//===- lib/Support/YAMLTraits.cpp -----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Support/YAMLTraits.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/VersionTuple.h" #include "llvm/Support/YAMLParser.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; using namespace yaml; //===----------------------------------------------------------------------===// // IO //===----------------------------------------------------------------------===// IO::IO(void *Context) : Ctxt(Context) {} IO::~IO() = default; void *IO::getContext() const { return Ctxt; } void IO::setContext(void *Context) { Ctxt = Context; } void IO::setAllowUnknownKeys(bool Allow) { llvm_unreachable("Only supported for Input"); } //===----------------------------------------------------------------------===// // Input //===----------------------------------------------------------------------===// Input::Input(StringRef InputContent, void *Ctxt, SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) { if (DiagHandler) SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); DocIterator = Strm->begin(); } Input::Input(MemoryBufferRef Input, void *Ctxt, SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) { if (DiagHandler) SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); DocIterator = Strm->begin(); } Input::~Input() = default; std::error_code Input::error() { return EC; } bool Input::outputting() const { return false; } bool Input::setCurrentDocument() { if (DocIterator != Strm->end()) { Node *N = DocIterator->getRoot(); if (!N) { EC = make_error_code(errc::invalid_argument); return false; } if (isa(N)) { // Empty files are allowed and ignored ++DocIterator; return setCurrentDocument(); } releaseHNodeBuffers(); TopNode = createHNodes(N); CurrentNode = TopNode; return true; } return false; } bool Input::nextDocument() { return ++DocIterator != Strm->end(); } const Node *Input::getCurrentNode() const { return CurrentNode ? CurrentNode->_node : nullptr; } bool Input::mapTag(StringRef Tag, bool Default) { // CurrentNode can be null if setCurrentDocument() was unable to // parse the document because it was invalid or empty. if (!CurrentNode) return false; std::string foundTag = CurrentNode->_node->getVerbatimTag(); if (foundTag.empty()) { // If no tag found and 'Tag' is the default, say it was found. return Default; } // Return true iff found tag matches supplied tag. return Tag == foundTag; } void Input::beginMapping() { if (EC) return; // CurrentNode can be null if the document is empty. MapHNode *MN = dyn_cast_or_null(CurrentNode); if (MN) { MN->ValidKeys.clear(); } } std::vector Input::keys() { MapHNode *MN = dyn_cast(CurrentNode); std::vector Ret; if (!MN) { setError(CurrentNode, "not a mapping"); return Ret; } for (auto &P : MN->Mapping) Ret.push_back(P.first()); return Ret; } bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, void *&SaveInfo) { UseDefault = false; if (EC) return false; // CurrentNode is null for empty documents, which is an error in case required // nodes are present. if (!CurrentNode) { if (Required) EC = make_error_code(errc::invalid_argument); else UseDefault = true; return false; } MapHNode *MN = dyn_cast(CurrentNode); if (!MN) { if (Required || !isa(CurrentNode)) setError(CurrentNode, "not a mapping"); else UseDefault = true; return false; } MN->ValidKeys.push_back(Key); HNode *Value = MN->Mapping[Key].first; if (!Value) { if (Required) setError(CurrentNode, Twine("missing required key '") + Key + "'"); else UseDefault = true; return false; } SaveInfo = CurrentNode; CurrentNode = Value; return true; } void Input::postflightKey(void *saveInfo) { CurrentNode = reinterpret_cast(saveInfo); } void Input::endMapping() { if (EC) return; // CurrentNode can be null if the document is empty. MapHNode *MN = dyn_cast_or_null(CurrentNode); if (!MN) return; for (const auto &NN : MN->Mapping) { if (!is_contained(MN->ValidKeys, NN.first())) { const SMRange &ReportLoc = NN.second.second; if (!AllowUnknownKeys) { setError(ReportLoc, Twine("unknown key '") + NN.first() + "'"); break; } else reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'"); } } } void Input::beginFlowMapping() { beginMapping(); } void Input::endFlowMapping() { endMapping(); } unsigned Input::beginSequence() { if (SequenceHNode *SQ = dyn_cast(CurrentNode)) return SQ->Entries.size(); if (isa(CurrentNode)) return 0; // Treat case where there's a scalar "null" value as an empty sequence. if (ScalarHNode *SN = dyn_cast(CurrentNode)) { if (isNull(SN->value())) return 0; } // Any other type of HNode is an error. setError(CurrentNode, "not a sequence"); return 0; } void Input::endSequence() { } bool Input::preflightElement(unsigned Index, void *&SaveInfo) { if (EC) return false; if (SequenceHNode *SQ = dyn_cast(CurrentNode)) { SaveInfo = CurrentNode; CurrentNode = SQ->Entries[Index]; return true; } return false; } void Input::postflightElement(void *SaveInfo) { CurrentNode = reinterpret_cast(SaveInfo); } unsigned Input::beginFlowSequence() { return beginSequence(); } bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { if (EC) return false; if (SequenceHNode *SQ = dyn_cast(CurrentNode)) { SaveInfo = CurrentNode; CurrentNode = SQ->Entries[index]; return true; } return false; } void Input::postflightFlowElement(void *SaveInfo) { CurrentNode = reinterpret_cast(SaveInfo); } void Input::endFlowSequence() { } void Input::beginEnumScalar() { ScalarMatchFound = false; } bool Input::matchEnumScalar(const char *Str, bool) { if (ScalarMatchFound) return false; if (ScalarHNode *SN = dyn_cast(CurrentNode)) { if (SN->value() == Str) { ScalarMatchFound = true; return true; } } return false; } bool Input::matchEnumFallback() { if (ScalarMatchFound) return false; ScalarMatchFound = true; return true; } void Input::endEnumScalar() { if (!ScalarMatchFound) { setError(CurrentNode, "unknown enumerated scalar"); } } bool Input::beginBitSetScalar(bool &DoClear) { BitValuesUsed.clear(); if (SequenceHNode *SQ = dyn_cast(CurrentNode)) { BitValuesUsed.resize(SQ->Entries.size()); } else { setError(CurrentNode, "expected sequence of bit values"); } DoClear = true; return true; } bool Input::bitSetMatch(const char *Str, bool) { if (EC) return false; if (SequenceHNode *SQ = dyn_cast(CurrentNode)) { unsigned Index = 0; for (auto &N : SQ->Entries) { if (ScalarHNode *SN = dyn_cast(N)) { if (SN->value() == Str) { BitValuesUsed[Index] = true; return true; } } else { setError(CurrentNode, "unexpected scalar in sequence of bit values"); } ++Index; } } else { setError(CurrentNode, "expected sequence of bit values"); } return false; } void Input::endBitSetScalar() { if (EC) return; if (SequenceHNode *SQ = dyn_cast(CurrentNode)) { assert(BitValuesUsed.size() == SQ->Entries.size()); for (unsigned i = 0; i < SQ->Entries.size(); ++i) { if (!BitValuesUsed[i]) { setError(SQ->Entries[i], "unknown bit value"); return; } } } } void Input::scalarString(StringRef &S, QuotingType) { if (ScalarHNode *SN = dyn_cast(CurrentNode)) { S = SN->value(); } else { setError(CurrentNode, "unexpected scalar"); } } void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); } void Input::scalarTag(std::string &Tag) { Tag = CurrentNode->_node->getVerbatimTag(); } void Input::setError(HNode *hnode, const Twine &message) { assert(hnode && "HNode must not be NULL"); setError(hnode->_node, message); } NodeKind Input::getNodeKind() { if (isa(CurrentNode)) return NodeKind::Scalar; else if (isa(CurrentNode)) return NodeKind::Map; else if (isa(CurrentNode)) return NodeKind::Sequence; llvm_unreachable("Unsupported node kind"); } void Input::setError(Node *node, const Twine &message) { Strm->printError(node, message); EC = make_error_code(errc::invalid_argument); } void Input::setError(const SMRange &range, const Twine &message) { Strm->printError(range, message); EC = make_error_code(errc::invalid_argument); } void Input::reportWarning(HNode *hnode, const Twine &message) { assert(hnode && "HNode must not be NULL"); Strm->printError(hnode->_node, message, SourceMgr::DK_Warning); } void Input::reportWarning(Node *node, const Twine &message) { Strm->printError(node, message, SourceMgr::DK_Warning); } void Input::reportWarning(const SMRange &range, const Twine &message) { Strm->printError(range, message, SourceMgr::DK_Warning); } void Input::releaseHNodeBuffers() { EmptyHNodeAllocator.DestroyAll(); ScalarHNodeAllocator.DestroyAll(); SequenceHNodeAllocator.DestroyAll(); MapHNodeAllocator.DestroyAll(); } Input::HNode *Input::createHNodes(Node *N) { SmallString<128> StringStorage; switch (N->getType()) { case Node::NK_Scalar: { ScalarNode *SN = dyn_cast(N); StringRef KeyStr = SN->getValue(StringStorage); if (!StringStorage.empty()) { // Copy string to permanent storage KeyStr = StringStorage.str().copy(StringAllocator); } return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, KeyStr); } case Node::NK_BlockScalar: { BlockScalarNode *BSN = dyn_cast(N); StringRef ValueCopy = BSN->getValue().copy(StringAllocator); return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, ValueCopy); } case Node::NK_Sequence: { SequenceNode *SQ = dyn_cast(N); auto SQHNode = new (SequenceHNodeAllocator.Allocate()) SequenceHNode(N); for (Node &SN : *SQ) { auto Entry = createHNodes(&SN); if (EC) break; SQHNode->Entries.push_back(Entry); } return SQHNode; } case Node::NK_Mapping: { MappingNode *Map = dyn_cast(N); auto mapHNode = new (MapHNodeAllocator.Allocate()) MapHNode(N); for (KeyValueNode &KVN : *Map) { Node *KeyNode = KVN.getKey(); ScalarNode *Key = dyn_cast_or_null(KeyNode); Node *Value = KVN.getValue(); if (!Key || !Value) { if (!Key) setError(KeyNode, "Map key must be a scalar"); if (!Value) setError(KeyNode, "Map value must not be empty"); break; } StringStorage.clear(); StringRef KeyStr = Key->getValue(StringStorage); if (!StringStorage.empty()) { // Copy string to permanent storage KeyStr = StringStorage.str().copy(StringAllocator); } if (mapHNode->Mapping.count(KeyStr)) // From YAML spec: "The content of a mapping node is an unordered set of // key/value node pairs, with the restriction that each of the keys is // unique." setError(KeyNode, Twine("duplicated mapping key '") + KeyStr + "'"); auto ValueHNode = createHNodes(Value); if (EC) break; mapHNode->Mapping[KeyStr] = std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange()); } return std::move(mapHNode); } case Node::NK_Null: return new (EmptyHNodeAllocator.Allocate()) EmptyHNode(N); default: setError(N, "unknown node kind"); return nullptr; } } void Input::setError(const Twine &Message) { setError(CurrentNode, Message); } void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; } bool Input::canElideEmptySequence() { return false; } //===----------------------------------------------------------------------===// // Output //===----------------------------------------------------------------------===// Output::Output(raw_ostream &yout, void *context, int WrapColumn) : IO(context), Out(yout), WrapColumn(WrapColumn) {} Output::~Output() = default; bool Output::outputting() const { return true; } void Output::beginMapping() { StateStack.push_back(inMapFirstKey); PaddingBeforeContainer = Padding; Padding = "\n"; } bool Output::mapTag(StringRef Tag, bool Use) { if (Use) { // If this tag is being written inside a sequence we should write the start // of the sequence before writing the tag, otherwise the tag won't be // attached to the element in the sequence, but rather the sequence itself. bool SequenceElement = false; if (StateStack.size() > 1) { auto &E = StateStack[StateStack.size() - 2]; SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E); } if (SequenceElement && StateStack.back() == inMapFirstKey) { newLineCheck(); } else { output(" "); } output(Tag); if (SequenceElement) { // If we're writing the tag during the first element of a map, the tag // takes the place of the first element in the sequence. if (StateStack.back() == inMapFirstKey) { StateStack.pop_back(); StateStack.push_back(inMapOtherKey); } // Tags inside maps in sequences should act as keys in the map from a // formatting perspective, so we always want a newline in a sequence. Padding = "\n"; } } return Use; } void Output::endMapping() { // If we did not map anything, we should explicitly emit an empty map if (StateStack.back() == inMapFirstKey) { Padding = PaddingBeforeContainer; newLineCheck(); output("{}"); Padding = "\n"; } StateStack.pop_back(); } std::vector Output::keys() { report_fatal_error("invalid call"); } bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, bool &UseDefault, void *&SaveInfo) { UseDefault = false; SaveInfo = nullptr; if (Required || !SameAsDefault || WriteDefaultValues) { auto State = StateStack.back(); if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { flowKey(Key); } else { newLineCheck(); paddedKey(Key); } return true; } return false; } void Output::postflightKey(void *) { if (StateStack.back() == inMapFirstKey) { StateStack.pop_back(); StateStack.push_back(inMapOtherKey); } else if (StateStack.back() == inFlowMapFirstKey) { StateStack.pop_back(); StateStack.push_back(inFlowMapOtherKey); } } void Output::beginFlowMapping() { StateStack.push_back(inFlowMapFirstKey); newLineCheck(); ColumnAtMapFlowStart = Column; output("{ "); } void Output::endFlowMapping() { StateStack.pop_back(); outputUpToEndOfLine(" }"); } void Output::beginDocuments() { outputUpToEndOfLine("---"); } bool Output::preflightDocument(unsigned index) { if (index > 0) outputUpToEndOfLine("\n---"); return true; } void Output::postflightDocument() { } void Output::endDocuments() { output("\n...\n"); } unsigned Output::beginSequence() { StateStack.push_back(inSeqFirstElement); PaddingBeforeContainer = Padding; Padding = "\n"; return 0; } void Output::endSequence() { // If we did not emit anything, we should explicitly emit an empty sequence if (StateStack.back() == inSeqFirstElement) { Padding = PaddingBeforeContainer; newLineCheck(/*EmptySequence=*/true); output("[]"); Padding = "\n"; } StateStack.pop_back(); } bool Output::preflightElement(unsigned, void *&SaveInfo) { SaveInfo = nullptr; return true; } void Output::postflightElement(void *) { if (StateStack.back() == inSeqFirstElement) { StateStack.pop_back(); StateStack.push_back(inSeqOtherElement); } else if (StateStack.back() == inFlowSeqFirstElement) { StateStack.pop_back(); StateStack.push_back(inFlowSeqOtherElement); } } unsigned Output::beginFlowSequence() { StateStack.push_back(inFlowSeqFirstElement); newLineCheck(); ColumnAtFlowStart = Column; output("[ "); NeedFlowSequenceComma = false; return 0; } void Output::endFlowSequence() { StateStack.pop_back(); outputUpToEndOfLine(" ]"); } bool Output::preflightFlowElement(unsigned, void *&SaveInfo) { if (NeedFlowSequenceComma) output(", "); if (WrapColumn && Column > WrapColumn) { output("\n"); for (int i = 0; i < ColumnAtFlowStart; ++i) output(" "); Column = ColumnAtFlowStart; output(" "); } SaveInfo = nullptr; return true; } void Output::postflightFlowElement(void *) { NeedFlowSequenceComma = true; } void Output::beginEnumScalar() { EnumerationMatchFound = false; } bool Output::matchEnumScalar(const char *Str, bool Match) { if (Match && !EnumerationMatchFound) { newLineCheck(); outputUpToEndOfLine(Str); EnumerationMatchFound = true; } return false; } bool Output::matchEnumFallback() { if (EnumerationMatchFound) return false; EnumerationMatchFound = true; return true; } void Output::endEnumScalar() { if (!EnumerationMatchFound) llvm_unreachable("bad runtime enum value"); } bool Output::beginBitSetScalar(bool &DoClear) { newLineCheck(); output("[ "); NeedBitValueComma = false; DoClear = false; return true; } bool Output::bitSetMatch(const char *Str, bool Matches) { if (Matches) { if (NeedBitValueComma) output(", "); output(Str); NeedBitValueComma = true; } return false; } void Output::endBitSetScalar() { outputUpToEndOfLine(" ]"); } void Output::scalarString(StringRef &S, QuotingType MustQuote) { newLineCheck(); if (S.empty()) { // Print '' for the empty string because leaving the field empty is not // allowed. outputUpToEndOfLine("''"); return; } output(S, MustQuote); outputUpToEndOfLine(""); } void Output::blockScalarString(StringRef &S) { if (!StateStack.empty()) newLineCheck(); output(" |"); outputNewLine(); unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); auto Buffer = MemoryBuffer::getMemBuffer(S, "", false); for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { for (unsigned I = 0; I < Indent; ++I) { output(" "); } output(*Lines); outputNewLine(); } } void Output::scalarTag(std::string &Tag) { if (Tag.empty()) return; newLineCheck(); output(Tag); output(" "); } void Output::setError(const Twine &message) { } bool Output::canElideEmptySequence() { // Normally, with an optional key/value where the value is an empty sequence, // the whole key/value can be not written. But, that produces wrong yaml // if the key/value is the only thing in the map and the map is used in // a sequence. This detects if the this sequence is the first key/value // in map that itself is