = &AArch64::GPR32spRegClass; RegSize = 32; break; } case MVT::i64: Opc = OpcTable[ISDOpc - ISD::AND][1]; RC = &AArch64::GPR64spRegClass; RegSize = 64; break; } if (!AArch64_AM::isLogicalImmediate(Imm, RegSize)) return 0; Register ResultReg = fastEmitInst_ri(Opc, RC, LHSReg, AArch64_AM::encodeLogicalImmediate(Imm, RegSize)); if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) { uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff; ResultReg = emitAnd_ri(MVT::i32, ResultReg, Mask); } return ResultReg; } unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg, unsigned RHSReg, uint64_t ShiftImm) { static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR), "ISD nodes are not consecutive!"); static const unsigned OpcTable[3][2] = { { AArch64::ANDWrs, AArch64::ANDXrs }, { AArch64::ORRWrs, AArch64::ORRXrs }, { AArch64::EORWrs, AArch64::EORXrs } }; // Don't deal with undefined shifts. if (ShiftImm >= RetVT.getSizeInBits()) return 0; const TargetRegisterClass *RC; unsigned Opc; switch (RetVT.SimpleTy) { default: return 0; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: Opc = OpcTable[ISDOpc - ISD::AND][0]; RC = &AArch64::GPR32RegClass; break; case MVT::i64: Opc = OpcTable[ISDOpc - ISD::AND][1]; RC = &AArch64::GPR64RegClass; break; } Register ResultReg = fastEmitInst_rri(Opc, RC, LHSReg, RHSReg, AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm)); if (RetVT >= MVT::i8 && RetVT <= MVT::i16) { uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff; ResultReg = emitAnd_ri(MVT::i32, ResultReg, Mask); } return ResultReg; } unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, uint64_t Imm) { return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, Imm); } unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr, bool WantZExt, MachineMemOperand *MMO) { if (!TLI.allowsMisalignedMemoryAccesses(VT)) return 0; // Simplify this down to something we can handle. if (!simplifyAddress(Addr, VT)) return 0; unsigned ScaleFactor = getImplicitScaleFactor(VT); if (!ScaleFactor) llvm_unreachable("Unexpected value type."); // Negative offsets require unscaled, 9-bit, signed immediate offsets. // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. bool UseScaled = true; if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) { UseScaled = false; ScaleFactor = 1; } static const unsigned GPOpcTable[2][8][4] = { // Sign-extend. { { AArch64::LDURSBWi, AArch64::LDURSHWi, AArch64::LDURWi, AArch64::LDURXi }, { AArch64::LDURSBXi, AArch64::LDURSHXi, AArch64::LDURSWi, AArch64::LDURXi }, { AArch64::LDRSBWui, AArch64::LDRSHWui, AArch64::LDRWui, AArch64::LDRXui }, { AArch64::LDRSBXui, AArch64::LDRSHXui, AArch64::LDRSWui, AArch64::LDRXui }, { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX, AArch64::LDRXroX }, { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX, AArch64::LDRXroX }, { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW, AArch64::LDRXroW }, { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW, AArch64::LDRXroW } }, // Zero-extend. { { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi, AArch64::LDURXi }, { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi, AArch64::LDURXi }, { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui, AArch64::LDRXui }, { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui, AArch64::LDRXui }, { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX, AArch64::LDRXroX }, { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX, AArch64::LDRXroX }, { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW, AArch64::LDRXroW }, { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW, AArch64::LDRXroW } } }; static const unsigned FPOpcTable[4][2] = { { AArch64::LDURSi, AArch64::LDURDi }, { AArch64::LDRSui, AArch64::LDRDui }, { AArch64::LDRSroX, AArch64::LDRDroX }, { AArch64::LDRSroW, AArch64::LDRDroW } }; unsigned Opc; const TargetRegisterClass *RC; bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() && Addr.getOffsetReg(); unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0; if (Addr.getExtendType() == AArch64_AM::UXTW || Addr.getExtendType() == AArch64_AM::SXTW) Idx++; bool IsRet64Bit = RetVT == MVT::i64; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type."); case MVT::i1: // Intentional fall-through. case MVT::i8: Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0]; RC = (IsRet64Bit && !WantZExt) ? &AArch64::GPR64RegClass: &AArch64::GPR32RegClass; break; case MVT::i16: Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1]; RC = (IsRet64Bit && !WantZExt) ? &AArch64::GPR64RegClass: &AArch64::GPR32RegClass; break; case MVT::i32: Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2]; RC = (IsRet64Bit && !WantZExt) ? &AArch64::GPR64RegClass: &AArch64::GPR32RegClass; break; case MVT::i64: Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3]; RC = &AArch64::GPR64RegClass; break; case MVT::f32: Opc = FPOpcTable[Idx][0]; RC = &AArch64::FPR32RegClass; break; case MVT::f64: Opc = FPOpcTable[Idx][1]; RC = &AArch64::FPR64RegClass; break; } // Create the base instruction, then add the operands. Register ResultReg = createResultReg(RC); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO); // Loading an i1 requires special handling. if (VT == MVT::i1) { unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, 1); assert(ANDReg && "Unexpected AND instruction emission failure."); ResultReg = ANDReg; } // For zero-extending loads to 64bit we emit a 32bit load and then convert // the 32bit reg to a 64bit reg. if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) { Register Reg64 = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), Reg64) .addImm(0) .addReg(ResultReg, getKillRegState(true)) .addImm(AArch64::sub_32); ResultReg = Reg64; } return ResultReg; } bool AArch64FastISel::selectAddSub(const Instruction *I) { MVT VT; if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true)) return false; if (VT.isVector()) return selectOperator(I, I->getOpcode()); unsigned ResultReg; switch (I->getOpcode()) { default: llvm_unreachable("Unexpected instruction."); case Instruction::Add: ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1)); break; case Instruction::Sub: ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1)); break; } if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectLogicalOp(const Instruction *I) { MVT VT; if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true)) return false; if (VT.isVector()) return selectOperator(I, I->getOpcode()); unsigned ResultReg; switch (I->getOpcode()) { default: llvm_unreachable("Unexpected instruction."); case Instruction::And: ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1)); break; case Instruction::Or: ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1)); break; case Instruction::Xor: ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1)); break; } if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectLoad(const Instruction *I) { MVT VT; // Verify we have a legal type before going any further. Currently, we handle // simple types that will directly fit in a register (i32/f32/i64/f64) or // those that can be sign or zero-extended to a basic operation (i1/i8/i16). if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) || cast(I)->isAtomic()) return false; const Value *SV = I->getOperand(0); if (TLI.supportSwiftError()) { // Swifterror values can come from either a function parameter with // swifterror attribute or an alloca with swifterror attribute. if (const Argument *Arg = dyn_cast(SV)) { if (Arg->hasSwiftErrorAttr()) return false; } if (const AllocaInst *Alloca = dyn_cast(SV)) { if (Alloca->isSwiftError()) return false; } } // See if we can handle this address. Address Addr; if (!computeAddress(I->getOperand(0), Addr, I->getType())) return false; // Fold the following sign-/zero-extend into the load instruction. bool WantZExt = true; MVT RetVT = VT; const Value *IntExtVal = nullptr; if (I->hasOneUse()) { if (const auto *ZE = dyn_cast(I->use_begin()->getUser())) { if (isTypeSupported(ZE->getType(), RetVT)) IntExtVal = ZE; else RetVT = VT; } else if (const auto *SE = dyn_cast(I->use_begin()->getUser())) { if (isTypeSupported(SE->getType(), RetVT)) IntExtVal = SE; else RetVT = VT; WantZExt = false; } } unsigned ResultReg = emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I)); if (!ResultReg) return false; // There are a few different cases we have to handle, because the load or the // sign-/zero-extend might not be selected by FastISel if we fall-back to // SelectionDAG. There is also an ordering issue when both instructions are in // different basic blocks. // 1.) The load instruction is selected by FastISel, but the integer extend // not. This usually happens when the integer extend is in a different // basic block and SelectionDAG took over for that basic block. // 2.) The load instruction is selected before the integer extend. This only // happens when the integer extend is in a different basic block. // 3.) The load instruction is selected by SelectionDAG and the integer extend // by FastISel. This happens if there are instructions between the load // and the integer extend that couldn't be selected by FastISel. if (IntExtVal) { // The integer extend hasn't been emitted yet. FastISel or SelectionDAG // could select it. Emit a copy to subreg if necessary. FastISel will remove // it when it selects the integer extend. Register Reg = lookUpRegForValue(IntExtVal); auto *MI = MRI.getUniqueVRegDef(Reg); if (!MI) { if (RetVT == MVT::i64 && VT <= MVT::i32) { if (WantZExt) { // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG). MachineBasicBlock::iterator I(std::prev(FuncInfo.InsertPt)); ResultReg = std::prev(I)->getOperand(0).getReg(); removeDeadCode(I, std::next(I)); } else ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg, AArch64::sub_32); } updateValueMap(I, ResultReg); return true; } // The integer extend has already been emitted - delete all the instructions // that have been emitted by the integer extend lowering code and use the // result from the load instruction directly. while (MI) { Reg = 0; for (auto &Opnd : MI->uses()) { if (Opnd.isReg()) { Reg = Opnd.getReg(); break; } } MachineBasicBlock::iterator I(MI); removeDeadCode(I, std::next(I)); MI = nullptr; if (Reg) MI = MRI.getUniqueVRegDef(Reg); } updateValueMap(IntExtVal, ResultReg); return true; } updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::emitStoreRelease(MVT VT, unsigned SrcReg, unsigned AddrReg, MachineMemOperand *MMO) { unsigned Opc; switch (VT.SimpleTy) { default: return false; case MVT::i8: Opc = AArch64::STLRB; break; case MVT::i16: Opc = AArch64::STLRH; break; case MVT::i32: Opc = AArch64::STLRW; break; case MVT::i64: Opc = AArch64::STLRX; break; } const MCInstrDesc &II = TII.get(Opc); SrcReg = constrainOperandRegClass(II, SrcReg, 0); AddrReg = constrainOperandRegClass(II, AddrReg, 1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(SrcReg) .addReg(AddrReg) .addMemOperand(MMO); return true; } bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr, MachineMemOperand *MMO) { if (!TLI.allowsMisalignedMemoryAccesses(VT)) return false; // Simplify this down to something we can handle. if (!simplifyAddress(Addr, VT)) return false; unsigned ScaleFactor = getImplicitScaleFactor(VT); if (!ScaleFactor) llvm_unreachable("Unexpected value type."); // Negative offsets require