//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This describes the calling conventions for AArch64 architecture. // //===----------------------------------------------------------------------===// /// CCIfBigEndian - Match only if we're in big endian mode. class CCIfBigEndian : CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>; class CCIfILP32 : CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>; /// CCIfSubtarget - Match if the current subtarget has a feature F. class CCIfSubtarget : CCIf().", F), A>; //===----------------------------------------------------------------------===// // ARM AAPCS64 Calling Convention //===----------------------------------------------------------------------===// defvar AArch64_Common = [ CCIfType<[iPTR], CCBitConvertToType>, CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32], CCBitConvertToType>, // Big endian vectors must be passed as if they were 1-element vectors so that // their lanes are in a consistent order. CCIfBigEndian>>, CCIfBigEndian>>, // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter. // However, on windows, in some circumstances, the SRet is passed in X0 or X1 // instead. The presence of the inreg attribute indicates that SRet is // passed in the alternative register (X0 or X1), not X8: // - X0 for non-instance methods. // - X1 for instance methods. // The "sret" attribute identifies indirect returns. // The "inreg" attribute identifies non-aggregate types. // The position of the "sret" attribute identifies instance/non-instance // methods. // "sret" on argument 0 means non-instance methods. // "sret" on argument 1 means instance methods. CCIfInReg>>>>, CCIfSRet>>, // Put ByVal arguments directly on the stack. Minimum size and alignment of a // slot is 64-bit. CCIfByVal>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf>>, // A SwiftError is passed in X21. CCIfSwiftError>>, // Pass SwiftAsync in an otherwise callee saved register so that it will be // preserved for normal function calls. CCIfSwiftAsync>>, CCIfConsecutiveRegs>, CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>, CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], CCPassIndirect>, CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount], CCAssignToReg<[P0, P1, P2, P3]>>, CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount], CCPassIndirect>, // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers, // up to eight each of GPR and FPR. CCIfType<[i1, i8, i16], CCPromoteToType>, CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>, // i128 is split to two i64s, we can't fit half to register X7. CCIfType<[i64], CCIfSplit>>, // i128 is split to two i64s, and its stack alignment is 16 bytes. CCIfType<[i64], CCIfSplit>>, CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>, CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>, CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, // If more than will fit in registers, pass them on the stack instead. CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>, CCIfType<[i32, f32], CCAssignToStack<8, 8>>, CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16], CCAssignToStack<8, 8>>, CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], CCAssignToStack<16, 16>> ]; let Entry = 1 in def CC_AArch64_AAPCS : CallingConv>], AArch64_Common )>; let Entry = 1 in def RetCC_AArch64_AAPCS : CallingConv<[ CCIfType<[iPTR], CCBitConvertToType>, CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32], CCBitConvertToType>, CCIfConsecutiveRegs>, CCIfSwiftError>>, // Big endian vectors must be passed as if they were 1-element vectors so that // their lanes are in a consistent order. CCIfBigEndian>>, CCIfBigEndian>>, CCIfType<[i1, i8, i16], CCPromoteToType>, CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>, CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>, CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>, CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>, CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount], CCAssignToReg<[P0, P1, P2, P3]>> ]>; let Entry = 1 in def CC_AArch64_Win64PCS : CallingConv; // Vararg functions on windows pass floats in integer registers let Entry = 1 in def CC_AArch64_Win64_VarArg : CallingConv<[ CCIfType<[f16, bf16], CCBitConvertToType>, CCIfType<[f32], CCBitConvertToType>, CCIfType<[f64], CCBitConvertToType>, CCDelegateTo ]>; // Vararg functions on Arm64EC ABI use a different convention, using // a stack layout compatible with the x64 calling convention. let Entry = 1 in def CC_AArch64_Arm64EC_VarArg : CallingConv<[ // Convert small floating-point values to integer. CCIfType<[f16, bf16], CCBitConvertToType>, CCIfType<[f32], CCBitConvertToType>, CCIfType<[f64, v1f64, v1i64, v2f32, v2i32, v4i16, v4f16, v4bf16, v8i8, iPTR], CCBitConvertToType>, // Larger floating-point/vector values are passed