//===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a class for representing known zeros and ones used by // computeKnownBits. // //===----------------------------------------------------------------------===// #include "llvm/Support/KnownBits.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; static KnownBits computeForAddCarry( const KnownBits &LHS, const KnownBits &RHS, bool CarryZero, bool CarryOne) { assert(!(CarryZero && CarryOne) && "Carry can't be zero and one at the same time"); APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero; APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne; // Compute known bits of the carry. APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; // Compute set of known bits (where all three relevant bits are known). APInt LHSKnownUnion = LHS.Zero | LHS.One; APInt RHSKnownUnion = RHS.Zero | RHS.One; APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne; APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion; assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && "known bits of sum differ"); // Compute known bits of the result. KnownBits KnownOut; KnownOut.Zero = ~std::move(PossibleSumZero) & Known; KnownOut.One = std::move(PossibleSumOne) & Known; return KnownOut; } KnownBits KnownBits::computeForAddCarry( const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) { assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit"); return ::computeForAddCarry( LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue()); } KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, const KnownBits &LHS, KnownBits RHS) { KnownBits KnownOut; if (Add) { // Sum = LHS + RHS + 0 KnownOut = ::computeForAddCarry( LHS, RHS, /*CarryZero*/true, /*CarryOne*/false); } else { // Sum = LHS + ~RHS + 1 std::swap(RHS.Zero, RHS.One); KnownOut = ::computeForAddCarry( LHS, RHS, /*CarryZero*/false, /*CarryOne*/true); } // Are we still trying to solve for the sign bit? if (!KnownOut.isNegative() && !KnownOut.isNonNegative()) { if (NSW) { // Adding two non-negative numbers, or subtracting a negative number from // a non-negative one, can't wrap into negative. if (LHS.isNonNegative() && RHS.isNonNegative()) KnownOut.makeNonNegative(); // Adding two negative numbers, or subtracting a non-negative number from // a negative one, can't wrap into non-negative. else if (LHS.isNegative() && RHS.isNegative()) KnownOut.makeNegative(); } } return KnownOut; } KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const { unsigned BitWidth = getBitWidth(); assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth && "Illegal sext-in-register"); if (SrcBitWidth == BitWidth) return *this; unsigned ExtBits = BitWidth - SrcBitWidth; KnownBits Result; Result.One = One << ExtBits; Result.Zero = Zero << ExtBits; Result.One.ashrInPlace(ExtBits); Result.Zero.ashrInPlace(ExtBits); return Result; } KnownBits KnownBits::makeGE(const APInt &Val) const { // Count the number of leading bit positions where our underlying value is // known to be less than or equal to Val. unsigned N = (Zero | Val).countl_one(); // For each of those bit positions, if Val has a 1 in that bit then our // underlying value must also have a 1. APInt MaskedVal(Val); MaskedVal.clearLowBits(getBitWidth() - N); return KnownBits(Zero, One | MaskedVal); } KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) { // If we can prove that LHS >= RHS then use LHS as the result. Likewise for // RHS. Ideally our caller would already have spotted these cases and // optimized away the umax operation, but we handle them here for // completeness. if (LHS.getMinValue().uge(RHS.getMaxValue())) return LHS; if (RHS.getMinValue().uge(LHS.getMaxValue())) return RHS; // If the result of the umax is LHS then it must be greater than or equal to // the minimum possible value of RHS. Likewise for RHS. Any known bits that // are common to these two values are also known in the result. KnownBits L = LHS.makeGE(RHS.getMinValue()); KnownBits R = RHS.makeGE(LHS.getMinValue()); return L.intersectWith(R); } KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) { // Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0] auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); }; return Flip(umax(Flip(LHS), Flip(RHS))); } KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) { // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF] auto