//===-- APInt.cpp - Implement APInt class ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a class to represent arbitrary precision integer // constant values and provide a variety of arithmetic operations on them. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/bit.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; #define DEBUG_TYPE "apint" /// A utility function for allocating memory, checking for allocation failures, /// and ensuring the contents are zeroed. inline static uint64_t* getClearedMemory(unsigned numWords) { uint64_t *result = new uint64_t[numWords]; memset(result, 0, numWords * sizeof(uint64_t)); return result; } /// A utility function for allocating memory and checking for allocation /// failure. The content is not zeroed. inline static uint64_t* getMemory(unsigned numWords) { return new uint64_t[numWords]; } /// A utility function that converts a character to a digit. inline static unsigned getDigit(char cdigit, uint8_t radix) { unsigned r; if (radix == 16 || radix == 36) { r = cdigit - '0'; if (r <= 9) return r; r = cdigit - 'A'; if (r <= radix - 11U) return r + 10; r = cdigit - 'a'; if (r <= radix - 11U) return r + 10; radix = 10; } r = cdigit - '0'; if (r < radix) return r; return UINT_MAX; } void APInt::initSlowCase(uint64_t val, bool isSigned) { U.pVal = getClearedMemory(getNumWords()); U.pVal[0] = val; if (isSigned && int64_t(val) < 0) for (unsigned i = 1; i < getNumWords(); ++i) U.pVal[i] = WORDTYPE_MAX; clearUnusedBits(); } void APInt::initSlowCase(const APInt& that) { U.pVal = getMemory(getNumWords()); memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); } void APInt::initFromArray(ArrayRef bigVal) { assert(bigVal.data() && "Null pointer detected!"); if (isSingleWord()) U.VAL = bigVal[0]; else { // Get memory, cleared to 0 U.pVal = getClearedMemory(getNumWords()); // Calculate the number of words to copy unsigned words = std::min(bigVal.size(), getNumWords()); // Copy the words from bigVal to pVal memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); } // Make sure unused high bits are cleared clearUnusedBits(); } APInt::APInt(unsigned numBits, ArrayRef bigVal) : BitWidth(numBits) { initFromArray(bigVal); } APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) : BitWidth(numBits) { initFromArray(ArrayRef(bigVal, numWords)); } APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) : BitWidth(numbits) { fromString(numbits, Str, radix); } void APInt::reallocate(unsigned NewBitWidth) { // If the number of words is the same we can just change the width and stop. if (getNumWords() == getNumWords(NewBitWidth)) { BitWidth = NewBitWidth; return; } // If we have an allocation, delete it. if (!isSingleWord()) delete [] U.pVal; // Update BitWidth. BitWidth = NewBitWidth; // If we are supposed to have an allocation, create it. if (!isSingleWord()) U.pVal = getMemory(getNumWords()); } void APInt::assignSlowCase(const APInt &RHS) { // Don't do anything for X = X if (this == &RHS) return; // Adjust the bit width and handle allocations as necessary. reallocate(RHS.getBitWidth()); // Copy the data. if (isSingleWord()) U.VAL = RHS.U.VAL; else memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); } /// This method 'profiles' an APInt for use with FoldingSet. void APInt::Profile(FoldingSetNodeID& ID) const { ID.AddInteger(BitWidth); if (isSingleWord()) { ID.AddInteger(U.VAL); return; } unsigned NumWords = getNumWords(); for (unsigned i = 0; i < NumWords; ++i) ID.AddInteger(U.pVal[i]); } bool APInt::isAligned(Align A) const { if (isZero()) return true; const unsigned TrailingZeroes = countr_zero(); const unsigned MinimumTrailingZeroes = Log2(A); return TrailingZeroes >= MinimumTrailingZeroes; } /// Prefix increment operator. Increments the APInt by one. APInt& APInt::operator++() { if (isSingleWord()) ++U.VAL; else tcIncrement(U.pVal, getNumWords()); return clearUnusedBits(); } /// Prefix decrement operator. Decrements the APInt by one. APInt& APInt::operator--() { if (isSingleWord()) --U.VAL; else tcDecrement(U.pVal, getNumWords()); return clearUnusedBits(); } /// Adds the RHS APInt to this APInt. /// @returns this, after addition of RHS. /// Addition assignment operator. APInt& APInt::operator+=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) U.VAL += RHS.U.VAL; else tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); return clearUnusedBits(); } APInt& APInt::operator+=(uint64_t RHS) { if (isSingleWord()) U.VAL += RHS; else tcAddPart(U.pVal, RHS, getNumWords()); return clearUnusedBits(); } /// Subtracts the RHS APInt from this APInt /// @returns this, after subtraction /// Subtraction assignment operator. APInt& APInt::operator-=(const APInt& RHS) { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) U.VAL -= RHS.U.VAL; else tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); return clearUnusedBits(); } APInt& APInt::operator-=(uint64_t RHS) { if (isSingleWord()) U.VAL -= RHS; else tcSubtractPart(U.pVal, RHS, getNumWords()); return clearUnusedBits(); } APInt APInt::operator*(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) return APInt(BitWidth, U.VAL * RHS.U.VAL); APInt Result(getMemory(getNumWords()), getBitWidth()); tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); Result.clearUnusedBits(); return Result; } void APInt::andAssignSlowCase(const APInt &RHS) { WordType *dst = U.pVal, *rhs = RHS.U.pVal; for (size_t i = 0, e = getNumWords(); i != e; ++i) dst[i] &= rhs[i]; } void APInt::orAssignSlowCase(const APInt &RHS) { WordType *dst = U.pVal, *rhs = RHS.U.pVal; for (size_t i = 0, e = getNumWords(); i != e; ++i) dst[i] |= rhs[i]; } void APInt::xorAssignSlowCase(const APInt &RHS) { WordType *dst = U.pVal, *rhs = RHS.U.pVal; for (size_t i = 0, e = getNumWords(); i != e; ++i) dst[i] ^= rhs[i]; } APInt &APInt::operator*=(const APInt &RHS) { *this = *this * RHS; return *this; } APInt& APInt::operator*=(uint64_t RHS) { if (isSingleWord()) { U.VAL *= RHS; } else { unsigned NumWords = getNumWords(); tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); } return clearUnusedBits(); } bool APInt::equalSlowCase(const APInt &RHS) const { return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); } int APInt::compare(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); if (isSingleWord()) return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); } int APInt::compareSigned(const APInt& RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); if (isSingleWord()) { int64_t lhsSext = SignExtend64(U.VAL, BitWidth); int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; } bool lhsNeg = isNegative(); bool rhsNeg = RHS.isNegative(); // If the sign bits don't match, then (LHS < RHS) if LHS is negative if (lhsNeg != rhsNeg) return lhsNeg ? -1 : 1; // Otherwise we can just use an unsigned comparison, because even negative // numbers compare correctly this way if both have the same signed-ness. return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); } void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { unsigned loWord = whichWord(loBit); unsigned hiWord = whichWord(hiBit); // Create an initial mask for the low word with zeros below loBit. uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); // If hiBit is not aligned, we need a high mask. unsigned hiShiftAmt = whichBit(hiBit); if (hiShiftAmt != 0) { // Create a high mask with zeros above hiBit. uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); // If loWord and hiWord are equal, then we combine the masks. Otherwise, // set the bits in hiWord. if (hiWord == loWord) loMask &= hiMask; else U.pVal[hiWord] |= hiMask; } // Apply the mask to the low word. U.pVal[loWord] |= loMask; // Fill any words between loWord and hiWord with all ones. for (unsigned word = loWord + 1; word < hiWord; ++word) U.pVal[word] = WORDTYPE_MAX; } // Complement a bignum in-place. static void tcComplement(APInt::WordType *dst, unsigned parts) { for (unsigned i = 0; i < parts; i++) dst[i] = ~dst[i]; } /// Toggle every bit to its opposite value. void APInt::flipAllBitsSlowCase() { tcComplement(U.pVal, getNumWords()); clearUnusedBits(); } /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is /// equivalent to: /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) /// In the slow case, we know the result is large. APInt APInt::concatSlowCase(const APInt &NewLSB) const { unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); APInt Result = NewLSB.zext(NewWidth); Result.insertBits(*this, NewLSB.getBitWidth()); return Result; } /// Toggle a given bit to its opposite value whose position is given /// as "bitPosition". /// Toggles a given bit to its opposite value. void APInt::flipBit(unsigned bitPosition) { assert(bitPosition < BitWidth && "Out of the bit-width range!"); setBitVal(bitPosition, !(*this)[bitPosition]); } void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { unsigned subBitWidth = subBits.getBitWidth(); assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion"); // inserting no bits is a noop. if (subBitWidth == 0) return; // Insertion is a direct copy. if (subBitWidth == BitWidth) { *this = subBits; return; } // Single word result can be done as a direct bitmask. if (isSingleWord()) { uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); U.VAL &= ~(mask << bitPosition); U.VAL |= (subBits.U.VAL << bitPosition); return; } unsigned loBit = whichBit(bitPosition); unsigned loWord = whichWord(bitPosition); unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); // Insertion within a single word can be done as a direct bitmask. if (loWord == hi1Word) { uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); U.pVal[loWord] &= ~(mask << loBit); U.pVal[loWord] |= (subBits.U.VAL << loBit); return; } // Insert on word boundaries. if (loBit == 0) { // Direct copy whole words. unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; memcpy(U.pVal + loWord, subBits.getRawData(), numWholeSubWords * APINT_WORD_SIZE); // Mask+insert remaining bits. unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; if (remainingBits != 0) { uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); U.pVal[hi1Word] &= ~mask; U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); } return; } // General case - set/clear individual bits in dst based on src. // TODO - there is scope for optimization here, but at the moment this code // path is barely used so prefer readability over performance. for (unsigned i = 0; i != subBitWidth; ++i) setBitVal(bitPosition + i, subBits[i]); } void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { uint64_t maskBits = maskTrailingOnes(numBits); subBits &= maskBits; if (isSingleWord()) { U.VAL &= ~(maskBits << bitPosition); U.VAL |= subBits << bitPosition; return; } unsigned loBit = whichBit(bitPosition); unsigned loWord = whichWord(bitPosition); unsigned hiWord = whichWord(bitPosition + numBits - 1); if (loWord == hiWord) { U.pVal[loWord] &= ~(maskBits << loBit); U.pVal[loWord] |= subBits << loBit; return; } static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); unsigned wordBits = 8 * sizeof(WordType); U.pVal[loWord] &= ~(maskBits << loBit); U.pVal[loWord] |= subBits << loBit; U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); U.pVal[hiWord] |= subBits >> (wordBits - loBit); } APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && "Illegal bit extraction"); if (isSingleWord()) return APInt(numBits, U.VAL >> bitPosition); unsigned loBit = whichBit(bitPosition); unsigned loWord = whichWord(bitPosition); unsigned hiWord = whichWord(bitPosition + numBits - 1); // Single word result extracting bits from a single word source. if (loWord == hiWord) return APInt(numBits, U.pVal[loWord] >> loBit); // Extracting bits that start on a source word boundary can be done // as a fast memory copy. if (loBit == 0) return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); // General case - shift + copy source words directly into place. APInt Result(numBits, 0); unsigned NumSrcWords = getNumWords(); unsigned NumDstWords = Result.getNumWords(); uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; for (unsigned word = 0; word < NumDstWords; ++word) { uint64_t w0 = U.pVal[loWord + word]; uint64_t w1 = (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); } return Result.clearUnusedBits(); } uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const { assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && "Illegal bit extraction"); assert(numBits <= 64 && "Illegal bit extraction"); uint64_t maskBits = maskTrailingOnes(numBits); if (isSingleWord()) return (U.VAL >> bitPosition) & maskBits; unsigned loBit = whichBit(bitPosition); unsigned loWord = whichWord(bitPosition); unsigned hiWord = whichWord(bitPosition + numBits - 1); if (loWord == hiWord) return (U.pVal[loWord] >> loBit) & maskBits; static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); unsigned wordBits = 8 * sizeof(WordType); uint64_t retBits = U.pVal[loWord] >> loBit; retBits |= U.pVal[hiWord] << (wordBits - loBit); retBits &= maskBits; return retBits; } unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) { assert(!Str.empty() && "Invalid string length"); size_t StrLen = Str.size(); // Each computation below needs to know if it's negative. unsigned IsNegative = false; if (Str[0] == '-' || Str[0] == '+') { IsNegative = Str[0] == '-'; StrLen--; assert(StrLen && "String is only a sign, needs a value."); } // For radixes of power-of-two values, the bits required is accurately and // easily computed. if (Radix == 2) return StrLen + IsNegative; if (Radix == 8) return StrLen * 3 + IsNegative; if (Radix == 16) return StrLen * 4 + IsNegative; // Compute a sufficient number of bits that is always large enough but might // be too large. This avoids the assertion in the constructor. This // calculation doesn't work appropriately for the numbers 0-9, so just use 4 // bits in that case. if (Radix == 10) return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative; assert(Radix == 36); return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative; } unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { // Compute a sufficient number of bits that is always large enough but might // be too large. unsigned sufficient = getSufficientBitsNeeded(str, radix); // For bases 2, 8, and 16, the sufficient number of bits is exact and we can // return the value directly. For bases 10 and 36, we need to do extra work. if (radix == 2 || radix == 8 || radix == 16) return sufficient; // This is grossly inefficient but accurate. We could probably do something // with a computation of roughly slen*64/20 and then adjust by the value of // the first few digits. But, I'm not sure how accurate that could be. size_t slen = str.size(); // Each computation below needs to know if it's negative. StringRef::iterator p = str.begin(); unsigned isNegative = *p == '-'; if (*p == '-' || *p == '+') { p++; slen--; assert(slen && "String is only a sign, needs a value."); } // Convert to the actual binary value. APInt tmp(sufficient, StringRef(p, slen), radix); // Compute how many bits are required. If the log is infinite, assume we need // just bit. If the log is exact and value is negative, then the value is // MinSignedValue with (log + 1) bits. unsigned log = tmp.logBase2(); if (log == (unsigned)-1) { return isNegative + 1; } else if (isNegative && tmp.isPowerOf2()) { return isNegative + log; } else { return isNegative + log + 1; } } hash_code llvm::hash_value(const APInt &Arg) { if (Arg.isSingleWord()) return hash_combine(Arg.BitWidth, Arg.U.VAL); return hash_combine( Arg.BitWidth, hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); } unsigned DenseMapInfo::getHashValue(const APInt &Key) { return static_cast(hash_value(Key)); } bool APInt::isSplat(unsigned SplatSizeInBits) const { assert(getBitWidth() % SplatSizeInBits == 0 && "SplatSizeInBits must divide width!"); // We can check that all parts of an integer are equal by making use of a // little trick: rotate and check if it's still the same value. return *this == rotl(SplatSizeInBits); } /// This function returns the high "numBits" bits of this APInt. APInt APInt::getHiBits(unsigned numBits) const { return this->lshr(BitWidth - numBits); } /// This function returns the low "numBits" bits of this APInt. APInt APInt::getLoBits(unsigned numBits) const { APInt Result(getLowBitsSet(BitWidth, numBits)); Result &= *this; return Result; } /// Return a value containing V broadcasted over NewLen bits. APInt APInt::getSplat(unsigned NewLen, const APInt &V) { assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); APInt Val = V.zext(NewLen); for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) Val |= Val << I; return Val; } unsigned APInt::countLeadingZerosSlowCase() const { unsigned Count = 0; for (int i = getNumWords()-1; i >= 0; --i) { uint64_t V = U.pVal[i]; if (V == 0) Count += APINT_BITS_PER_WORD; else { Count += llvm::countl_zero(V); break; } } // Adjust for unused bits in the most significant word (they are zero). unsigned Mod = BitWidth % APINT_BITS_PER_WORD; Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; return Count; } unsigned APInt::countLeadingOnesSlowCase() const { unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; unsigned shift; if (!highWordBits) { highWordBits = APINT_BITS_PER_WORD; shift = 0; } else { shift = APINT_BITS_PER_WORD - highWordBits; } int i = getNumWords() - 1; unsigned Count = llvm::countl_one(U.pVal[i] << shift); if (Count == highWordBits) { for (i--; i >= 0; --i) { if (U.pVal[i] == WORDTYPE_MAX) Count += APINT_BITS_PER_WORD; else { Count += llvm::countl_one(U.pVal[i]); break; } } } return Count; } unsigned APInt::countTrailingZerosSlowCase() const { unsigned Count = 0; unsigned i = 0; for (; i < getNumWords() && U.pVal[i] == 0; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) Count += llvm::countr_zero(U.pVal[i]); return std::min(Count, BitWidth); } unsigned APInt::countTrailingOnesSlowCase() const { unsigned Count = 0; unsigned i = 0; for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) Count += APINT_BITS_PER_WORD; if (i < getNumWords()) Count += llvm::countr_one(U.pVal[i]); assert(Count <= BitWidth); return Count; } unsigned APInt::countPopulationSlowCase() const { unsigned Count = 0; for (unsigned i = 0; i < getNumWords(); ++i) Count += llvm::popcount(U.pVal[i]); return Count; } bool APInt::intersectsSlowCase(const APInt &RHS) const { for (unsigned i = 0, e = getNumWords(); i != e; ++i) if ((U.pVal[i] & RHS.U.pVal[i]) != 0) return true; return false; } bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { for (unsigned i = 0, e = getNumWords(); i != e; ++i) if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) return false; return true; } APInt APInt::byteSwap() const { assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); if (BitWidth == 16) return APInt(BitWidth, llvm::byteswap(U.VAL)); if (BitWidth == 32) return APInt(BitWidth, llvm::byteswap(U.VAL)); if (BitWidth <= 64) { uint64_t Tmp1 = llvm::byteswap(U.VAL); Tmp1 >>= (64 - BitWidth); return APInt(BitWidth, Tmp1); } APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); for (unsigned I = 0, N = getNumWords(); I != N; ++I) Result.U.pVal[I] = llvm::byteswap(U.pVal[N - I - 1]); if (Result.BitWidth != BitWidth) { Result.lshrInPlace(Result.BitWidth - BitWidth); Result.BitWidth = BitWidth; } return Result; } APInt APInt::reverseBits() const { switch (BitWidth) { case 64: return APInt(BitWidth, llvm::reverseBits(U.VAL)); case 32: return APInt(BitWidth, llvm::reverseBits(U.VAL)); case 16: return APInt(BitWidth, llvm::reverseBits(U.VAL)); case 8: return APInt(BitWidth, llvm::reverseBits(U.VAL)); case 0: return *this; default: break; } APInt Val(*this); APInt Reversed(BitWidth, 0); unsigned S = BitWidth; for (; Val != 0; Val.lshrInPlace(1)) { Reversed <<= 1; Reversed |= Val[0]; --S; } Reversed <<= S; return Reversed; } APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { // Fast-path a common case. if (A == B) return A; // Corner cases: if either operand is zero, the other is the gcd. if (!A) return B; if (!B) return A; // Count common powers of 2 and remove all other powers of 2. unsigned Pow2; { unsigned Pow2_A = A.countr_zero(); unsigned Pow2_B = B.countr_zero(); if (Pow2_A > Pow2_B) { A.lshrInPlace(Pow2_A - Pow2_B); Pow2 = Pow2_B; } else if (Pow2_B > Pow2_A) { B.lshrInPlace(Pow2_B - Pow2_A); Pow2 = Pow2_A; } else { Pow2 = Pow2_A; } } // Both operands are odd multiples of 2^Pow_2: // // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) // // This is a modified version of Stein's algorithm, taking advantage of // efficient countTrailingZeros(). while (A != B) { if (A.ugt(B)) { A -= B; A.lshrInPlace(A.countr_zero() - Pow2); } else { B -= A; B.lshrInPlace(B.countr_zero() - Pow2); } } return A; } APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { uint64_t I = bit_cast(Double); // Get the sign bit from the highest order bit bool isNeg = I >> 63; // Get the 11-bit exponent and adjust for the 1023 bit bias int64_t exp = ((I >> 52) & 0x7ff) - 1023; // If the exponent is negative, the value is < 0 so just return 0. if (exp < 0) return APInt(width, 0u); // Extract