indirectly. CCIfType<[f128, v2f64, v2i64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8], CCPassIndirect>, CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], CCPassIndirect>, CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1], CCPassIndirect>, // Handle SRet. See comment in CC_AArch64_AAPCS. CCIfInReg>>>>, CCIfSRet>>, // Put ByVal arguments directly on the stack. Minimum size and alignment of a // slot is 64-bit. (Shouldn't normally come up; the Microsoft ABI doesn't // use byval.) CCIfByVal>, // Promote small integers to i32 CCIfType<[i1, i8, i16], CCPromoteToType>, // Pass first four arguments in x0-x3. CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3]>>, CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3]>>, // Put remaining arguments on stack. CCIfType<[i32, i64], CCAssignToStack<8, 8>>, ]>; // Arm64EC thunks use a calling convention that's precisely the x64 calling // convention, except that the registers have different names, and the callee // address is passed in X9. let Entry = 1 in def CC_AArch64_Arm64EC_Thunk : CallingConv<[ // ARM64EC-specific: the InReg attribute can be used to access the x64 sp passed into entry thunks in x4 from the IR. CCIfInReg>>, // Byval aggregates are passed by pointer CCIfByVal>, // ARM64EC-specific: promote small integers to i32. (x86 only promotes i1, // but that would confuse ARM64 lowering code.) CCIfType<[i1, i8, i16], CCPromoteToType>, // The 'nest' parameter, if any, is passed in R10 (X4). CCIfNest>, // A SwiftError is passed in R12 (X19). CCIfSwiftError>>, // Pass SwiftSelf in R13 (X20). CCIfSwiftSelf>>, // Pass SwiftAsync in an otherwise callee saved register so that calls to // normal functions don't need to save it somewhere. CCIfSwiftAsync>>, // The 'CFGuardTarget' parameter, if any, is passed in RAX (R8). CCIfCFGuardTarget>, // 128 bit vectors are passed by pointer CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCPassIndirect>, // 256 bit vectors are passed by pointer CCIfType<[v32i8, v16i16, v8i32, v4i64, v16f16, v8f32, v4f64], CCPassIndirect>, // 512 bit vectors are passed by pointer CCIfType<[v64i8, v32i16, v16i32, v32f16, v16f32, v8f64, v8i64], CCPassIndirect>, // Long doubles are passed by pointer CCIfType<[f80], CCPassIndirect>, // The first 4 MMX vector arguments are passed in GPRs. CCIfType<[x86mmx], CCBitConvertToType>, // The first 4 FP/Vector arguments are passed in XMM registers. CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3], [X0, X1, X2, X3]>>, CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3], [X0, X1, X2, X3]>>, CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3], [X0, X1, X2, X3]>>, // The first 4 integer arguments are passed in integer registers. CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3], [Q0, Q1, Q2, Q3]>>, // Arm64EC thunks: the first argument is always a pointer to the destination // address, stored in x9. CCIfType<[i64], CCAssignToReg<[X9]>>, CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3], [Q0, Q1, Q2, Q3]>>, // Integer/FP values get stored in stack slots that are 8 bytes in size and // 8-byte aligned if there are no more registers to hold them. CCIfType<[i8, i16, i32, i64, f16, f32, f64], CCAssignToStack<8, 8>> ]>; // The native side of ARM64EC thunks let Entry = 1 in def CC_AArch64_Arm64EC_Thunk_Native : CallingConv<[ CCIfType<[i64], CCAssignToReg<[X9]>>, CCDelegateTo ]>; let Entry = 1 in def RetCC_AArch64_Arm64EC_Thunk : CallingConv<[ // The X86-Win64 calling convention always returns __m64 values in RAX. CCIfType<[x86mmx], CCBitConvertToType>, // Otherwise, everything is the same as 'normal' X86-64 C CC. // The X86-64 calling convention always returns FP values in XMM0. CCIfType<[f16], CCAssignToReg<[H0, H1]>>, CCIfType<[f32], CCAssignToReg<[S0, S1]>>, CCIfType<[f64], CCAssignToReg<[D0, D1]>>, CCIfType<[f128], CCAssignToReg<[Q0, Q1]>>, CCIfSwiftError>>, // Scalar values are returned in AX first, then DX. For i8, the ABI // requires the values to be in AL and AH, however this code uses AL and DL // instead. This is because using AH for the second register conflicts with // the way LLVM does multiple return values -- a return of {i16,i8} would end // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI // for functions that return two i8 values are currently expected to pack the // values into an i16 (which uses AX, and thus AL:AH). // // For code that doesn't care about the ABI, we allow returning more than two // integer values in registers. CCIfType<[i1, i8, i16], CCPromoteToType>, CCIfType<[i32], CCAssignToReg<[W8, W1, W0]>>, CCIfType<[i64], CCAssignToReg<[X8, X1, X0]>>, // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 // can only be used by ABI non-compliant code. If the target doesn't have XMM // registers, it won't have vector types. CCIfType<[v16i8, v8i16, v4i32, v2i64, v8f16, v4f32, v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3]>> ]>; // Windows Control Flow Guard checks take a single argument (the target function // address) and have no return