unscaled, 9-bit, signed immediate offsets. // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. bool UseScaled = true; if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) { UseScaled = false; ScaleFactor = 1; } static const unsigned OpcTable[4][6] = { { AArch64::STURBBi, AArch64::STURHHi, AArch64::STURWi, AArch64::STURXi, AArch64::STURSi, AArch64::STURDi }, { AArch64::STRBBui, AArch64::STRHHui, AArch64::STRWui, AArch64::STRXui, AArch64::STRSui, AArch64::STRDui }, { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX, AArch64::STRSroX, AArch64::STRDroX }, { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW, AArch64::STRSroW, AArch64::STRDroW } }; unsigned Opc; bool VTIsi1 = false; bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() && Addr.getOffsetReg(); unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0; if (Addr.getExtendType() == AArch64_AM::UXTW || Addr.getExtendType() == AArch64_AM::SXTW) Idx++; switch (VT.SimpleTy) { default: llvm_unreachable("Unexpected value type."); case MVT::i1: VTIsi1 = true; [[fallthrough]]; case MVT::i8: Opc = OpcTable[Idx][0]; break; case MVT::i16: Opc = OpcTable[Idx][1]; break; case MVT::i32: Opc = OpcTable[Idx][2]; break; case MVT::i64: Opc = OpcTable[Idx][3]; break; case MVT::f32: Opc = OpcTable[Idx][4]; break; case MVT::f64: Opc = OpcTable[Idx][5]; break; } // Storing an i1 requires special handling. if (VTIsi1 && SrcReg != AArch64::WZR) { unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, 1); assert(ANDReg && "Unexpected AND instruction emission failure."); SrcReg = ANDReg; } // Create the base instruction, then add the operands. const MCInstrDesc &II = TII.get(Opc); SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs()); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addReg(SrcReg); addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO); return true; } bool AArch64FastISel::selectStore(const Instruction *I) { MVT VT; const Value *Op0 = I->getOperand(0); // Verify we have a legal type before going any further. Currently, we handle // simple types that will directly fit in a register (i32/f32/i64/f64) or // those that can be sign or zero-extended to a basic operation (i1/i8/i16). if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true)) return false; const Value *PtrV = I->getOperand(1); if (TLI.supportSwiftError()) { // Swifterror values can come from either a function parameter with // swifterror attribute or an alloca with swifterror attribute. if (const Argument *Arg = dyn_cast(PtrV)) { if (Arg->hasSwiftErrorAttr()) return false; } if (const AllocaInst *Alloca = dyn_cast(PtrV)) { if (Alloca->isSwiftError()) return false; } } // Get the value to be stored into a register. Use the zero register directly // when possible to avoid an unnecessary copy and a wasted register. unsigned SrcReg = 0; if (const auto *CI = dyn_cast(Op0)) { if (CI->isZero()) SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; } else if (const auto *CF = dyn_cast(Op0)) { if (CF->isZero() && !CF->isNegative()) { VT = MVT::getIntegerVT(VT.getSizeInBits()); SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; } } if (!SrcReg) SrcReg = getRegForValue(Op0); if (!SrcReg) return false; auto *SI = cast(I); // Try to emit a STLR for seq_cst/release. if (SI->isAtomic()) { AtomicOrdering Ord = SI->getOrdering(); // The non-atomic instructions are sufficient for relaxed stores. if (isReleaseOrStronger(Ord)) { // The STLR addressing mode only supports a base reg; pass that directly. Register AddrReg = getRegForValue(PtrV); return emitStoreRelease(VT, SrcReg, AddrReg, createMachineMemOperandFor(I)); } } // See if we can handle this address. Address Addr; if (!computeAddress(PtrV, Addr, Op0->getType())) return false; if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I))) return false; return true; } static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) { switch (Pred) { case CmpInst::FCMP_ONE: case CmpInst::FCMP_UEQ: default: // AL is our "false" for now. The other two need more compares. return AArch64CC::AL; case CmpInst::ICMP_EQ: case CmpInst::FCMP_OEQ: return AArch64CC::EQ; case CmpInst::ICMP_SGT: case CmpInst::FCMP_OGT: return AArch64CC::GT; case CmpInst::ICMP_SGE: case CmpInst::FCMP_OGE: return AArch64CC::GE; case CmpInst::ICMP_UGT: case CmpInst::FCMP_UGT: return AArch64CC::HI; case CmpInst::FCMP_OLT: return AArch64CC::MI; case CmpInst::ICMP_ULE: case CmpInst::FCMP_OLE: return AArch64CC::LS; case CmpInst::FCMP_ORD: return AArch64CC::VC; case CmpInst::FCMP_UNO: return AArch64CC::VS; case CmpInst::FCMP_UGE: return AArch64CC::PL; case CmpInst::ICMP_SLT: case CmpInst::FCMP_ULT: return AArch64CC::LT; case CmpInst::ICMP_SLE: case CmpInst::FCMP_ULE: return AArch64CC::LE; case CmpInst::FCMP_UNE: case CmpInst::ICMP_NE: return AArch64CC::NE; case CmpInst::ICMP_UGE: return AArch64CC::HS; case CmpInst::ICMP_ULT: return AArch64CC::LO; } } /// Try to emit a combined compare-and-branch instruction. bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) { // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions // will not be produced, as they are conditional branch instructions that do // not set flags. if (FuncInfo.MF->getFunction().hasFnAttribute( Attribute::SpeculativeLoadHardening)) return false; assert(isa(BI->getCondition()) && "Expected cmp instruction"); const CmpInst *CI = cast(BI->getCondition()); CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); const Value *LHS = CI->getOperand(0); const Value *RHS = CI->getOperand(1); MVT VT; if (!isTypeSupported(LHS->getType(), VT)) return false; unsigned BW = VT.getSizeInBits(); if (BW > 64) return false; MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; // Try to take advantage of fallthrough opportunities. if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { std::swap(TBB, FBB); Predicate = CmpInst::getInversePredicate(Predicate); } int TestBit = -1; bool IsCmpNE; switch (Predicate) { default: return false; case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: if (isa(LHS) && cast(LHS)->isNullValue()) std::swap(LHS, RHS); if (!isa(RHS) || !cast(RHS)->isNullValue()) return false; if (const auto *AI = dyn_cast(LHS)) if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) { const Value *AndLHS = AI->getOperand(0); const Value *AndRHS = AI->getOperand(1); if (const auto *C = dyn_cast(AndLHS)) if (C->getValue().isPowerOf2()) std::swap(AndLHS, AndRHS); if (const auto *C = dyn_cast(AndRHS)) if (C->getValue().isPowerOf2()) { TestBit = C->getValue().logBase2(); LHS = AndLHS; } } if (VT == MVT::i1) TestBit = 0; IsCmpNE = Predicate == CmpInst::ICMP_NE; break; case CmpInst::ICMP_SLT: case CmpInst::ICMP_SGE: if (!isa(RHS) || !cast(RHS)->isNullValue()) return false; TestBit = BW - 1; IsCmpNE = Predicate == CmpInst::ICMP_SLT; break; case CmpInst::ICMP_SGT: case CmpInst::ICMP_SLE: if (!isa(RHS)) return false; if (cast(RHS)->getValue() != APInt(BW, -1, true)) return false; TestBit = BW - 1; IsCmpNE = Predicate == CmpInst::ICMP_SLE; break; } // end switch static const unsigned OpcTable[2][2][2] = { { {AArch64::CBZW, AArch64::CBZX }, {AArch64::CBNZW, AArch64::CBNZX} }, { {AArch64::TBZW, AArch64::TBZX }, {AArch64::TBNZW, AArch64::TBNZX} } }; bool IsBitTest = TestBit != -1; bool Is64Bit = BW == 64; if (TestBit < 32 && TestBit >= 0) Is64Bit = false; unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit]; const MCInstrDesc &II = TII.get(Opc); Register SrcReg = getRegForValue(LHS); if (!SrcReg) return false; if (BW == 64 && !Is64Bit) SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, AArch64::sub_32); if ((BW < 32) && !IsBitTest) SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*isZExt=*/true); // Emit the combined compare and branch instruction. SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs()); MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) .addReg(SrcReg); if (IsBitTest) MIB.addImm(TestBit); MIB.addMBB(TBB); finishCondBranch(BI->getParent(), TBB, FBB); return true; } bool AArch64FastISel::selectBranch(const Instruction *I) { const BranchInst *BI = cast(I); if (BI->isUnconditional()) { MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)]; fastEmitBranch(MSucc, BI->getDebugLoc()); return true; } MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; if (const CmpInst *CI = dyn_cast(BI->getCondition())) { if (CI->hasOneUse() && isValueAvailable(CI)) { // Try to optimize or fold the cmp. CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); switch (Predicate) { default: break; case CmpInst::FCMP_FALSE: fastEmitBranch(FBB, MIMD.getDL()); return true; case CmpInst::FCMP_TRUE: fastEmitBranch(TBB, MIMD.getDL()); return true; } // Try to emit a combined compare-and-branch first. if (emitCompareAndBranch(BI)) return true; // Try to take advantage of fallthrough opportunities. if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { std::swap(TBB, FBB); Predicate = CmpInst::getInversePredicate(Predicate); } // Emit the cmp. if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) return false; // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch // instruction. AArch64CC::CondCode CC = getCompareCC(Predicate); AArch64CC::CondCode ExtraCC = AArch64CC::AL; switch (Predicate) { default: break; case CmpInst::FCMP_UEQ: ExtraCC = AArch64CC::EQ; CC = AArch64CC::VS; break; case CmpInst::FCMP_ONE: ExtraCC = AArch64CC::MI; CC = AArch64CC::GT; break; } assert((CC != AArch64CC::AL) && "Unexpected condition code."); // Emit the extra branch for FCMP_UEQ and FCMP_ONE. if (ExtraCC != AArch64CC::AL) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::Bcc)) .addImm(ExtraCC) .addMBB(TBB); } // Emit the branch. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::Bcc)) .addImm(CC) .addMBB(TBB); finishCondBranch(BI->getParent(), TBB, FBB); return true; } } else if (const auto *CI = dyn_cast(BI->getCondition())) { uint64_t Imm = CI->getZExtValue(); MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::B)) .addMBB(Target); // Obtain the branch probability and add the target to the successor list. if (FuncInfo.BPI) { auto BranchProbability = FuncInfo.BPI->getEdgeProbability( BI->getParent(), Target->getBasicBlock()); FuncInfo.MBB->addSuccessor(Target, BranchProbability); } else FuncInfo.MBB->addSuccessorWithoutProb(Target); return true; } else { AArch64CC::CondCode CC = AArch64CC::NE; if (foldXALUIntrinsic(CC, I, BI->getCondition())) { // Fake request the condition, otherwise the intrinsic might be completely // optimized away. Register CondReg = getRegForValue(BI->getCondition()); if (!CondReg) return false; // Emit the branch. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::Bcc)) .addImm(CC) .addMBB(TBB); finishCondBranch(BI->getParent(), TBB, FBB); return true; } } Register CondReg = getRegForValue(BI->getCondition()); if (CondReg == 0) return false; // i1 conditions come as i32 values, test the lowest bit with tb(n)z. unsigned Opcode = AArch64::TBNZW; if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { std::swap(TBB, FBB); Opcode = AArch64::TBZW; } const MCInstrDesc &II = TII.get(Opcode); Register ConstrainedCondReg = constrainOperandRegClass(II, CondReg, II.getNumDefs()); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addReg(ConstrainedCondReg) .addImm(0) .addMBB(TBB); finishCondBranch(BI->getParent(), TBB, FBB); return true; } bool AArch64FastISel::selectIndirectBr(const Instruction *I) { const IndirectBrInst *BI = cast(I); Register AddrReg = getRegForValue(BI->getOperand(0)); if (AddrReg == 0) return false; // Authenticated indirectbr is not implemented yet. if (FuncInfo.MF->getFunction().hasFnAttribute("ptrauth-indirect-gotos")) return false; // Emit the indirect branch. const MCInstrDesc &II = TII.get(AArch64::BR); AddrReg = constrainOperandRegClass(II, AddrReg, II.getNumDefs()); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addReg(AddrReg); // Make sure the CFG is up-to-date. for (const auto *Succ : BI->successors()) FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[Succ]); return true; } bool AArch64FastISel::selectCmp(const Instruction *I) { const CmpInst *CI = cast(I); // Vectors of i1 are weird: bail out. if (CI->getType()->isVectorTy()) return false; // Try to optimize or fold the cmp. CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); unsigned ResultReg = 0; switch (Predicate) { default: break; case CmpInst::FCMP_FALSE: ResultReg = createResultReg(&AArch64::GPR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(AArch64::WZR, getKillRegState(true)); break; case CmpInst::FCMP_TRUE: ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1); break; } if (ResultReg) { updateValueMap(I, ResultReg); return true; } // Emit the cmp. if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) return false; ResultReg = createResultReg(&AArch64::GPR32RegClass); // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These // condition codes are inverted, because they are used by CSINC. static unsigned CondCodeTable[2][2] = { { AArch64CC::NE, AArch64CC::VC }, { AArch64CC::PL, AArch64CC::LE } }; unsigned *CondCodes = nullptr; switch (Predicate) { default: break; case CmpInst::FCMP_UEQ: CondCodes = &CondCodeTable[0][0]; break; case CmpInst::FCMP_ONE: CondCodes = &CondCodeTable[1][0]; break; } if (CondCodes) { Register TmpReg1 = createResultReg(&AArch64::GPR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::CSINCWr), TmpReg1) .addReg(AArch64::WZR, getKillRegState(true)) .addReg(AArch64::WZR, getKillRegState(true)) .addImm(CondCodes[0]); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::CSINCWr), ResultReg) .addReg(TmpReg1, getKillRegState(true)) .addReg(AArch64::WZR, getKillRegState(true)) .addImm(CondCodes[1]); updateValueMap(I, ResultReg); return true; } // Now set a register based on the comparison. AArch64CC::CondCode CC = getCompareCC(Predicate); assert((CC != AArch64CC::AL) && "Unexpected condition code."); AArch64CC::CondCode invertedCC = getInvertedCondCode(CC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::CSINCWr), ResultReg) .addReg(AArch64::WZR, getKillRegState(true)) .addReg(AArch64::WZR, getKillRegState(true)) .addImm(invertedCC); updateValueMap(I, ResultReg); return true; } /// Optimize selects of i1 if one of the operands has a 'true' or 'false' /// value. bool AArch64FastISel::optimizeSelect(const SelectInst *SI) { if (!SI->getType()->isIntegerTy(1)) return false; const Value *Src1Val, *Src2Val; unsigned Opc = 0; bool NeedExtraOp = false; if (auto *CI = dyn_cast(SI->getTrueValue())) { if (CI->isOne()) { Src1Val = SI->getCondition(); Src2Val = SI->getFalseValue(); Opc = AArch64::ORRWrr; } else { assert(CI->isZero()); Src1Val = SI->getFalseValue(); Src2Val = SI->getCondition(); Opc = AArch64::BICWrr; } } else if (auto *CI = dyn_cast(SI->getFalseValue())) { if (CI->isOne()) { Src1Val = SI->getCondition(); Src2Val = SI->getTrueValue(); Opc = AArch64::ORRWrr; NeedExtraOp = true; } else { assert(CI->isZero()); Src1Val = SI->getCondition(); Src2Val = SI->getTrueValue(); Opc = AArch64::ANDWrr; } } if (!Opc) return false; Register Src1Reg = getRegForValue(Src1Val); if (!Src1Reg) return false; Register Src2Reg = getRegForValue(Src2Val); if (!Src2Reg) return false; if (NeedExtraOp) Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, 1); Register ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32RegClass, Src1Reg, Src2Reg); updateValueMap(SI, ResultReg); return true; } bool AArch64FastISel::selectSelect(const Instruction *I) { assert(isa(I) && "Expected a select instruction."); MVT VT; if (!isTypeSupported(I->getType(), VT)) return false; unsigned Opc; const TargetRegisterClass *RC; switch (VT.SimpleTy) { default: return false; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: Opc = AArch64::CSELWr; RC = &AArch64::GPR32RegClass; break; case MVT::i64: Opc = AArch64::CSELXr; RC = &AArch64::GPR64RegClass; break; case MVT::f32: Opc = AArch64::FCSELSrrr; RC = &AArch64::FPR32RegClass; break; case MVT::f64: Opc = AArch64::FCSELDrrr; RC = &AArch64::FPR64RegClass; break; } const SelectInst *SI = cast(I); const Value *Cond = SI->getCondition(); AArch64CC::CondCode CC = AArch64CC::NE; AArch64CC::CondCode ExtraCC = AArch64CC::AL; if (optimizeSelect(SI)) return true; // Try to pickup the flags, so we don't have to emit another compare. if (foldXALUIntrinsic(CC, I, Cond)) { // Fake request the condition to force emission of the XALU intrinsic. Register CondReg = getRegForValue(Cond); if (!CondReg) return false; } else if (isa(Cond) && cast(Cond)->hasOneUse() && isValueAvailable(Cond)) { const auto *Cmp = cast(Cond); // Try to optimize or fold the cmp. CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp); const Value *FoldSelect = nullptr; switch (Predicate) { default: break; case CmpInst::FCMP_FALSE: FoldSelect = SI->getFalseValue(); break; case CmpInst::FCMP_TRUE: FoldSelect = SI->getTrueValue(); break; } if (FoldSelect) { Register SrcReg = getRegForValue(FoldSelect); if (!SrcReg) return false; updateValueMap(I, SrcReg); return true; } // Emit the cmp. if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned())) return false; // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction. CC = getCompareCC(Predicate); switch (Predicate) { default: break; case CmpInst::FCMP_UEQ: ExtraCC = AArch64CC::EQ; CC = AArch64CC::VS; break; case CmpInst::FCMP_ONE: ExtraCC = AArch64CC::MI; CC = AArch64CC::GT; break; } assert((CC != AArch64CC::AL) && "Unexpected condition code."); } else { Register CondReg = getRegForValue(Cond); if (!CondReg) return false; const MCInstrDesc &II = TII.get(AArch64::ANDSWri); CondReg = constrainOperandRegClass(II, CondReg, 1); // Emit a TST instruction (ANDS wzr, reg, #imm). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, AArch64::WZR) .addReg(CondReg) .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); } Register Src1Reg = getRegForValue(SI->getTrueValue()); Register Src2Reg = getRegForValue(SI->getFalseValue()); if (!Src1Reg || !Src2Reg) return false; if (ExtraCC != AArch64CC::AL) Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src2Reg, ExtraCC); Register ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src2Reg, CC); updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectFPExt(const Instruction *I) { Value *V = I->getOperand(0); if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy()) return false; Register Op = getRegForValue(V); if (Op == 0) return false; Register ResultReg = createResultReg(&AArch64::FPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::FCVTDSr), ResultReg).addReg(Op); updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectFPTrunc(const Instruction *I) { Value *V = I->getOperand(0); if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy()) return false; Register Op = getRegForValue(V); if (Op == 0) return false; Register ResultReg = createResultReg(&AArch64::FPR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::FCVTSDr), ResultReg).addReg(Op); updateValueMap(I, ResultReg); return true; } // FPToUI and FPToSI bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) { MVT DestVT; if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) return false; Register SrcReg = getRegForValue(I->getOperand(0)); if (SrcReg == 0) return false; EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true); if (SrcVT == MVT::f128 || SrcVT == MVT::f16 || SrcVT == MVT::bf16) return false; unsigned Opc; if (SrcVT == MVT::f64) { if (Signed) Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr; else Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr; } else { if (Signed) Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr; else Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr; } Register ResultReg = createResultReg( DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) .addReg(SrcReg); updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) { MVT DestVT; if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) return false; // Let regular ISEL handle FP16 if (DestVT == MVT::f16 || DestVT == MVT::bf16) return false; assert((DestVT == MVT::f32 || DestVT == MVT::f64) && "Unexpected value type."); Register SrcReg = getRegForValue(I->getOperand(0)); if (!SrcReg) return false; EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true); // Handle sign-extension. if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) { SrcReg = emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed); if (!SrcReg) return false; } unsigned Opc; if (SrcVT == MVT::i64) { if (Signed) Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri; else Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri; } else { if (Signed) Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri; else Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri; } Register ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg); updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::fastLowerArguments() { if (!FuncInfo.CanLowerReturn) return false; const Function *F = FuncInfo.Fn; if (F->isVarArg()) return false; CallingConv::ID CC = F->getCallingConv(); if (CC != CallingConv::C && CC != CallingConv::Swift) return false; if (Subtarget->hasCustomCallingConv()) return false; // Only handle simple cases of up to 8 GPR and FPR each. unsigned GPRCnt = 0; unsigned FPRCnt = 0; for (auto const &Arg : F->args()) { if (Arg.hasAttribute(Attribute::ByVal) || Arg.hasAttribute(Attribute::InReg) || Arg.hasAttribute(Attribute::StructRet) || Arg.hasAttribute(Attribute::SwiftSelf) || Arg.hasAttribute(Attribute::SwiftAsync) || Arg.hasAttribute(Attribute::SwiftError) || Arg.hasAttribute(Attribute::Nest)) return false; Type *ArgTy = Arg.getType(); if (ArgTy->isStructTy() || ArgTy->isArrayTy()) return false; EVT ArgVT = TLI.getValueType(DL, ArgTy); if (!ArgVT.isSimple()) return false; MVT VT = ArgVT.getSimpleVT().SimpleTy; if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8()) return false; if (VT.isVector() && (!Subtarget->hasNEON() || !Subtarget->isLittleEndian())) return false; if (VT >= MVT::i1 && VT <= MVT::i64) ++GPRCnt; else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() || VT.is128BitVector()) ++FPRCnt; else return false; if (GPRCnt > 8 || FPRCnt > 8) return false; } static const MCPhysReg Registers[6][8] = { { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4, AArch64::W5, AArch64::W6, AArch64::W7 }, { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 }, { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4, AArch64::H5, AArch64::H6, AArch64::H7 }, { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4, AArch64::S5, AArch64::S6, AArch64::S7 }, { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4, AArch64::D5, AArch64::D6, AArch64::D7 }, { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7 } }; unsigned GPRIdx = 0; unsigned FPRIdx = 0; for (auto const &Arg : F->args()) { MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); unsigned SrcReg; const TargetRegisterClass *RC; if (VT >= MVT::i1 && VT <= MVT::i32) { SrcReg = Registers[0][GPRIdx++]; RC = &AArch64::GPR32RegClass; VT = MVT::i32; } else if (VT == MVT::i64) { SrcReg = Registers[1][GPRIdx++]; RC = &AArch64::GPR64RegClass; } else if (VT == MVT::f16 || VT == MVT::bf16) { SrcReg = Registers[2][FPRIdx++]; RC = &AArch64::FPR16RegClass; } else if (VT == MVT::f32) { SrcReg = Registers[3][FPRIdx++]; RC = &AArch64::FPR32RegClass; } else if ((VT == MVT::f64) || VT.is64BitVector()) { SrcReg = Registers[4][FPRIdx++]; RC = &AArch64::FPR64RegClass; } else if (VT.is128BitVector()) { SrcReg = Registers[5][FPRIdx++]; RC = &AArch64::FPR128RegClass; } else llvm_unreachable("Unexpected value type."); Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. // Without this, EmitLiveInCopies may eliminate the livein if its only // use is a bitcast (which isn't turned into an instruction). Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(DstReg, getKillRegState(true)); updateValueMap(&Arg, ResultReg); } return true; } bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl &OutVTs, unsigned &NumBytes) { CallingConv::ID CC = CLI.CallConv; SmallVector ArgLocs; CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC)); // Get a count of how many bytes are to be pushed on the stack. NumBytes = CCInfo.getStackSize(); // Issue CALLSEQ_START unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)) .addImm(NumBytes).addImm(0); // Process the args. for (CCValAssign &VA : ArgLocs) { const Value *ArgVal = CLI.OutVals[VA.getValNo()]; MVT ArgVT = OutVTs[VA.getValNo()]; Register ArgReg = getRegForValue(ArgVal); if (!ArgReg) return false; // Handle arg promotion: SExt, ZExt, AExt. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: { MVT DestVT = VA.getLocVT(); MVT SrcVT = ArgVT; ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false); if (!ArgReg) return false; break; } case CCValAssign::AExt: // Intentional fall-through. case CCValAssign::ZExt: { MVT DestVT = VA.getLocVT(); MVT SrcVT = ArgVT; ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true); if (!ArgReg) return false; break; } default: llvm_unreachable("Unknown arg promotion!"); } // Now copy/store arg to correct locations. if (VA.isRegLoc() && !VA.needsCustom()) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); CLI.OutRegs.push_back(VA.getLocReg()); } else if (VA.needsCustom()) { // FIXME: Handle custom args. return false; } else { assert(VA.isMemLoc() && "Assuming store on stack."); // Don't emit stores for undef values. if (isa(ArgVal)) continue; // Need to store on the stack. unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8; unsigned BEAlign = 0; if (ArgSize < 8 && !Subtarget->isLittleEndian()) BEAlign = 8 - ArgSize; Address Addr; Addr.setKind(Address::RegBase); Addr.setReg(AArch64::SP); Addr.setOffset(VA.getLocMemOffset() + BEAlign); Align Alignment = DL.getABITypeAlign(ArgVal->getType()); MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()), MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); if (!emitStore(ArgVT, ArgReg, Addr, MMO)) return false; } } return true; } bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, unsigned NumBytes) { CallingConv::ID CC = CLI.CallConv; // Issue CALLSEQ_END unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) .addImm(NumBytes).addImm(0); // Now the return values. SmallVector RVLocs; CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); CCInfo.AnalyzeCallResult(CLI.Ins, CCAssignFnForCall(CC)); Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; MVT CopyVT = VA.getValVT(); unsigned CopyReg = ResultReg + i; // TODO: Handle big-endian results if (CopyVT.isVector() && !Subtarget->isLittleEndian()) return false; // Copy result out of their specified physreg. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), CopyReg) .addReg(VA.getLocReg()); CLI.InRegs.push_back(VA.getLocReg()); } CLI.ResultReg = ResultReg; CLI.NumResultRegs = RVLocs.size(); return true; } bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) { CallingConv::ID CC = CLI.CallConv; bool IsTailCall = CLI.IsTailCall; bool IsVarArg = CLI.IsVarArg; const Value *Callee = CLI.Callee; MCSymbol *Symbol = CLI.Symbol; if (!Callee && !Symbol) return false; // Allow SelectionDAG isel to handle calls to functions like setjmp that need // a bti instruction following the call. if (CLI.CB && CLI.CB->hasFnAttr(Attribute::ReturnsTwice) && !Subtarget->noBTIAtReturnTwice() && MF->getInfo()->branchTargetEnforcement()) return false; // Allow SelectionDAG isel to handle indirect calls with KCFI checks. if (CLI.CB && CLI.CB->isIndirectCall() && CLI.CB->getOperandBundle(LLVMContext::OB_kcfi)) return false; // Allow SelectionDAG isel to handle tail calls. if (IsTailCall) return false; // FIXME: we could and should support this, but for now correctness at -O0 is // more important. if (Subtarget->isTargetILP32()) return false; CodeModel::Model CM = TM.getCodeModel(); // Only support the small-addressing and large code models. if (CM != CodeModel::Large && !Subtarget->useSmallAddressing()) return false; // FIXME: Add large code model support for ELF. if (CM == CodeModel::Large && !Subtarget->isTargetMachO()) return false; // ELF -fno-plt compiled intrinsic calls do not have the nonlazybind // attribute. Check "RtLibUseGOT" instead. if (MF->getFunction().getParent()->getRtLibUseGOT()) return false; // Let SDISel handle vararg functions. if (IsVarArg) return false; if (Subtarget->isWindowsArm64EC()) return false; for (auto Flag : CLI.OutFlags) if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal() || Flag.isSwiftSelf() || Flag.isSwiftAsync() || Flag.isSwiftError()) return false; // Set up the argument vectors. SmallVector OutVTs; OutVTs.reserve(CLI.OutVals.size()); for (auto *Val : CLI.OutVals) { MVT VT; if (!isTypeLegal(Val->getType(), VT) && !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) return false; // We don't handle vector parameters yet. if (VT.isVector() || VT.getSizeInBits() > 64) return false; OutVTs.push_back(VT); } Address Addr; if (Callee && !computeCallAddress(Callee, Addr)) return false; // The weak function target may be zero; in that case we must use indirect // addressing via a stub on windows as it may be out of range for a // PC-relative jump. if (Subtarget->isTargetWindows() && Addr.getGlobalValue() && Addr.getGlobalValue()->hasExternalWeakLinkage()) return false; // Handle the arguments now that we've gotten them. unsigned NumBytes; if (!processCallArgs(CLI, OutVTs, NumBytes)) return false; const AArch64RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); if (RegInfo->isAnyArgRegReserved(*MF)) RegInfo->emitReservedArgRegCallError(*MF); // Issue the call. MachineInstrBuilder MIB; if (Subtarget->useSmallAddressing()) { const MCInstrDesc &II = TII.get(Addr.getReg() ? getBLRCallOpcode(*MF) : (unsigned)AArch64::BL); MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II); if (Symbol) MIB.addSym(Symbol, 0); else if (Addr.getGlobalValue()) MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0); else if (Addr.getReg()) { Register Reg = constrainOperandRegClass(II, Addr.getReg(), 0); MIB.addReg(Reg); } else return false; } else { unsigned CallReg = 0; if (Symbol) { Register ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADRP), ADRPReg) .addSym(Symbol, AArch64II::MO_GOT | AArch64II::MO_PAGE); CallReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::LDRXui), CallReg) .addReg(ADRPReg) .addSym(Symbol, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); } else if (Addr.getGlobalValue()) CallReg = materializeGV(Addr.getGlobalValue()); else if (Addr.getReg()) CallReg = Addr.getReg(); if (!CallReg) return false; const MCInstrDesc &II = TII.get(getBLRCallOpcode(*MF)); CallReg = constrainOperandRegClass(II, CallReg, 0); MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addReg(CallReg); } // Add implicit physical register uses to the call. for (auto Reg : CLI.OutRegs) MIB.addReg(Reg, RegState::Implicit); // Add a register mask with the call-preserved registers. // Proper defs for return values will be added by setPhysRegsDeadExcept(). MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); CLI.Call = MIB; // Finish off the call including any return values. return finishCall(CLI, NumBytes); } bool AArch64FastISel::isMemCpySmall(uint64_t Len, MaybeAlign Alignment) { if (Alignment) return Len / Alignment->value() <= 4; else return Len < 32; } bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, MaybeAlign Alignment) { // Make sure we don't bloat code by inlining very large memcpy's. if (!isMemCpySmall(Len, Alignment)) return false; int64_t UnscaledOffset = 0; Address OrigDest = Dest; Address OrigSrc = Src; while (Len) { MVT VT; if (!Alignment || *Alignment >= 8) { if (Len >= 8) VT = MVT::i64; else if (Len >= 4) VT = MVT::i32; else if (Len >= 2) VT = MVT::i16; else { VT = MVT::i8; } } else { assert(Alignment && "Alignment is set in this branch"); // Bound based on alignment. if (Len >= 4 && *Alignment == 4) VT = MVT::i32; else if (Len >= 2 && *Alignment == 2) VT = MVT::i16; else { VT = MVT::i8; } } unsigned ResultReg = emitLoad(VT, VT, Src); if (!ResultReg) return false; if (!emitStore(VT, ResultReg, Dest)) return false; int64_t Size = VT.getSizeInBits() / 8; Len -= Size; UnscaledOffset += Size; // We need to recompute the unscaled offset for each iteration. Dest.setOffset(OrigDest.getOffset() + UnscaledOffset); Src.setOffset(OrigSrc.getOffset() + UnscaledOffset); } return true; } /// Check if it is possible to fold the condition from the XALU intrinsic /// into the user. The condition code will only be updated on success. bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I, const Value *Cond) { if (!isa(Cond)) return false; const auto *EV = cast(Cond); if (!isa(EV->getAggregateOperand())) return false; const auto *II = cast(EV->getAggregateOperand()); MVT RetVT; const Function *Callee = II->getCalledFunction(); Type *RetTy = cast(Callee->getReturnType())->getTypeAtIndex(0U); if (!isTypeLegal(RetTy, RetVT)) return false; if (RetVT != MVT::i32 && RetVT != MVT::i64) return false; const Value *LHS = II->getArgOperand(0); const Value *RHS = II->getArgOperand(1); // Canonicalize immediate to the RHS. if (isa(LHS) && !isa(RHS) && II->isCommutative()) std::swap(LHS, RHS); // Simplify multiplies. Intrinsic::ID IID = II->getIntrinsicID(); switch (IID) { default: break; case Intrinsic::smul_with_overflow: if (const auto *C = dyn_cast(RHS)) if (C->getValue() == 2) IID = Intrinsic::sadd_with_overflow; break; case Intrinsic::umul_with_overflow: if (const auto *C = dyn_cast(RHS)) if (C->getValue() == 2) IID = Intrinsic::uadd_with_overflow; break; } AArch64CC::CondCode TmpCC; switch (IID) { default: return false; case Intrinsic::sadd_with_overflow: case Intrinsic::ssub_with_overflow: TmpCC = AArch64CC::VS; break; case Intrinsic::uadd_with_overflow: TmpCC = AArch64CC::HS; break; case Intrinsic::usub_with_overflow: TmpCC = AArch64CC::LO; break; case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: TmpCC = AArch64CC::NE; break; } // Check if both instructions are in the same basic block. if (!isValueAvailable(II)) return false; // Make sure nothing is in the way BasicBlock::const_iterator