the mantissa by clearing the top 12 bits (sign + exponent). uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; // If the exponent doesn't shift all bits out of the mantissa if (exp < 52) return isNeg ? -APInt(width, mantissa >> (52 - exp)) : APInt(width, mantissa >> (52 - exp)); // If the client didn't provide enough bits for us to shift the mantissa into // then the result is undefined, just return 0 if (width <= exp - 52) return APInt(width, 0); // Otherwise, we have to shift the mantissa bits up to the right location APInt Tmp(width, mantissa); Tmp <<= (unsigned)exp - 52; return isNeg ? -Tmp : Tmp; } /// This function converts this APInt to a double. /// The layout for double is as following (IEEE Standard 754): /// -------------------------------------- /// | Sign Exponent Fraction Bias | /// |-------------------------------------- | /// | 1[63] 11[62-52] 52[51-00] 1023 | /// -------------------------------------- double APInt::roundToDouble(bool isSigned) const { // Handle the simple case where the value is contained in one uint64_t. // It is wrong to optimize getWord(0) to VAL; there might be more than one word. if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { if (isSigned) { int64_t sext = SignExtend64(getWord(0), BitWidth); return double(sext); } else return double(getWord(0)); } // Determine if the value is negative. bool isNeg = isSigned ? (*this)[BitWidth-1] : false; // Construct the absolute value if we're negative. APInt Tmp(isNeg ? -(*this) : (*this)); // Figure out how many bits we're using. unsigned n = Tmp.getActiveBits(); // The exponent (without bias normalization) is just the number of bits // we are using. Note that the sign bit is gone since we constructed the // absolute value. uint64_t exp = n; // Return infinity for exponent overflow if (exp > 1023) { if (!isSigned || !isNeg) return std::numeric_limits::infinity(); else return -std::numeric_limits::infinity(); } exp += 1023; // Increment for 1023 bias // Number of bits in mantissa is 52. To obtain the mantissa value, we must // extract the high 52 bits from the correct words in pVal. uint64_t mantissa; unsigned hiWord = whichWord(n-1); if (hiWord == 0) { mantissa = Tmp.U.pVal[0]; if (n > 52) mantissa >>= n - 52; // shift down, we want the top 52 bits. } else { assert(hiWord > 0 && "huh?"); uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); mantissa = hibits | lobits; } // The leading bit of mantissa is implicit, so get rid of it. uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; uint64_t I = sign | (exp << 52) | mantissa; return bit_cast(I); } // Truncate to new width. APInt APInt::trunc(unsigned width) const { assert(width <= BitWidth && "Invalid APInt Truncate request"); if (width <= APINT_BITS_PER_WORD) return APInt(width, getRawData()[0]); if (width == BitWidth) return *this; APInt Result(getMemory(getNumWords(width)), width); // Copy full words. unsigned i; for (i = 0; i != width / APINT_BITS_PER_WORD; i++) Result.U.pVal[i] = U.pVal[i]; // Truncate and copy any partial word. unsigned bits = (0 - width) % APINT_BITS_PER_WORD; if (bits != 0) Result.U.pVal[i] = U.pVal[i] << bits >> bits; return Result; } // Truncate to new width with unsigned saturation. APInt APInt::truncUSat(unsigned width) const { assert(width <= BitWidth && "Invalid APInt Truncate request"); // Can we just losslessly truncate it? if (isIntN(width)) return trunc(width); // If not, then just return the new limit. return APInt::getMaxValue(width); } // Truncate to new width with signed saturation. APInt APInt::truncSSat(unsigned width) const { assert(width <= BitWidth && "Invalid APInt Truncate request"); // Can we just losslessly truncate it? if (isSignedIntN(width)) return trunc(width); // If not, then just return the new limits. return isNegative() ? APInt::getSignedMinValue(width) : APInt::getSignedMaxValue(width); } // Sign extend to a new width. APInt APInt::sext(unsigned Width) const { assert(Width >= BitWidth && "Invalid APInt SignExtend request"); if (Width <= APINT_BITS_PER_WORD) return APInt(Width, SignExtend64(U.VAL, BitWidth)); if (Width == BitWidth) return *this; APInt Result(getMemory(getNumWords(Width)), Width); // Copy words. std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); // Sign extend the last word since there may be unused bits in the input. Result.U.pVal[getNumWords() - 1] = SignExtend64(Result.U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); // Fill with sign bits. std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); Result.clearUnusedBits(); return Result; } // Zero extend to a new width. APInt APInt::zext(unsigned width) const { assert(width >= BitWidth && "Invalid APInt ZeroExtend request"); if (width <= APINT_BITS_PER_WORD) return APInt(width, U.VAL); if (width == BitWidth) return *this; APInt Result(getMemory(getNumWords(width)), width); // Copy words. std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); // Zero remaining words. std::memset(Result.U.pVal + getNumWords(), 0, (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); return Result; } APInt APInt::zextOrTrunc(unsigned width) const { if (BitWidth < width) return zext(width); if (BitWidth > width) return trunc(width); return *this; } APInt APInt::sextOrTrunc(unsigned width) const { if (BitWidth < width) return sext(width); if (BitWidth > width) return trunc(width); return *this; } /// Arithmetic right-shift this APInt by shiftAmt. /// Arithmetic right-shift function. void APInt::ashrInPlace(const APInt &shiftAmt) { ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Arithmetic right-shift this APInt by shiftAmt. /// Arithmetic right-shift function. void APInt::ashrSlowCase(unsigned ShiftAmt) { // Don't bother performing a no-op shift. if (!ShiftAmt) return; // Save the original sign bit for later. bool Negative = isNegative(); // WordShift is the inter-part shift; BitShift is intra-part shift. unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; unsigned WordsToMove = getNumWords() - WordShift; if (WordsToMove != 0) { // Sign extend the last word to fill in the unused bits. U.pVal[getNumWords() - 1] = SignExtend64( U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); // Fastpath for moving by whole words. if (BitShift == 0) { std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); } else { // Move the words containing significant bits. for (unsigned i = 0; i != WordsToMove - 1; ++i) U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); // Handle the last word which has no high bits to copy. U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; // Sign extend one more time. U.pVal[WordsToMove - 1] = SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); } } // Fill in the remainder based on the original sign. std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, WordShift * APINT_WORD_SIZE); clearUnusedBits(); } /// Logical right-shift this APInt by shiftAmt. /// Logical right-shift function. void APInt::lshrInPlace(const APInt &shiftAmt) { lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); } /// Logical right-shift this APInt by shiftAmt. /// Logical right-shift function. void APInt::lshrSlowCase(unsigned ShiftAmt) { tcShiftRight(U.pVal, getNumWords(), ShiftAmt); } /// Left-shift this APInt by shiftAmt. /// Left-shift function. APInt &APInt::operator<<=(const APInt &shiftAmt) { // It's undefined behavior in C to shift by BitWidth or greater. *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); return *this; } void APInt::shlSlowCase(unsigned ShiftAmt) { tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); clearUnusedBits(); } // Calculate the rotate amount modulo the bit width. static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { if (LLVM_UNLIKELY(BitWidth == 0)) return 0; unsigned rotBitWidth = rotateAmt.getBitWidth(); APInt rot = rotateAmt; if (rotBitWidth < BitWidth) { // Extend the rotate APInt, so that the urem doesn't divide by 0. // e.g. APInt(1, 32) would give APInt(1, 0). rot = rotateAmt.zext(BitWidth); } rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); return rot.getLimitedValue(BitWidth); } APInt APInt::rotl(const APInt &rotateAmt) const { return rotl(rotateModulo(BitWidth, rotateAmt)); } APInt APInt::rotl(unsigned rotateAmt) const { if (LLVM_UNLIKELY(BitWidth == 0)) return *this; rotateAmt %= BitWidth; if (rotateAmt == 0) return *this; return shl(rotateAmt) | lshr(BitWidth - rotateAmt); } APInt APInt::rotr(const APInt &rotateAmt) const { return rotr(rotateModulo(BitWidth, rotateAmt)); } APInt APInt::rotr(unsigned rotateAmt) const { if (BitWidth == 0) return *this; rotateAmt %= BitWidth; if (rotateAmt == 0) return *this; return lshr(rotateAmt) | shl(BitWidth - rotateAmt); } /// \returns the nearest log base 2 of this APInt. Ties round up. /// /// NOTE: When we have a BitWidth of 1, we define: /// /// log2(0) = UINT32_MAX /// log2(1) = 0 /// /// to get around any mathematical concerns resulting from /// referencing 2 in a space where 2 does no exist. unsigned APInt::nearestLogBase2() const { // Special case when we have a bitwidth of 1. If VAL is 1, then we // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to // UINT32_MAX. if (BitWidth == 1) return U.VAL - 1; // Handle the zero case. if (isZero()) return UINT32_MAX; // The non-zero case is handled by computing: // // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. // // where x[i] is referring to the value of the ith bit of x. unsigned lg = logBase2(); return lg + unsigned((*this)[lg - 1]); } // Square Root - this method computes and returns the square root of "this". // Three mechanisms are used for computation. For small values (<= 5 bits), // a table lookup is done. This gets some performance for common cases. For // values using less than 52 bits, the value is converted to double and then // the libc sqrt function is called. The result is rounded and then converted // back to a uint64_t which is then used to construct the result. Finally, // the Babylonian method for computing square roots is used. APInt APInt::sqrt() const { // Determine the magnitude of the value. unsigned magnitude = getActiveBits(); // Use a fast table for some small values. This also gets rid of some // rounding errors in libc sqrt for small values. if (magnitude <= 5) { static const uint8_t results[32] = { /* 0 */ 0, /* 1- 2 */ 1, 1, /* 3- 6 */ 2, 2, 2, 2, /* 7-12 */ 3, 3, 3, 3, 3, 3, /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, /* 31 */ 6 }; return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); } // If the magnitude of the value fits in less than 