Flip = [](const KnownBits &Val) { unsigned SignBitPosition = Val.getBitWidth() - 1; APInt Zero = Val.Zero; APInt One = Val.One; Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]); One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); return KnownBits(Zero, One); }; return Flip(umax(Flip(LHS), Flip(RHS))); } KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) { // Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0] auto Flip = [](const KnownBits &Val) { unsigned SignBitPosition = Val.getBitWidth() - 1; APInt Zero = Val.One; APInt One = Val.Zero; Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]); One.setBitVal(SignBitPosition, Val.One[SignBitPosition]); return KnownBits(Zero, One); }; return Flip(umax(Flip(LHS), Flip(RHS))); } static unsigned getMaxShiftAmount(const APInt &MaxValue, unsigned BitWidth) { if (isPowerOf2_32(BitWidth)) return MaxValue.extractBitsAsZExtValue(Log2_32(BitWidth), 0); // This is only an approximate upper bound. return MaxValue.getLimitedValue(BitWidth - 1); } KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW, bool NSW, bool ShAmtNonZero) { unsigned BitWidth = LHS.getBitWidth(); auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) { KnownBits Known; bool ShiftedOutZero, ShiftedOutOne; Known.Zero = LHS.Zero.ushl_ov(ShiftAmt, ShiftedOutZero); Known.Zero.setLowBits(ShiftAmt); Known.One = LHS.One.ushl_ov(ShiftAmt, ShiftedOutOne); // All cases returning poison have been handled by MaxShiftAmount already. if (NSW) { if (NUW && ShiftAmt != 0) // NUW means we can assume anything shifted out was a zero. ShiftedOutZero = true; if (ShiftedOutZero) Known.makeNonNegative(); else if (ShiftedOutOne) Known.makeNegative(); } return Known; }; // Fast path for a common case when LHS is completely unknown. KnownBits Known(BitWidth); unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth); if (MinShiftAmount == 0 && ShAmtNonZero) MinShiftAmount = 1; if (LHS.isUnknown()) { Known.Zero.setLowBits(MinShiftAmount); if (NUW && NSW && MinShiftAmount != 0) Known.makeNonNegative(); return Known; } // Determine maximum shift amount, taking NUW/NSW flags into account. APInt MaxValue = RHS.getMaxValue(); unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth); if (NUW && NSW) MaxShiftAmount = std::min(MaxShiftAmount, LHS.countMaxLeadingZeros() - 1); if (NUW) MaxShiftAmount = std::min(MaxShiftAmount, LHS.countMaxLeadingZeros()); if (NSW) MaxShiftAmount = std::min( MaxShiftAmount, std::max(LHS.countMaxLeadingZeros(), LHS.countMaxLeadingOnes()) - 1); // Fast path for common case where the shift amount is unknown. if (MinShiftAmount == 0 && MaxShiftAmount == BitWidth - 1 && isPowerOf2_32(BitWidth)) { Known.Zero.setLowBits(LHS.countMinTrailingZeros()); if (LHS.isAllOnes()) Known.One.setSignBit(); if (NSW) { if (LHS.isNonNegative()) Known.makeNonNegative(); if (LHS.isNegative()) Known.makeNegative(); } return Known; } // Find the common bits from all possible shifts. unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue(); unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue(); Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount; ++ShiftAmt) { // Skip if the shift amount is impossible. if ((ShiftAmtZeroMask & ShiftAmt) != 0 || (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) continue; Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt)); if (Known.isUnknown()) break; } // All shift amounts may result in poison. if (Known.hasConflict()) Known.setAllZero(); return Known; } KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero) { unsigned BitWidth = LHS.getBitWidth(); auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) { KnownBits Known = LHS; Known.Zero.lshrInPlace(ShiftAmt); Known.One.lshrInPlace(ShiftAmt); // High bits are known zero. Known.Zero.setHighBits(ShiftAmt); return Known; }; // Fast path for a common case when LHS is completely unknown. KnownBits Known(BitWidth); unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth); if (MinShiftAmount == 0 && ShAmtNonZero) MinShiftAmount = 1; if (LHS.isUnknown()) { Known.Zero.setHighBits(MinShiftAmount); return Known; } // Find the common bits from all possible shifts. APInt MaxValue = RHS.getMaxValue(); unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth); unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue(); unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue(); Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount; ++ShiftAmt) { // Skip if the shift amount is impossible. if ((ShiftAmtZeroMask & ShiftAmt) != 0 || (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) continue; Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt)); if (Known.isUnknown()) break; } // All shift amounts may result in poison. if (Known.hasConflict()) Known.setAllZero(); return Known; } KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero) { unsigned BitWidth = LHS.getBitWidth(); auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) { KnownBits Known = LHS; Known.Zero.ashrInPlace(ShiftAmt); Known.One.ashrInPlace(ShiftAmt); return Known; }; // Fast path for a common case when LHS is completely unknown. KnownBits Known(BitWidth); unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth); if (MinShiftAmount == 0 && ShAmtNonZero) MinShiftAmount = 1; if (LHS.isUnknown()) { if (MinShiftAmount == BitWidth) { // Always poison. Return zero because we don't like returning conflict. Known.setAllZero(); return Known; } return Known; } // Find the common bits from all possible shifts. APInt MaxValue = RHS.getMaxValue(); unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth); unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue(); unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue(); Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount; ++ShiftAmt) { // Skip if the shift amount is impossible. if ((ShiftAmtZeroMask & ShiftAmt) != 0 || (ShiftAmtOneMask | ShiftAmt) != ShiftAmt) continue; Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt)); if (Known.isUnknown()) break; } // All shift amounts may result in poison. if (Known.hasConflict()) Known.setAllZero(); return Known; } std::optional KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) { if (LHS.isConstant() && RHS.isConstant()) return std::optional(LHS.getConstant() == RHS.getConstant()); if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero)) return std::optional(false); return std::nullopt; } std::optional KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) { if (std::optional KnownEQ = eq(LHS, RHS)) return std::optional(!*KnownEQ); return std::nullopt; } std::optional KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) { // LHS >u RHS -> false if umax(LHS) <= umax(RHS) if (LHS.getMaxValue().ule(RHS.getMinValue())) return std::optional(false); // LHS >u RHS -> true if umin(LHS) > umax(RHS) if (LHS.getMinValue().ugt(RHS.getMaxValue())) return std::optional(true); return std::nullopt; } std::optional KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) { if (std::optional IsUGT = ugt(RHS, LHS)) return std::optional(!*IsUGT); return std::nullopt; } std::optional KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) { return ugt(RHS, LHS); } std::optional KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) { return uge(RHS, LHS); } std::optional KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) { // LHS >s RHS -> false if smax(LHS) <= smax(RHS) if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue())) return std::optional(false); // LHS >s RHS -> true if smin(LHS) > smax(RHS) if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue())) return std::optional(true); return std::nullopt; } std::optional KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) { if (std::optional KnownSGT = sgt(RHS, LHS)) return std::optional(!*KnownSGT); return std::nullopt; } std::optional KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) { return sgt(RHS, LHS); } std::optional KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) { return sge(RHS, LHS); } KnownBits KnownBits::abs(bool IntMinIsPoison) const { // If the source's MSB is zero then we know the rest of the bits already. if (isNonNegative()) return *this; // Absolute value preserves trailing zero count. KnownBits KnownAbs(getBitWidth()); // If the input is negative, then abs(x) == -x. if (isNegative()) { KnownBits Tmp = *this; // Special case for IntMinIsPoison. We know the sign bit is set and we know // all the rest of the bits except one to be zero. Since we have // IntMinIsPoison, that final bit MUST be a one, as otherwise the input is // INT_MIN. if (IntMinIsPoison && (Zero.popcount() + 