Start(I); BasicBlock::const_iterator End(II); for (auto Itr = std::prev(Start); Itr != End; --Itr) { // We only expect extractvalue instructions between the intrinsic and the // instruction to be selected. if (!isa(Itr)) return false; // Check that the extractvalue operand comes from the intrinsic. const auto *EVI = cast(Itr); if (EVI->getAggregateOperand() != II) return false; } CC = TmpCC; return true; } bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { // FIXME: Handle more intrinsics. switch (II->getIntrinsicID()) { default: return false; case Intrinsic::frameaddress: { MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); MFI.setFrameAddressIsTaken(true); const AArch64RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); Register SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr); // Recursively load frame address // ldr x0, [fp] // ldr x0, [x0] // ldr x0, [x0] // ... unsigned DestReg; unsigned Depth = cast(II->getOperand(0))->getZExtValue(); while (Depth--) { DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass, SrcReg, 0); assert(DestReg && "Unexpected LDR instruction emission failure."); SrcReg = DestReg; } updateValueMap(II, SrcReg); return true; } case Intrinsic::sponentry: { MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); // SP = FP + Fixed Object + 16 int FI = MFI.CreateFixedObject(4, 0, false); Register ResultReg = createResultReg(&AArch64::GPR64spRegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ADDXri), ResultReg) .addFrameIndex(FI) .addImm(0) .addImm(0); updateValueMap(II, ResultReg); return true; } case Intrinsic::memcpy: case Intrinsic::memmove: { const auto *MTI = cast(II); // Don't handle volatile. if (MTI->isVolatile()) return false; // Disable inlining for memmove before calls to ComputeAddress. Otherwise, // we would emit dead code because we don't currently handle memmoves. bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy); if (isa(MTI->getLength()) && IsMemCpy) { // Small memcpy's are common enough that we want to do them without a call // if possible. uint64_t Len = cast(MTI->getLength())->getZExtValue(); MaybeAlign Alignment; if (MTI->getDestAlign() || MTI->getSourceAlign()) Alignment = std::min(MTI->getDestAlign().valueOrOne(), MTI->getSourceAlign().valueOrOne()); if (isMemCpySmall(Len, Alignment)) { Address Dest, Src; if (!computeAddress(MTI->getRawDest(), Dest) || !computeAddress(MTI->getRawSource(), Src)) return false; if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment)) return true; } } if (!MTI->getLength()->getType()->isIntegerTy(64)) return false; if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; const char *IntrMemName = isa(II) ? "memcpy" : "memmove"; return lowerCallTo(II, IntrMemName, II->arg_size() - 1); } case Intrinsic::memset: { const MemSetInst *MSI = cast(II); // Don't handle volatile. if (MSI->isVolatile()) return false; if (!MSI->getLength()->getType()->isIntegerTy(64)) return false; if (MSI->getDestAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; return lowerCallTo(II, "memset", II->arg_size() - 1); } case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::tan: case Intrinsic::pow: { MVT RetVT; if (!isTypeLegal(II->getType(), RetVT)) return false; if (RetVT != MVT::f32 && RetVT != MVT::f64) return false; static const RTLIB::Libcall LibCallTable[4][2] = { {RTLIB::SIN_F32, RTLIB::SIN_F64}, {RTLIB::COS_F32, RTLIB::COS_F64}, {RTLIB::TAN_F32, RTLIB::TAN_F64}, {RTLIB::POW_F32, RTLIB::POW_F64}}; RTLIB::Libcall LC; bool Is64Bit = RetVT == MVT::f64; switch (II->getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic."); case Intrinsic::sin: LC = LibCallTable[0][Is64Bit]; break; case Intrinsic::cos: LC = LibCallTable[1][Is64Bit]; break; case Intrinsic::tan: LC = LibCallTable[2][Is64Bit]; break; case Intrinsic::pow: LC = LibCallTable[3][Is64Bit]; break; } ArgListTy Args; Args.reserve(II->arg_size()); // Populate the argument list. for (auto &Arg : II->args()) { ArgListEntry Entry; Entry.Val = Arg; Entry.Ty = Arg->getType(); Args.push_back(Entry); } CallLoweringInfo CLI; MCContext &Ctx = MF->getContext(); CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), II->getType(), TLI.getLibcallName(LC), std::move(Args)); if (!lowerCallTo(CLI)) return false; updateValueMap(II, CLI.ResultReg); return true; } case Intrinsic::fabs: { MVT VT; if (!isTypeLegal(II->getType(), VT)) return false; unsigned Opc; switch (VT.SimpleTy) { default: return false; case MVT::f32: Opc = AArch64::FABSSr; break; case MVT::f64: Opc = AArch64::FABSDr; break; } Register SrcReg = getRegForValue(II->getOperand(0)); if (!SrcReg) return false; Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) .addReg(SrcReg); updateValueMap(II, ResultReg); return true; } case Intrinsic::trap: BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::BRK)) .addImm(1); return true; case Intrinsic::debugtrap: BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::BRK)) .addImm(0xF000); return true; case Intrinsic::sqrt: { Type *RetTy = II->getCalledFunction()->getReturnType(); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; Register Op0Reg = getRegForValue(II->getOperand(0)); if (!Op0Reg) return false; unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg); if (!ResultReg) return false; updateValueMap(II, ResultReg); return true; } case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: { // This implements the basic lowering of the xalu with overflow intrinsics. const Function *Callee = II->getCalledFunction(); auto *Ty = cast(Callee->getReturnType()); Type *RetTy = Ty->getTypeAtIndex(0U); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; if (VT != MVT::i32 && VT != MVT::i64) return false; const Value *LHS = II->getArgOperand(0); const Value *RHS = II->getArgOperand(1); // Canonicalize immediate to the RHS. if (isa(LHS) && !isa(RHS) && II->isCommutative()) std::swap(LHS, RHS); // Simplify multiplies. Intrinsic::ID IID = II->getIntrinsicID(); switch (IID) { default: break; case Intrinsic::smul_with_overflow: if (const auto *C = dyn_cast(RHS)) if (C->getValue() == 2) { IID = Intrinsic::sadd_with_overflow; RHS = LHS; } break; case Intrinsic::umul_with_overflow: if (const auto *C = dyn_cast(RHS)) if (C->getValue() == 2) { IID = Intrinsic::uadd_with_overflow; RHS = LHS; } break; } unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0; AArch64CC::CondCode CC = AArch64CC::Invalid; switch (IID) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::sadd_with_overflow: ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true); CC = AArch64CC::VS; break; case Intrinsic::uadd_with_overflow: ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true); CC = AArch64CC::HS; break; case Intrinsic::ssub_with_overflow: ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true); CC = AArch64CC::VS; break; case Intrinsic::usub_with_overflow: ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true); CC = AArch64CC::LO; break; case Intrinsic::smul_with_overflow: { CC = AArch64CC::NE; Register LHSReg = getRegForValue(LHS); if (!LHSReg) return false; Register RHSReg = getRegForValue(RHS); if (!RHSReg) return false; if (VT == MVT::i32) { MulReg = emitSMULL_rr(MVT::i64, LHSReg, RHSReg); Register MulSubReg = fastEmitInst_extractsubreg(VT, MulReg, AArch64::sub_32); // cmp xreg, wreg, sxtw emitAddSub_rx(/*UseAdd=*/false, MVT::i64, MulReg, MulSubReg, AArch64_AM::SXTW, /*ShiftImm=*/0, /*SetFlags=*/true, /*WantResult=*/false); MulReg = MulSubReg; } else { assert(VT == MVT::i64 && "Unexpected value type."); // LHSReg and RHSReg cannot be killed by this Mul, since they are // reused in the next instruction. MulReg = emitMul_rr(VT, LHSReg, RHSReg); unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, RHSReg); emitSubs_rs(VT, SMULHReg, MulReg, AArch64_AM::ASR, 63, /*WantResult=*/false); } break; } case Intrinsic::umul_with_overflow: { CC = AArch64CC::NE; Register LHSReg = getRegForValue(LHS); if (!LHSReg) return false; Register RHSReg = getRegForValue(RHS); if (!RHSReg) return false; if (VT == MVT::i32) { MulReg = emitUMULL_rr(MVT::i64, LHSReg, RHSReg); // tst xreg, #0xffffffff00000000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::ANDSXri), AArch64::XZR) .addReg(MulReg) .addImm(AArch64_AM::encodeLogicalImmediate(0xFFFFFFFF00000000, 64)); MulReg = fastEmitInst_extractsubreg(VT, MulReg, AArch64::sub_32); } else { assert(VT == MVT::i64 && "Unexpected value type."); // LHSReg and RHSReg cannot be killed by this Mul, since they are // reused in the next instruction. MulReg = emitMul_rr(VT, LHSReg, RHSReg); unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, RHSReg); emitSubs_rr(VT, AArch64::XZR, UMULHReg, /*WantResult=*/false); } break; } } if (MulReg) { ResultReg1 = createResultReg(TLI.getRegClassFor(VT)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg); } if (!ResultReg1) return false; ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass, AArch64::WZR, AArch64::WZR, getInvertedCondCode(CC)); (void)ResultReg2; assert((ResultReg1 + 1) == ResultReg2 && "Nonconsecutive result registers."); updateValueMap(II, ResultReg1, 2); return true; } case Intrinsic::aarch64_crc32b: case Intrinsic::aarch64_crc32h: case Intrinsic::aarch64_crc32w: case Intrinsic::aarch64_crc32x: case Intrinsic::aarch64_crc32cb: case Intrinsic::aarch64_crc32ch: case Intrinsic::aarch64_crc32cw: case Intrinsic::aarch64_crc32cx: { if (!Subtarget->hasCRC()) return false; unsigned Opc; switch (II->getIntrinsicID()) { default: llvm_unreachable("Unexpected intrinsic!"); case Intrinsic::aarch64_crc32b: Opc = AArch64::CRC32Brr; break; case Intrinsic::aarch64_crc32h: Opc = AArch64::CRC32Hrr; break; case Intrinsic::aarch64_crc32w: Opc = AArch64::CRC32Wrr; break; case Intrinsic::aarch64_crc32x: Opc = AArch64::CRC32Xrr; break; case Intrinsic::aarch64_crc32cb: Opc = AArch64::CRC32CBrr; break; case Intrinsic::aarch64_crc32ch: Opc = AArch64::CRC32CHrr; break; case Intrinsic::aarch64_crc32cw: Opc = AArch64::CRC32CWrr; break; case Intrinsic::aarch64_crc32cx: Opc = AArch64::CRC32CXrr; break; } Register LHSReg = getRegForValue(II->getArgOperand(0)); Register RHSReg = getRegForValue(II->getArgOperand(1)); if (!LHSReg || !RHSReg) return false; Register ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32RegClass, LHSReg, RHSReg); updateValueMap(II, ResultReg); return true; } } return false; } bool AArch64FastISel::selectRet(const Instruction *I) { const ReturnInst *Ret = cast(I); const Function &F = *I->getParent()->getParent(); if (!FuncInfo.CanLowerReturn) return false; if (F.isVarArg()) return false; if (TLI.supportSwiftError() && F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) return false; if (TLI.supportSplitCSR(FuncInfo.MF)) return false; // Build a list of return value registers. SmallVector RetRegs; if (Ret->getNumOperands() > 0) { CallingConv::ID CC = F.getCallingConv(); SmallVector Outs; GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); // Analyze operands of the call, assigning locations to each operand. SmallVector ValLocs; CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_AArch64_AAPCS); // Only handle a single return value for now. if (ValLocs.size() != 1) return false; CCValAssign &VA = ValLocs[0]; const Value *RV = Ret->getOperand(0); // Don't bother handling odd stuff for now. if ((VA.getLocInfo() != CCValAssign::Full) && (VA.getLocInfo() != CCValAssign::BCvt)) return false; // Only handle register returns for now. if (!VA.isRegLoc()) return false; Register Reg = getRegForValue(RV); if (Reg == 0) return false; unsigned SrcReg = Reg + VA.getValNo(); Register DestReg = VA.getLocReg(); // Avoid a cross-class copy. This is very unlikely. if (!MRI.getRegClass(SrcReg)->contains(DestReg)) return false; EVT RVEVT = TLI.getValueType(DL, RV->getType()); if (!RVEVT.isSimple()) return false; // Vectors (of > 1 lane) in big endian need tricky handling. if (RVEVT.isVector() && RVEVT.getVectorElementCount().isVector() && !Subtarget->isLittleEndian()) return false; MVT RVVT = RVEVT.getSimpleVT(); if (RVVT == MVT::f128) return false; MVT DestVT = VA.getValVT(); // Special handling for extended integers. if (RVVT != DestVT) { if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) return false; if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) return false; bool IsZExt = Outs[0].Flags.isZExt(); SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt); if (SrcReg == 0) return false; } // "Callee" (i.e. value producer) zero extends pointers at function // boundary. if (Subtarget->isTargetILP32() && RV->getType()->isPointerTy()) SrcReg = emitAnd_ri(MVT::i64, SrcReg, 0xffffffff); // Make the copy. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); // Add register to return instruction. RetRegs.push_back(VA.getLocReg()); } MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::RET_ReallyLR)); for (unsigned RetReg : RetRegs) MIB.addReg(RetReg, RegState::Implicit); return true; } bool AArch64FastISel::selectTrunc(const Instruction *I) { Type *DestTy = I->getType(); Value *Op = I->getOperand(0); Type *SrcTy = Op->getType(); EVT SrcEVT = TLI.getValueType(DL, SrcTy, true); EVT DestEVT = TLI.getValueType(DL, DestTy, true); if (!SrcEVT.isSimple()) return false; if (!DestEVT.isSimple()) return false; MVT SrcVT = SrcEVT.getSimpleVT(); MVT DestVT = DestEVT.getSimpleVT(); if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) return false; if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) return false; Register SrcReg = getRegForValue(Op); if (!SrcReg) return false; // If we're truncating from i64 to a smaller non-legal type then generate an // AND. Otherwise, we know the high bits are undefined and a truncate only // generate a COPY. We cannot mark the source register also as result // register, because this can incorrectly transfer the kill flag onto the // source register. unsigned ResultReg; if (SrcVT == MVT::i64) { uint64_t Mask = 0; switch (DestVT.SimpleTy) { default: // Trunc i64 to i32 is handled by the target-independent fast-isel. return false; case MVT::i1: Mask = 0x1; break; case MVT::i8: Mask = 0xff; break; case MVT::i16: Mask = 0xffff; break; } // Issue an extract_subreg to get the lower 32-bits. Register Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, AArch64::sub_32); // Create the AND instruction which performs the actual truncation. ResultReg = emitAnd_ri(MVT::i32, Reg32, Mask); assert(ResultReg && "Unexpected AND instruction emission failure."); } else { ResultReg = createResultReg(&AArch64::GPR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(SrcReg); } updateValueMap(I, ResultReg); return true; } unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) { assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 || DestVT == MVT::i64) && "Unexpected value type."); // Handle i8 and i16 as i32. if (DestVT == MVT::i8 || DestVT == MVT::i16) DestVT = MVT::i32; if (IsZExt) { unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, 1); assert(ResultReg && "Unexpected AND instruction emission failure."); if (DestVT == MVT::i64) { // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd. Register Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), Reg64) .addImm(0) .addReg(ResultReg) .addImm(AArch64::sub_32); ResultReg = Reg64; } return ResultReg; } else { if (DestVT == MVT::i64) { // FIXME: We're SExt i1 to i64. return 0; } return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg, 0, 0); } } unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, unsigned Op1) { unsigned Opc, ZReg; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: case MVT::i16: case MVT::i32: RetVT = MVT::i32; Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break; case MVT::i64: Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break; } const TargetRegisterClass *RC = (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; return fastEmitInst_rrr(Opc, RC, Op0, Op1, ZReg); } unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, unsigned Op1) { if (RetVT != MVT::i64) return 0; return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass, Op0, Op1, AArch64::XZR); } unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, unsigned Op1) { if (RetVT != MVT::i64) return 0; return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass, Op0, Op1, AArch64::XZR); } unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, unsigned Op1Reg) { unsigned Opc = 0; bool NeedTrunc = false; uint64_t Mask = 0; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff; break; case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break; case MVT::i32: Opc = AArch64::LSLVWr; break; case MVT::i64: Opc = AArch64::LSLVXr; break; } const TargetRegisterClass *RC = (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; if (NeedTrunc) Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Mask); Register ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op1Reg); if (NeedTrunc) ResultReg = emitAnd_ri(MVT::i32, ResultReg, Mask); return ResultReg; } unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0, uint64_t Shift, bool IsZExt) { assert(RetVT.SimpleTy >= SrcVT.SimpleTy && "Unexpected source/return type pair."); assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 || SrcVT == MVT::i32 || SrcVT == MVT::i64) && "Unexpected source value type."); assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 || RetVT == MVT::i64) && "Unexpected return value type."); bool Is64Bit = (RetVT == MVT::i64); unsigned RegSize = Is64Bit ? 64 : 32; unsigned DstBits = RetVT.getSizeInBits(); unsigned SrcBits = SrcVT.getSizeInBits(); const TargetRegisterClass *RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; // Just emit a copy for "zero" shifts. if (Shift == 0) { if (RetVT == SrcVT) { Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(Op0); return ResultReg; } else return emitIntExt(SrcVT, Op0, RetVT, IsZExt); } // Don't deal with undefined shifts. if (Shift >= DstBits) return 0; // For immediate shifts we can fold the zero-/sign-extension into the shift. // {S|U}BFM Wd, Wn, #r, #s // Wd<32+s-r,32-r> = Wn when r > s // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = shl i16 %1, 4 // Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7 // 0b1111_1111_1111_1111__1111_1010_1010_0000 sext // 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext // 0b0000_0000_0000_0000__0000_1010_1010_0000 zext // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = shl i16 %1, 8 // Wd<32+7-24,32-24> = Wn<7:0> // 0b1111_1111_1111_1111__1010_1010_0000_0000 sext // 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext // 0b0000_0000_0000_0000__1010_1010_0000_0000 zext // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = shl i16 %1, 12 // Wd<32+3-20,32-20> = Wn<3:0> // 0b1111_1111_1111_1111__1010_0000_0000_0000 sext // 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext // 0b0000_0000_0000_0000__1010_0000_0000_0000 zext unsigned ImmR = RegSize - Shift; // Limit the width to the length of the source type. unsigned ImmS = std::min(SrcBits - 1, DstBits - 1 - Shift); static const unsigned OpcTable[2][2] = { {AArch64::SBFMWri, AArch64::SBFMXri}, {AArch64::UBFMWri, AArch64::UBFMXri} }; unsigned Opc = OpcTable[IsZExt][Is64Bit]; if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) { Register TmpReg = MRI.createVirtualRegister(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), TmpReg) .addImm(0) .addReg(Op0) .addImm(AArch64::sub_32); Op0 = TmpReg; } return fastEmitInst_rii(Opc, RC, Op0, ImmR, ImmS); } unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, unsigned Op1Reg) { unsigned Opc = 0; bool NeedTrunc = false; uint64_t Mask = 0; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff; break; case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break; case MVT::i32: Opc = AArch64::LSRVWr; break; case MVT::i64: Opc = AArch64::LSRVXr; break; } const TargetRegisterClass *RC = (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; if (NeedTrunc) { Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Mask); Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Mask); } Register ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op1Reg); if (NeedTrunc) ResultReg = emitAnd_ri(MVT::i32, ResultReg, Mask); return ResultReg; } unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0, uint64_t Shift, bool IsZExt) { assert(RetVT.SimpleTy >= SrcVT.SimpleTy && "Unexpected source/return type pair."); assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 || SrcVT == MVT::i32 || SrcVT == MVT::i64) && "Unexpected source value type."); assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 || RetVT == MVT::i64) && "Unexpected return value type."); bool Is64Bit = (RetVT == MVT::i64); unsigned RegSize = Is64Bit ? 64 : 32; unsigned DstBits = RetVT.getSizeInBits(); unsigned SrcBits = SrcVT.getSizeInBits(); const TargetRegisterClass *RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; // Just emit a copy for "zero" shifts. if (Shift == 0) { if (RetVT == SrcVT) { Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(Op0); return ResultReg; } else return emitIntExt(SrcVT, Op0, RetVT, IsZExt); } // Don't deal with undefined shifts. if (Shift >= DstBits) return 0; // For immediate shifts we can fold the zero-/sign-extension into the shift. // {S|U}BFM Wd, Wn, #r, #s // Wd = Wn when r <= s // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = lshr i16 %1, 4 // Wd<7-4:0> = Wn<7:4> // 0b0000_0000_0000_0000__0000_1111_1111_1010 sext // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = lshr i16 %1, 8 // Wd<7-7,0> = Wn<7:7> // 0b0000_0000_0000_0000__0000_0000_1111_1111 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = lshr i16 %1, 12 // Wd<7-7,0> = Wn<7:7> <- clamp r to 7 // 0b0000_0000_0000_0000__0000_0000_0000_1111 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext if (Shift >= SrcBits && IsZExt) return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT); // It is not possible to fold a sign-extend into the LShr instruction. In this // case emit a sign-extend. if (!IsZExt) { Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt); if (!Op0) return 0; SrcVT = RetVT; SrcBits = SrcVT.getSizeInBits(); IsZExt = true; } unsigned ImmR = std::min(SrcBits - 1, Shift); unsigned ImmS = SrcBits - 1; static const unsigned OpcTable[2][2] = { {AArch64::SBFMWri, AArch64::SBFMXri}, {AArch64::UBFMWri, AArch64::UBFMXri} }; unsigned Opc = OpcTable[IsZExt][Is64Bit]; if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) { Register TmpReg = MRI.createVirtualRegister(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), TmpReg) .addImm(0) .addReg(Op0) .addImm(AArch64::sub_32); Op0 = TmpReg; } return fastEmitInst_rii(Opc, RC, Op0, ImmR, ImmS); } unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, unsigned Op1Reg) { unsigned Opc = 0; bool NeedTrunc = false; uint64_t Mask = 0; switch (RetVT.SimpleTy) { default: return 0; case MVT::i8: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff; break; case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break; case MVT::i32: Opc = AArch64::ASRVWr; break; case MVT::i64: Opc = AArch64::ASRVXr; break; } const TargetRegisterClass *RC = (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; if (NeedTrunc) { Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*isZExt=*/false); Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Mask); } Register ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op1Reg); if (NeedTrunc) ResultReg = emitAnd_ri(MVT::i32, ResultReg, Mask); return ResultReg; } unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0, uint64_t Shift, bool IsZExt) { assert(RetVT.SimpleTy >= SrcVT.SimpleTy && "Unexpected source/return type pair."); assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 || SrcVT == MVT::i32 || SrcVT == MVT::i64) && "Unexpected source value type."); assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 || RetVT == MVT::i64) && "Unexpected return value type."); bool Is64Bit = (RetVT == MVT::i64); unsigned RegSize = Is64Bit ? 