52 bits (the precision of // an IEEE double precision floating point value), then we can use the // libc sqrt function which will probably use a hardware sqrt computation. // This should be faster than the algorithm below. if (magnitude < 52) { return APInt(BitWidth, uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL : U.pVal[0]))))); } // Okay, all the short cuts are exhausted. We must compute it. The following // is a classical Babylonian method for computing the square root. This code // was adapted to APInt from a wikipedia article on such computations. // See http://www.wikipedia.org/ and go to the page named // Calculate_an_integer_square_root. unsigned nbits = BitWidth, i = 4; APInt testy(BitWidth, 16); APInt x_old(BitWidth, 1); APInt x_new(BitWidth, 0); APInt two(BitWidth, 2); // Select a good starting value using binary logarithms. for (;; i += 2, testy = testy.shl(2)) if (i >= nbits || this->ule(testy)) { x_old = x_old.shl(i / 2); break; } // Use the Babylonian method to arrive at the integer square root: for (;;) { x_new = (this->udiv(x_old) + x_old).udiv(two); if (x_old.ule(x_new)) break; x_old = x_new; } // Make sure we return the closest approximation // NOTE: The rounding calculation below is correct. It will produce an // off-by-one discrepancy with results from pari/gp. That discrepancy has been // determined to be a rounding issue with pari/gp as it begins to use a // floating point representation after 192 bits. There are no discrepancies // between this algorithm and pari/gp for bit widths < 192 bits. APInt square(x_old * x_old); APInt nextSquare((x_old + 1) * (x_old +1)); if (this->ult(square)) return x_old; assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); APInt midpoint((nextSquare - square).udiv(two)); APInt offset(*this - square); if (offset.ult(midpoint)) return x_old; return x_old + 1; } /// Computes the multiplicative inverse of this APInt for a given modulo. The /// iterative extended Euclidean algorithm is used to solve for this value, /// however we simplify it to speed up calculating only the inverse, and take /// advantage of div+rem calculations. We also use some tricks to avoid copying /// (potentially large) APInts around. /// WARNING: a value of '0' may be returned, /// signifying that no multiplicative inverse exists! APInt APInt::multiplicativeInverse(const APInt& modulo) const { assert(ult(modulo) && "This APInt must be smaller than the modulo"); // Using the properties listed at the following web page (accessed 06/21/08): // http://www.numbertheory.org/php/euclid.html // (especially the properties numbered 3, 4 and 9) it can be proved that // BitWidth bits suffice for all the computations in the algorithm implemented // below. More precisely, this number of bits suffice if the multiplicative // inverse exists, but may not suffice for the general extended Euclidean // algorithm. APInt r[2] = { modulo, *this }; APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; APInt q(BitWidth, 0); unsigned i; for (i = 0; r[i^1] != 0; i ^= 1) { // An overview of the math without the confusing bit-flipping: // q = r[i-2] / r[i-1] // r[i] = r[i-2] % r[i-1] // t[i] = t[i-2] - t[i-1] * q udivrem(r[i], r[i^1], q, r[i]); t[i] -= t[i^1] * q; } // If this APInt and the modulo are not coprime, there is no multiplicative // inverse, so return 0. We check this by looking at the next-to-last // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean // algorithm. if (r[i] != 1) return APInt(BitWidth, 0); // The next-to-last t is the multiplicative inverse. However, we are // interested in a positive inverse. Calculate a positive one from a negative // one if necessary. A simple addition of the modulo suffices because // abs(t[i]) is known to be less than *this/2 (see the link above). if (t[i].isNegative()) t[i] += modulo; return std::move(t[i]); } /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The /// variables here have the same names as in the algorithm. Comments explain /// the algorithm and any deviation from it. static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, unsigned m, unsigned n) { assert(u && "Must provide dividend"); assert(v && "Must provide divisor"); assert(q && "Must provide quotient"); assert(u != v && u != q && v != q && "Must use different memory"); assert(n>1 && "n must be > 1"); // b denotes the base of the number system. In our case b is 2^32. const uint64_t b = uint64_t(1) << 32; // The DEBUG macros here tend to be spam in the debug output if you're not // debugging this code. Disable them unless KNUTH_DEBUG is defined. #ifdef KNUTH_DEBUG #define DEBUG_KNUTH(X) LLVM_DEBUG(X) #else #define DEBUG_KNUTH(X) do {} while(false) #endif DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); DEBUG_KNUTH(dbgs() << " by"); DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); DEBUG_KNUTH(dbgs() << '\n'); // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of // u and v by d. Note that we have taken Knuth's advice here to use a power // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of // 2 allows us to shift instead of multiply and it is easy to determine the // shift amount from the leading zeros. We are basically normalizing the u // and v so that its high bits are shifted to the top of v's range without // overflow. Note that this can require an extra word in u so that u must // be of length m+n+1. unsigned shift = llvm::countl_zero(v[n - 1]); uint32_t v_carry = 0; uint32_t u_carry = 0; if (shift) { for (unsigned i = 0; i < m+n; ++i) { uint32_t u_tmp = u[i] >> (32 - shift); u[i] = (u[i] << shift) | u_carry; u_carry = u_tmp; } for (unsigned i = 0; i < n; ++i) { uint32_t v_tmp = v[i] >> (32 - shift); v[i] = (v[i] << shift) | v_carry; v_carry = v_tmp; } } u[m+n] = u_carry; DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); DEBUG_KNUTH(dbgs() << " by"); DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); DEBUG_KNUTH(dbgs() << '\n'); // D2. [Initialize j.] Set j to m. This is the loop counter over the places. int j = m; do { DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); // D3. [Calculate q'.]. // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test // on v[n-2] determines at high speed most of the cases in which the trial // value qp is one too large, and it eliminates all cases where qp is two // too large. uint64_t dividend = Make_64(u[j+n], u[j+n-1]); DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); uint64_t qp = dividend / v[n-1]; uint64_t rp = dividend % v[n-1]; if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { qp--; rp += v[n-1]; if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) qp--; } DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation // consists of a simple multiplication by a one-place number, combined with // a subtraction. // The digits (u[j+n]...u[j]) should be kept positive; if the result of // this step is actually negative, (u[j+n]...u[j]) should be left as the // true value plus b**(n+1), namely as the b's complement of // the true value, and a "borrow" to the left should be remembered. int64_t borrow = 0; for (unsigned i = 0; i < n; ++i) { uint64_t p = uint64_t(qp) * uint64_t(v[i]); int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); u[j+i] = Lo_32(subres); borrow = Hi_32(p) - Hi_32(subres); DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] << ", borrow = " << borrow << '\n'); } bool isNeg = u[j+n] < borrow; u[j+n] -= Lo_32(borrow); DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); DEBUG_KNUTH(dbgs() << '\n'); // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was // negative, go to step D6; otherwise go on to step D7. q[j] = Lo_32(qp); if (isNeg) { // D6. [Add back]. The probability that this step is necessary is very // small, on the order of only 2/b. Make sure that test data accounts for // this possibility. Decrease q[j] by 1 q[j]--; // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). // A carry will occur to the left of u[j+n], and it should be ignored // since it cancels with the borrow that occurred in D4. bool carry = false; for (unsigned i = 0; i < n; i++) { uint32_t limit = std::min(u[j+i],v[i]); u[j+i] += v[i] + carry; carry = u[j+i] < limit || (carry && u[j+i] == limit); } u[j+n] += carry; } DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. } while (--j >= 0); DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); DEBUG_KNUTH(dbgs() << '\n'); // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired // remainder may be obtained by dividing u[...] by d. If r is non-null we // compute the remainder (urem uses this). if (r) { // The value d is expressed by the "shift" value above since we avoided // multiplication by d by using a shift left. So, all we have to do is // shift right here. if (shift) { uint32_t carry = 0; DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); for (int i = n-1; i >= 0; i--) { r[i] = (u[i] >> shift) | carry; carry = u[i] << (32 - shift); DEBUG_KNUTH(dbgs() << " " << r[i]); } } else { for (int i = n-1; i >= 0; i--) { r[i] = u[i]; DEBUG_KNUTH(dbgs() << " " << r[i]); } } DEBUG_KNUTH(dbgs() << '\n'); } DEBUG_KNUTH(dbgs() << '\n'); } void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, unsigned rhsWords, WordType *Quotient, WordType *Remainder) { assert(lhsWords >= rhsWords && "Fractional result"); // First, compose the values into an array of 32-bit words instead of // 64-bit words. This is a necessity of both the "short division" algorithm // and the Knuth "classical algorithm" which requires there to be native // operations for +, -, and * on an m bit value with an m*2 bit result. We // can't use 64-bit operands here because we don't have native results of // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't // work on large-endian machines. unsigned n = rhsWords * 2; unsigned m = (lhsWords * 2) - n; // Allocate space for the temporary values we need either on the stack, if // it will fit, or on the heap if it won't. uint32_t SPACE[128]; uint32_t *U = nullptr; uint32_t *V = nullptr; uint32_t *Q = nullptr; uint32_t *R = nullptr; if ((Remainder?4:3)*n+2*m+1 <= 128) { U = &SPACE[0]; V = &SPACE[m+n+1]; Q = &SPACE[(m+n+1) + n]; if (Remainder) R = &SPACE[(m+n+1) + n + (m+n)]; } else { U = new uint32_t[m + n + 1]; V = new uint32_t[n]; Q = new uint32_t[m+n]; if (Remainder) R = new uint32_t[n]; } // Initialize the dividend memset(U, 0, (m+n+1)*sizeof(uint32_t)); for (unsigned i = 0; i < lhsWords; ++i) { uint64_t tmp = LHS[i]; U[i * 2] = Lo_32(tmp); U[i * 2 + 1] = Hi_32(tmp); } U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. // Initialize