value. let Entry = 1 in def CC_AArch64_Win64_CFGuard_Check : CallingConv<[ CCIfType<[i64], CCAssignToReg<[X15]>> ]>; let Entry = 1 in def CC_AArch64_Arm64EC_CFGuard_Check : CallingConv<[ CCIfType<[i64], CCAssignToReg<[X11, X10, X9]>> ]>; let Entry = 1 in def RetCC_AArch64_Arm64EC_CFGuard_Check : CallingConv<[ CCIfType<[i64], CCAssignToReg<[X11]>> ]>; // Darwin uses a calling convention which differs in only two ways // from the standard one at this level: // + i128s (i.e. split i64s) don't need even registers. // + Stack slots are sized as needed rather than being at least 64-bit. let Entry = 1 in def CC_AArch64_DarwinPCS : CallingConv<[ CCIfType<[iPTR], CCBitConvertToType>, CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32, f128], CCBitConvertToType>, // An SRet is passed in X8, not X0 like a normal pointer parameter. CCIfSRet>>, // Put ByVal arguments directly on the stack. Minimum size and alignment of a // slot is 64-bit. CCIfByVal>, // Pass SwiftSelf in a callee saved register. CCIfSwiftSelf>>, // A SwiftError is passed in X21. CCIfSwiftError>>, // Pass SwiftAsync in an otherwise callee saved register so that it will be // preserved for normal function calls. CCIfSwiftAsync>>, CCIfConsecutiveRegs>, // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers, // up to eight each of GPR and FPR. CCIfType<[i1, i8, i16], CCPromoteToType>, CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>, // i128 is split to two i64s, we can't fit half to register X7. CCIfType<[i64], CCIfSplit>>, // i128 is split to two i64s, and its stack alignment is 16 bytes. CCIfType<[i64], CCIfSplit>>, CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>, CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>, CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, // If more than will fit in registers, pass them on the stack instead. CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>, CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16", CCAssignToStack<2, 2>>, CCIfType<[i32, f32], CCAssignToStack<4, 4>>, // Re-demote pointers to 32-bits so we don't end up storing 64-bit // values and clobbering neighbouring stack locations. Not very pretty. CCIfPtr>>, CCIfPtr>>, CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16], CCAssignToStack<8, 8>>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], CCAssignToStack<16, 16>> ]>; let Entry = 1 in def CC_AArch64_DarwinPCS_VarArg : CallingConv<[ CCIfType<[iPTR], CCBitConvertToType>, CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32, f128], CCBitConvertToType>, CCIfConsecutiveRegs>, // Handle all scalar types as either i64 or f64. CCIfType<[i8, i16, i32], CCPromoteToType>, CCIfType<[f16, bf16, f32], CCPromoteToType>, // Everything is on the stack. // i128 is split to two i64s, and its stack alignment is 16 bytes. CCIfType<[i64], CCIfSplit>>, CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], CCAssignToStack<8, 8>>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], CCAssignToStack<16, 16>> ]>; // In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the // same as the normal Darwin VarArgs handling. let Entry = 1 in def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[ CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32, f128], CCBitConvertToType>, // Handle all scalar types as either i32 or f32. CCIfType<[i8, i16], CCPromoteToType>, CCIfType<[f16, bf16], CCPromoteToType>, // Everything is on the stack. // i128 is split to two i64s, and its stack alignment is 16 bytes. CCIfPtr>>, CCIfType<[i32, f32], CCAssignToStack<4, 4>>, CCIfType<[i64], CCIfSplit>>, CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], CCAssignToStack<8, 8>>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], CCAssignToStack<16, 16>> ]>; //===----------------------------------------------------------------------===// // ARM64 Calling Convention for GHC //===----------------------------------------------------------------------===// // This calling convention is specific to the Glasgow Haskell Compiler. // The only documentation is the GHC source code, specifically the C header // file: // // https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs.h // // which defines the registers for the Spineless Tagless G-Machine (STG) that // GHC uses to implement lazy evaluation. The generic STG machine has a set of // registers which are mapped to appropriate set of architecture specific // registers for each CPU architecture. // // The STG Machine is documented here: // // https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode // // The AArch64 register mapping is defined in the following header file: // // https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs/arm64.h // let Entry = 1 in def CC_AArch64_GHC : CallingConv<[ CCIfType<[iPTR], CCBitConvertToType>, // Handle all vector types as either f64 or