2) == getBitWidth()) Tmp.One.setBit(countMinTrailingZeros()); KnownAbs = computeForAddSub( /*Add*/ false, IntMinIsPoison, KnownBits::makeConstant(APInt(getBitWidth(), 0)), Tmp); // One more special case for IntMinIsPoison. If we don't know any ones other // than the signbit, we know for certain that all the unknowns can't be // zero. So if we know high zero bits, but have unknown low bits, we know // for certain those high-zero bits will end up as one. This is because, // the low bits can't be all zeros, so the +1 in (~x + 1) cannot carry up // to the high bits. If we know a known INT_MIN input skip this. The result // is poison anyways. if (IntMinIsPoison && Tmp.countMinPopulation() == 1 && Tmp.countMaxPopulation() != 1) { Tmp.One.clearSignBit(); Tmp.Zero.setSignBit(); KnownAbs.One.setBits(getBitWidth() - Tmp.countMinLeadingZeros(), getBitWidth() - 1); } } else { unsigned MaxTZ = countMaxTrailingZeros(); unsigned MinTZ = countMinTrailingZeros(); KnownAbs.Zero.setLowBits(MinTZ); // If we know the lowest set 1, then preserve it. if (MaxTZ == MinTZ && MaxTZ < getBitWidth()) KnownAbs.One.setBit(MaxTZ); // We only know that the absolute values's MSB will be zero if INT_MIN is // poison, or there is a set bit that isn't the sign bit (otherwise it could // be INT_MIN). if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue())) { KnownAbs.One.clearSignBit(); KnownAbs.Zero.setSignBit(); } } assert(!KnownAbs.hasConflict() && "Bad Output"); return KnownAbs; } static KnownBits computeForSatAddSub(bool Add, bool Signed, const KnownBits &LHS, const KnownBits &RHS) { assert(!LHS.hasConflict() && !RHS.hasConflict() && "Bad inputs"); // We don't see NSW even for sadd/ssub as we want to check if the result has // signed overflow. KnownBits Res = KnownBits::computeForAddSub(Add, /*NSW*/ false, LHS, RHS); unsigned BitWidth = Res.getBitWidth(); auto SignBitKnown = [&](const KnownBits &K) { return K.Zero[BitWidth - 1] || K.One[BitWidth - 1]; }; std::optional Overflow; if (Signed) { // If we can actually detect overflow do so. Otherwise leave Overflow as // nullopt (we assume it may have happened). if (SignBitKnown(LHS) && SignBitKnown(RHS) && SignBitKnown(Res)) { if (Add) { // sadd.sat Overflow = (LHS.isNonNegative() == RHS.isNonNegative() && Res.isNonNegative() != LHS.isNonNegative()); } else { // ssub.sat Overflow = (LHS.isNonNegative() != RHS.isNonNegative() && Res.isNonNegative() != LHS.isNonNegative()); } } } else if (Add) { // uadd.sat bool Of; (void)LHS.getMaxValue().uadd_ov(RHS.getMaxValue(), Of); if (!Of) { Overflow = false; } else { (void)LHS.getMinValue().uadd_ov(RHS.getMinValue(), Of); if (Of) Overflow = true; } } else { // usub.sat bool Of; (void)LHS.getMinValue().usub_ov(RHS.getMaxValue(), Of); if (!Of) { Overflow = false; } else { (void)LHS.getMaxValue().usub_ov(RHS.getMinValue(), Of); if (Of) Overflow = true; } } if (Signed) { if (Add) { if (LHS.isNonNegative() && RHS.isNonNegative()) { // Pos + Pos -> Pos Res.One.clearSignBit(); Res.Zero.setSignBit(); } if (LHS.isNegative() && RHS.isNegative()) { // Neg + Neg -> Neg Res.One.setSignBit(); Res.Zero.clearSignBit(); } } else { if (LHS.isNegative() && RHS.isNonNegative()) { // Neg - Pos -> Neg Res.One.setSignBit(); Res.Zero.clearSignBit(); } else if (LHS.isNonNegative() && RHS.isNegative()) { // Pos - Neg -> Pos Res.One.clearSignBit(); Res.Zero.setSignBit(); } } } else { // Add: Leading ones of either operand are preserved. // Sub: Leading zeros of LHS and leading ones of RHS are preserved // as leading zeros in the result. unsigned LeadingKnown; if (Add) LeadingKnown = std::max(LHS.countMinLeadingOnes(), RHS.countMinLeadingOnes()); else LeadingKnown = std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingOnes()); // We select between the operation result and all-ones/zero // respectively, so we can preserve known ones/zeros. APInt Mask = APInt::getHighBitsSet(BitWidth, LeadingKnown); if (Add) { Res.One |= Mask; Res.Zero &= ~Mask; } else { Res.Zero |= Mask; Res.One &= ~Mask; } } if (Overflow) { // We know whether or not we overflowed. if (!