the divisor memset(V, 0, (n)*sizeof(uint32_t)); for (unsigned i = 0; i < rhsWords; ++i) { uint64_t tmp = RHS[i]; V[i * 2] = Lo_32(tmp); V[i * 2 + 1] = Hi_32(tmp); } // initialize the quotient and remainder memset(Q, 0, (m+n) * sizeof(uint32_t)); if (Remainder) memset(R, 0, n * sizeof(uint32_t)); // Now, adjust m and n for the Knuth division. n is the number of words in // the divisor. m is the number of words by which the dividend exceeds the // divisor (i.e. m+n is the length of the dividend). These sizes must not // contain any zero words or the Knuth algorithm fails. for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { n--; m++; } for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) m--; // If we're left with only a single word for the divisor, Knuth doesn't work // so we implement the short division algorithm here. This is much simpler // and faster because we are certain that we can divide a 64-bit quantity // by a 32-bit quantity at hardware speed and short division is simply a // series of such operations. This is just like doing short division but we // are using base 2^32 instead of base 10. assert(n != 0 && "Divide by zero?"); if (n == 1) { uint32_t divisor = V[0]; uint32_t remainder = 0; for (int i = m; i >= 0; i--) { uint64_t partial_dividend = Make_64(remainder, U[i]); if (partial_dividend == 0) { Q[i] = 0; remainder = 0; } else if (partial_dividend < divisor) { Q[i] = 0; remainder = Lo_32(partial_dividend); } else if (partial_dividend == divisor) { Q[i] = 1; remainder = 0; } else { Q[i] = Lo_32(partial_dividend / divisor); remainder = Lo_32(partial_dividend - (Q[i] * divisor)); } } if (R) R[0] = remainder; } else { // Now we're ready to invoke the Knuth classical divide algorithm. In this // case n > 1. KnuthDiv(U, V, Q, R, m, n); } // If the caller wants the quotient if (Quotient) { for (unsigned i = 0; i < lhsWords; ++i) Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); } // If the caller wants the remainder if (Remainder) { for (unsigned i = 0; i < rhsWords; ++i) Remainder[i] = Make_64(R[i*2+1], R[i*2]); } // Clean up the memory we allocated. if (U != &SPACE[0]) { delete [] U; delete [] V; delete [] Q; delete [] R; } } APInt APInt::udiv(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); // First, deal with the easy case if (isSingleWord()) { assert(RHS.U.VAL != 0 && "Divide by zero?"); return APInt(BitWidth, U.VAL / RHS.U.VAL); } // Get some facts about the LHS and RHS number of bits and words unsigned lhsWords = getNumWords(getActiveBits()); unsigned rhsBits = RHS.getActiveBits(); unsigned rhsWords = getNumWords(rhsBits); assert(rhsWords && "Divided by zero???"); // Deal with some degenerate cases if (!lhsWords) // 0 / X ===> 0 return APInt(BitWidth, 0); if (rhsBits == 1) // X / 1 ===> X return *this; if (lhsWords < rhsWords || this->ult(RHS)) // X / Y ===> 0, iff X < Y return APInt(BitWidth, 0); if (*this == RHS) // X / X ===> 1 return APInt(BitWidth, 1); if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. // All high words are zero, just use native divide return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); // We have to compute it the hard way. Invoke the Knuth divide algorithm. APInt Quotient(BitWidth, 0); // to hold result. divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); return Quotient; } APInt APInt::udiv(uint64_t RHS) const { assert(RHS != 0 && "Divide by zero?"); // First, deal with the easy case if (isSingleWord()) return APInt(BitWidth, U.VAL / RHS); // Get some facts about the LHS words. unsigned lhsWords = getNumWords(getActiveBits()); // Deal with some degenerate cases if (!lhsWords) // 0 / X ===> 0 return APInt(BitWidth, 0); if (RHS == 1) // X / 1 ===> X return *this; if (this->ult(RHS)) // X / Y ===> 0, iff X < Y return APInt(BitWidth, 0); if (*this == RHS) // X / X ===> 1 return APInt(BitWidth, 1); if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. // All high words are zero, just use native divide return APInt(BitWidth, this->U.pVal[0] / RHS); // We have to compute it the hard way. Invoke the Knuth divide algorithm. APInt Quotient(BitWidth, 0); // to hold result. divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); return Quotient; } APInt APInt::sdiv(const APInt &RHS) const { if (isNegative()) { if (RHS.isNegative()) return (-(*this)).udiv(-RHS); return -((-(*this)).udiv(RHS)); } if (RHS.isNegative()) return -(this->udiv(-RHS)); return this->udiv(RHS); } APInt APInt::sdiv(int64_t RHS) const { if (isNegative()) { if (RHS < 0) return (-(*this)).udiv(-RHS); return -((-(*this)).udiv(RHS)); } if (RHS < 0) return -(this->udiv(-RHS)); return this->udiv(RHS); } APInt APInt::urem(const APInt &RHS) const { assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); if (isSingleWord()) { assert(RHS.U.VAL != 0 && "Remainder by zero?"); return APInt(BitWidth, U.VAL % RHS.U.VAL); } // Get some facts about the LHS unsigned lhsWords = getNumWords(getActiveBits()); // Get some facts about the RHS unsigned rhsBits = RHS.getActiveBits(); unsigned rhsWords = getNumWords(rhsBits); assert(rhsWords && "Performing remainder operation by zero ???"); // Check the degenerate cases if (lhsWords == 0) // 0 % Y ===> 0 return APInt(BitWidth, 0); if (rhsBits == 1) // X % 1 ===> 0 return APInt(BitWidth, 0); if (lhsWords < rhsWords || this->ult(RHS)) // X % Y ===> X, iff X < Y return *this; if (*this == RHS) // X % X == 0; return APInt(BitWidth, 0); if (lhsWords == 1) // All high words are zero, just use native remainder return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); // We have to compute it the hard way. Invoke the Knuth divide algorithm. APInt Remainder(BitWidth, 0); divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); return Remainder; } uint64_t APInt::urem(uint64_t RHS) const { assert(RHS != 0 && "Remainder by zero?"); if (isSingleWord()) return U.VAL % RHS; // Get some facts about the LHS unsigned lhsWords = getNumWords(getActiveBits()); // Check the degenerate cases if (lhsWords == 0) // 0 % Y ===> 0 return 0; if (RHS == 1) // X % 1 ===> 0 return 0; if (this->ult(RHS)) // X % Y ===> X, iff X < Y return getZExtValue(); if (*this == RHS) // X % X == 0; return 0; if (lhsWords == 1) // All high words are zero, just use native remainder return U.pVal[0] % RHS; // We have to compute it the hard way. Invoke the Knuth divide algorithm. uint64_t Remainder; divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); return Remainder; } APInt APInt::srem(const APInt &RHS) const { if (isNegative()) { if (RHS.isNegative()) return -((-(*this)).urem(-RHS)); return -((-(*this)).urem(RHS)); } if (RHS.isNegative()) return this->urem(-RHS); return this->urem(RHS); } int64_t APInt::srem(int64_t RHS) const { if (isNegative()) { if (RHS < 0) return -((-(*this)).urem(-RHS)); return -((-(*this)).urem(RHS)); } if (RHS < 0) return this->urem(-RHS); return this->urem(RHS); } void APInt::udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); unsigned BitWidth = LHS.BitWidth; // First, deal with the easy case if (LHS.isSingleWord()) { assert(RHS.U.VAL != 0 && "Divide by zero?"); uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; Quotient = APInt(BitWidth, QuotVal); Remainder = APInt(BitWidth, RemVal); return; } // Get some size facts about the dividend and divisor unsigned lhsWords = getNumWords(LHS.getActiveBits()); unsigned rhsBits = RHS.getActiveBits(); unsigned rhsWords = getNumWords(rhsBits); assert(rhsWords && "Performing divrem operation by zero ???"); // Check the degenerate cases if (lhsWords == 0) { Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 return; } if (rhsBits == 1) { Quotient = LHS; // X / 1 ===> X Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 } if (lhsWords < rhsWords || LHS.ult(RHS)) { Remainder = LHS; // X % Y ===> X, iff X < Y Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y return; } if (LHS == RHS) { Quotient = APInt(BitWidth, 1); // X / X ===> 1 Remainder = APInt(BitWidth, 0); // X % X ===> 0; return; } // Make sure there is enough space to hold the results. // NOTE: This assumes that reallocate won't affect any bits if it doesn't // change the size. This is necessary if Quotient or Remainder is aliased // with LHS or RHS. Quotient.reallocate(BitWidth); Remainder.reallocate(BitWidth); if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. // There is only one word to consider so use the native versions. uint64_t lhsValue = LHS.U.pVal[0]; uint64_t rhsValue = RHS.U.pVal[0]; Quotient = lhsValue / rhsValue; Remainder = lhsValue % rhsValue; return; } // Okay, lets do it the long way divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, Remainder.U.pVal); // Clear the rest of the Quotient and Remainder. std::memset(Quotient.U.pVal + lhsWords, 0, (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); std::memset(Remainder.U.pVal + rhsWords, 0, (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); } void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, uint64_t &Remainder) { assert(RHS != 0 && "Divide by zero?"); unsigned BitWidth = LHS.BitWidth; // First, deal with the easy case if (LHS.isSingleWord()) { uint64_t QuotVal = LHS.U.VAL / RHS; Remainder = LHS.U.VAL % RHS; Quotient = APInt(BitWidth, QuotVal); return; } // Get some size facts about the dividend and divisor unsigned lhsWords = getNumWords(LHS.getActiveBits()); // Check the degenerate cases if (lhsWords == 0) { Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 Remainder = 0; // 0 % Y ===> 0 return; } if (RHS == 1) { Quotient = LHS; // X / 1 ===> X Remainder = 0; // X % 1 ===> 0 return; } if (LHS.ult(RHS)) { Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y return; } if (LHS == RHS) { Quotient = APInt(BitWidth, 1); // X / X ===> 1 Remainder = 0; // X % X ===> 0; return; } // Make sure there is enough space to hold the results. // NOTE: This assumes that reallocate won't affect any bits if it doesn't // change the size. This is necessary if Quotient is aliased with LHS. Quotient.reallocate(BitWidth); if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. // There is only one word to consider so use the native versions. uint64_t lhsValue = LHS.U.pVal[0]; Quotient = lhsValue / RHS; Remainder = lhsValue % RHS; return; } // Okay, lets do it the long way divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); // Clear the rest of the Quotient. std::memset(Quotient.U.pVal + lhsWords, 0, (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); } void APInt::sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder) { if (LHS.isNegative()) { if (RHS.isNegative()) APInt::udivrem(-LHS, -RHS, Quotient, Remainder); else { APInt::udivrem(-LHS, RHS, Quotient, Remainder); Quotient.negate(); } Remainder.negate(); } else if (RHS.isNegative()) { APInt::udivrem(LHS, -RHS, Quotient, Remainder); Quotient.negate(); } else { APInt::udivrem(LHS, RHS, Quotient, Remainder); } } void APInt::sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, int64_t &Remainder) { uint64_t R = Remainder; if (LHS.isNegative()) { if (RHS < 0) APInt::udivrem(-LHS, -RHS, Quotient, R); else { APInt::udivrem(-LHS, RHS, Quotient, R); Quotient.negate(); } R = -R; } else if (RHS < 0) { APInt::udivrem(LHS, -RHS, Quotient, R); Quotient.negate(); } else { APInt::udivrem(LHS, RHS, Quotient, R); } Remainder = R; } APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { APInt Res = *this+RHS; Overflow = isNonNegative() == RHS.isNonNegative() && Res.isNonNegative() != isNonNegative(); return Res; } APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { APInt Res = *this+RHS; Overflow = Res.ult(RHS); return Res; } APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { APInt Res = *this - RHS; Overflow = isNonNegative() != RHS.isNonNegative() && Res.isNonNegative() != isNonNegative(); return Res; } APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { APInt Res = *this-RHS; Overflow = Res.ugt(*this); return Res; } APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { // MININT/-1 --> overflow. Overflow = isMinSignedValue() && RHS.isAllOnes(); return sdiv(RHS); } APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { APInt Res = *this * RHS; if (RHS != 0) Overflow = Res.sdiv(RHS) != *this || (isMinSignedValue() && RHS.isAllOnes()); else Overflow = false; return Res; } APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) { Overflow = true; return *this * RHS; } APInt Res = lshr(1) * RHS; Overflow = Res.isNegative(); Res <<= 1; if ((*this)[0]) { Res += RHS; if (Res.ult(RHS)) Overflow = true; } return Res; } APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow); } APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { Overflow = ShAmt >= getBitWidth(); if (Overflow) return APInt(BitWidth, 0); if (isNonNegative()) // Don't allow sign change. Overflow = ShAmt >= countl_zero(); else Overflow = ShAmt >= countl_one(); return *this << ShAmt; } APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow); } APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const { Overflow = ShAmt >= getBitWidth(); if (Overflow) return APInt(BitWidth, 0); Overflow = ShAmt > countl_zero(); return *this << ShAmt; } APInt APInt::sadd_sat(const APInt &RHS) const { bool Overflow; APInt Res = sadd_ov(RHS, Overflow); if (!Overflow) return Res; return isNegative() ? APInt::getSignedMinValue(BitWidth) : APInt::getSignedMaxValue(BitWidth); } APInt APInt::uadd_sat(const APInt &RHS) const { bool Overflow; APInt Res = uadd_ov(RHS, Overflow); if (!Overflow) return Res; return APInt::getMaxValue(BitWidth); } APInt APInt::ssub_sat(const APInt &RHS) const { bool Overflow; APInt Res = ssub_ov(RHS, Overflow); if (!Overflow) return Res; return isNegative() ? APInt::getSignedMinValue(BitWidth) : APInt::getSignedMaxValue(BitWidth); } APInt APInt::usub_sat(const APInt &RHS) const { bool Overflow; APInt Res = usub_ov(RHS, Overflow); if (!Overflow) return Res; return APInt(BitWidth, 0); } APInt APInt::smul_sat(const APInt &RHS) const { bool Overflow; APInt Res = smul_ov(RHS, Overflow); if (!Overflow) return Res; // The result is negative if one and only one of inputs is negative. bool ResIsNegative = isNegative() ^ RHS.isNegative(); return ResIsNegative ? APInt::getSignedMinValue(BitWidth) : APInt::getSignedMaxValue(BitWidth); } APInt APInt::umul_sat(const APInt &RHS) const { bool Overflow; APInt Res = umul_ov(RHS, Overflow); if (!Overflow) return Res; return APInt::getMaxValue(BitWidth); } APInt APInt::sshl_sat(const APInt &RHS) const { return sshl_sat(RHS.getLimitedValue(getBitWidth())); } APInt APInt::sshl_sat(unsigned RHS) const { bool Overflow; APInt Res = sshl_ov(RHS, Overflow); if (!Overflow) return Res; return isNegative() ? APInt::getSignedMinValue(BitWidth) : APInt::getSignedMaxValue(BitWidth); } APInt APInt::ushl_sat(const APInt &RHS) const { return ushl_sat(RHS.getLimitedValue(getBitWidth())); } APInt APInt::ushl_sat(unsigned RHS) const { bool Overflow; APInt Res = ushl_ov(RHS, Overflow); if (!Overflow) return Res; return APInt::getMaxValue(BitWidth); } void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { // Check our assumptions here assert(!str.empty() && "Invalid string length"); assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"); StringRef::iterator p = str.begin(); size_t slen = str.size(); bool isNeg = *p == '-'; if (*p == '-' || *p == '+') { p++; slen--; assert(slen && "String is only a sign, needs a value."); } assert((slen <= numbits || radix != 2) && "Insufficient bit width"); assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width"); // Allocate memory if needed if (isSingleWord()) U.VAL = 0; else U.pVal = getClearedMemory(getNumWords()); // Figure out if we can shift instead of multiply unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); // Enter digit traversal loop for (StringRef::iterator e = str.end(); p != e; ++p) { unsigned digit = getDigit(*p, radix); assert(digit < radix && "Invalid character in digit string"); // Shift or multiply the value by the radix if (slen > 1) { if (shift) *this <<= shift; else *this *= radix; } // Add in the digit we just interpreted *this += digit; } // If its negative, put it in two's complement form if (isNeg) this->negate(); } void APInt::toString(SmallVectorImpl &Str, unsigned Radix, bool Signed, bool formatAsCLiteral, bool UpperCase) const { assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"); const char *Prefix = ""; if (formatAsCLiteral) { switch (Radix) { case 2: // Binary literals are a non-standard extension added in gcc 4.3: // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html Prefix = "0b"; break; case 8: Prefix = "0"; break; case 10: break; // No prefix case 16: Prefix = "0x"; break; default: llvm_unreachable("Invalid radix!"); } } // First, check for a zero value and just short circuit the logic below. if (isZero()) { while (*Prefix) { Str.push_back(*Prefix); ++Prefix; }; Str.push_back('0'); return; } static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz" "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const char *Digits = BothDigits + (UpperCase ? 36 : 0); if (isSingleWord()) { char Buffer[65]; char *BufPtr = std::end(Buffer); uint64_t N; if (!Signed) { N = getZExtValue(); } else { int64_t I = getSExtValue(); if (I >= 0) { N = I; } else { Str.push_back('-'); N = -(uint64_t)I; } } while (*Prefix) { Str.push_back(*Prefix); ++Prefix; }; while (N) { *--BufPtr = Digits[N % Radix]; N /= Radix; } Str.append(BufPtr, std::end(Buffer)); return; } APInt Tmp(*this); if (Signed && isNegative()) { // They want to print the signed version and it is a negative value // Flip the bits and add one to turn it into the equivalent positive // value and put a '-' in the result. Tmp.negate(); Str.push_back('-'); } while (*Prefix) { Str.push_back(*Prefix); ++Prefix; }; // We insert the digits backward, then reverse them to get the right order. unsigned StartDig = Str.size(); // For the 2, 8 and 16 bit cases, we can just shift instead of divide // because the number of bits per digit (1, 3 and 4 respectively) divides // equally. We just shift until the value is zero. if (Radix == 2 || Radix == 8 || Radix == 16) { // Just shift tmp right for each digit width until it becomes zero unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); unsigned MaskAmt = Radix - 1; while (Tmp.getBoolValue()) { unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; Str.push_back(Digits[Digit]); Tmp.lshrInPlace(ShiftAmt); } } else { while (Tmp.getBoolValue()) { uint64_t Digit; udivrem(Tmp, Radix, Tmp, Digit); assert(Digit < Radix && "divide failed"); Str.push_back(Digits[Digit]); } } // Reverse the digits before returning. std::reverse(Str.begin()+StartDig, Str.end()); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void APInt::dump() const { SmallString<40> S, U; this->toStringUnsigned(U); this->toStringSigned(S); dbgs() << "APInt(" << BitWidth << "b, " << U << "u " << S << "s)\n"; } #endif void APInt::print(raw_ostream &OS, bool isSigned) const { SmallString<40> S; this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); OS << S; } // This implements a variety of operations on a representation of // arbitrary precision, two's-complement, bignum integer values. // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe // and unrestricting assumption. static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, "Part width must be divisible by 2!"); // Returns the integer part with the least significant BITS set. // BITS cannot be zero. static inline APInt::WordType lowBitMask(unsigned bits) { assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); } /// Returns the value of the lower half of PART. static inline APInt::WordType lowHalf(APInt::WordType part) { return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); } /// Returns the value of the upper half of PART. static inline APInt::WordType highHalf(APInt::WordType part) { return part >> (APInt::APINT_BITS_PER_WORD / 2); } /// Sets the least significant part of a bignum to the input value, and zeroes /// out higher parts. void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { assert(parts > 0); dst[0] = part; for (unsigned i = 1; i < parts; i++) dst[i] = 0; } /// Assign one bignum to another. void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { for (unsigned i = 0; i < parts; i++) dst[i] = src[i]; } /// Returns true if a bignum is zero, false otherwise. bool APInt::tcIsZero(const WordType *src, unsigned parts) { for (unsigned i = 0; i < parts; i++) if (src[i]) return false; return true; } /// Extract the given bit of a bignum; returns 0 or 1. int APInt::tcExtractBit(const WordType *parts, unsigned bit) { return (parts[whichWord(bit)] & maskBit(bit)) != 0; } /// Set the given bit of a bignum. void APInt::tcSetBit(WordType *parts, unsigned bit) { parts[whichWord(bit)] |= maskBit(bit); } /// Clears the given bit of a bignum. void APInt::tcClearBit(WordType *parts, unsigned bit) { parts[whichWord(bit)] &= ~maskBit(bit); } /// Returns the bit number of the least significant set bit of a number. If the /// input number has no bits set UINT_MAX is returned. unsigned APInt::tcLSB(const WordType *parts, unsigned n) { for (unsigned i = 0; i < n; i++) { if (parts[i] != 0) { unsigned lsb = llvm::countr_zero(parts[i]); return lsb + i * APINT_BITS_PER_WORD; } } return UINT_MAX; } /// Returns the bit number of the most significant set bit of a number. /// If the input number has no bits set UINT_MAX is returned. unsigned APInt::tcMSB(const WordType *parts, unsigned n) { do { --n; if (parts[n] != 0) { static_assert(sizeof(parts[n]) <= sizeof(uint64_t)); unsigned msb = llvm::Log2_64(parts[n]); return msb + n * APINT_BITS_PER_WORD; } } while (n); return UINT_MAX; } /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. /// */ void APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, unsigned srcBits, unsigned srcLSB) { unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; assert(dstParts <= dstCount); unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; tcAssign(dst, src + firstSrcPart, dstParts); unsigned shift = srcLSB % APINT_BITS_PER_WORD; tcShiftRight(dst, dstParts, shift); // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC // in DST. If this is less that srcBits, append the rest, else // clear the high bits. unsigned n = dstParts * APINT_BITS_PER_WORD - shift; if (n < srcBits) { WordType mask = lowBitMask (srcBits - n); dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) << n % APINT_BITS_PER_WORD); } else if (n > srcBits) { if (srcBits % APINT_BITS_PER_WORD) dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); } // Clear high parts. while (dstParts < dstCount) dst[dstParts++] = 0; } //// DST += RHS + C where C is zero or one. Returns the carry flag. APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, WordType c, unsigned parts) { assert(c <= 1); for (unsigned i = 0; i < parts; i++) { WordType l = dst[i]; if (c) { dst[i] += rhs[i] + 1; c = (dst[i] <= l); } else { dst[i] += rhs[i]; c = (dst[i] < l); } } return c; } /// This function adds a single "word" integer, src, to the multiple /// "word" integer array, dst[]. dst[] is modified to reflect the addition and /// 1 is returned if there is a carry out, otherwise 0 is returned. /// @returns the carry of the addition. APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, unsigned parts) { for (unsigned i = 0; i < parts; ++i) { dst[i] += src; if (dst[i] >= src) return 0; // No need to carry so exit early. src = 1; // Carry one to next digit. } return 1; } /// DST -= RHS + C where C is zero or one. Returns the carry flag. APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, WordType c, unsigned parts) { assert(c <= 1); for (unsigned i = 0; i < parts; i++) { WordType l = dst[i]; if (c) { dst[i] -= rhs[i] + 1; c = (dst[i] >= l); } else { dst[i] -= rhs[i]; c = (dst[i] > l); } } return c; } /// This function subtracts a single "word" (64-bit word), src, from /// the multi-word integer array, dst[], propagating the borrowed 1 value until /// no further borrowing is needed or it runs out of "words" in dst. The result /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not /// exhausted. In other words, if src > dst then this function returns 1, /// otherwise 0. /// @returns the borrow out of the subtraction APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, unsigned parts) { for (unsigned i = 0; i < parts; ++i) { WordType Dst = dst[i]; dst[i] -= src; if (src <= Dst) return 0; // No need to borrow so exit early. src = 1; // We have to "borrow 1" from next "word" } return 1; } /// Negate a bignum in-place. void APInt::tcNegate(WordType *dst, unsigned parts) { tcComplement(dst, parts); tcIncrement(dst, parts); } /// DST += SRC * MULTIPLIER + CARRY if add is true /// DST = SRC * MULTIPLIER + CARRY if add is false /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC /// they must start at the same point, i.e. DST == SRC. /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is /// returned. Otherwise DST is filled with the least significant /// DSTPARTS parts of the result, and if all of the omitted higher /// parts were zero return zero, otherwise overflow occurred and /// return one. int APInt::tcMultiplyPart(WordType *dst, const WordType *src, WordType multiplier, WordType carry, unsigned srcParts, unsigned dstParts, bool add) { // Otherwise our writes of DST kill our later reads of SRC. assert(dst <= src || dst >= src + srcParts); assert(dstParts <= srcParts + 1); // N loops; minimum of dstParts and srcParts. unsigned n = std::min(dstParts, srcParts); for (unsigned i = 0; i < n; i++) { // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. // This cannot overflow, because: // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) // which is less than n^2. WordType srcPart = src[i]; WordType low, mid, high; if (multiplier == 0 || srcPart == 0) { low = carry; high = 0; } else { low = lowHalf(srcPart) * lowHalf(multiplier); high = highHalf(srcPart) * highHalf(multiplier); mid = lowHalf(srcPart) * highHalf(multiplier); high += highHalf(mid); mid <<= APINT_BITS_PER_WORD / 2; if (low + mid < low) high++; low += mid; mid = highHalf(srcPart) * lowHalf(multiplier); high += highHalf(mid); mid <<= APINT_BITS_PER_WORD / 2; if (low + mid < low) high++; low += mid; // Now add carry. if (low + carry < low) high++; low += carry; } if (add) { // And now DST[i], and store the new low part there. if (low + dst[i] < low) high++; dst[i] += low; } else dst[i] = low; carry = high; } if (srcParts < dstParts) { // Full multiplication, there is no overflow. assert(srcParts + 1 == dstParts); dst[srcParts] = carry; return 0; } // We overflowed if there is carry. if (carry) return 1; // We would overflow if any significant unwritten parts would be // non-zero. This is true if any remaining src parts are non-zero // and the multiplier is non-zero. if (multiplier) for (unsigned i = dstParts; i < srcParts; i++) if (src[i]) return 1; // We fitted in the narrow destination. return 0; } /// DST = LHS * RHS, where DST has the same width as the operands and /// is filled with the least significant parts of the result. Returns /// one if overflow occurred, otherwise zero. DST must be disjoint /// from both operands. int APInt::tcMultiply(WordType *dst, const WordType *lhs, const WordType *rhs, unsigned parts) { assert(dst != lhs && dst != rhs); int overflow = 0; tcSet(dst, 0, parts); for (unsigned i = 0; i < parts; i++) overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, parts - i, true); return overflow; } /// DST = LHS * RHS, where DST has width the sum of the widths of the /// operands. No overflow occurs. DST must be disjoint from both operands. void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, const WordType *rhs, unsigned lhsParts, unsigned rhsParts) { // Put the narrower number on the LHS for less loops below. if (lhsParts > rhsParts) return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); assert(dst != lhs && dst != rhs); tcSet(dst, 0, rhsParts); for (unsigned i = 0; i < lhsParts; i++) tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); } // If RHS is zero LHS and REMAINDER are left unchanged, return one. // Otherwise set LHS to LHS / RHS with the fractional part discarded, // set REMAINDER to the remainder, return zero. i.e. // // OLD_LHS = RHS * LHS + REMAINDER // // SCRATCH is a bignum of the same size as the operands and result for // use by the routine; its contents need not be initialized and are // destroyed. LHS, REMAINDER and SCRATCH must be distinct. int APInt::tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, WordType *srhs, unsigned parts) { assert(lhs != remainder && lhs != srhs && remainder != srhs); unsigned shiftCount = tcMSB(rhs, parts) + 1; if (shiftCount == 0) return true; shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; unsigned n = shiftCount / APINT_BITS_PER_WORD; WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); tcAssign(srhs, rhs, parts); tcShiftLeft(srhs, parts, shiftCount); tcAssign(remainder, lhs, parts); tcSet(lhs, 0, parts); // Loop, subtracting SRHS if REMAINDER is greater and adding that to the // total. for (;;) { int compare = tcCompare(remainder, srhs, parts); if (compare >= 0) { tcSubtract(remainder, srhs, 0, parts); lhs[n] |= mask; } if (shiftCount == 0) break; shiftCount--; tcShiftRight(srhs, parts, 1); if ((mask >>= 1) == 0) { mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); n--; } } return false; } /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are /// no restrictions on Count. void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { // Don't bother performing a no-op shift. if (!Count) return; // WordShift is the inter-part shift; BitShift is the intra-part shift. unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); unsigned BitShift = Count % APINT_BITS_PER_WORD; // Fastpath for moving by whole words. if (BitShift == 0) { std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); } else { while (Words-- > WordShift) { Dst[Words] = Dst[Words - WordShift] << BitShift; if (Words > WordShift) Dst[Words] |= Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); } } // Fill in the remainder with 0s. std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); } /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There /// are no restrictions on Count. void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { // Don't bother performing a no-op shift. if (!Count) return; // WordShift is the inter-part shift; BitShift is the intra-part shift. unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); unsigned BitShift = Count % APINT_BITS_PER_WORD; unsigned WordsToMove = Words - WordShift; // Fastpath for moving by whole words. if (BitShift == 0) { std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); } else { for (unsigned i = 0; i != WordsToMove; ++i) { Dst[i] = Dst[i + WordShift] >> BitShift; if (i + 1 != WordsToMove) Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); } } // Fill in the remainder with 0s. std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); } // Comparison (unsigned) of two bignums. int APInt::tcCompare(const WordType *lhs, const WordType *rhs, unsigned parts) { while (parts) { parts--; if (lhs[parts] != rhs[parts]) return (lhs[parts] > rhs[parts]) ? 