//===-- CommandLine.cpp - Command line parser implementation --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class implements a command line argument processor that is useful when // creating a tool. It provides a simple, minimalistic interface that is easily // extensible and supports nonlocal (library) command line options. // // Note that rather than trying to figure out what this code does, you could try // reading the library documentation located in docs/CommandLine.html // //===----------------------------------------------------------------------===// #include "llvm/Support/CommandLine.h" #include "DebugOptions.h" #include "llvm-c/Support.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLFunctionalExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Config/config.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include <cstdlib> #include <optional> #include <string> using namespace llvm; using namespace cl; #define DEBUG_TYPE "commandline" //===----------------------------------------------------------------------===// // Template instantiations and anchors. // namespace llvm { namespace cl { template class basic_parser<bool>; template class basic_parser<boolOrDefault>; template class basic_parser<int>; template class basic_parser<long>; template class basic_parser<long long>; template class basic_parser<unsigned>; template class basic_parser<unsigned long>; template class basic_parser<unsigned long long>; template class basic_parser<double>; template class basic_parser<float>; template class basic_parser<std::string>; template class basic_parser<char>; template class opt<unsigned>; template class opt<int>; template class opt<std::string>; template class opt<char>; template class opt<bool>; } // namespace cl } // namespace llvm // Pin the vtables to this file. void GenericOptionValue::anchor() {} void OptionValue<boolOrDefault>::anchor() {} void OptionValue<std::string>::anchor() {} void Option::anchor() {} void basic_parser_impl::anchor() {} void parser<bool>::anchor() {} void parser<boolOrDefault>::anchor() {} void parser<int>::anchor() {} void parser<long>::anchor() {} void parser<long long>::anchor() {} void parser<unsigned>::anchor() {} void parser<unsigned long>::anchor() {} void parser<unsigned long long>::anchor() {} void parser<double>::anchor() {} void parser<float>::anchor() {} void parser<std::string>::anchor() {} void parser<char>::anchor() {} //===----------------------------------------------------------------------===// const static size_t DefaultPad = 2; static StringRef ArgPrefix = "-"; static StringRef ArgPrefixLong = "--"; static StringRef ArgHelpPrefix = " - "; static size_t argPlusPrefixesSize(StringRef ArgName, size_t Pad = DefaultPad) { size_t Len = ArgName.size(); if (Len == 1) return Len + Pad + ArgPrefix.size() + ArgHelpPrefix.size(); return Len + Pad + ArgPrefixLong.size() + ArgHelpPrefix.size(); } static SmallString<8> argPrefix(StringRef ArgName, size_t Pad = DefaultPad) { SmallString<8> Prefix; for (size_t I = 0; I < Pad; ++I) { Prefix.push_back(' '); } Prefix.append(ArgName.size() > 1 ? ArgPrefixLong : ArgPrefix); return Prefix; } // Option predicates... static inline bool isGrouping(const Option *O) { return O->getMiscFlags() & cl::Grouping; } static inline bool isPrefixedOrGrouping(const Option *O) { return isGrouping(O) || O->getFormattingFlag() == cl::Prefix || O->getFormattingFlag() == cl::AlwaysPrefix; } namespace { class PrintArg { StringRef ArgName; size_t Pad; public: PrintArg(StringRef ArgName, size_t Pad = DefaultPad) : ArgName(ArgName), Pad(Pad) {} friend raw_ostream &operator<<(raw_ostream &OS, const PrintArg &); }; raw_ostream &operator<<(raw_ostream &OS, const PrintArg& Arg) { OS << argPrefix(Arg.ArgName, Arg.Pad) << Arg.ArgName; return OS; } class CommandLineParser { public: // Globals for name and overview of program. Program name is not a string to // avoid static ctor/dtor issues. std::string ProgramName; StringRef ProgramOverview; // This collects additional help to be printed. std::vector<StringRef> MoreHelp; // This collects Options added with the cl::DefaultOption flag. Since they can // be overridden, they are not added to the appropriate SubCommands until // ParseCommandLineOptions actually runs. SmallVector<Option*, 4> DefaultOptions; // This collects the different option categories that have been registered. SmallPtrSet<OptionCategory *, 16> RegisteredOptionCategories; // This collects the different subcommands that have been registered. SmallPtrSet<SubCommand *, 4> RegisteredSubCommands; CommandLineParser() { registerSubCommand(&SubCommand::getTopLevel()); } void ResetAllOptionOccurrences(); bool ParseCommandLineOptions(int argc, const char *const *argv, StringRef Overview, raw_ostream *Errs = nullptr, bool LongOptionsUseDoubleDash = false); void forEachSubCommand(Option &Opt, function_ref<void(SubCommand &)> Action) { if (Opt.Subs.empty()) { Action(SubCommand::getTopLevel()); return; } if (Opt.Subs.size() == 1 && *Opt.Subs.begin() == &SubCommand::getAll()) { for (auto *SC : RegisteredSubCommands) Action(*SC); Action(SubCommand::getAll()); return; } for (auto *SC : Opt.Subs) { assert(SC != &SubCommand::getAll() && "SubCommand::getAll() should not be used with other subcommands"); Action(*SC); } } void addLiteralOption(Option &Opt, SubCommand *SC, StringRef Name) { if (Opt.hasArgStr()) return; if (!SC->OptionsMap.insert(std::make_pair(Name, &Opt)).second) { errs() << ProgramName << ": CommandLine Error: Option '" << Name << "' registered more than once!\n"; report_fatal_error("inconsistency in registered CommandLine options"); } } void addLiteralOption(Option &Opt, StringRef Name) { forEachSubCommand( Opt, [&](SubCommand &SC) { addLiteralOption(Opt, &SC, Name); }); } void addOption(Option *O, SubCommand *SC) { bool HadErrors = false; if (O->hasArgStr()) { // If it's a DefaultOption, check to make sure it isn't already there. if (O->isDefaultOption() && SC->OptionsMap.contains(O->ArgStr)) return; // Add argument to the argument map! if (!SC->OptionsMap.insert(std::make_pair(O->ArgStr, O)).second) { errs() << ProgramName << ": CommandLine Error: Option '" << O->ArgStr << "' registered more than once!\n"; HadErrors = true; } } // Remember information about positional options. if (O->getFormattingFlag() == cl::Positional) SC->PositionalOpts.push_back(O); else if (O->getMiscFlags() & cl::Sink) // Remember sink options SC->SinkOpts.push_back(O); else if (O->getNumOccurrencesFlag() == cl::ConsumeAfter) { if (SC->ConsumeAfterOpt) { O->error("Cannot specify more than one option with cl::ConsumeAfter!"); HadErrors = true; } SC->ConsumeAfterOpt = O; } // Fail hard if there were errors. These are strictly unrecoverable and // indicate serious issues such as conflicting option names or an // incorrectly // linked LLVM distribution. if (HadErrors) report_fatal_error("inconsistency in registered CommandLine options"); } void addOption(Option *O, bool ProcessDefaultOption = false) { if (!ProcessDefaultOption && O->isDefaultOption()) { DefaultOptions.push_back(O); return; } forEachSubCommand(*O, [&](SubCommand &SC) { addOption(O, &SC); }); } void removeOption(Option *O, SubCommand *SC) { SmallVector<StringRef, 16> OptionNames; O->getExtraOptionNames(OptionNames); if (O->hasArgStr()) OptionNames.push_back(O->ArgStr); SubCommand &Sub = *SC; auto End = Sub.OptionsMap.end(); for (auto Name : OptionNames) { auto I = Sub.OptionsMap.find(Name); if (I != End && I->getValue() == O) Sub.OptionsMap.erase(I); } if (O->getFormattingFlag() == cl::Positional) for (auto *Opt = Sub.PositionalOpts.begin(); Opt != Sub.PositionalOpts.end(); ++Opt) { if (*Opt == O) { Sub.PositionalOpts.erase(Opt); break; } } else if (O->getMiscFlags() & cl::Sink) for (auto *Opt = Sub.SinkOpts.begin(); Opt != Sub.SinkOpts.end(); ++Opt) { if (*Opt == O) { Sub.SinkOpts.erase(Opt); break; } } else if (O == Sub.ConsumeAfterOpt) Sub.ConsumeAfterOpt = nullptr; } void removeOption(Option *O) { forEachSubCommand(*O, [&](SubCommand &SC) { removeOption(O, &SC); }); } bool hasOptions(const SubCommand &Sub) const { return (!Sub.OptionsMap.empty() || !Sub.PositionalOpts.empty() || nullptr != Sub.ConsumeAfterOpt); } bool hasOptions() const { for (const auto *S : RegisteredSubCommands) { if (hasOptions(*S)) return true; } return false; } bool hasNamedSubCommands() const { for (const auto *S : RegisteredSubCommands) if (!S->getName().empty()) return true; return false; } SubCommand *getActiveSubCommand() { return ActiveSubCommand; } void updateArgStr(Option *O, StringRef NewName, SubCommand *SC) { SubCommand &Sub = *SC; if (!Sub.OptionsMap.insert(std::make_pair(NewName, O)).second) { errs() << ProgramName << ": CommandLine Error: Option '" << O->ArgStr << "' registered more than once!\n"; report_fatal_error("inconsistency in registered CommandLine options"); } Sub.OptionsMap.erase(O->ArgStr); } void updateArgStr(Option *O, StringRef NewName) { forEachSubCommand(*O, [&](SubCommand &SC) { updateArgStr(O, NewName, &SC); }); } void printOptionValues(); void registerCategory(OptionCategory *cat) { assert(count_if(RegisteredOptionCategories, [cat](const OptionCategory *Category) { return cat->getName() == Category->getName(); }) == 0 && "Duplicate option categories"); RegisteredOptionCategories.insert(cat); } void registerSubCommand(SubCommand *sub) { assert(count_if(RegisteredSubCommands, [sub](const SubCommand *Sub) { return (!sub->getName().empty()) && (Sub->getName() == sub->getName()); }) == 0 && "Duplicate subcommands"); RegisteredSubCommands.insert(sub); // For all options that have been registered for all subcommands, add the // option to this subcommand now. assert(sub != &SubCommand::getAll() && "SubCommand::getAll() should not be registered"); for (auto &E : SubCommand::getAll().OptionsMap) { Option *O = E.second; if ((O->isPositional() || O->isSink() || O->isConsumeAfter()) || O->hasArgStr()) addOption(O, sub); else addLiteralOption(*O, sub, E.first()); } } void unregisterSubCommand(SubCommand *sub) { RegisteredSubCommands.erase(sub); } iterator_range<typename SmallPtrSet<SubCommand *, 4>::iterator> getRegisteredSubcommands() { return make_range(RegisteredSubCommands.begin(), RegisteredSubCommands.end()); } void reset() { ActiveSubCommand = nullptr; ProgramName.clear(); ProgramOverview = StringRef(); MoreHelp.clear(); RegisteredOptionCategories.clear(); ResetAllOptionOccurrences(); RegisteredSubCommands.clear(); SubCommand::getTopLevel().reset(); SubCommand::getAll().reset(); registerSubCommand(&SubCommand::getTopLevel()); DefaultOptions.clear(); } private: SubCommand *ActiveSubCommand = nullptr; Option *LookupOption(SubCommand &Sub, StringRef &Arg, StringRef &Value); Option *LookupLongOption(SubCommand &Sub, StringRef &Arg, StringRef &Value, bool LongOptionsUseDoubleDash, bool HaveDoubleDash) { Option *Opt = LookupOption(Sub, Arg, Value); if (Opt && LongOptionsUseDoubleDash && !HaveDoubleDash && !isGrouping(Opt)) return nullptr; return Opt; } SubCommand *LookupSubCommand(StringRef Name, std::string &NearestString); }; } // namespace static ManagedStatic<CommandLineParser> GlobalParser; void cl::AddLiteralOption(Option &O, StringRef Name) { GlobalParser->addLiteralOption(O, Name); } extrahelp::extrahelp(StringRef Help) : morehelp(Help) { GlobalParser->MoreHelp.push_back(Help); } void Option::addArgument() { GlobalParser->addOption(this); FullyInitialized = true; } void Option::removeArgument() { GlobalParser->removeOption(this); } void Option::setArgStr(StringRef S) { if (FullyInitialized) GlobalParser->updateArgStr(this, S); assert(!S.starts_with("-") && "Option can't start with '-"); ArgStr = S; if (ArgStr.size() == 1) setMiscFlag(Grouping); } void Option::addCategory(OptionCategory &C) { assert(!Categories.empty() && "Categories cannot be empty."); // Maintain backward compatibility by replacing the default GeneralCategory // if it's still set. Otherwise, just add the new one. The GeneralCategory // must be explicitly added if you want multiple categories that include it. if (&C != &getGeneralCategory() && Categories[0] == &getGeneralCategory()) Categories[0] = &C; else if (!is_contained(Categories, &C)) Categories.push_back(&C); } void Option::reset() { NumOccurrences = 0; setDefault(); if (isDefaultOption()) removeArgument(); } void OptionCategory::registerCategory() { GlobalParser->registerCategory(this); } // A special subcommand representing no subcommand. It is particularly important // that this ManagedStatic uses constant initailization and not dynamic // initialization because it is referenced from cl::opt constructors, which run // dynamically in an arbitrary order. LLVM_REQUIRE_CONSTANT_INITIALIZATION static ManagedStatic<SubCommand> TopLevelSubCommand; // A special subcommand that can be used to put an option into all subcommands. static ManagedStatic<SubCommand> AllSubCommands; SubCommand &SubCommand::getTopLevel() { return *TopLevelSubCommand; } SubCommand &SubCommand::getAll() { return *AllSubCommands; } void SubCommand::registerSubCommand() { GlobalParser->registerSubCommand(this); } void SubCommand::unregisterSubCommand() { GlobalParser->unregisterSubCommand(this); } void SubCommand::reset() { PositionalOpts.clear(); SinkOpts.clear(); OptionsMap.clear(); ConsumeAfterOpt = nullptr; } SubCommand::operator bool() const { return (GlobalParser->getActiveSubCommand() == this); } //===----------------------------------------------------------------------===// // Basic, shared command line option processing machinery. // /// LookupOption - Lookup the option specified by the specified option on the /// command line. If there is a value specified (after an equal sign) return /// that as well. This assumes that leading dashes have already been stripped. Option *CommandLineParser::LookupOption(SubCommand &Sub, StringRef &Arg, StringRef &Value) { // Reject all dashes. if (Arg.empty()) return nullptr; assert(&Sub != &SubCommand::getAll()); size_t EqualPos = Arg.find('='); // If we have an equals sign, remember the value. if (EqualPos == StringRef::npos) { // Look up the option. return Sub.OptionsMap.lookup(Arg); } // If the argument before the = is a valid option name and the option allows // non-prefix form (ie is not AlwaysPrefix), we match. If not, signal match // failure by returning nullptr. auto I = Sub.OptionsMap.find(Arg.substr(0, EqualPos)); if (I == Sub.OptionsMap.end()) return nullptr; auto *O = I->second; if (O->getFormattingFlag() == cl::AlwaysPrefix) return nullptr; Value = Arg.substr(EqualPos + 1); Arg = Arg.substr(0, EqualPos); return I->second; } SubCommand *CommandLineParser::LookupSubCommand(StringRef Name, std::string &NearestString) { if (Name.empty()) return &SubCommand::getTopLevel(); // Find a subcommand with the edit distance == 1. SubCommand *NearestMatch = nullptr; for (auto *S : RegisteredSubCommands) { assert(S != &SubCommand::getAll() && "SubCommand::getAll() is not expected in RegisteredSubCommands"); if (S->getName().empty()) continue; if (S->getName() == Name) return S; if (!NearestMatch && S->getName().edit_distance(Name) < 2) NearestMatch = S; } if (NearestMatch) NearestString = NearestMatch->getName(); return &SubCommand::getTopLevel(); } /// LookupNearestOption - Lookup the closest match to the option specified by /// the specified option on the command line. If there is a value specified /// (after an equal sign) return that as well. This assumes that leading dashes /// have already been stripped. static Option *LookupNearestOption(StringRef Arg, const StringMap<Option *> &OptionsMap, std::string &NearestString) { // Reject all dashes. if (Arg.empty()) return nullptr; // Split on any equal sign. std::pair<StringRef, StringRef> SplitArg = Arg.split('='); StringRef &LHS = SplitArg.first; // LHS == Arg when no '=' is present. StringRef &RHS = SplitArg.second; // Find the closest match. Option *Best = nullptr; unsigned BestDistance = 0; for (StringMap<Option *>::const_iterator it = OptionsMap.begin(), ie = OptionsMap.end(); it != ie; ++it) { Option *O = it->second; // Do not suggest really hidden options (not shown in any help). if (O->getOptionHiddenFlag() == ReallyHidden) continue; SmallVector<StringRef, 16> OptionNames; O->getExtraOptionNames(OptionNames); if (O->hasArgStr()) OptionNames.push_back(O->ArgStr); bool PermitValue = O->getValueExpectedFlag() != cl::ValueDisallowed; StringRef Flag = PermitValue ? LHS : Arg; for (const auto &Name : OptionNames) { unsigned Distance = StringRef(Name).edit_distance( Flag, /*AllowReplacements=*/true, /*MaxEditDistance=*/BestDistance); if (!Best || Distance < BestDistance) { Best = O; BestDistance = Distance; if (RHS.empty() || !PermitValue) NearestString = std::string(Name); else NearestString = (Twine(Name) + "=" + RHS).str(); } } } return Best; } /// CommaSeparateAndAddOccurrence - A wrapper around Handler->addOccurrence() /// that does special handling of cl::CommaSeparated options. static bool CommaSeparateAndAddOccurrence(Option *Handler, unsigned pos, StringRef ArgName, StringRef Value, bool MultiArg = false) { // Check to see if this option accepts a comma separated list of values. If // it does, we have to split up the value into multiple values. if (Handler->getMiscFlags() & CommaSeparated) { StringRef Val(Value); StringRef::size_type Pos = Val.find(','); while (Pos != StringRef::npos) { // Process the portion before the comma. if (Handler->addOccurrence(pos, ArgName, Val.substr(0, Pos), MultiArg)) return true; // Erase the portion before the comma, AND the comma. Val = Val.substr(Pos + 1); // Check for another comma. Pos = Val.find(','); } Value = Val; } return Handler->addOccurrence(pos, ArgName, Value, MultiArg); } /// ProvideOption - For Value, this differentiates between an empty value ("") /// and a null value (StringRef()). The later is accepted for arguments that /// don't allow a value (-foo) the former is rejected (-foo=). static inline bool ProvideOption(Option *Handler, StringRef ArgName, StringRef Value, int argc, const char *const *argv, int &i) { // Is this a multi-argument option? unsigned NumAdditionalVals = Handler->getNumAdditionalVals(); // Enforce value requirements switch (Handler->getValueExpectedFlag()) { case ValueRequired: if (!Value.data()) { // No value specified? // If no other argument or the option only supports prefix form, we // cannot look at the next argument. if (i + 1 >= argc || Handler->getFormattingFlag() == cl::AlwaysPrefix) return Handler->error("requires a value!"); // Steal the next argument, like for '-o filename' assert(argv && "null check"); Value = StringRef(argv[++i]); } break; case ValueDisallowed: if (NumAdditionalVals > 0) return Handler->error("multi-valued option specified" " with ValueDisallowed modifier!"); if (Value.data()) return Handler->error("does not allow a value! '" + Twine(Value) + "' specified."); break; case ValueOptional: break; } // If this isn't a multi-arg option, just run the handler. if (NumAdditionalVals == 0) return CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value); // If it is, run the handle several times. bool MultiArg = false; if (Value.data()) { if (CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value, MultiArg)) return true; --NumAdditionalVals; MultiArg = true; } while (NumAdditionalVals > 0) { if (i + 1 >= argc) return Handler->error("not enough values!"); assert(argv && "null check"); Value = StringRef(argv[++i]); if (CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value, MultiArg)) return true; MultiArg = true; --NumAdditionalVals; } return false; } bool llvm::cl::ProvidePositionalOption(Option *Handler, StringRef Arg, int i) { int Dummy = i; return ProvideOption(Handler, Handler->ArgStr, Arg, 0, nullptr, Dummy); } // getOptionPred - Check to see if there are any options that satisfy the // specified predicate with names that are the prefixes in Name. This is // checked by progressively stripping characters off of the name, checking to // see if there options that satisfy the predicate. If we find one, return it, // otherwise return null. // static Option *getOptionPred(StringRef Name, size_t &Length, bool (*Pred)(const Option *), const StringMap<Option *> &OptionsMap) { StringMap<Option *>::const_iterator OMI = OptionsMap.find(Name); if (OMI != OptionsMap.end() && !Pred(OMI->getValue())) OMI = OptionsMap.end(); // Loop while we haven't found an option and Name still has at least two // characters in it (so that the next iteration will not be the empty // string. while (OMI == OptionsMap.end() && Name.size() > 1) { Name = Name.substr(0, Name.size() - 1); // Chop off the last character. OMI = OptionsMap.find(Name); if (OMI != OptionsMap.end() && !Pred(OMI->getValue())) OMI = OptionsMap.end(); } if (OMI != OptionsMap.end() && Pred(OMI->second)) { Length = Name.size(); return OMI->second; // Found one! } return nullptr; // No option found! } /// HandlePrefixedOrGroupedOption - The specified argument string (which started /// with at least one '-') does not fully match an available option. Check to /// see if this is a prefix or grouped option. If so, split arg into output an /// Arg/Value pair and return the Option to parse it with. static Option * HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value, bool &ErrorParsing, const StringMap<Option *> &OptionsMap) { if (Arg.size() == 1) return nullptr; // Do the lookup! size_t Length = 0; Option *PGOpt = getOptionPred(Arg, Length, isPrefixedOrGrouping, OptionsMap); if (!PGOpt) return nullptr; do { StringRef MaybeValue = (Length < Arg.size()) ? Arg.substr(Length) : StringRef(); Arg = Arg.substr(0, Length); assert(OptionsMap.count(Arg) && OptionsMap.find(Arg)->second == PGOpt); // cl::Prefix options do not preserve '=' when used separately. // The behavior for them with grouped options should be the same. if (MaybeValue.empty() || PGOpt->getFormattingFlag() == cl::AlwaysPrefix || (PGOpt->getFormattingFlag() == cl::Prefix && MaybeValue[0] != '=')) { Value = MaybeValue; return PGOpt; } if (MaybeValue[0] == '=') { Value = MaybeValue.substr(1); return PGOpt; } // This must be a grouped option. assert(isGrouping(PGOpt) && "Broken getOptionPred!"); // Grouping options inside a group can't have values. if (PGOpt->getValueExpectedFlag() == cl::ValueRequired) { ErrorParsing |= PGOpt->error("may not occur within a group!"); return nullptr; } // Because the value for the option is not required, we don't need to pass // argc/argv in. int Dummy = 0; ErrorParsing |= ProvideOption(PGOpt, Arg, StringRef(), 0, nullptr, Dummy); // Get the next grouping option. Arg = MaybeValue; PGOpt = getOptionPred(Arg, Length, isGrouping, OptionsMap); } while (PGOpt); // We could not find a grouping option in the remainder of Arg. return nullptr; } static bool RequiresValue(const Option *O) { return O->getNumOccurrencesFlag() == cl::Required || O->getNumOccurrencesFlag() == cl::OneOrMore; } static bool EatsUnboundedNumberOfValues(const Option *O) { return O->getNumOccurrencesFlag() == cl::ZeroOrMore || O->getNumOccurrencesFlag() == cl::OneOrMore; } static bool isWhitespace(char C) { return C == ' ' || C == '\t' || C == '\r' || C == '\n'; } static bool isWhitespaceOrNull(char C) { return isWhitespace(C) || C == '\0'; } static bool isQuote(char C) { return C == '\"' || C == '\''; } void cl::TokenizeGNUCommandLine(StringRef Src, StringSaver &Saver, SmallVectorImpl<const char *> &NewArgv, bool MarkEOLs) { SmallString<128> Token; for (size_t I = 0, E = Src.size(); I != E; ++I) { // Consume runs of whitespace. if (Token.empty()) { while (I != E && isWhitespace(Src[I])) { // Mark the end of lines in response files. if (MarkEOLs && Src[I] == '\n') NewArgv.push_back(nullptr); ++I; } if (I == E) break; } char C = Src[I]; // Backslash escapes the next character. if (I + 1 < E && C == '\\') { ++I; // Skip the escape. Token.push_back(Src[I]); continue; } // Consume a quoted string. if (isQuote(C)) { ++I; while (I != E && Src[I] != C) { // Backslash escapes the next character. if (Src[I] == '\\' && I + 1 != E) ++I; Token.push_back(Src[I]); ++I; } if (I == E) break; continue; } // End the token if this is whitespace. if (isWhitespace(C)) { if (!Token.empty()) NewArgv.push_back(Saver.save(Token.str()).data()); // Mark the end of lines in response files. if (MarkEOLs && C == '\n') NewArgv.push_back(nullptr); Token.clear(); continue; } // This is a normal character. Append it. Token.push_back(C); } // Append the last token after hitting EOF with no whitespace. if (!Token.empty()) NewArgv.push_back(Saver.save(Token.str()).data()); } /// Backslashes are interpreted in a rather complicated way in the Windows-style /// command line, because backslashes are used both to separate path and to /// escape double quote. This method consumes runs of backslashes as well as the /// following double quote if it's escaped. /// /// * If an even number of backslashes is followed by a double quote, one /// backslash is output for every pair of backslashes, and the last double /// quote remains unconsumed. The double quote will later be interpreted as /// the start or end of a quoted string in the main loop outside of this /// function. /// /// * If an odd number of backslashes is followed by a double quote, one /// backslash is output for every pair of backslashes, and a double quote is /// output for the last pair of backslash-double quote. The double quote is /// consumed in this case. /// /// * Otherwise, backslashes are interpreted literally. static size_t parseBackslash(StringRef Src, size_t I, SmallString<128> &Token) { size_t E = Src.size(); int BackslashCount = 0; // Skip the backslashes. do { ++I; ++BackslashCount; } while (I != E && Src[I] == '\\'); bool FollowedByDoubleQuote = (I != E && Src[I] == '"'); if (FollowedByDoubleQuote) { Token.append(BackslashCount / 2, '\\'); if (BackslashCount % 2 == 0) return I - 1; Token.push_back('"'); return I; } Token.append(BackslashCount, '\\'); return I - 1; } // Windows treats whitespace, double quotes, and backslashes specially, except // when parsing the first token of a full command line, in which case // backslashes are not special. static bool isWindowsSpecialChar(char C) { return isWhitespaceOrNull(C) || C == '\\' || C == '\"'; } static bool isWindowsSpecialCharInCommandName(char C) { return isWhitespaceOrNull(C) || C == '\"'; } // Windows tokenization implementation. The implementation is designed to be // inlined and specialized for the two user entry points. static inline void tokenizeWindowsCommandLineImpl( StringRef Src, StringSaver &Saver, function_ref<void(StringRef)> AddToken, bool AlwaysCopy, function_ref<void()> MarkEOL, bool InitialCommandName) { SmallString<128> Token; // Sometimes, this function will be handling a full command line including an // executable pathname at the start. In that situation, the initial pathname // needs different handling from the following arguments, because when // CreateProcess or cmd.exe scans the pathname, it doesn't treat \ as // escaping the quote character, whereas when libc scans the rest of the // command line, it does. bool CommandName = InitialCommandName; // Try to do as much work inside the state machine as possible. enum { INIT, UNQUOTED, QUOTED } State = INIT; for (size_t I = 0, E = Src.size(); I < E; ++I) { switch (State) { case INIT: { assert(Token.empty() && "token should be empty in initial state"); // Eat whitespace before a token. while (I < E && isWhitespaceOrNull(Src[I])) { if (Src[I] == '\n') MarkEOL(); ++I; } // Stop if this was trailing whitespace. if (I >= E) break; size_t Start = I; if (CommandName) { while (I < E && !isWindowsSpecialCharInCommandName(Src[I])) ++I; } else { while (I < E && !isWindowsSpecialChar(Src[I])) ++I; } StringRef NormalChars = Src.slice(Start, I); if (I >= E || isWhitespaceOrNull(Src[I])) { // No special characters: slice out the substring and start the next // token. Copy the string if the caller asks us to. AddToken(AlwaysCopy ? Saver.save(NormalChars) : NormalChars); if (I < E && Src[I] == '\n') { MarkEOL(); CommandName = InitialCommandName; } else { CommandName = false; } } else if (Src[I] == '\"') { Token += NormalChars; State = QUOTED; } else if (Src[I] == '\\') { assert(!CommandName && "or else we'd have treated it as a normal char"); Token += NormalChars; I = parseBackslash(Src, I, Token); State = UNQUOTED; } else { llvm_unreachable("unexpected special character"); } break; } case UNQUOTED: if (isWhitespaceOrNull(Src[I])) { // Whitespace means the end of the token. If we are in this state, the // token must have contained a special character, so we must copy the // token. AddToken(Saver.save(Token.str())); Token.clear(); if (Src[I] == '\n') { CommandName = InitialCommandName; MarkEOL(); } else { CommandName = false; } State = INIT; } else if (Src[I] == '\"') { State = QUOTED; } else if (Src[I] == '\\' && !CommandName) { I = parseBackslash(Src, I, Token); } else { Token.push_back(Src[I]); } break; case QUOTED: if (Src[I] == '\"') { if (I < (E - 1) && Src[I + 1] == '"') { // Consecutive double-quotes inside a quoted string implies one // double-quote. Token.push_back('"'); ++I; } else { // Otherwise, end the quoted portion and return to the unquoted state. State = UNQUOTED; } } else if (Src[I] == '\\' && !CommandName) { I = parseBackslash(Src, I, Token); } else { Token.push_back(Src[I]); } break; } } if (State != INIT) AddToken(Saver.save(Token.str())); } void cl::TokenizeWindowsCommandLine(StringRef Src, StringSaver &Saver, SmallVectorImpl<const char *> &NewArgv, bool MarkEOLs) { auto AddToken = [&](StringRef Tok) { NewArgv.push_back(Tok.data()); }; auto OnEOL = [&]() { if (MarkEOLs) NewArgv.push_back(nullptr); }; tokenizeWindowsCommandLineImpl(Src, Saver, AddToken, /*AlwaysCopy=*/true, OnEOL, false); } void cl::TokenizeWindowsCommandLineNoCopy(StringRef Src, StringSaver &Saver, SmallVectorImpl<StringRef> &NewArgv) { auto AddToken = [&](StringRef Tok) { NewArgv.push_back(Tok); }; auto OnEOL = []() {}; tokenizeWindowsCommandLineImpl(Src, Saver, AddToken, /*AlwaysCopy=*/false, OnEOL, false); } void cl::TokenizeWindowsCommandLineFull(StringRef Src, StringSaver &Saver, SmallVectorImpl<const char *> &NewArgv, bool MarkEOLs) { auto AddToken = [&](StringRef Tok) { NewArgv.push_back(Tok.data()); }; auto OnEOL = [&]() { if (MarkEOLs) NewArgv.push_back(nullptr); }; tokenizeWindowsCommandLineImpl(Src, Saver, AddToken, /*AlwaysCopy=*/true, OnEOL, true); } void cl::tokenizeConfigFile(StringRef Source, StringSaver &Saver, SmallVectorImpl<const char *> &NewArgv, bool MarkEOLs) { for (const char *Cur = Source.begin(); Cur != Source.end();) { SmallString<128> Line; // Check for comment line. if (isWhitespace(*Cur)) { while (Cur != Source.end() && isWhitespace(*Cur)) ++Cur; continue; } if (*Cur == '#') { while (Cur != Source.end() && *Cur != '\n') ++Cur; continue; } // Find end of the current line. const char *Start = Cur; for (const char *End = Source.end(); Cur != End; ++Cur) { if (*Cur == '\\') { if (Cur + 1 != End) { ++Cur; if (*Cur == '\n' || (*Cur == '\r' && (Cur + 1 != End) && Cur[1] == '\n')) { Line.append(Start, Cur - 1); if (*Cur == '\r') ++Cur; Start = Cur + 1; } } } else if (*Cur == '\n') break; } // Tokenize line. Line.append(Start, Cur); cl::TokenizeGNUCommandLine(Line, Saver, NewArgv, MarkEOLs); } } // It is called byte order marker but the UTF-8 BOM is actually not affected // by the host system's endianness. static bool hasUTF8ByteOrderMark(ArrayRef<char> S) { return (S.size() >= 3 && S[0] == '\xef' && S[1] == '\xbb' && S[2] == '\xbf'); } // Substitute <CFGDIR> with the file's base path. static void ExpandBasePaths(StringRef BasePath, StringSaver &Saver, const char *&Arg) { assert(sys::path::is_absolute(BasePath)); constexpr StringLiteral Token("<CFGDIR>"); const StringRef ArgString(Arg); SmallString<128> ResponseFile; StringRef::size_type StartPos = 0; for (StringRef::size_type TokenPos = ArgString.find(Token); TokenPos != StringRef::npos; TokenPos = ArgString.find(Token, StartPos)) { // Token may appear more than once per arg (e.g. comma-separated linker // args). Support by using path-append on any subsequent appearances. const StringRef LHS = ArgString.substr(StartPos, TokenPos - StartPos); if (ResponseFile.empty()) ResponseFile = LHS; else llvm::sys::path::append(ResponseFile, LHS); ResponseFile.append(BasePath); StartPos = TokenPos + Token.size(); } if (!ResponseFile.empty()) { // Path-append the remaining arg substring if at least one token appeared. const StringRef Remaining = ArgString.substr(StartPos); if (!Remaining.empty()) llvm::sys::path::append(ResponseFile, Remaining); Arg = Saver.save(ResponseFile.str()).data(); } } // FName must be an absolute path. Error ExpansionContext::expandResponseFile( StringRef FName, SmallVectorImpl<const char *> &NewArgv) { assert(sys::path::is_absolute(FName)); llvm::ErrorOr<std::unique_ptr<MemoryBuffer>> MemBufOrErr = FS->getBufferForFile(FName); if (!MemBufOrErr) { std::error_code EC = MemBufOrErr.getError(); return llvm::createStringError(EC, Twine("cannot not open file '") + FName + "': " + EC.message()); } MemoryBuffer &MemBuf = *MemBufOrErr.get(); StringRef Str(MemBuf.getBufferStart(), MemBuf.getBufferSize()); // If we have a UTF-16 byte order mark, convert to UTF-8 for parsing. ArrayRef<char> BufRef(MemBuf.getBufferStart(), MemBuf.getBufferEnd()); std::string UTF8Buf; if (hasUTF16ByteOrderMark(BufRef)) { if (!convertUTF16ToUTF8String(BufRef, UTF8Buf)) return llvm::createStringError(std::errc::illegal_byte_sequence, "Could not convert UTF16 to UTF8"); Str = StringRef(UTF8Buf); } // If we see UTF-8 BOM sequence at the beginning of a file, we shall remove // these bytes before parsing. // Reference: http://en.wikipedia.org/wiki/UTF-8#Byte_order_mark else if (hasUTF8ByteOrderMark(BufRef)) Str = StringRef(BufRef.data() + 3, BufRef.size() - 3); // Tokenize the contents into NewArgv. Tokenizer(Str, Saver, NewArgv, MarkEOLs); // Expanded file content may require additional transformations, like using // absolute paths instead of relative in '@file' constructs or expanding // macros. if (!RelativeNames && !InConfigFile) return Error::success(); StringRef BasePath = llvm::sys::path::parent_path(FName); for (const char *&Arg : NewArgv) { if (!Arg) continue; // Substitute <CFGDIR> with the file's base path. if (InConfigFile) ExpandBasePaths(BasePath, Saver, Arg); // Discover the case, when argument should be transformed into '@file' and // evaluate 'file' for it. StringRef ArgStr(Arg); StringRef FileName; bool ConfigInclusion = false; if (ArgStr.consume_front("@")) { FileName = ArgStr; if (!llvm::sys::path::is_relative(FileName)) continue; } else if (ArgStr.consume_front("--config=")) { FileName = ArgStr; ConfigInclusion = true; } else { continue; } // Update expansion construct. SmallString<128> ResponseFile; ResponseFile.push_back('@'); if (ConfigInclusion && !llvm::sys::path::has_parent_path(FileName)) { SmallString<128> FilePath; if (!findConfigFile(FileName, FilePath)) return createStringError( std::make_error_code(std::errc::no_such_file_or_directory), "cannot not find configuration file: " + FileName); ResponseFile.append(FilePath); } else { ResponseFile.append(BasePath); llvm::sys::path::append(ResponseFile, FileName); } Arg = Saver.save(ResponseFile.str()).data(); } return Error::success(); } /// Expand response files on a command line recursively using the given /// StringSaver and tokenization strategy. Error ExpansionContext::expandResponseFiles( SmallVectorImpl<const char *> &Argv) { struct ResponseFileRecord { std::string File; size_t End; }; // To detect recursive response files, we maintain a stack of files and the // position of the last argument in the file. This position is updated // dynamically as we recursively expand files. SmallVector<ResponseFileRecord, 3> FileStack; // Push a dummy entry that represents the initial command line, removing // the need to check for an empty list. FileStack.push_back({"", Argv.size()}); // Don't cache Argv.size() because it can change. for (unsigned I = 0; I != Argv.size();) { while (I == FileStack.back().End) { // Passing the end of a file's argument list, so we can remove it from the // stack. FileStack.pop_back(); } const char *Arg = Argv[I]; // Check if it is an EOL marker if (Arg == nullptr) { ++I; continue; } if (Arg[0] != '@') { ++I; continue; } const char *FName = Arg + 1; // Note that CurrentDir is only used for top-level rsp files, the rest will // always have an absolute path deduced from the containing file. SmallString<128> CurrDir; if (llvm::sys::path::is_relative(FName)) { if (CurrentDir.empty()) { if (auto CWD = FS->getCurrentWorkingDirectory()) { CurrDir = *CWD; } else { return createStringError( CWD.getError(), Twine("cannot get absolute path for: ") + FName); } } else { CurrDir = CurrentDir; } llvm::sys::path::append(CurrDir, FName); FName = CurrDir.c_str(); } ErrorOr<llvm::vfs::Status> Res = FS->status(FName); if (!Res || !Res->exists()) { std::error_code EC = Res.getError(); if (!InConfigFile) { // If the specified file does not exist, leave '@file' unexpanded, as // libiberty does. if (!EC || EC == llvm::errc::no_such_file_or_directory) { ++I; continue; } } if (!EC) EC = llvm::errc::no_such_file_or_directory; return createStringError(EC, Twine("cannot not open file '") + FName + "': " + EC.message()); } const llvm::vfs::Status &FileStatus = Res.get(); auto IsEquivalent = [FileStatus, this](const ResponseFileRecord &RFile) -> ErrorOr<bool> { ErrorOr<llvm::vfs::Status> RHS = FS->status(RFile.File); if (!RHS) return RHS.getError(); return FileStatus.equivalent(*RHS); }; // Check for recursive response files. for (const auto &F : drop_begin(FileStack)) { if (ErrorOr<bool> R = IsEquivalent(F)) { if (R.get()) return createStringError( R.getError(), Twine("recursive expansion of: '") + F.File + "'"); } else { return createStringError(R.getError(), Twine("cannot open file: ") + F.File); } } // Replace this response file argument with the tokenization of its // contents. Nested response files are expanded in subsequent iterations. SmallVector<const char *, 0> ExpandedArgv; if (Error Err = expandResponseFile(FName, ExpandedArgv)) return Err; for (ResponseFileRecord &Record : FileStack) { // Increase the end of all active records by the number of newly expanded // arguments, minus the response file itself. Record.End += ExpandedArgv.size() - 1; } FileStack.push_back({FName, I + ExpandedArgv.size()}); Argv.erase(Argv.begin() + I); Argv.insert(Argv.begin() + I, ExpandedArgv.begin(), ExpandedArgv.end()); } // If successful, the top of the file stack will mark the end of the Argv // stream. A failure here indicates a bug in the stack popping logic above. // Note that FileStack may have more than one element at this point because we // don't have a chance to pop the stack when encountering recursive files at // the end of the stream, so seeing that doesn't indicate a bug. assert(FileStack.size() > 0 && Argv.size() == FileStack.back().End); return Error::success(); } bool cl::expandResponseFiles(int Argc, const char *const *Argv, const char *EnvVar, StringSaver &Saver, SmallVectorImpl<const char *> &NewArgv) { #ifdef _WIN32 auto Tokenize = cl::TokenizeWindowsCommandLine; #else auto Tokenize = cl::TokenizeGNUCommandLine; #endif // The environment variable specifies initial options. if (EnvVar) if (std::optional<std::string> EnvValue = sys::Process::GetEnv(EnvVar)) Tokenize(*EnvValue, Saver, NewArgv, /*MarkEOLs=*/false); // Command line options can override the environment variable. NewArgv.append(Argv + 1, Argv + Argc); ExpansionContext ECtx(Saver.getAllocator(), Tokenize); if (Error Err = ECtx.expandResponseFiles(NewArgv)) { errs() << toString(std::move(Err)) << '\n'; return false; } return true; } bool cl::ExpandResponseFiles(StringSaver &Saver, TokenizerCallback Tokenizer, SmallVectorImpl<const char *> &Argv) { ExpansionContext ECtx(Saver.getAllocator(), Tokenizer); if (Error Err = ECtx.expandResponseFiles(Argv)) { errs() << toString(std::move(Err)) << '\n'; return false; } return true; } ExpansionContext::ExpansionContext(BumpPtrAllocator &A, TokenizerCallback T) : Saver(A), Tokenizer(T), FS(vfs::getRealFileSystem().get()) {} bool ExpansionContext::findConfigFile(StringRef FileName, SmallVectorImpl<char> &FilePath) { SmallString<128> CfgFilePath; const auto FileExists = [this](SmallString<128> Path) -> bool { auto Status = FS->status(Path); return Status && Status->getType() == llvm::sys::fs::file_type::regular_file; }; // If file name contains directory separator, treat it as a path to // configuration file. if (llvm::sys::path::has_parent_path(FileName)) { CfgFilePath = FileName; if (llvm::sys::path::is_relative(FileName) && FS->makeAbsolute(CfgFilePath)) return false; if (!FileExists(CfgFilePath)) return false; FilePath.assign(CfgFilePath.begin(), CfgFilePath.end()); return true; } // Look for the file in search directories. for (const StringRef &Dir : SearchDirs) { if (Dir.empty()) continue; CfgFilePath.assign(Dir); llvm::sys::path::append(CfgFilePath, FileName); llvm::sys::path::native(CfgFilePath); if (FileExists(CfgFilePath)) { FilePath.assign(CfgFilePath.begin(), CfgFilePath.end()); return true; } } return false; } Error ExpansionContext::readConfigFile(StringRef CfgFile, SmallVectorImpl<const char *> &Argv) { SmallString<128> AbsPath; if (sys::path::is_relative(CfgFile)) { AbsPath.assign(CfgFile); if (std::error_code EC = FS->makeAbsolute(AbsPath)) return make_error<StringError>( EC, Twine("cannot get absolute path for " + CfgFile)); CfgFile = AbsPath.str(); } InConfigFile = true; RelativeNames = true; if (Error Err = expandResponseFile(CfgFile, Argv)) return Err; return expandResponseFiles(Argv); } static void initCommonOptions(); bool cl::ParseCommandLineOptions(int argc, const char *const *argv, StringRef Overview, raw_ostream *Errs, const char *EnvVar, bool LongOptionsUseDoubleDash) { initCommonOptions(); SmallVector<const char *, 20> NewArgv; BumpPtrAllocator A; StringSaver Saver(A); NewArgv.push_back(argv[0]); // Parse options from environment variable. if (EnvVar) { if (std::optional<std::string> EnvValue = sys::Process::GetEnv(StringRef(EnvVar))) TokenizeGNUCommandLine(*EnvValue, Saver, NewArgv); } // Append options from command line. for (int I = 1; I < argc; ++I) NewArgv.push_back(argv[I]); int NewArgc = static_cast<int>(NewArgv.size()); // Parse all options. return GlobalParser->ParseCommandLineOptions(NewArgc, &NewArgv[0], Overview, Errs, LongOptionsUseDoubleDash); } /// Reset all options at least once, so that we can parse different options. void CommandLineParser::ResetAllOptionOccurrences() { // Reset all option values to look like they have never been seen before. // Options might be reset twice (they can be reference in both OptionsMap // and one of the other members), but that does not harm. for (auto *SC : RegisteredSubCommands) { for (auto &O : SC->OptionsMap) O.second->reset(); for (Option *O : SC->PositionalOpts) O->reset(); for (Option *O : SC->SinkOpts) O->reset(); if (SC->ConsumeAfterOpt) SC->ConsumeAfterOpt->reset(); } } bool CommandLineParser::ParseCommandLineOptions(int argc, const char *const *argv, StringRef Overview, raw_ostream *Errs, bool LongOptionsUseDoubleDash) { assert(hasOptions() && "No options specified!"); ProgramOverview = Overview; bool IgnoreErrors = Errs; if (!Errs) Errs = &errs(); bool ErrorParsing = false; // Expand response files. SmallVector<const char *, 20> newArgv(argv, argv + argc); BumpPtrAllocator A; #ifdef _WIN32 auto Tokenize = cl::TokenizeWindowsCommandLine; #else auto Tokenize = cl::TokenizeGNUCommandLine; #endif ExpansionContext ECtx(A, Tokenize); if (Error Err = ECtx.expandResponseFiles(newArgv)) { *Errs << toString(std::move(Err)) << '\n'; return false; } argv = &newArgv[0]; argc = static_cast<int>(newArgv.size()); // Copy the program name into ProgName, making sure not to overflow it. ProgramName = std::string(sys::path::filename(StringRef(argv[0]))); // Check out the positional arguments to collect information about them. unsigned NumPositionalRequired = 0; // Determine whether or not there are an unlimited number of positionals bool HasUnlimitedPositionals = false; int FirstArg = 1; SubCommand *ChosenSubCommand = &SubCommand::getTopLevel(); std::string NearestSubCommandString; bool MaybeNamedSubCommand = argc >= 2 && argv[FirstArg][0] != '-' && hasNamedSubCommands(); if (MaybeNamedSubCommand) { // If the first argument specifies a valid subcommand, start processing // options from the second argument. ChosenSubCommand = LookupSubCommand(StringRef(argv[FirstArg]), NearestSubCommandString); if (ChosenSubCommand != &SubCommand::getTopLevel()) FirstArg = 2; } GlobalParser->ActiveSubCommand = ChosenSubCommand; assert(ChosenSubCommand); auto &ConsumeAfterOpt = ChosenSubCommand->ConsumeAfterOpt; auto &PositionalOpts = ChosenSubCommand->PositionalOpts; auto &SinkOpts = ChosenSubCommand->SinkOpts; auto &OptionsMap = ChosenSubCommand->OptionsMap; for (auto *O: DefaultOptions) { addOption(O, true); } if (ConsumeAfterOpt) { assert(PositionalOpts.size() > 0 && "Cannot specify cl::ConsumeAfter without a positional argument!"); } if (!PositionalOpts.empty()) { // Calculate how many positional values are _required_. bool UnboundedFound = false; for (size_t i = 0, e = PositionalOpts.size(); i != e; ++i) { Option *Opt = PositionalOpts[i]; if (RequiresValue(Opt)) ++NumPositionalRequired; else if (ConsumeAfterOpt) { // ConsumeAfter cannot be combined with "optional" positional options // unless there is only one positional argument... if (PositionalOpts.size() > 1) { if (!IgnoreErrors) Opt->error("error - this positional option will never be matched, " "because it does not Require a value, and a " "cl::ConsumeAfter option is active!"); ErrorParsing = true; } } else if (UnboundedFound && !Opt->hasArgStr()) { // This option does not "require" a value... Make sure this option is // not specified after an option that eats all extra arguments, or this // one will never get any! // if (!IgnoreErrors) Opt->error("error - option can never match, because " "another positional argument will match an " "unbounded number of values, and this option" " does not require a value!"); *Errs << ProgramName << ": CommandLine Error: Option '" << Opt->ArgStr << "' is all messed up!\n"; *Errs << PositionalOpts.size(); ErrorParsing = true; } UnboundedFound |= EatsUnboundedNumberOfValues(Opt); } HasUnlimitedPositionals = UnboundedFound || ConsumeAfterOpt; } // PositionalVals - A vector of "positional" arguments we accumulate into // the process at the end. // SmallVector<std::pair<StringRef, unsigned>, 4> PositionalVals; // If the program has named positional arguments, and the name has been run // across, keep track of which positional argument was named. Otherwise put // the positional args into the PositionalVals list... Option *ActivePositionalArg = nullptr; // Loop over all of the arguments... processing them. bool DashDashFound = false; // Have we read '--'? for (int i = FirstArg; i < argc; ++i) { Option *Handler = nullptr; std::string NearestHandlerString; StringRef Value; StringRef ArgName = ""; bool HaveDoubleDash = false; // Check to see if this is a positional argument. This argument is // considered to be positional if it doesn't start with '-', if it is "-" // itself, or if we have seen "--" already. // if (argv[i][0] != '-' || argv[i][1] == 0 || DashDashFound) { // Positional argument! if (ActivePositionalArg) { ProvidePositionalOption(ActivePositionalArg, StringRef(argv[i]), i); continue; // We are done! } if (!PositionalOpts.empty()) { PositionalVals.push_back(std::make_pair(StringRef(argv[i]), i)); // All of the positional arguments have been fulfulled, give the rest to // the consume after option... if it's specified... // if (PositionalVals.size() >= NumPositionalRequired && ConsumeAfterOpt) { for (++i; i < argc; ++i) PositionalVals.push_back(std::make_pair(StringRef(argv[i]), i)); break; // Handle outside of the argument processing loop... } // Delay processing positional arguments until the end... continue; } } else if (argv[i][0] == '-' && argv[i][1] == '-' && argv[i][2] == 0 && !DashDashFound) { DashDashFound = true; // This is the mythical "--"? continue; // Don't try to process it as an argument itself. } else if (ActivePositionalArg && (ActivePositionalArg->getMiscFlags() & PositionalEatsArgs)) { // If there is a positional argument eating options, check to see if this // option is another positional argument. If so, treat it as an argument, // otherwise feed it to the eating positional. ArgName = StringRef(argv[i] + 1); // Eat second dash. if (ArgName.consume_front("-")) HaveDoubleDash = true; Handler = LookupLongOption(*ChosenSubCommand, ArgName, Value, LongOptionsUseDoubleDash, HaveDoubleDash); if (!Handler || Handler->getFormattingFlag() != cl::Positional) { ProvidePositionalOption(ActivePositionalArg, StringRef(argv[i]), i); continue; // We are done! } } else { // We start with a '-', must be an argument. ArgName = StringRef(argv[i] + 1); // Eat second dash. if (ArgName.consume_front("-")) HaveDoubleDash = true; Handler = LookupLongOption(*ChosenSubCommand, ArgName, Value, LongOptionsUseDoubleDash, HaveDoubleDash); // If Handler is not found in a specialized subcommand, look up handler // in the top-level subcommand. // cl::opt without cl::sub belongs to top-level subcommand. if (!Handler && ChosenSubCommand != &SubCommand::getTopLevel()) Handler = LookupLongOption(SubCommand::getTopLevel(), ArgName, Value, LongOptionsUseDoubleDash, HaveDoubleDash); // Check to see if this "option" is really a prefixed or grouped argument. if (!Handler && !(LongOptionsUseDoubleDash && HaveDoubleDash)) Handler = HandlePrefixedOrGroupedOption(ArgName, Value, ErrorParsing, OptionsMap); // Otherwise, look for the closest available option to report to the user // in the upcoming error. if (!Handler && SinkOpts.empty()) LookupNearestOption(ArgName, OptionsMap, NearestHandlerString); } if (!Handler) { if (!SinkOpts.empty()) { for (Option *SinkOpt : SinkOpts) SinkOpt->addOccurrence(i, "", StringRef(argv[i])); continue; } auto ReportUnknownArgument = [&](bool IsArg, StringRef NearestArgumentName) { *Errs << ProgramName << ": Unknown " << (IsArg ? "command line argument" : "subcommand") << " '" << argv[i] << "'. Try: '" << argv[0] << " --help'\n"; if (NearestArgumentName.empty()) return; *Errs << ProgramName << ": Did you mean '"; if (IsArg) *Errs << PrintArg(NearestArgumentName, 0); else *Errs << NearestArgumentName; *Errs << "'?\n"; }; if (i > 1 || !MaybeNamedSubCommand) ReportUnknownArgument(/*IsArg=*/true, NearestHandlerString); else ReportUnknownArgument(/*IsArg=*/false, NearestSubCommandString); ErrorParsing = true; continue; } // If this is a named positional argument, just remember that it is the // active one... if (Handler->getFormattingFlag() == cl::Positional) { if ((Handler->getMiscFlags() & PositionalEatsArgs) && !Value.empty()) { Handler->error("This argument does not take a value.\n" "\tInstead, it consumes any positional arguments until " "the next recognized option.", *Errs); ErrorParsing = true; } ActivePositionalArg = Handler; } else ErrorParsing |= ProvideOption(Handler, ArgName, Value, argc, argv, i); } // Check and handle positional arguments now... if (NumPositionalRequired > PositionalVals.size()) { *Errs << ProgramName << ": Not enough positional command line arguments specified!\n" << "Must specify at least " << NumPositionalRequired << " positional argument" << (NumPositionalRequired > 1 ? "s" : "") << ": See: " << argv[0] << " --help\n"; ErrorParsing = true; } else if (!HasUnlimitedPositionals && PositionalVals.size() > PositionalOpts.size()) { *Errs << ProgramName << ": Too many positional arguments specified!\n" << "Can specify at most " << PositionalOpts.size() << " positional arguments: See: " << argv[0] << " --help\n"; ErrorParsing = true; } else if (!ConsumeAfterOpt) { // Positional args have already been handled if ConsumeAfter is specified. unsigned ValNo = 0, NumVals = static_cast<unsigned>(PositionalVals.size()); for (Option *Opt : PositionalOpts) { if (RequiresValue(Opt)) { ProvidePositionalOption(Opt, PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; --NumPositionalRequired; // We fulfilled our duty... } // If we _can_ give this option more arguments, do so now, as long as we // do not give it values that others need. 'Done' controls whether the // option even _WANTS_ any more. // bool Done = Opt->getNumOccurrencesFlag() == cl::Required; while (NumVals - ValNo > NumPositionalRequired && !Done) { switch (Opt->getNumOccurrencesFlag()) { case cl::Optional: Done = true; // Optional arguments want _at most_ one value [[fallthrough]]; case cl::ZeroOrMore: // Zero or more will take all they can get... case cl::OneOrMore: // One or more will take all they can get... ProvidePositionalOption(Opt, PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; break; default: llvm_unreachable("Internal error, unexpected NumOccurrences flag in " "positional argument processing!"); } } } } else { assert(ConsumeAfterOpt && NumPositionalRequired <= PositionalVals.size()); unsigned ValNo = 0; for (Option *Opt : PositionalOpts) if (RequiresValue(Opt)) { ErrorParsing |= ProvidePositionalOption( Opt, PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; } // Handle the case where there is just one positional option, and it's // optional. In this case, we want to give JUST THE FIRST option to the // positional option and keep the rest for the consume after. The above // loop would have assigned no values to positional options in this case. // if (PositionalOpts.size() == 1 && ValNo == 0 && !PositionalVals.empty()) { ErrorParsing |= ProvidePositionalOption(PositionalOpts[0], PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; } // Handle over all of the rest of the arguments to the // cl::ConsumeAfter command line option... for (; ValNo != PositionalVals.size(); ++ValNo) ErrorParsing |= ProvidePositionalOption(ConsumeAfterOpt, PositionalVals[ValNo].first, PositionalVals[ValNo].second); } // Loop over args and make sure all required args are specified! for (const auto &Opt : OptionsMap) { switch (Opt.second->getNumOccurrencesFlag()) { case Required: case OneOrMore: if (Opt.second->getNumOccurrences() == 0) { Opt.second->error("must be specified at least once!"); ErrorParsing = true; } [[fallthrough]]; default: break; } } // Now that we know if -debug is specified, we can use it. // Note that if ReadResponseFiles == true, this must be done before the // memory allocated for the expanded command line is free()d below. LLVM_DEBUG(dbgs() << "Args: "; for (int i = 0; i < argc; ++i) dbgs() << argv[i] << ' '; dbgs() << '\n';); // Free all of the memory allocated to the map. Command line options may only // be processed once! MoreHelp.clear(); // If we had an error processing our arguments, don't let the program execute if (ErrorParsing) { if (!IgnoreErrors) exit(1); return false; } return true; } //===----------------------------------------------------------------------===// // Option Base class implementation // bool Option::error(const Twine &Message, StringRef ArgName, raw_ostream &Errs) { if (!ArgName.data()) ArgName = ArgStr; if (ArgName.empty()) Errs << HelpStr; // Be nice for positional arguments else Errs << GlobalParser->ProgramName << ": for the " << PrintArg(ArgName, 0); Errs << " option: " << Message << "\n"; return true; } bool Option::addOccurrence(unsigned pos, StringRef ArgName, StringRef Value, bool MultiArg) { if (!MultiArg) NumOccurrences++; // Increment the number of times we have been seen return handleOccurrence(pos, ArgName, Value); } // getValueStr - Get the value description string, using "DefaultMsg" if nothing // has been specified yet. // static StringRef getValueStr(const Option &O, StringRef DefaultMsg) { if (O.ValueStr.empty()) return DefaultMsg; return O.ValueStr; } //===----------------------------------------------------------------------===// // cl::alias class implementation // // Return the width of the option tag for printing... size_t alias::getOptionWidth() const { return argPlusPrefixesSize(ArgStr); } void Option::printHelpStr(StringRef HelpStr, size_t Indent, size_t FirstLineIndentedBy) { assert(Indent >= FirstLineIndentedBy); std::pair<StringRef, StringRef> Split = HelpStr.split('\n'); outs().indent(Indent - FirstLineIndentedBy) << ArgHelpPrefix << Split.first << "\n"; while (!Split.second.empty()) { Split = Split.second.split('\n'); outs().indent(Indent) << Split.first << "\n"; } } void Option::printEnumValHelpStr(StringRef HelpStr, size_t BaseIndent, size_t FirstLineIndentedBy) { const StringRef ValHelpPrefix = " "; assert(BaseIndent >= FirstLineIndentedBy); std::pair<StringRef, StringRef> Split = HelpStr.split('\n'); outs().indent(BaseIndent - FirstLineIndentedBy) << ArgHelpPrefix << ValHelpPrefix << Split.first << "\n"; while (!Split.second.empty()) { Split = Split.second.split('\n'); outs().indent(BaseIndent + ValHelpPrefix.size()) << Split.first << "\n"; } } // Print out the option for the alias. void alias::printOptionInfo(size_t GlobalWidth) const { outs() << PrintArg(ArgStr); printHelpStr(HelpStr, GlobalWidth, argPlusPrefixesSize(ArgStr)); } //===----------------------------------------------------------------------===// // Parser Implementation code... // // basic_parser implementation // // Return the width of the option tag for printing... size_t basic_parser_impl::getOptionWidth(const Option &O) const { size_t Len = argPlusPrefixesSize(O.ArgStr); auto ValName = getValueName(); if (!ValName.empty()) { size_t FormattingLen = 3; if (O.getMiscFlags() & PositionalEatsArgs) FormattingLen = 6; Len += getValueStr(O, ValName).size() + FormattingLen; } return Len; } // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // void basic_parser_impl::printOptionInfo(const Option &O, size_t GlobalWidth) const { outs() << PrintArg(O.ArgStr); auto ValName = getValueName(); if (!ValName.empty()) { if (O.getMiscFlags() & PositionalEatsArgs) { outs() << " <" << getValueStr(O, ValName) << ">..."; } else if (O.getValueExpectedFlag() == ValueOptional) outs() << "[=<" << getValueStr(O, ValName) << ">]"; else { outs() << (O.ArgStr.size() == 1 ? " <" : "=<") << getValueStr(O, ValName) << '>'; } } Option::printHelpStr(O.HelpStr, GlobalWidth, getOptionWidth(O)); } void basic_parser_impl::printOptionName(const Option &O, size_t GlobalWidth) const { outs() << PrintArg(O.ArgStr); outs().indent(GlobalWidth - O.ArgStr.size()); } // parser<bool> implementation // bool parser<bool>::parse(Option &O, StringRef ArgName, StringRef Arg, bool &Value) { if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" || Arg == "1") { Value = true; return false; } if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") { Value = false; return false; } return O.error("'" + Arg + "' is invalid value for boolean argument! Try 0 or 1"); } // parser<boolOrDefault> implementation // bool parser<boolOrDefault>::parse(Option &O, StringRef ArgName, StringRef Arg, boolOrDefault &Value) { if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" || Arg == "1") { Value = BOU_TRUE; return false; } if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") { Value = BOU_FALSE; return false; } return O.error("'" + Arg + "' is invalid value for boolean argument! Try 0 or 1"); } // parser<int> implementation // bool parser<int>::parse(Option &O, StringRef ArgName, StringRef Arg, int &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for integer argument!"); return false; } // parser<long> implementation // bool parser<long>::parse(Option &O, StringRef ArgName, StringRef Arg, long &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for long argument!"); return false; } // parser<long long> implementation // bool parser<long long>::parse(Option &O, StringRef ArgName, StringRef Arg, long long &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for llong argument!"); return false; } // parser<unsigned> implementation // bool parser<unsigned>::parse(Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for uint argument!"); return false; } // parser<unsigned long> implementation // bool parser<unsigned long>::parse(Option &O, StringRef ArgName, StringRef Arg, unsigned long &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for ulong argument!"); return false; } // parser<unsigned long long> implementation // bool parser<unsigned long long>::parse(Option &O, StringRef ArgName, StringRef Arg, unsigned long long &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for ullong argument!"); return false; } // parser<double>/parser<float> implementation // static bool parseDouble(Option &O, StringRef Arg, double &Value) { if (to_float(Arg, Value)) return false; return O.error("'" + Arg + "' value invalid for floating point argument!"); } bool parser<double>::parse(Option &O, StringRef ArgName, StringRef Arg, double &Val) { return parseDouble(O, Arg, Val); } bool parser<float>::parse(Option &O, StringRef ArgName, StringRef Arg, float &Val) { double dVal; if (parseDouble(O, Arg, dVal)) return true; Val = (float)dVal; return false; } // generic_parser_base implementation // // findOption - Return the option number corresponding to the specified // argument string. If the option is not found, getNumOptions() is returned. // unsigned generic_parser_base::findOption(StringRef Name) { unsigned e = getNumOptions(); for (unsigned i = 0; i != e; ++i) { if (getOption(i) == Name) return i; } return e; } static StringRef EqValue = "=<value>"; static StringRef EmptyOption = "<empty>"; static StringRef OptionPrefix = " ="; static size_t getOptionPrefixesSize() { return OptionPrefix.size() + ArgHelpPrefix.size(); } static bool shouldPrintOption(StringRef Name, StringRef Description, const Option &O) { return O.getValueExpectedFlag() != ValueOptional || !Name.empty() || !Description.empty(); } // Return the width of the option tag for printing... size_t generic_parser_base::getOptionWidth(const Option &O) const { if (O.hasArgStr()) { size_t Size = argPlusPrefixesSize(O.ArgStr) + EqValue.size(); for (unsigned i = 0, e = getNumOptions(); i != e; ++i) { StringRef Name = getOption(i); if (!shouldPrintOption(Name, getDescription(i), O)) continue; size_t NameSize = Name.empty() ? EmptyOption.size() : Name.size(); Size = std::max(Size, NameSize + getOptionPrefixesSize()); } return Size; } else { size_t BaseSize = 0; for (unsigned i = 0, e = getNumOptions(); i != e; ++i) BaseSize = std::max(BaseSize, getOption(i).size() + 8); return BaseSize; } } // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // void generic_parser_base::printOptionInfo(const Option &O, size_t GlobalWidth) const { if (O.hasArgStr()) { // When the value is optional, first print a line just describing the // option without values. if (O.getValueExpectedFlag() == ValueOptional) { for (unsigned i = 0, e = getNumOptions(); i != e; ++i) { if (getOption(i).empty()) { outs() << PrintArg(O.ArgStr); Option::printHelpStr(O.HelpStr, GlobalWidth, argPlusPrefixesSize(O.ArgStr)); break; } } } outs() << PrintArg(O.ArgStr) << EqValue; Option::printHelpStr(O.HelpStr, GlobalWidth, EqValue.size() + argPlusPrefixesSize(O.ArgStr)); for (unsigned i = 0, e = getNumOptions(); i != e; ++i) { StringRef OptionName = getOption(i); StringRef Description = getDescription(i); if (!shouldPrintOption(OptionName, Description, O)) continue; size_t FirstLineIndent = OptionName.size() + getOptionPrefixesSize(); outs() << OptionPrefix << OptionName; if (OptionName.empty()) { outs() << EmptyOption; assert(FirstLineIndent >= EmptyOption.size()); FirstLineIndent += EmptyOption.size(); } if (!Description.empty()) Option::printEnumValHelpStr(Description, GlobalWidth, FirstLineIndent); else outs() << '\n'; } } else { if (!O.HelpStr.empty()) outs() << " " << O.HelpStr << '\n'; for (unsigned i = 0, e = getNumOptions(); i != e; ++i) { StringRef Option = getOption(i); outs() << " " << PrintArg(Option); Option::printHelpStr(getDescription(i), GlobalWidth, Option.size() + 8); } } } static const size_t MaxOptWidth = 8; // arbitrary spacing for printOptionDiff // printGenericOptionDiff - Print the value of this option and it's default. // // "Generic" options have each value mapped to a name. void generic_parser_base::printGenericOptionDiff( const Option &O, const GenericOptionValue &Value, const GenericOptionValue &Default, size_t GlobalWidth) const { outs() << " " << PrintArg(O.ArgStr); outs().indent(GlobalWidth - O.ArgStr.size()); unsigned NumOpts = getNumOptions(); for (unsigned i = 0; i != NumOpts; ++i) { if (!Value.compare(getOptionValue(i))) continue; outs() << "= " << getOption(i); size_t L = getOption(i).size(); size_t NumSpaces = MaxOptWidth > L ? MaxOptWidth - L : 0; outs().indent(NumSpaces) << " (default: "; for (unsigned j = 0; j != NumOpts; ++j) { if (!Default.compare(getOptionValue(j))) continue; outs() << getOption(j); break; } outs() << ")\n"; return; } outs() << "= *unknown option value*\n"; } // printOptionDiff - Specializations for printing basic value types. // #define PRINT_OPT_DIFF(T) \ void parser<T>::printOptionDiff(const Option &O, T V, OptionValue<T> D, \ size_t GlobalWidth) const { \ printOptionName(O, GlobalWidth); \ std::string Str; \ { \ raw_string_ostream SS(Str); \ SS << V; \ } \ outs() << "= " << Str; \ size_t NumSpaces = \ MaxOptWidth > Str.size() ? MaxOptWidth - Str.size() : 0; \ outs().indent(NumSpaces) << " (default: "; \ if (D.hasValue()) \ outs() << D.getValue(); \ else \ outs() << "*no default*"; \ outs() << ")\n"; \ } PRINT_OPT_DIFF(bool) PRINT_OPT_DIFF(boolOrDefault) PRINT_OPT_DIFF(int) PRINT_OPT_DIFF(long) PRINT_OPT_DIFF(long long) PRINT_OPT_DIFF(unsigned) PRINT_OPT_DIFF(unsigned long) PRINT_OPT_DIFF(unsigned long long) PRINT_OPT_DIFF(double) PRINT_OPT_DIFF(float) PRINT_OPT_DIFF(char) void parser<std::string>::printOptionDiff(const Option &O, StringRef V, const OptionValue<std::string> &D, size_t GlobalWidth) const { printOptionName(O, GlobalWidth); outs() << "= " << V; size_t NumSpaces = MaxOptWidth > V.size() ? MaxOptWidth - V.size() : 0; outs().indent(NumSpaces) << " (default: "; if (D.hasValue()) outs() << D.getValue(); else outs() << "*no default*"; outs() << ")\n"; } // Print a placeholder for options that don't yet support printOptionDiff(). void basic_parser_impl::printOptionNoValue(const Option &O, size_t GlobalWidth) const { printOptionName(O, GlobalWidth); outs() << "= *cannot print option value*\n"; } //===----------------------------------------------------------------------===// // -help and -help-hidden option implementation // static int OptNameCompare(const std::pair<const char *, Option *> *LHS, const std::pair<const char *, Option *> *RHS) { return strcmp(LHS->first, RHS->first); } static int SubNameCompare(const std::pair<const char *, SubCommand *> *LHS, const std::pair<const char *, SubCommand *> *RHS) { return strcmp(LHS->first, RHS->first); } // Copy Options into a vector so we can sort them as we like. static void sortOpts(StringMap<Option *> &OptMap, SmallVectorImpl<std::pair<const char *, Option *>> &Opts, bool ShowHidden) { SmallPtrSet<Option *, 32> OptionSet; // Duplicate option detection. for (StringMap<Option *>::iterator I = OptMap.begin(), E = OptMap.end(); I != E; ++I) { // Ignore really-hidden options. if (I->second->getOptionHiddenFlag() == ReallyHidden) continue; // Unless showhidden is set, ignore hidden flags. if (I->second->getOptionHiddenFlag() == Hidden && !ShowHidden) continue; // If we've already seen this option, don't add it to the list again. if (!OptionSet.insert(I->second).second) continue; Opts.push_back( std::pair<const char *, Option *>(I->getKey().data(), I->second)); } // Sort the options list alphabetically. array_pod_sort(Opts.begin(), Opts.end(), OptNameCompare); } static void sortSubCommands(const SmallPtrSetImpl<SubCommand *> &SubMap, SmallVectorImpl<std::pair<const char *, SubCommand *>> &Subs) { for (auto *S : SubMap) { if (S->getName().empty()) continue; Subs.push_back(std::make_pair(S->getName().data(), S)); } array_pod_sort(Subs.begin(), Subs.end(), SubNameCompare); } namespace { class HelpPrinter { protected: const bool ShowHidden; typedef SmallVector<std::pair<const char *, Option *>, 128> StrOptionPairVector; typedef SmallVector<std::pair<const char *, SubCommand *>, 128> StrSubCommandPairVector; // Print the options. Opts is assumed to be alphabetically sorted. virtual void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) { for (size_t i = 0, e = Opts.size(); i != e; ++i) Opts[i].second->printOptionInfo(MaxArgLen); } void printSubCommands(StrSubCommandPairVector &Subs, size_t MaxSubLen) { for (const auto &S : Subs) { outs() << " " << S.first; if (!S.second->getDescription().empty()) { outs().indent(MaxSubLen - strlen(S.first)); outs() << " - " << S.second->getDescription(); } outs() << "\n"; } } public: explicit HelpPrinter(bool showHidden) : ShowHidden(showHidden) {} virtual ~HelpPrinter() = default; // Invoke the printer. void operator=(bool Value) { if (!Value) return; printHelp(); // Halt the program since help information was printed exit(0); } void printHelp() { SubCommand *Sub = GlobalParser->getActiveSubCommand(); auto &OptionsMap = Sub->OptionsMap; auto &PositionalOpts = Sub->PositionalOpts; auto &ConsumeAfterOpt = Sub->ConsumeAfterOpt; StrOptionPairVector Opts; sortOpts(OptionsMap, Opts, ShowHidden); StrSubCommandPairVector Subs; sortSubCommands(GlobalParser->RegisteredSubCommands, Subs); if (!GlobalParser->ProgramOverview.empty()) outs() << "OVERVIEW: " << GlobalParser->ProgramOverview << "\n"; if (Sub == &SubCommand::getTopLevel()) { outs() << "USAGE: " << GlobalParser->ProgramName; if (!Subs.empty()) outs() << " [subcommand]"; outs() << " [options]"; } else { if (!Sub->getDescription().empty()) { outs() << "SUBCOMMAND '" << Sub->getName() << "': " << Sub->getDescription() << "\n\n"; } outs() << "USAGE: " << GlobalParser->ProgramName << " " << Sub->getName() << " [options]"; } for (auto *Opt : PositionalOpts) { if (Opt->hasArgStr()) outs() << " --" << Opt->ArgStr; outs() << " " << Opt->HelpStr; } // Print the consume after option info if it exists... if (ConsumeAfterOpt) outs() << " " << ConsumeAfterOpt->HelpStr; if (Sub == &SubCommand::getTopLevel() && !Subs.empty()) { // Compute the maximum subcommand length... size_t MaxSubLen = 0; for (size_t i = 0, e = Subs.size(); i != e; ++i) MaxSubLen = std::max(MaxSubLen, strlen(Subs[i].first)); outs() << "\n\n"; outs() << "SUBCOMMANDS:\n\n"; printSubCommands(Subs, MaxSubLen); outs() << "\n"; outs() << " Type \"" << GlobalParser->ProgramName << " <subcommand> --help\" to get more help on a specific " "subcommand"; } outs() << "\n\n"; // Compute the maximum argument length... size_t MaxArgLen = 0; for (size_t i = 0, e = Opts.size(); i != e; ++i) MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth()); outs() << "OPTIONS:\n"; printOptions(Opts, MaxArgLen); // Print any extra help the user has declared. for (const auto &I : GlobalParser->MoreHelp) outs() << I; GlobalParser->MoreHelp.clear(); } }; class CategorizedHelpPrinter : public HelpPrinter { public: explicit CategorizedHelpPrinter(bool showHidden) : HelpPrinter(showHidden) {} // Helper function for printOptions(). // It shall return a negative value if A's name should be lexicographically // ordered before B's name. It returns a value greater than zero if B's name // should be ordered before A's name, and it returns 0 otherwise. static int OptionCategoryCompare(OptionCategory *const *A, OptionCategory *const *B) { return (*A)->getName().compare((*B)->getName()); } // Make sure we inherit our base class's operator=() using HelpPrinter::operator=; protected: void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) override { std::vector<OptionCategory *> SortedCategories; DenseMap<OptionCategory *, std::vector<Option *>> CategorizedOptions; // Collect registered option categories into vector in preparation for // sorting. for (OptionCategory *Category : GlobalParser->RegisteredOptionCategories) SortedCategories.push_back(Category); // Sort the different option categories alphabetically. assert(SortedCategories.size() > 0 && "No option categories registered!"); array_pod_sort(SortedCategories.begin(), SortedCategories.end(), OptionCategoryCompare); // Walk through pre-sorted options and assign into categories. // Because the options are already alphabetically sorted the // options within categories will also be alphabetically sorted. for (size_t I = 0, E = Opts.size(); I != E; ++I) { Option *Opt = Opts[I].second; for (auto &Cat : Opt->Categories) { assert(llvm::is_contained(SortedCategories, Cat) && "Option has an unregistered category"); CategorizedOptions[Cat].push_back(Opt); } } // Now do printing. for (OptionCategory *Category : SortedCategories) { // Hide empty categories for --help, but show for --help-hidden. const auto &CategoryOptions = CategorizedOptions[Category]; if (CategoryOptions.empty()) continue; // Print category information. outs() << "\n"; outs() << Category->getName() << ":\n"; // Check if description is set. if (!Category->getDescription().empty()) outs() << Category->getDescription() << "\n\n"; else outs() << "\n"; // Loop over the options in the category and print. for (const Option *Opt : CategoryOptions) Opt->printOptionInfo(MaxArgLen); } } }; // This wraps the Uncategorizing and Categorizing printers and decides // at run time which should be invoked. class HelpPrinterWrapper { private: HelpPrinter &UncategorizedPrinter; CategorizedHelpPrinter &CategorizedPrinter; public: explicit HelpPrinterWrapper(HelpPrinter &UncategorizedPrinter, CategorizedHelpPrinter &CategorizedPrinter) : UncategorizedPrinter(UncategorizedPrinter), CategorizedPrinter(CategorizedPrinter) {} // Invoke the printer. void operator=(bool Value); }; } // End anonymous namespace #if defined(__GNUC__) // GCC and GCC-compatible compilers define __OPTIMIZE__ when optimizations are // enabled. # if defined(__OPTIMIZE__) # define LLVM_IS_DEBUG_BUILD 0 # else # define LLVM_IS_DEBUG_BUILD 1 # endif #elif defined(_MSC_VER) // MSVC doesn't have a predefined macro indicating if optimizations are enabled. // Use _DEBUG instead. This macro actually corresponds to the choice between // debug and release CRTs, but it is a reasonable proxy. # if defined(_DEBUG) # define LLVM_IS_DEBUG_BUILD 1 # else # define LLVM_IS_DEBUG_BUILD 0 # endif #else // Otherwise, for an unknown compiler, assume this is an optimized build. # define LLVM_IS_DEBUG_BUILD 0 #endif namespace { class VersionPrinter { public: void print(std::vector<VersionPrinterTy> ExtraPrinters = {}) { raw_ostream &OS = outs(); #ifdef PACKAGE_VENDOR OS << PACKAGE_VENDOR << " "; #else OS << "LLVM (http://llvm.org/):\n "; #endif OS << PACKAGE_NAME << " version " << PACKAGE_VERSION << "\n "; #if LLVM_IS_DEBUG_BUILD OS << "DEBUG build"; #else OS << "Optimized build"; #endif #ifndef NDEBUG OS << " with assertions"; #endif OS << ".\n"; // Iterate over any registered extra printers and call them to add further // information. if (!ExtraPrinters.empty()) { for (const auto &I : ExtraPrinters) I(outs()); } } void operator=(bool OptionWasSpecified); }; struct CommandLineCommonOptions { // Declare the four HelpPrinter instances that are used to print out help, or // help-hidden as an uncategorized list or in categories. HelpPrinter UncategorizedNormalPrinter{false}; HelpPrinter UncategorizedHiddenPrinter{true}; CategorizedHelpPrinter CategorizedNormalPrinter{false}; CategorizedHelpPrinter CategorizedHiddenPrinter{true}; // Declare HelpPrinter wrappers that will decide whether or not to invoke // a categorizing help printer HelpPrinterWrapper WrappedNormalPrinter{UncategorizedNormalPrinter, CategorizedNormalPrinter}; HelpPrinterWrapper WrappedHiddenPrinter{UncategorizedHiddenPrinter, CategorizedHiddenPrinter}; // Define a category for generic options that all tools should have. cl::OptionCategory GenericCategory{"Generic Options"}; // Define uncategorized help printers. // --help-list is hidden by default because if Option categories are being // used then --help behaves the same as --help-list. cl::opt<HelpPrinter, true, parser<bool>> HLOp{ "help-list", cl::desc( "Display list of available options (--help-list-hidden for more)"), cl::location(UncategorizedNormalPrinter), cl::Hidden, cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(SubCommand::getAll())}; cl::opt<HelpPrinter, true, parser<bool>> HLHOp{ "help-list-hidden", cl::desc("Display list of all available options"), cl::location(UncategorizedHiddenPrinter), cl::Hidden, cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(SubCommand::getAll())}; // Define uncategorized/categorized help printers. These printers change their // behaviour at runtime depending on whether one or more Option categories // have been declared. cl::opt<HelpPrinterWrapper, true, parser<bool>> HOp{ "help", cl::desc("Display available options (--help-hidden for more)"), cl::location(WrappedNormalPrinter), cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(SubCommand::getAll())}; cl::alias HOpA{"h", cl::desc("Alias for --help"), cl::aliasopt(HOp), cl::DefaultOption}; cl::opt<HelpPrinterWrapper, true, parser<bool>> HHOp{ "help-hidden", cl::desc("Display all available options"), cl::location(WrappedHiddenPrinter), cl::Hidden, cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(SubCommand::getAll())}; cl::opt<bool> PrintOptions{ "print-options", cl::desc("Print non-default options after command line parsing"), cl::Hidden, cl::init(false), cl::cat(GenericCategory), cl::sub(SubCommand::getAll())}; cl::opt<bool> PrintAllOptions{ "print-all-options", cl::desc("Print all option values after command line parsing"), cl::Hidden, cl::init(false), cl::cat(GenericCategory), cl::sub(SubCommand::getAll())}; VersionPrinterTy OverrideVersionPrinter = nullptr; std::vector<VersionPrinterTy> ExtraVersionPrinters; // Define the --version option that prints out the LLVM version for the tool VersionPrinter VersionPrinterInstance; cl::opt<VersionPrinter, true, parser<bool>> VersOp{ "version", cl::desc("Display the version of this program"), cl::location(VersionPrinterInstance), cl::ValueDisallowed, cl::cat(GenericCategory)}; }; } // End anonymous namespace // Lazy-initialized global instance of options controlling the command-line // parser and general handling. static ManagedStatic<CommandLineCommonOptions> CommonOptions; static void initCommonOptions() { *CommonOptions; initDebugCounterOptions(); initGraphWriterOptions(); initSignalsOptions(); initStatisticOptions(); initTimerOptions(); initTypeSizeOptions(); initWithColorOptions(); initDebugOptions(); initRandomSeedOptions(); } OptionCategory &cl::getGeneralCategory() { // Initialise the general option category. static OptionCategory GeneralCategory{"General options"}; return GeneralCategory; } void VersionPrinter::operator=(bool OptionWasSpecified) { if (!OptionWasSpecified) return; if (CommonOptions->OverrideVersionPrinter != nullptr) { CommonOptions->OverrideVersionPrinter(outs()); exit(0); } print(CommonOptions->ExtraVersionPrinters); exit(0); } void HelpPrinterWrapper::operator=(bool Value) { if (!Value) return; // Decide which printer to invoke. If more than one option category is // registered then it is useful to show the categorized help instead of // uncategorized help. if (GlobalParser->RegisteredOptionCategories.size() > 1) { // unhide --help-list option so user can have uncategorized output if they // want it. CommonOptions->HLOp.setHiddenFlag(NotHidden); CategorizedPrinter = true; // Invoke categorized printer } else UncategorizedPrinter = true; // Invoke uncategorized printer } // Print the value of each option. void cl::PrintOptionValues() { GlobalParser->printOptionValues(); } void CommandLineParser::printOptionValues() { if (!CommonOptions->PrintOptions && !CommonOptions->PrintAllOptions) return; SmallVector<std::pair<const char *, Option *>, 128> Opts; sortOpts(ActiveSubCommand->OptionsMap, Opts, /*ShowHidden*/ true); // Compute the maximum argument length... size_t MaxArgLen = 0; for (size_t i = 0, e = Opts.size(); i != e; ++i) MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth()); for (size_t i = 0, e = Opts.size(); i != e; ++i) Opts[i].second->printOptionValue(MaxArgLen, CommonOptions->PrintAllOptions); } // Utility function for printing the help message. void cl::PrintHelpMessage(bool Hidden, bool Categorized) { if (!Hidden && !Categorized) CommonOptions->UncategorizedNormalPrinter.printHelp(); else if (!Hidden && Categorized) CommonOptions->CategorizedNormalPrinter.printHelp(); else if (Hidden && !Categorized) CommonOptions->UncategorizedHiddenPrinter.printHelp(); else CommonOptions->CategorizedHiddenPrinter.printHelp(); } ArrayRef<StringRef> cl::getCompilerBuildConfig() { static const StringRef Config[] = { // Placeholder to ensure the array always has elements, since it's an // error to have a zero-sized array. Slice this off before returning. "", // Actual compiler build config feature list: #if LLVM_IS_DEBUG_BUILD "+unoptimized", #endif #ifndef NDEBUG "+assertions", #endif #ifdef EXPENSIVE_CHECKS "+expensive-checks", #endif #if __has_feature(address_sanitizer) "+asan", #endif #if __has_feature(dataflow_sanitizer) "+dfsan", #endif #if __has_feature(hwaddress_sanitizer) "+hwasan", #endif #if __has_feature(memory_sanitizer) "+msan", #endif #if __has_feature(thread_sanitizer) "+tsan", #endif #if __has_feature(undefined_behavior_sanitizer) "+ubsan", #endif }; return ArrayRef(Config).drop_front(1); } // Utility function for printing the build config. void cl::printBuildConfig(raw_ostream &OS) { #if LLVM_VERSION_PRINTER_SHOW_BUILD_CONFIG OS << "Build config: "; llvm::interleaveComma(cl::getCompilerBuildConfig(), OS); OS << '\n'; #endif } /// Utility function for printing version number. void cl::PrintVersionMessage() { CommonOptions->VersionPrinterInstance.print(CommonOptions->ExtraVersionPrinters); } void cl::SetVersionPrinter(VersionPrinterTy func) { CommonOptions->OverrideVersionPrinter = func; } void cl::AddExtraVersionPrinter(VersionPrinterTy func) { CommonOptions->ExtraVersionPrinters.push_back(func); } StringMap<Option *> &cl::getRegisteredOptions(SubCommand &Sub) { initCommonOptions(); auto &Subs = GlobalParser->RegisteredSubCommands; (void)Subs; assert(Subs.contains(&Sub)); return Sub.OptionsMap; } iterator_range<typename SmallPtrSet<SubCommand *, 4>::iterator> cl::getRegisteredSubcommands() { return GlobalParser->getRegisteredSubcommands(); } void cl::HideUnrelatedOptions(cl::OptionCategory &Category, SubCommand &Sub) { initCommonOptions(); for (auto &I : Sub.OptionsMap) { bool Unrelated = true; for (auto &Cat : I.second->Categories) { if (Cat == &Category || Cat == &CommonOptions->GenericCategory) Unrelated = false; } if (Unrelated) I.second->setHiddenFlag(cl::ReallyHidden); } } void cl::HideUnrelatedOptions(ArrayRef<const cl::OptionCategory *> Categories, SubCommand &Sub) { initCommonOptions(); for (auto &I : Sub.OptionsMap) { bool Unrelated = true; for (auto &Cat : I.second->Categories) { if (is_contained(Categories, Cat) || Cat == &CommonOptions->GenericCategory) Unrelated = false; } if (Unrelated) I.second->setHiddenFlag(cl::ReallyHidden); } } void cl::ResetCommandLineParser() { GlobalParser->reset(); } void cl::ResetAllOptionOccurrences() { GlobalParser->ResetAllOptionOccurrences(); } void LLVMParseCommandLineOptions(int argc, const char *const *argv, const char *Overview) { llvm::cl::ParseCommandLineOptions(argc, argv, StringRef(Overview), &llvm::nulls()); }