(*Overflow)) { // No overflow. assert(!Res.hasConflict() && "Bad Output"); return Res; } // We overflowed APInt C; if (Signed) { // sadd.sat / ssub.sat assert(SignBitKnown(LHS) && "We somehow know overflow without knowing input sign"); C = LHS.isNegative() ? APInt::getSignedMinValue(BitWidth) : APInt::getSignedMaxValue(BitWidth); } else if (Add) { // uadd.sat C = APInt::getMaxValue(BitWidth); } else { // uadd.sat C = APInt::getMinValue(BitWidth); } Res.One = C; Res.Zero = ~C; assert(!Res.hasConflict() && "Bad Output"); return Res; } // We don't know if we overflowed. if (Signed) { // sadd.sat/ssub.sat // We can keep our information about the sign bits. Res.Zero.clearLowBits(BitWidth - 1); Res.One.clearLowBits(BitWidth - 1); } else if (Add) { // uadd.sat // We need to clear all the known zeros as we can only use the leading ones. Res.Zero.clearAllBits(); } else { // usub.sat // We need to clear all the known ones as we can only use the leading zero. Res.One.clearAllBits(); } assert(!Res.hasConflict() && "Bad Output"); return Res; } KnownBits KnownBits::sadd_sat(const KnownBits &LHS, const KnownBits &RHS) { return computeForSatAddSub(/*Add*/ true, /*Signed*/ true, LHS, RHS); } KnownBits KnownBits::ssub_sat(const KnownBits &LHS, const KnownBits &RHS) { return computeForSatAddSub(/*Add*/ false, /*Signed*/ true, LHS, RHS); } KnownBits KnownBits::uadd_sat(const KnownBits &LHS, const KnownBits &RHS) { return computeForSatAddSub(/*Add*/ true, /*Signed*/ false, LHS, RHS); } KnownBits KnownBits::usub_sat(const KnownBits &LHS, const KnownBits &RHS) { return computeForSatAddSub(/*Add*/ false, /*Signed*/ false, LHS, RHS); } KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply) { unsigned BitWidth = LHS.getBitWidth(); assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && !RHS.hasConflict() && "Operand mismatch"); assert((!NoUndefSelfMultiply || LHS == RHS) && "Self multiplication knownbits mismatch"); // Compute the high known-0 bits by multiplying the unsigned max of each side. // Conservatively, M active bits * N active bits results in M + N bits in the // result. But if we know a value is a power-of-2 for example, then this // computes one more leading zero. // TODO: This could be generalized to number of sign bits (negative numbers). APInt UMaxLHS = LHS.getMaxValue(); APInt UMaxRHS = RHS.getMaxValue(); // For leading zeros in the result to be valid, the unsigned max product must // fit in the bitwidth (it must not overflow). bool HasOverflow; APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow); unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countl_zero(); // The result of the bottom bits of an integer multiply can be // inferred by looking at the bottom bits of both operands and // multiplying them together. // We can infer at least the minimum number of known trailing bits // of both operands. Depending on number of trailing zeros, we can // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming // a and b are divisible by m and n respectively. // We then calculate how many of those bits are inferrable and set // the output. For example, the i8 mul: // a = XXXX1100 (12) // b = XXXX1110 (14) // We know the bottom 3 bits are zero since the first can be divided by // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). // Applying the multiplication to the trimmed arguments gets: // XX11 (3) // X111 (7) // ------- // XX11 // XX11 // XX11 // XX11 // ------- // XXXXX01 // Which allows us to infer the 2 LSBs. Since we're multiplying the result // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. // The proof for this can be described as: // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + // umin(countTrailingZeros(C2), C6) + // umin(C5 - umin(countTrailingZeros(C1), C5), // C6 - umin(countTrailingZeros(C2), C6)))) - 1) // %aa = shl i8 %a, C5 // %bb = shl i8 %b, C6 // %aaa = or i8 %aa, C1 // %bbb = or i8 %bb, C2 // %mul = mul i8 %aaa, %bbb // %mask = and i8 %mul, C7 // => // %mask = i8 ((C1*C2)&C7) // Where C5, C6 describe the known bits of %a, %b // C1, C2 describe the known bottom bits of %a, %b. // C7 describes the mask of the known bits of the result. const APInt &Bottom0 = LHS.One; const APInt &Bottom1 = RHS.One; // How many times we'd be able to divide each argument by 2 (shr by 1). // This gives us the number of trailing zeros on the multiplication result. unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countr_one(); unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countr_one(); unsigned TrailZero0 = LHS.countMinTrailingZeros(); unsigned TrailZero1 = RHS.countMinTrailingZeros(); unsigned TrailZ = TrailZero0 + TrailZero1; // Figure out the fewest known-bits operand. unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1); unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1); KnownBits Res(BitWidth); Res.Zero.setHighBits(LeadZ); Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); Res.One = BottomKnown.getLoBits(ResultBitsKnown); // If we're self-multiplying then bit[1] is guaranteed to be zero. if (NoUndefSelfMultiply && BitWidth > 1) { assert(Res.One[1] == 0 && "Self-multiplication failed Quadratic Reciprocity!"); Res.Zero.setBit(1); } return Res; } KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) { unsigned BitWidth = LHS.getBitWidth(); assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && !RHS.hasConflict() && "Operand mismatch"); KnownBits WideLHS = LHS.sext(2 * BitWidth); KnownBits WideRHS = RHS.sext(2 * BitWidth); return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth); } KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) { unsigned BitWidth = LHS.getBitWidth(); assert(BitWidth == RHS.getBitWidth() && !LHS.hasConflict() && !RHS.hasConflict() && "Operand mismatch"); KnownBits WideLHS = LHS.zext(2 * BitWidth); KnownBits WideRHS = RHS.zext(2 * BitWidth); return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth); } static KnownBits divComputeLowBit(KnownBits Known, const KnownBits &LHS, const KnownBits &RHS, bool Exact) { if (!Exact) return Known; // If LHS is Odd, the result is Odd no matter what. // Odd / Odd -> Odd // Odd / Even -> Impossible (because its exact division) if (LHS.One[0]) Known.One.setBit(0); int MinTZ = (int)LHS.countMinTrailingZeros() - (int)RHS.countMaxTrailingZeros(); int MaxTZ = (int)LHS.countMaxTrailingZeros() - (int)RHS.countMinTrailingZeros(); if (MinTZ >= 0) { // Result has at least MinTZ trailing zeros. Known.Zero.setLowBits(MinTZ); if (MinTZ == MaxTZ) { // Result has exactly MinTZ trailing zeros. Known.One.setBit(MinTZ); } } else if (MaxTZ < 0) { // Poison Result Known.setAllZero(); } // In the KnownBits exhaustive tests, we have poison inputs for exact values // a LOT. If we have a conflict, just return all zeros. if (Known.hasConflict()) Known.setAllZero(); return Known; } KnownBits KnownBits::sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact) { // Equivalent of `udiv`. We must have caught this before it was folded. if (LHS.isNonNegative() && RHS.isNonNegative()) return udiv(LHS, RHS, Exact); unsigned BitWidth = LHS.getBitWidth(); assert(!LHS.hasConflict() && !RHS.hasConflict() && "Bad inputs"); KnownBits Known(BitWidth); if (LHS.isZero() || RHS.isZero()) { // Result is either known Zero or UB. Return Zero either way. // Checking this earlier saves us a lot of special cases later on. Known.setAllZero(); return Known; } std::optional Res; if (LHS.isNegative() && RHS.isNegative()) { // Result non-negative. APInt Denom = RHS.getSignedMaxValue(); APInt Num = LHS.getSignedMinValue(); // INT_MIN/-1 would be a poison result (impossible). Estimate the division // as signed max (we will only set sign bit in the result). Res = (Num.isMinSignedValue() && Denom.isAllOnes()) ? APInt::getSignedMaxValue(BitWidth) : Num.sdiv(Denom); } else if (LHS.isNegative() && RHS.isNonNegative()) { // Result is negative if Exact OR -LHS u>= RHS. if (Exact || (-LHS.getSignedMaxValue()).uge(RHS.getSignedMaxValue())) { APInt Denom = RHS.getSignedMinValue(); APInt Num = LHS.getSignedMinValue(); Res = Denom.isZero() ? Num : Num.sdiv(Denom); } } else if (LHS.isStrictlyPositive() && RHS.isNegative()) { // Result is negative if Exact OR LHS u>= -RHS. if (Exact || LHS.getSignedMinValue().uge(-RHS.getSignedMinValue())) { APInt Denom = RHS.getSignedMaxValue(); APInt Num = LHS.getSignedMaxValue(); Res = Num.sdiv(Denom); } } if (Res) { if (Res->isNonNegative()) { unsigned LeadZ = Res->countLeadingZeros(); Known.Zero.setHighBits(LeadZ); } else { unsigned LeadO = Res->countLeadingOnes(); Known.One.setHighBits(LeadO); } } Known = divComputeLowBit(Known, LHS, RHS, Exact); assert(!Known.hasConflict() && "Bad Output"); return Known; } KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact) { unsigned BitWidth = LHS.getBitWidth(); assert(!LHS.hasConflict() && !RHS.hasConflict()); KnownBits Known(BitWidth); if (LHS.isZero() || RHS.isZero()) { // Result is either known Zero