1 : -1; } return 0; } APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM) { // Currently udivrem always rounds down. switch (RM) { case APInt::Rounding::DOWN: case APInt::Rounding::TOWARD_ZERO: return A.udiv(B); case APInt::Rounding::UP: { APInt Quo, Rem; APInt::udivrem(A, B, Quo, Rem); if (Rem.isZero()) return Quo; return Quo + 1; } } llvm_unreachable("Unknown APInt::Rounding enum"); } APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM) { switch (RM) { case APInt::Rounding::DOWN: case APInt::Rounding::UP: { APInt Quo, Rem; APInt::sdivrem(A, B, Quo, Rem); if (Rem.isZero()) return Quo; // This algorithm deals with arbitrary rounding mode used by sdivrem. // We want to check whether the non-integer part of the mathematical value // is negative or not. If the non-integer part is negative, we need to round // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's // already rounded down. if (RM == APInt::Rounding::DOWN) { if (Rem.isNegative() != B.isNegative()) return Quo - 1; return Quo; } if (Rem.isNegative() != B.isNegative()) return Quo; return Quo + 1; } // Currently sdiv rounds towards zero. case APInt::Rounding::TOWARD_ZERO: return A.sdiv(B); } llvm_unreachable("Unknown APInt::Rounding enum"); } std::optional llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, unsigned RangeWidth) { unsigned CoeffWidth = A.getBitWidth(); assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); assert(RangeWidth <= CoeffWidth && "Value range width should be less than coefficient width"); assert(RangeWidth > 1 && "Value range bit width should be > 1"); LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B << "x + " << C << ", rw:" << RangeWidth << '\n'); // Identify 0 as a (non)solution immediately. if (C.sextOrTrunc(RangeWidth).isZero()) { LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); return APInt(CoeffWidth, 0); } // The result of APInt arithmetic has the same bit width as the operands, // so it can actually lose high bits. A product of two n-bit integers needs // 2n-1 bits to represent the full value. // The operation done below (on quadratic coefficients) that can produce // the largest value is the evaluation of the equation during bisection, // which needs 3 times the bitwidth of the coefficient, so the total number // of required bits is 3n. // // The purpose of this extension is to simulate the set Z of all integers, // where n+1 > n for all n in Z. In Z it makes sense to talk about positive // and negative numbers (not so much in a modulo arithmetic). The method // used to solve the equation is based on the standard formula for real // numbers, and uses the concepts of "positive" and "negative" with their // usual meanings. CoeffWidth *= 3; A = A.sext(CoeffWidth); B = B.sext(CoeffWidth); C = C.sext(CoeffWidth); // Make A > 0 for simplicity. Negate cannot overflow at this point because // the bit width has increased. if (A.isNegative()) { A.negate(); B.negate(); C.negate(); } // Solving an equation q(x) = 0 with coefficients in modular arithmetic // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., // and R = 2^BitWidth. // Since we're trying not only to find exact solutions, but also values // that "wrap around", such a set will always have a solution, i.e. an x // that satisfies at least one of the equations, or such that |q(x)| // exceeds kR, while |q(x-1)| for the same k does not. // // We need to find a value k, such that Ax^2 + Bx + C = kR will have a // positive solution n (in the above sense), and also such that the n // will be the least among all solutions corresponding to k = 0, 1, ... // (more precisely, the least element in the set // { n(k) | k is such that a solution n(k) exists }). // // Consider the parabola (over real numbers) that corresponds to the // quadratic equation. Since A > 0, the arms of the parabola will point // up. Picking different values of k will shift it up and down by R. // // We want to shift the parabola in such a way as to reduce the problem // of solving q(x) = kR to solving shifted_q(x) = 0. // (The interesting solutions are the ceilings of the real number // solutions.) APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); APInt TwoA = 2 * A; APInt SqrB = B * B; bool PickLow; auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { assert(A.isStrictlyPositive()); APInt T = V.abs().urem(A); if (T.isZero()) return V; return V.isNegative() ? V+T : V+(A-T); }; // The vertex of the parabola is at -B/2A, but since A > 0, it's negative // iff B is positive. if (B.isNonNegative()) { // If B >= 0, the vertex it at a negative location (or at 0), so in // order to have a non-negative solution we need to pick k that makes // C-kR negative. To satisfy all the requirements for the solution // that we are looking for, it needs to be closest to 0 of all k. C = C.srem(R); if (C.isStrictlyPositive()) C -= R; // Pick the greater solution. PickLow = false; } else { // If B < 0, the vertex is at a positive location. For any solution // to exist, the discriminant must be non-negative. This means that // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a // lower bound on values of k: kR >= C - B^2/4A. APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. // Round LowkR up (towards +inf) to the nearest kR. LowkR = RoundUp(LowkR, R); // If there exists k meeting the condition above, and such that // C-kR > 0, there will be two positive real number solutions of // q(x) = kR. Out of all such values of k, pick the one that makes // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). // In other words, find maximum k such that LowkR <= kR < C. if (C.sgt(LowkR)) { // If LowkR < C, then such a k is guaranteed to exist because // LowkR itself is a multiple of R. C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) // Pick the smaller solution. PickLow = true; } else { // If C-kR < 0 for all potential k's, it means that one solution // will be negative, while the other will be positive. The positive // solution will shift towards 0 if the parabola is moved up. // Pick the kR closest to the lower bound (i.e. make C-kR closest // to 0, or in other words, out of all parabolas that have solutions, // pick the one that is the farthest "up"). // Since LowkR is itself a multiple of R, simply take C-LowkR. C -= LowkR; // Pick the greater solution. PickLow = false; } } LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " << B << "x + " << C << ", rw:" << RangeWidth << '\n'); APInt D = SqrB - 4*A*C; assert(D.isNonNegative() && "Negative discriminant"); APInt SQ = D.sqrt(); APInt Q = SQ * SQ; bool InexactSQ = Q != D; // The calculated SQ may actually be greater than the exact (non-integer) // value. If that's the case, decrement SQ to get a value that is lower. if (Q.sgt(D)) SQ -= 1; APInt X; APInt Rem; // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. // When using the quadratic formula directly, the calculated low root // may be greater than the exact one, since we would be subtracting SQ. // To make sure that the calculated root is not greater than the exact // one, subtract SQ+1 when calculating the low root (for inexact value // of SQ). if (PickLow) APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); else APInt::sdivrem(-B + SQ, TwoA, X, Rem); // The updated coefficients should be such that the (exact) solution is // positive. Since APInt division rounds towards 0, the calculated one // can be 0, but cannot be negative. assert(X.isNonNegative() && "Solution should be non-negative"); if (!InexactSQ && Rem.isZero()) { LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); return X; } assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); // The exact value of the square root of D should be between SQ and SQ+1. // This implies that the solution should be between that corresponding to // SQ (i.e. X) and that corresponding to SQ+1. // // The calculated X cannot be greater than the exact (real) solution. // Actually it must be strictly less than the exact solution, while // X+1 will be greater than or equal to it. APInt VX = (A*X + B)*X + C; APInt VY = VX + TwoA*X + A + B; bool SignChange = VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); // If the sign did not change between X and X+1, X is not a valid solution. // This could happen when the actual (exact) roots don't have an integer // between them, so they would both be contained between X and X+1. if (!SignChange) { LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); return std::nullopt; } X += 1; LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); return X; } std::optional llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); if (A == B) return std::nullopt; return A.getBitWidth() - ((A ^ B).countl_zero() + 1); } APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits) { unsigned OldBitWidth = A.getBitWidth(); assert((((OldBitWidth % NewBitWidth) == 0) || ((NewBitWidth % OldBitWidth) == 0)) && "One size should be a multiple of the other one. " "Can't do fractional scaling."); // Check for matching bitwidths. if (OldBitWidth == NewBitWidth) return A; APInt NewA = APInt::getZero(NewBitWidth); // Check for null input. if (A.isZero()) return NewA; if (NewBitWidth > OldBitWidth) { // Repeat bits. unsigned Scale = NewBitWidth / OldBitWidth; for (unsigned i = 0; i != OldBitWidth; ++i) if (A[i]) NewA.setBits(i * Scale, (i + 1) * Scale); } else { unsigned Scale = OldBitWidth / NewBitWidth; for (unsigned i = 0; i != NewBitWidth; ++i) { if (MatchAllBits) { if (A.extractBits(Scale, i * Scale).isAllOnes()) NewA.setBit(i); } else { if (!A.extractBits(Scale, i * Scale).isZero()) NewA.setBit(i); } } } return NewA; } /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst /// with the integer held in IntVal. void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes) { assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); if (sys::IsLittleEndianHost) { // Little-endian host - the source is ordered from LSB to MSB. Order the // destination from LSB to MSB: Do a straight copy. memcpy(Dst, Src, StoreBytes); } else { // Big-endian host - the source is an array of 64 bit words ordered from // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination // from MSB to LSB: Reverse the word order, but not the bytes in a word. while (StoreBytes > sizeof(uint64_t)) { StoreBytes -= sizeof(uint64_t); // May not be aligned so use memcpy. memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); Src += sizeof(uint64_t); } memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); } } /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting /// from Src into IntVal, which is assumed to be wide enough and to hold zero. void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes) { assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); uint8_t *Dst = reinterpret_cast( const_cast(IntVal.getRawData())); if (sys::IsLittleEndianHost) // Little-endian host - the destination must be ordered from LSB to MSB. // The source is ordered from LSB to MSB: Do a straight copy. memcpy(Dst, Src, LoadBytes); else { // