//===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file implements support for optimizing divisions by a constant /// //===----------------------------------------------------------------------===// #include "llvm/Support/DivisionByConstantInfo.h" using namespace llvm; /// Calculate the magic numbers required to implement a signed integer division /// by a constant as a sequence of multiplies, adds and shifts. Requires that /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. /// Warren, Jr., Chapter 10. SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) { assert(!D.isZero() && "Precondition violation."); // We'd be endlessly stuck in the loop. assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths."); APInt Delta; APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); struct SignedDivisionByConstantInfo Retval; APInt AD = D.abs(); APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1)); APInt ANC = T - 1 - T.urem(AD); // absolute value of NC unsigned P = D.getBitWidth() - 1; // initialize P APInt Q1, R1, Q2, R2; // initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC)) APInt::udivrem(SignedMin, ANC, Q1, R1); // initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D)) APInt::udivrem(SignedMin, AD, Q2, R2); do { P = P + 1; Q1 <<= 1; // update Q1 = 2P/abs(NC) R1 <<= 1; // update R1 = rem(2P/abs(NC)) if (R1.uge(ANC)) { // must be unsigned comparison ++Q1; R1 -= ANC; } Q2 <<= 1; // update Q2 = 2P/abs(D) R2 <<= 1; // update R2 = rem(2P/abs(D)) if (R2.uge(AD)) { // must be unsigned comparison ++Q2; R2 -= AD; } // Delta = AD - R2 Delta = AD; Delta -= R2; } while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero())); Retval.Magic = std::move(Q2); ++Retval.Magic; if (D.isNegative()) Retval.Magic.negate(); // resulting magic number Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift return Retval; } /// Calculate the magic numbers required to implement an unsigned integer /// division by a constant as a sequence of multiplies, adds and shifts. /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry /// S. Warren, Jr., chapter 10. /// LeadingZeros can be used to simplify the calculation if the upper bits /// of the divided value are known zero. UnsignedDivisionByConstantInfo UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros, bool AllowEvenDivisorOptimization) { assert(!D.isZero() && !D.isOne() && "Precondition violation."); assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths."); APInt Delta; struct UnsignedDivisionByConstantInfo Retval; Retval.IsAdd = false; // initialize "add" indicator APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros); APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth()); APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth()); // Calculate NC, the largest dividend such that NC.urem(D) == D-1. APInt NC = AllOnes - (AllOnes + 1 - D).urem(D); assert(NC.urem(D) == D - 1 && "Unexpected NC value"); unsigned P = D.getBitWidth() - 1; // initialize P APInt Q1, R1, Q2, R2; // initialize Q1 = 2P/NC; R1 = rem(2P,NC) APInt::udivrem(SignedMin, NC, Q1, R1); // initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D) APInt::udivrem(SignedMax, D, Q2, R2); do { P = P + 1; if (R1.uge(NC - R1)) { // update Q1 Q1 <<= 1; ++Q1; // update R1 R1 <<= 1; R1 -= NC; } else { Q1 <<= 1; // update Q1 R1 <<= 1; // update R1 } if ((R2 + 1).uge(D - R2)) { if (Q2.uge(SignedMax)) Retval.IsAdd = true; // update Q2 Q2 <<= 1; ++Q2; // update R2 R2 <<= 1; ++R2; R2 -= D; } else { if (Q2.uge(SignedMin)) Retval.IsAdd = true; // update Q2 Q2 <<= 1; // update R2 R2 <<= 1; ++R2; } // Delta = D - 1 - R2 Delta = D; --Delta; Delta -= R2; } while (P < D.getBitWidth() * 2 && (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()))); if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) { unsigned PreShift = D.countTrailingZeros(); APInt ShiftedD = D.lshr(PreShift); Retval = UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift); assert(Retval.IsAdd == 0 && Retval.PreShift == 0); Retval.PreShift = PreShift; return Retval; } Retval.Magic = std::move(Q2); // resulting magic number ++Retval.Magic; Retval.PostShift = P - D.getBitWidth(); // resulting shift // Reduce shift amount for IsAdd. if (Retval.IsAdd) { assert(Retval.PostShift > 0 && "Unexpected shift"); Retval.PostShift -= 1; } Retval.PreShift = 0; return Retval; }