or UB. Return Zero either way. // Checking this earlier saves us a lot of special cases later on. Known.setAllZero(); return Known; } // We can figure out the minimum number of upper zero bits by doing // MaxNumerator / MinDenominator. If the Numerator gets smaller or Denominator // gets larger, the number of upper zero bits increases. APInt MinDenom = RHS.getMinValue(); APInt MaxNum = LHS.getMaxValue(); APInt MaxRes = MinDenom.isZero() ? MaxNum : MaxNum.udiv(MinDenom); unsigned LeadZ = MaxRes.countLeadingZeros(); Known.Zero.setHighBits(LeadZ); Known = divComputeLowBit(Known, LHS, RHS, Exact); assert(!Known.hasConflict() && "Bad Output"); return Known; } KnownBits KnownBits::remGetLowBits(const KnownBits &LHS, const KnownBits &RHS) { unsigned BitWidth = LHS.getBitWidth(); if (!RHS.isZero() && RHS.Zero[0]) { // rem X, Y where Y[0:N] is zero will preserve X[0:N] in the result. unsigned RHSZeros = RHS.countMinTrailingZeros(); APInt Mask = APInt::getLowBitsSet(BitWidth, RHSZeros); APInt OnesMask = LHS.One & Mask; APInt ZerosMask = LHS.Zero & Mask; return KnownBits(ZerosMask, OnesMask); } return KnownBits(BitWidth); } KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) { assert(!LHS.hasConflict() && !RHS.hasConflict()); KnownBits Known = remGetLowBits(LHS, RHS); if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { // NB: Low bits set in `remGetLowBits`. APInt HighBits = ~(RHS.getConstant() - 1); Known.Zero |= HighBits; return Known; } // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. uint32_t Leaders = std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros()); Known.Zero.setHighBits(Leaders); return Known; } KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) { assert(!LHS.hasConflict() && !RHS.hasConflict()); KnownBits Known = remGetLowBits(LHS, RHS); if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) { // NB: Low bits are set in `remGetLowBits`. APInt LowBits = RHS.getConstant() - 1; // If the first operand is non-negative or has all low bits zero, then // the upper bits are all zero. if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero)) Known.Zero |= ~LowBits; // If the first operand is negative and not all low bits are zero, then // the upper bits are all one. if (LHS.isNegative() && LowBits.intersects(LHS.One)) Known.One |= ~LowBits; return Known; } // The sign bit is the LHS's sign bit, except when the result of the // remainder is zero. The magnitude of the result should be less than or // equal to the magnitude of the LHS. Therefore any leading zeros that exist // in the left hand side must also exist in the result. Known.Zero.setHighBits(LHS.countMinLeadingZeros()); return Known; } KnownBits &KnownBits::operator&=(const KnownBits &RHS) { // Result bit is 0 if either operand bit is 0. Zero |= RHS.Zero; // Result bit is 1 if both operand bits are 1. One &= RHS.One; return *this; } KnownBits &KnownBits::operator|=(const KnownBits &RHS) { // Result bit is 0 if both operand bits are 0. Zero &= RHS.Zero; // Result bit is 1 if either operand bit is 1. One |= RHS.One; return *this; } KnownBits &KnownBits::operator^=(const KnownBits &RHS) { // Result bit is 0 if both operand bits are 0 or both are 1. APInt Z = (Zero & RHS.Zero) | (One & RHS.One); // Result bit is 1 if one operand bit is 0 and the other is 1. One = (Zero & RHS.One) | (One & RHS.Zero); Zero = std::move(Z); return *this; } KnownBits KnownBits::blsi() const { unsigned BitWidth = getBitWidth(); KnownBits Known(Zero, APInt(BitWidth, 0)); unsigned Max = countMaxTrailingZeros(); Known.Zero.setBitsFrom(std::min(Max + 1, BitWidth)); unsigned Min = countMinTrailingZeros(); if (Max == Min && Max < BitWidth) Known.One.setBit(Max); return Known; } KnownBits KnownBits::blsmsk() const { unsigned BitWidth = getBitWidth(); KnownBits Known(BitWidth); unsigned Max = countMaxTrailingZeros(); Known.Zero.setBitsFrom(std::min(Max + 1, BitWidth)); unsigned Min = countMinTrailingZeros(); Known.One.setLowBits(std::min(Min + 1, BitWidth)); return Known; } void KnownBits::print(raw_ostream &OS) const { unsigned BitWidth = getBitWidth(); for (unsigned I = 0; I < BitWidth; ++I) { unsigned N = BitWidth - I - 1; if (Zero[N] && One[N]) OS << "!"; else if (Zero[N]) OS << "0"; else if (One[N]) OS << "1"; else OS << "?"; } } void KnownBits::dump() const { print(dbgs()); dbgs() << "\n"; }