embedded in a sequence. if (StateStack.size() < 2) return true; if (StateStack.back() != inMapFirstKey) return true; return !inSeqAnyElement(StateStack[StateStack.size() - 2]); } void Output::output(StringRef s) { Column += s.size(); Out << s; } void Output::output(StringRef S, QuotingType MustQuote) { if (MustQuote == QuotingType::None) { // Only quote if we must. output(S); return; } StringLiteral Quote = MustQuote == QuotingType::Single ? StringLiteral("'") : StringLiteral("\""); output(Quote); // Starting quote. // When using double-quoted strings (and only in that case), non-printable // characters may be present, and will be escaped using a variety of // unicode-scalar and special short-form escapes. This is handled in // yaml::escape. if (MustQuote == QuotingType::Double) { output(yaml::escape(S, /* EscapePrintable= */ false)); output(Quote); return; } unsigned i = 0; unsigned j = 0; unsigned End = S.size(); const char *Base = S.data(); // When using single-quoted strings, any single quote ' must be doubled to be // escaped. while (j < End) { if (S[j] == '\'') { // Escape quotes. output(StringRef(&Base[i], j - i)); // "flush". output(StringLiteral("''")); // Print it as '' i = j + 1; } ++j; } output(StringRef(&Base[i], j - i)); output(Quote); // Ending quote. } void Output::outputUpToEndOfLine(StringRef s) { output(s); if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) && !inFlowMapAnyKey(StateStack.back()))) Padding = "\n"; } void Output::outputNewLine() { Out << "\n"; Column = 0; } // if seq at top, indent as if map, then add "- " // if seq in middle, use "- " if firstKey, else use " " // void Output::newLineCheck(bool EmptySequence) { if (Padding != "\n") { output(Padding); Padding = {}; return; } outputNewLine(); Padding = {}; if (StateStack.size() == 0 || EmptySequence) return; unsigned Indent = StateStack.size() - 1; bool OutputDash = false; if (StateStack.back() == inSeqFirstElement || StateStack.back() == inSeqOtherElement) { OutputDash = true; } else if ((StateStack.size() > 1) && ((StateStack.back() == inMapFirstKey) || inFlowSeqAnyElement(StateStack.back()) || (StateStack.back() == inFlowMapFirstKey)) && inSeqAnyElement(StateStack[StateStack.size() - 2])) { --Indent; OutputDash = true; } for (unsigned i = 0; i < Indent; ++i) { output(" "); } if (OutputDash) { output("- "); } } void Output::paddedKey(StringRef key) { output(key, needsQuotes(key, false)); output(":"); const char *spaces = " "; if (key.size() < strlen(spaces)) Padding = &spaces[key.size()]; else Padding = " "; } void Output::flowKey(StringRef Key) { if (StateStack.back() == inFlowMapOtherKey) output(", "); if (WrapColumn && Column > WrapColumn) { output("\n"); for (int I = 0; I < ColumnAtMapFlowStart; ++I) output(" "); Column = ColumnAtMapFlowStart; output(" "); } output(Key, needsQuotes(Key, false)); output(": "); } NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); } bool Output::inSeqAnyElement(InState State) { return State == inSeqFirstElement || State == inSeqOtherElement; } bool Output::inFlowSeqAnyElement(InState State) { return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement; } bool Output::inMapAnyKey(InState State) { return State == inMapFirstKey || State == inMapOtherKey; } bool Output::inFlowMapAnyKey(InState State) { return State == inFlowMapFirstKey || State == inFlowMapOtherKey; } //===----------------------------------------------------------------------===// // traits for built-in types //===----------------------------------------------------------------------===// void ScalarTraits::output(const bool &Val, void *, raw_ostream &Out) { Out << (Val ? "true" : "false"); } StringRef ScalarTraits::input(StringRef Scalar, void *, bool &Val) { if (std::optional Parsed = parseBool(Scalar)) { Val = *Parsed; return StringRef(); } return "invalid boolean"; } void ScalarTraits::output(const StringRef &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, StringRef &Val) { Val = Scalar; return StringRef(); } void ScalarTraits::output(const std::string &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, std::string &Val) { Val = Scalar.str(); return StringRef(); } void ScalarTraits::output(const uint8_t &Val, void *, raw_ostream &Out) { // use temp uin32_t because ostream thinks uint8_t is a character uint32_t Num = Val; Out << Num; } StringRef ScalarTraits::input(StringRef Scalar, void *, uint8_t &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid number"; if (n > 0xFF) return "out of range number"; Val = n; return StringRef(); } void ScalarTraits::output(const uint16_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, uint16_t &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid number"; if (n > 0xFFFF) return "out of range number"; Val = n; return StringRef(); } void ScalarTraits::output(const uint32_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, uint32_t &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid number"; if (n > 0xFFFFFFFFUL) return "out of range number"; Val = n; return StringRef(); } void ScalarTraits::output(const uint64_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, uint64_t &Val) { unsigned long long N; if (getAsUnsignedInteger(Scalar, 0, N)) return "invalid number"; Val = N; return StringRef(); } void ScalarTraits::output(const int8_t &Val, void *, raw_ostream &Out) { // use temp in32_t because ostream thinks int8_t is a character int32_t Num = Val; Out << Num; } StringRef ScalarTraits::input(StringRef Scalar, void *, int8_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; if ((N > 127) || (N < -128)) return "out of range number"; Val = N; return StringRef(); } void ScalarTraits::output(const int16_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, int16_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; if ((N > INT16_MAX) || (N < INT16_MIN)) return "out of range number"; Val = N; return StringRef(); } void ScalarTraits::output(const int32_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, int32_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; if ((N > INT32_MAX) || (N < INT32_MIN)) return "out of range number"; Val = N; return StringRef(); } void ScalarTraits::output(const int64_t &Val, void *, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *, int64_t &Val) { long long N; if (getAsSignedInteger(Scalar, 0, N)) return "invalid number"; Val = N; return StringRef(); } void ScalarTraits::output(const double &Val, void *, raw_ostream &Out) { Out << format("%g", Val); } StringRef ScalarTraits::input(StringRef Scalar, void *, double &Val) { if (to_float(Scalar, Val)) return StringRef(); return "invalid floating point number"; } void ScalarTraits::output(const float &Val, void *, raw_ostream &Out) { Out << format("%g", Val); } StringRef ScalarTraits::input(StringRef Scalar, void *, float &Val) { if (to_float(Scalar, Val)) return StringRef(); return "invalid floating point number"; } void ScalarTraits::output(const Hex8 &Val, void *, raw_ostream &Out) { Out << format("0x%" PRIX8, (uint8_t)Val); } StringRef ScalarTraits::input(StringRef Scalar, void *, Hex8 &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid hex8 number"; if (n > 0xFF) return "out of range hex8 number"; Val = n; return StringRef(); } void ScalarTraits::output(const Hex16 &Val, void *, raw_ostream &Out) { Out << format("0x%" PRIX16, (uint16_t)Val); } StringRef ScalarTraits::input(StringRef Scalar, void *, Hex16 &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid hex16 number"; if (n > 0xFFFF) return "out of range hex16 number"; Val = n; return StringRef(); } void ScalarTraits::output(const Hex32 &Val, void *, raw_ostream &Out) { Out << format("0x%" PRIX32, (uint32_t)Val); } StringRef ScalarTraits::input(StringRef Scalar, void *, Hex32 &Val) { unsigned long long n; if (getAsUnsignedInteger(Scalar, 0, n)) return "invalid hex32 number"; if (n > 0xFFFFFFFFUL) return "out of range hex32 number"; Val = n; return StringRef(); } void ScalarTraits::output(const Hex64 &Val, void *, raw_ostream &Out) { Out << format("0x%" PRIX64, (uint64_t)Val); } StringRef ScalarTraits::input(StringRef Scalar, void *, Hex64 &Val) { unsigned long long Num; if (getAsUnsignedInteger(Scalar, 0, Num)) return "invalid hex64 number"; Val = Num; return StringRef(); } void ScalarTraits::output(const VersionTuple &Val, void *, llvm::raw_ostream &Out) { Out << Val.getAsString(); } StringRef ScalarTraits::input(StringRef Scalar, void *, VersionTuple &Val) { if (Val.tryParse(Scalar)) return "invalid version format"; return StringRef(); }