v2f64. CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType>, CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>, CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>, CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>, // Promote i8/i16/i32 arguments to i64. CCIfType<[i8, i16, i32], CCPromoteToType>, // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>> ]>; let Entry = 1 in def CC_AArch64_Preserve_None : CallingConv<[ // VarArgs are only supported using the C calling convention. // This handles the non-variadic parameter case. Variadic parameters // are handled in CCAssignFnForCall. CCIfVarArg>>, CCIfVarArg>>, CCIfVarArg>, // We can pass arguments in all general registers, except: // - X8, used for sret // - X16/X17, used by the linker as IP0/IP1 // - X18, the platform register // - X19, the base pointer // - X29, the frame pointer // - X30, the link register // General registers are not preserved with the exception of // FP, LR, and X18 // Non-volatile registers are used first, so functions may call // normal functions without saving and reloading arguments. // X9 is assigned last as it is used in FrameLowering as the first // choice for a scratch register. CCIfType<[i32], CCAssignToReg<[W20, W21, W22, W23, W24, W25, W26, W27, W28, W0, W1, W2, W3, W4, W5, W6, W7, W10, W11, W12, W13, W14, W9]>>, CCIfType<[i64], CCAssignToReg<[X20, X21, X22, X23, X24, X25, X26, X27, X28, X0, X1, X2, X3, X4, X5, X6, X7, X10, X11, X12, X13, X14, X9]>>, // Windows uses X15 for stack allocation CCIf<"!State.getMachineFunction().getSubtarget().isTargetWindows()", CCIfType<[i32], CCAssignToReg<[W15]>>>, CCIf<"!State.getMachineFunction().getSubtarget().isTargetWindows()", CCIfType<[i64], CCAssignToReg<[X15]>>>, CCDelegateTo ]>; // The order of the callee-saves in this file is important, because the // FrameLowering code will use this order to determine the layout the // callee-save area in the stack frame. As can be observed below, Darwin // requires the frame-record (LR, FP) to be at the top the callee-save area, // whereas for other platforms they are at the bottom. // FIXME: LR is only callee-saved in the sense that *we* preserve it and are // presumably a callee to someone. External functions may not do so, but this // is currently safe since BL has LR as an implicit-def and what happens after a // tail call doesn't matter. // // It would be better to model its preservation semantics properly (create a // vreg on entry, use it in RET & tail call generation; make that vreg def if we // end up saving LR as part of a call frame). Watch this space... def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, LR, FP, D8, D9, D10, D11, D12, D13, D14, D15)>; // A variant for treating X18 as callee saved, when interfacing with // code that needs X18 to be preserved. def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>; // Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x. // We put FP before LR, so that frame lowering logic generates (FP,LR) pairs, // and not (LR,FP) pairs. def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, FP, LR, D8, D9, D10, D11, D12, D13, D14, D15)>; def CSR_Win_AArch64_AAPCS_SwiftError : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X21)>; def CSR_Win_AArch64_AAPCS_SwiftTail : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X20, X22)>; // The Control Flow Guard check call uses a custom calling convention that also // preserves X0-X8 and Q0-Q7. def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS, (sequence "X%u", 0, 8), (sequence "Q%u", 0, 7))>; // To match the x64 calling convention, Arm64EC thunks preserve q6-q15. def CSR_Win_AArch64_Arm64EC_Thunk : CalleeSavedRegs<(add (sequence "Q%u", 6, 15), X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, FP, LR)>; // AArch64 PCS for vector functions (VPCS) // must (additionally) preserve full Q8-Q23 registers def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, LR, FP, (sequence "Q%u", 8, 23))>; // Functions taking SVE arguments or returning an SVE type // must (additionally) preserve full Z8-Z23 and predicate registers P4-P15 def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23), (sequence "P%u", 4, 15), X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, LR, FP)>; // SME ABI support routines such as __arm_tpidr2_save/restore preserve most registers. def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 : CalleeSavedRegs<(add (sequence "Z%u", 0, 31), (sequence "P%u", 0, 15), (sequence "X%u", 0, 13), (sequence "X%u",19, 28), LR, FP)>; // SME ABI support routines such as __arm_get_current_vg preserve most registers. def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1 : CalleeSavedRegs<(add (sequence "Z%u", 0, 31), (sequence "P%u", 0, 15), (sequence "X%u", 1, 15), (sequence "X%u",19, 28), LR, FP)>; // SME ABI support routines __arm_sme_state preserves most registers. def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 : CalleeSavedRegs<(add (sequence "Z%u", 0, 31), (sequence "P%u", 0, 15), (sequence "X%u", 2, 