//===----- DivisonByConstantInfo.cpp - division by constant -*- C++ -*-----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file implements support for optimizing divisions by a constant /// //===----------------------------------------------------------------------===// #include "llvm/Support/DivisionByConstantInfo.h" using namespace llvm; /// Calculate the magic numbers required to implement a signed integer division /// by a constant as a sequence of multiplies, adds and shifts. Requires that /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. /// Warren, Jr., Chapter 10. SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) { unsigned P; APInt AD, ANC, Delta, Q1, R1, Q2, R2, T; APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); struct SignedDivisionByConstantInfo Retval; AD = D.abs(); T = SignedMin + (D.lshr(D.getBitWidth() - 1)); ANC = T - 1 - T.urem(AD); // absolute value of NC P = D.getBitWidth() - 1; // initialize P Q1 = SignedMin.udiv(ANC); // initialize Q1 = 2P/abs(NC) R1 = SignedMin - Q1 * ANC; // initialize R1 = rem(2P,abs(NC)) Q2 = SignedMin.udiv(AD); // initialize Q2 = 2P/abs(D) R2 = SignedMin - Q2 * AD; // initialize R2 = rem(2P,abs(D)) do { P = P + 1; Q1 = Q1 << 1; // update Q1 = 2P/abs(NC) R1 = R1 << 1; // update R1 = rem(2P/abs(NC)) if (R1.uge(ANC)) { // must be unsigned comparison Q1 = Q1 + 1; R1 = R1 - ANC; } Q2 = Q2 << 1; // update Q2 = 2P/abs(D) R2 = R2 << 1; // update R2 = rem(2P/abs(D)) if (R2.uge(AD)) { // must be unsigned comparison Q2 = Q2 + 1; R2 = R2 - AD; } Delta = AD - R2; } while (Q1.ult(Delta) || (Q1 == Delta && R1 == 0)); Retval.Magic = Q2 + 1; if (D.isNegative()) Retval.Magic = -Retval.Magic; // resulting magic number Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift return Retval; } /// Calculate the magic numbers required to implement an unsigned integer /// division by a constant as a sequence of multiplies, adds and shifts. /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry /// S. Warren, Jr., chapter 10. /// LeadingZeros can be used to simplify the calculation if the upper bits /// of the divided value are known zero. UnsignedDivisonByConstantInfo UnsignedDivisonByConstantInfo::get(const APInt &D, unsigned LeadingZeros) { unsigned P; APInt NC, Delta, Q1, R1, Q2, R2; struct UnsignedDivisonByConstantInfo Retval; Retval.IsAdd = false; // initialize "add" indicator APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros); APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth()); NC = AllOnes - (AllOnes - D).urem(D); P = D.getBitWidth() - 1; // initialize P Q1 = SignedMin.udiv(NC); // initialize Q1 = 2P/NC R1 = SignedMin - Q1 * NC; // initialize R1 = rem(2P,NC) Q2 = SignedMax.udiv(D); // initialize Q2 = (2P-1)/D R2 = SignedMax - Q2 * D; // initialize R2 = rem((2P-1),D) do { P = P + 1; if (R1.uge(NC - R1)) { Q1 = Q1 + Q1 + 1; // update Q1 R1 = R1 + R1 - NC; // update R1 } else { Q1 = Q1 + Q1; // update Q1 R1 = R1 + R1; // update R1 } if ((R2 + 1).uge(D - R2)) { if (Q2.uge(SignedMax)) Retval.IsAdd = true; Q2 = Q2 + Q2 + 1; // update Q2 R2 = R2 + R2 + 1 - D; // update R2 } else { if (Q2.uge(SignedMin)) Retval.IsAdd = true; Q2 = Q2 + Q2; // update Q2 R2 = R2 + R2 + 1; // update R2 } Delta = D - 1 - R2; } while (P < D.getBitWidth() * 2 && (Q1.ult(Delta) || (Q1 == Delta && R1 == 0))); Retval.Magic = Q2 + 1; // resulting magic number Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift return Retval; }