64 : 32; unsigned DstBits = RetVT.getSizeInBits(); unsigned SrcBits = SrcVT.getSizeInBits(); const TargetRegisterClass *RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; // Just emit a copy for "zero" shifts. if (Shift == 0) { if (RetVT == SrcVT) { Register ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), ResultReg) .addReg(Op0); return ResultReg; } else return emitIntExt(SrcVT, Op0, RetVT, IsZExt); } // Don't deal with undefined shifts. if (Shift >= DstBits) return 0; // For immediate shifts we can fold the zero-/sign-extension into the shift. // {S|U}BFM Wd, Wn, #r, #s // Wd = Wn when r <= s // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = ashr i16 %1, 4 // Wd<7-4:0> = Wn<7:4> // 0b1111_1111_1111_1111__1111_1111_1111_1010 sext // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = ashr i16 %1, 8 // Wd<7-7,0> = Wn<7:7> // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 // %2 = ashr i16 %1, 12 // Wd<7-7,0> = Wn<7:7> <- clamp r to 7 // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext if (Shift >= SrcBits && IsZExt) return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT); unsigned ImmR = std::min(SrcBits - 1, Shift); unsigned ImmS = SrcBits - 1; static const unsigned OpcTable[2][2] = { {AArch64::SBFMWri, AArch64::SBFMXri}, {AArch64::UBFMWri, AArch64::UBFMXri} }; unsigned Opc = OpcTable[IsZExt][Is64Bit]; if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) { Register TmpReg = MRI.createVirtualRegister(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), TmpReg) .addImm(0) .addReg(Op0) .addImm(AArch64::sub_32); Op0 = TmpReg; } return fastEmitInst_rii(Opc, RC, Op0, ImmR, ImmS); } unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool IsZExt) { assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?"); // FastISel does not have plumbing to deal with extensions where the SrcVT or // DestVT are odd things, so test to make sure that they are both types we can // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise // bail out to SelectionDAG. if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32) && (DestVT != MVT::i64)) || ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16) && (SrcVT != MVT::i32))) return 0; unsigned Opc; unsigned Imm = 0; switch (SrcVT.SimpleTy) { default: return 0; case MVT::i1: return emiti1Ext(SrcReg, DestVT, IsZExt); case MVT::i8: if (DestVT == MVT::i64) Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri; else Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri; Imm = 7; break; case MVT::i16: if (DestVT == MVT::i64) Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri; else Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri; Imm = 15; break; case MVT::i32: assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?"); Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri; Imm = 31; break; } // Handle i8 and i16 as i32. if (DestVT == MVT::i8 || DestVT == MVT::i16) DestVT = MVT::i32; else if (DestVT == MVT::i64) { Register Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), Src64) .addImm(0) .addReg(SrcReg) .addImm(AArch64::sub_32); SrcReg = Src64; } const TargetRegisterClass *RC = (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; return fastEmitInst_rii(Opc, RC, SrcReg, 0, Imm); } static bool isZExtLoad(const MachineInstr *LI) { switch (LI->getOpcode()) { default: return false; case AArch64::LDURBBi: case AArch64::LDURHHi: case AArch64::LDURWi: case AArch64::LDRBBui: case AArch64::LDRHHui: case AArch64::LDRWui: case AArch64::LDRBBroX: case AArch64::LDRHHroX: case AArch64::LDRWroX: case AArch64::LDRBBroW: case AArch64::LDRHHroW: case AArch64::LDRWroW: return true; } } static bool isSExtLoad(const MachineInstr *LI) { switch (LI->getOpcode()) { default: return false; case AArch64::LDURSBWi: case AArch64::LDURSHWi: case AArch64::LDURSBXi: case AArch64::LDURSHXi: case AArch64::LDURSWi: case AArch64::LDRSBWui: case AArch64::LDRSHWui: case AArch64::LDRSBXui: case AArch64::LDRSHXui: case AArch64::LDRSWui: case AArch64::LDRSBWroX: case AArch64::LDRSHWroX: case AArch64::LDRSBXroX: case AArch64::LDRSHXroX: case AArch64::LDRSWroX: case AArch64::LDRSBWroW: case AArch64::LDRSHWroW: case AArch64::LDRSBXroW: case AArch64::LDRSHXroW: case AArch64::LDRSWroW: return true; } } bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT) { const auto *LI = dyn_cast(I->getOperand(0)); if (!LI || !LI->hasOneUse()) return false; // Check if the load instruction has already been selected. Register Reg = lookUpRegForValue(LI); if (!Reg) return false; MachineInstr *MI = MRI.getUniqueVRegDef(Reg); if (!MI) return false; // Check if the correct load instruction has been emitted - SelectionDAG might // have emitted a zero-extending load, but we need a sign-extending load. bool IsZExt = isa(I); const auto *LoadMI = MI; if (LoadMI->getOpcode() == TargetOpcode::COPY && LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) { Register LoadReg = MI->getOperand(1).getReg(); LoadMI = MRI.getUniqueVRegDef(LoadReg); assert(LoadMI && "Expected valid instruction"); } if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI))) return false; // Nothing to be done. if (RetVT != MVT::i64 || SrcVT > MVT::i32) { updateValueMap(I, Reg); return true; } if (IsZExt) { Register Reg64 = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), Reg64) .addImm(0) .addReg(Reg, getKillRegState(true)) .addImm(AArch64::sub_32); Reg = Reg64; } else { assert((MI->getOpcode() == TargetOpcode::COPY && MI->getOperand(1).getSubReg() == AArch64::sub_32) && "Expected copy instruction"); Reg = MI->getOperand(1).getReg(); MachineBasicBlock::iterator I(MI); removeDeadCode(I, std::next(I)); } updateValueMap(I, Reg); return true; } bool AArch64FastISel::selectIntExt(const Instruction *I) { assert((isa(I) || isa(I)) && "Unexpected integer extend instruction."); MVT RetVT; MVT SrcVT; if (!isTypeSupported(I->getType(), RetVT)) return false; if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT)) return false; // Try to optimize already sign-/zero-extended values from load instructions. if (optimizeIntExtLoad(I, RetVT, SrcVT)) return true; Register SrcReg = getRegForValue(I->getOperand(0)); if (!SrcReg) return false; // Try to optimize already sign-/zero-extended values from function arguments. bool IsZExt = isa(I); if (const auto *Arg = dyn_cast(I->getOperand(0))) { if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) { if (RetVT == MVT::i64 && SrcVT != MVT::i64) { Register ResultReg = createResultReg(&AArch64::GPR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::SUBREG_TO_REG), ResultReg) .addImm(0) .addReg(SrcReg) .addImm(AArch64::sub_32); SrcReg = ResultReg; } updateValueMap(I, SrcReg); return true; } } unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) { EVT DestEVT = TLI.getValueType(DL, I->getType(), true); if (!DestEVT.isSimple()) return false; MVT DestVT = DestEVT.getSimpleVT(); if (DestVT != MVT::i64 && DestVT != MVT::i32) return false; unsigned DivOpc; bool Is64bit = (DestVT == MVT::i64); switch (ISDOpcode) { default: return false; case ISD::SREM: DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr; break; case ISD::UREM: DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr; break; } unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr; Register Src0Reg = getRegForValue(I->getOperand(0)); if (!Src0Reg) return false; Register Src1Reg = getRegForValue(I->getOperand(1)); if (!Src1Reg) return false; const TargetRegisterClass *RC = (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; Register QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, Src1Reg); assert(QuotReg && "Unexpected DIV instruction emission failure."); // The remainder is computed as numerator - (quotient * denominator) using the // MSUB instruction. Register ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, Src1Reg, Src0Reg); updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectMul(const Instruction *I) { MVT VT; if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true)) return false; if (VT.isVector()) return selectBinaryOp(I, ISD::MUL); const Value *Src0 = I->getOperand(0); const Value *Src1 = I->getOperand(1); if (const auto *C = dyn_cast(Src0)) if (C->getValue().isPowerOf2()) std::swap(Src0, Src1); // Try to simplify to a shift instruction. if (const auto *C = dyn_cast(Src1)) if (C->getValue().isPowerOf2()) { uint64_t ShiftVal = C->getValue().logBase2(); MVT SrcVT = VT; bool IsZExt = true; if (const auto *ZExt = dyn_cast(Src0)) { if (!isIntExtFree(ZExt)) { MVT VT; if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) { SrcVT = VT; IsZExt = true; Src0 = ZExt->getOperand(0); } } } else if (const auto *SExt = dyn_cast(Src0)) { if (!isIntExtFree(SExt)) { MVT VT; if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) { SrcVT = VT; IsZExt = false; Src0 = SExt->getOperand(0); } } } Register Src0Reg = getRegForValue(Src0); if (!Src0Reg) return false; unsigned ResultReg = emitLSL_ri(VT, SrcVT, Src0Reg, ShiftVal, IsZExt); if (ResultReg) { updateValueMap(I, ResultReg); return true; } } Register Src0Reg = getRegForValue(I->getOperand(0)); if (!Src0Reg) return false; Register Src1Reg = getRegForValue(I->getOperand(1)); if (!Src1Reg) return false; unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src1Reg); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectShift(const Instruction *I) { MVT RetVT; if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true)) return false; if (RetVT.isVector()) return selectOperator(I, I->getOpcode()); if (const auto *C = dyn_cast(I->getOperand(1))) { unsigned ResultReg = 0; uint64_t ShiftVal = C->getZExtValue(); MVT SrcVT = RetVT; bool IsZExt = I->getOpcode() != Instruction::AShr; const Value *Op0 = I->getOperand(0); if (const auto *ZExt = dyn_cast(Op0)) { if (!isIntExtFree(ZExt)) { MVT TmpVT; if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) { SrcVT = TmpVT; IsZExt = true; Op0 = ZExt->getOperand(0); } } } else if (const auto *SExt = dyn_cast(Op0)) { if (!isIntExtFree(SExt)) { MVT TmpVT; if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) { SrcVT = TmpVT; IsZExt = false; Op0 = SExt->getOperand(0); } } } Register