15), (sequence "X%u",19, 28), LR, FP)>; // The SMSTART/SMSTOP instructions preserve only GPR registers. def CSR_AArch64_SMStartStop : CalleeSavedRegs<(add (sequence "X%u", 0, 28), LR, FP)>; def CSR_AArch64_AAPCS_SwiftTail : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>; // Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since // 'this' and the pointer return value are both passed in X0 in these cases, // this can be partially modelled by treating X0 as a callee-saved register; // only the resulting RegMask is used; the SaveList is ignored // // (For generic ARM 64-bit ABI code, clang will not generate constructors or // destructors with 'this' returns, so this RegMask will not be used in that // case) def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>; def CSR_AArch64_AAPCS_SwiftError : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>; // The ELF stub used for TLS-descriptor access saves every feasible // register. Only X0 and LR are clobbered. def CSR_AArch64_TLS_ELF : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP, (sequence "Q%u", 0, 31))>; def CSR_AArch64_AllRegs : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP, (sequence "X%u", 0, 28), FP, LR, SP, (sequence "B%u", 0, 31), (sequence "H%u", 0, 31), (sequence "S%u", 0, 31), (sequence "D%u", 0, 31), (sequence "Q%u", 0, 31))>; def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>; def CSR_AArch64_NoneRegs : CalleeSavedRegs<(add LR, FP)>; def CSR_AArch64_RT_MostRegs : CalleeSavedRegs<(add CSR_AArch64_AAPCS, (sequence "X%u", 9, 15))>; def CSR_AArch64_RT_AllRegs : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, (sequence "Q%u", 8, 31))>; def CSR_AArch64_StackProbe_Windows : CalleeSavedRegs<(add (sequence "X%u", 0, 15), (sequence "X%u", 18, 28), FP, SP, (sequence "Q%u", 0, 31))>; // Darwin variants of AAPCS. // Darwin puts the frame-record at the top of the callee-save area. def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, D8, D9, D10, D11, D12, D13, D14, D15)>; def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, (sequence "Q%u", 8, 23))>; // For Windows calling convention on a non-windows OS, where X18 is treated // as reserved, back up X18 when entering non-windows code (marked with the // Windows calling convention) and restore when returning regardless of // whether the individual function uses it - it might call other functions // that clobber it. def CSR_Darwin_AArch64_AAPCS_Win64 : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X18)>; def CSR_Darwin_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>; def CSR_Darwin_AArch64_AAPCS_SwiftError : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>; def CSR_Darwin_AArch64_AAPCS_SwiftTail : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>; // The function used by Darwin to obtain the address of a thread-local variable // guarantees more than a normal AAPCS function. x16 and x17 are used on the // fast path for calculation, but other registers except X0 (argument/return) // and LR (it is a call, after all) are preserved. def CSR_Darwin_AArch64_TLS : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17), FP, (sequence "Q%u", 0, 31))>; // We can only handle a register pair with adjacent registers, the register pair // should belong to the same class as well. Since the access function on the // fast path calls a function that follows CSR_Darwin_AArch64_TLS, // CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS. def CSR_Darwin_AArch64_CXX_TLS : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19), (sequence "D%u", 0, 31))>; // CSRs that are handled by prologue, epilogue. def CSR_Darwin_AArch64_CXX_TLS_PE : CalleeSavedRegs<(add LR, FP)>; // CSRs that are handled explicitly via copies. def CSR_Darwin_AArch64_CXX_TLS_ViaCopy : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>; def CSR_Darwin_AArch64_RT_MostRegs : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>; def CSR_Darwin_AArch64_RT_AllRegs : CalleeSavedRegs<(add CSR_Darwin_AArch64_RT_MostRegs, (sequence "Q%u", 8, 31))>; // Variants of the standard calling conventions for shadow call stack. // These all preserve x18 in addition to any other registers. def CSR_AArch64_NoRegs_SCS : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>; def CSR_AArch64_NoneRegs_SCS : CalleeSavedRegs<(add CSR_AArch64_NoneRegs, X18)>; def CSR_AArch64_AllRegs_SCS : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>; def CSR_AArch64_AAPCS_SwiftError_SCS : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>; def CSR_AArch64_RT_MostRegs_SCS : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>; def CSR_AArch64_RT_AllRegs_SCS : CalleeSavedRegs<(add CSR_AArch64_RT_AllRegs, X18)>; def CSR_AArch64_AAVPCS_SCS : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>; def CSR_AArch64_SVE_AAPCS_SCS : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>; def CSR_AArch64_AAPCS_SCS : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;