//==-- AArch64CompressJumpTables.cpp - Compress jump tables for AArch64 --====// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // This pass looks at the basic blocks each jump-table refers to and works out // whether they can be emitted in a compressed form (with 8 or 16-bit // entries). If so, it changes the opcode and flags them in the associated // AArch64FunctionInfo. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64Subtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "aarch64-jump-tables" STATISTIC(NumJT8, "Number of jump-tables with 1-byte entries"); STATISTIC(NumJT16, "Number of jump-tables with 2-byte entries"); STATISTIC(NumJT32, "Number of jump-tables with 4-byte entries"); namespace { class AArch64CompressJumpTables : public MachineFunctionPass { const TargetInstrInfo *TII; MachineFunction *MF; SmallVector BlockInfo; /// Returns the size of instructions in the block \p MBB, or std::nullopt if /// we couldn't get a safe upper bound. std::optional computeBlockSize(MachineBasicBlock &MBB); /// Gather information about the function, returns false if we can't perform /// this optimization for some reason. bool scanFunction(); bool compressJumpTable(MachineInstr &MI, int Offset); public: static char ID; AArch64CompressJumpTables() : MachineFunctionPass(ID) { initializeAArch64CompressJumpTablesPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return "AArch64 Compress Jump Tables"; } }; char AArch64CompressJumpTables::ID = 0; } // namespace INITIALIZE_PASS(AArch64CompressJumpTables, DEBUG_TYPE, "AArch64 compress jump tables pass", false, false) std::optional AArch64CompressJumpTables::computeBlockSize(MachineBasicBlock &MBB) { int Size = 0; for (const MachineInstr &MI : MBB) { // Inline asm may contain some directives like .bytes which we don't // currently have the ability to parse accurately. To be safe, just avoid // computing a size and bail out. if (MI.getOpcode() == AArch64::INLINEASM || MI.getOpcode() == AArch64::INLINEASM_BR) return std::nullopt; Size += TII->getInstSizeInBytes(MI); } return Size; } bool AArch64CompressJumpTables::scanFunction() { BlockInfo.clear(); BlockInfo.resize(MF->getNumBlockIDs()); // NOTE: BlockSize, Offset, OffsetAfterAlignment are all upper bounds. unsigned Offset = 0; for (MachineBasicBlock &MBB : *MF) { const Align Alignment = MBB.getAlignment(); unsigned OffsetAfterAlignment = Offset; // We don't know the exact size of MBB so assume worse case padding. if (Alignment > Align(4)) OffsetAfterAlignment += Alignment.value() - 4; BlockInfo[MBB.getNumber()] = OffsetAfterAlignment; auto BlockSize = computeBlockSize(MBB); if (!BlockSize) return false; Offset = OffsetAfterAlignment + *BlockSize; } return true; } bool AArch64CompressJumpTables::compressJumpTable(MachineInstr &MI, int Offset) { if (MI.getOpcode() != AArch64::JumpTableDest32) return false; int JTIdx = MI.getOperand(4).getIndex(); auto &JTInfo = *MF->getJumpTableInfo(); const MachineJumpTableEntry &JT = JTInfo.getJumpTables()[JTIdx]; // The jump-table might have been optimized away. if (JT.MBBs.empty()) return false; int MaxOffset = std::numeric_limits::min(), MinOffset = std::numeric_limits::max(); MachineBasicBlock *MinBlock = nullptr; for (auto *Block : JT.MBBs) { int BlockOffset = BlockInfo[Block->getNumber()]; assert(BlockOffset % 4 == 0 && "misaligned basic block"); MaxOffset = std::max(MaxOffset, BlockOffset); if (BlockOffset <= MinOffset) { MinOffset = BlockOffset; MinBlock = Block; } } assert(MinBlock && "Failed to find minimum offset block"); // The ADR instruction needed to calculate the address of the first reachable // basic block can address +/-1MB. if (!isInt<21>(MinOffset - Offset)) { ++NumJT32; return false; } int Span = MaxOffset - MinOffset; auto *AFI = MF->getInfo(); if (isUInt<8>(Span / 4)) { AFI->setJumpTableEntryInfo(JTIdx, 1, MinBlock->getSymbol()); MI.setDesc(TII->get(AArch64::JumpTableDest8)); ++NumJT8; return true; } if (isUInt<16>(Span / 4)) { AFI->setJumpTableEntryInfo(JTIdx, 2, MinBlock->getSymbol()); MI.setDesc(TII->get(AArch64::JumpTableDest16)); ++NumJT16; return true; } ++NumJT32; return false; } bool AArch64CompressJumpTables::runOnMachineFunction(MachineFunction &MFIn) { bool Changed = false; MF = &MFIn; const auto &ST = MF->getSubtarget(); TII = ST.getInstrInfo(); if (ST.force32BitJumpTables() && !MF->getFunction().hasMinSize()) return false; if (!scanFunction()) return false; for (MachineBasicBlock &MBB : *MF) { int Offset = BlockInfo[MBB.getNumber()]; for (MachineInstr &MI : MBB) { Changed |= compressJumpTable(MI, Offset); Offset += TII->getInstSizeInBytes(MI); } } return Changed; } FunctionPass *llvm::createAArch64CompressJumpTablesPass() { return new AArch64CompressJumpTables(); }