Op0Reg = getRegForValue(Op0); if (!Op0Reg) return false; switch (I->getOpcode()) { default: llvm_unreachable("Unexpected instruction."); case Instruction::Shl: ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, ShiftVal, IsZExt); break; case Instruction::AShr: ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, ShiftVal, IsZExt); break; case Instruction::LShr: ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, ShiftVal, IsZExt); break; } if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } Register Op0Reg = getRegForValue(I->getOperand(0)); if (!Op0Reg) return false; Register Op1Reg = getRegForValue(I->getOperand(1)); if (!Op1Reg) return false; unsigned ResultReg = 0; switch (I->getOpcode()) { default: llvm_unreachable("Unexpected instruction."); case Instruction::Shl: ResultReg = emitLSL_rr(RetVT, Op0Reg, Op1Reg); break; case Instruction::AShr: ResultReg = emitASR_rr(RetVT, Op0Reg, Op1Reg); break; case Instruction::LShr: ResultReg = emitLSR_rr(RetVT, Op0Reg, Op1Reg); break; } if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectBitCast(const Instruction *I) { MVT RetVT, SrcVT; if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT)) return false; if (!isTypeLegal(I->getType(), RetVT)) return false; unsigned Opc; if (RetVT == MVT::f32 && SrcVT == MVT::i32) Opc = AArch64::FMOVWSr; else if (RetVT == MVT::f64 && SrcVT == MVT::i64) Opc = AArch64::FMOVXDr; else if (RetVT == MVT::i32 && SrcVT == MVT::f32) Opc = AArch64::FMOVSWr; else if (RetVT == MVT::i64 && SrcVT == MVT::f64) Opc = AArch64::FMOVDXr; else return false; const TargetRegisterClass *RC = nullptr; switch (RetVT.SimpleTy) { default: llvm_unreachable("Unexpected value type."); case MVT::i32: RC = &AArch64::GPR32RegClass; break; case MVT::i64: RC = &AArch64::GPR64RegClass; break; case MVT::f32: RC = &AArch64::FPR32RegClass; break; case MVT::f64: RC = &AArch64::FPR64RegClass; break; } Register Op0Reg = getRegForValue(I->getOperand(0)); if (!Op0Reg) return false; Register ResultReg = fastEmitInst_r(Opc, RC, Op0Reg); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } bool AArch64FastISel::selectFRem(const Instruction *I) { MVT RetVT; if (!isTypeLegal(I->getType(), RetVT)) return false; RTLIB::Libcall LC; switch (RetVT.SimpleTy) { default: return false; case MVT::f32: LC = RTLIB::REM_F32; break; case MVT::f64: LC = RTLIB::REM_F64; break; } ArgListTy Args; Args.reserve(I->getNumOperands()); // Populate the argument list. for (auto &Arg : I->operands()) { ArgListEntry Entry; Entry.Val = Arg; Entry.Ty = Arg->getType(); Args.push_back(Entry); } CallLoweringInfo CLI; MCContext &Ctx = MF->getContext(); CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), I->getType(), TLI.getLibcallName(LC), std::move(Args)); if (!lowerCallTo(CLI)) return false; updateValueMap(I, CLI.ResultReg); return true; } bool AArch64FastISel::selectSDiv(const Instruction *I) { MVT VT; if (!isTypeLegal(I->getType(), VT)) return false; if (!isa(I->getOperand(1))) return selectBinaryOp(I, ISD::SDIV); const APInt &C = cast(I->getOperand(1))->getValue(); if ((VT != MVT::i32 && VT != MVT::i64) || !C || !(C.isPowerOf2() || C.isNegatedPowerOf2())) return selectBinaryOp(I, ISD::SDIV); unsigned Lg2 = C.countr_zero(); Register Src0Reg = getRegForValue(I->getOperand(0)); if (!Src0Reg) return false; if (cast(I)->isExact()) { unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Lg2); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } int64_t Pow2MinusOne = (1ULL << Lg2) - 1; unsigned AddReg = emitAdd_ri_(VT, Src0Reg, Pow2MinusOne); if (!AddReg) return false; // (Src0 < 0) ? Pow2 - 1 : 0; if (!emitICmp_ri(VT, Src0Reg, 0)) return false; unsigned SelectOpc; const TargetRegisterClass *RC; if (VT == MVT::i64) { SelectOpc = AArch64::CSELXr; RC = &AArch64::GPR64RegClass; } else { SelectOpc = AArch64::CSELWr; RC = &AArch64::GPR32RegClass; } Register SelectReg = fastEmitInst_rri(SelectOpc, RC, AddReg, Src0Reg, AArch64CC::LT); if (!SelectReg) return false; // Divide by Pow2 --> ashr. If we're dividing by a negative value we must also // negate the result. unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; unsigned ResultReg; if (C.isNegative()) ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, SelectReg, AArch64_AM::ASR, Lg2); else ResultReg = emitASR_ri(VT, VT, SelectReg, Lg2); if (!ResultReg) return false; updateValueMap(I, ResultReg); return true; } /// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We /// have to duplicate it for AArch64, because otherwise we would fail during the /// sign-extend emission. unsigned AArch64FastISel::getRegForGEPIndex(const Value *Idx) { Register IdxN = getRegForValue(Idx); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return 0; // If the index is smaller or larger than intptr_t, truncate or extend it. MVT PtrVT = TLI.getPointerTy(DL); EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); if (IdxVT.bitsLT(PtrVT)) { IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*isZExt=*/false); } else if (IdxVT.bitsGT(PtrVT)) llvm_unreachable("AArch64 FastISel doesn't support types larger than i64"); return IdxN; } /// This is mostly a copy of the existing FastISel GEP code, but we have to /// duplicate it for AArch64, because otherwise we would bail out even for /// simple cases. This is because the standard fastEmit functions don't cover /// MUL at all and ADD is lowered very inefficientily. bool AArch64FastISel::selectGetElementPtr(const Instruction *I) { if (Subtarget->isTargetILP32()) return false; Register N = getRegForValue(I->getOperand(0)); if (!N) return false; // Keep a running tab of the total offset to coalesce multiple N = N + Offset // into a single N = N + TotalOffset. uint64_t TotalOffs = 0; MVT VT = TLI.getPointerTy(DL); for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); GTI != E; ++GTI) { const Value *Idx = GTI.getOperand(); if (auto *StTy = GTI.getStructTypeOrNull()) { unsigned Field = cast(Idx)->getZExtValue(); // N = N + Offset if (Field) TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); } else { // If this is a constant subscript, handle it quickly. if (const auto *CI = dyn_cast(Idx)) { if (CI->isZero()) continue; // N = N + Offset TotalOffs += GTI.getSequentialElementStride(DL) * cast(CI)->getSExtValue(); continue; } if (TotalOffs) { N = emitAdd_ri_(VT, N, TotalOffs); if (!N) return false; TotalOffs = 0; } // N = N + Idx * ElementSize; uint64_t ElementSize = GTI.getSequentialElementStride(DL); unsigned IdxN = getRegForGEPIndex(Idx); if (!IdxN) return false; if (ElementSize != 1) { unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize); if (!C) return false; IdxN = emitMul_rr(VT, IdxN, C); if (!IdxN) return false; } N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN); if (!N) return false; } } if (TotalOffs) { N = emitAdd_ri_(VT, N, TotalOffs); if (!N) return false; } updateValueMap(I, N); return true; } bool AArch64FastISel::selectAtomicCmpXchg(const AtomicCmpXchgInst *I) { assert(TM.getOptLevel() == CodeGenOptLevel::None && "cmpxchg survived AtomicExpand at optlevel > -O0"); auto *RetPairTy = cast(I->getType()); Type *RetTy = RetPairTy->getTypeAtIndex(0U); assert(RetPairTy->getTypeAtIndex(1U)->isIntegerTy(1) && "cmpxchg has a non-i1 status result"); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; const TargetRegisterClass *ResRC; unsigned Opc, CmpOpc; // This only supports i32/i64, because i8/i16 aren't legal, and the generic // extractvalue selection doesn't support that. if (VT == MVT::i32) { Opc = AArch64::CMP_SWAP_32; CmpOpc = AArch64::SUBSWrs; ResRC = &AArch64::GPR32RegClass; } else if (VT == MVT::i64) { Opc = AArch64::CMP_SWAP_64; CmpOpc = AArch64::SUBSXrs; ResRC = &AArch64::GPR64RegClass; } else { return false; } const MCInstrDesc &II = TII.get(Opc); const Register AddrReg = constrainOperandRegClass( II, getRegForValue(I->getPointerOperand()), II.getNumDefs()); const Register DesiredReg = constrainOperandRegClass( II, getRegForValue(I->getCompareOperand()), II.getNumDefs() + 1); const Register NewReg = constrainOperandRegClass( II, getRegForValue(I->getNewValOperand()), II.getNumDefs() + 2); const Register ResultReg1 = createResultReg(ResRC); const Register ResultReg2 = createResultReg(&AArch64::GPR32RegClass); const Register ScratchReg = createResultReg(&AArch64::GPR32RegClass); // FIXME: MachineMemOperand doesn't support cmpxchg yet. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) .addDef(ResultReg1) .addDef(ScratchReg) .addUse(AddrReg) .addUse(DesiredReg) .addUse(NewReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc)) .addDef(VT == MVT::i32 ? AArch64::WZR : AArch64::XZR) .addUse(ResultReg1) .addUse(DesiredReg) .addImm(0); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AArch64::CSINCWr)) .addDef(ResultReg2) .addUse(AArch64::WZR) .addUse(AArch64::WZR) .addImm(AArch64CC::NE); assert((ResultReg1 + 1) == ResultReg2 && "Nonconsecutive result registers."); updateValueMap(I, ResultReg1, 2); return true; } bool AArch64FastISel::fastSelectInstruction(const Instruction *I) { if (TLI.fallBackToDAGISel(*I)) return false; switch (I->getOpcode()) { default: break; case Instruction::Add: case Instruction::Sub: return selectAddSub(I); case Instruction::Mul: return selectMul(I); case Instruction::SDiv: return selectSDiv(I); case Instruction::SRem: if (!selectBinaryOp(I, ISD::SREM)) return selectRem(I, ISD::SREM); return true; case Instruction::URem: if (!selectBinaryOp(I, ISD::UREM)) return selectRem(I, ISD::UREM); return true; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return selectShift(I); case Instruction::And: case Instruction::Or: case Instruction::Xor: return selectLogicalOp(I); case Instruction::Br: return selectBranch(I); case Instruction::IndirectBr: return selectIndirectBr(I); case Instruction::BitCast: if (!FastISel::selectBitCast(I)) return selectBitCast(I); return true; case Instruction::FPToSI: if (!selectCast(I, ISD::FP_TO_SINT)) return selectFPToInt(I, /*Signed=*/true); return true; case Instruction::FPToUI: return selectFPToInt(I, /*Signed=*/false); case Instruction::ZExt: case Instruction::SExt: return selectIntExt(I); case Instruction::Trunc: if (!selectCast(I, ISD::TRUNCATE)) return selectTrunc(I); return true; case Instruction::FPExt: return selectFPExt(I); case Instruction::FPTrunc: return selectFPTrunc(I); case Instruction::SIToFP: if (!selectCast(I, ISD::SINT_TO_FP)) return selectIntToFP(I, /*Signed=*/true); return true; case Instruction::UIToFP: return selectIntToFP(I, /*Signed=*/false); case Instruction::Load: return selectLoad(I); case Instruction::Store: return selectStore(I); case Instruction::FCmp: case Instruction::ICmp: return selectCmp(I); case Instruction::Select: return selectSelect(I); case Instruction::Ret: return selectRet(I); case Instruction::FRem: return selectFRem(I); case Instruction::GetElementPtr: return selectGetElementPtr(I); case Instruction::AtomicCmpXchg: return selectAtomicCmpXchg(cast(I)); } // fall-back to target-independent instruction selection. return selectOperator(I, I->getOpcode()); } FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) { SMEAttrs CallerAttrs(*FuncInfo.Fn); if (CallerAttrs.hasZAState() || CallerAttrs.hasZT0State() || CallerAttrs.hasStreamingInterfaceOrBody() || CallerAttrs.hasStreamingCompatibleInterface()) return nullptr; return new AArch64FastISel(FuncInfo, LibInfo); }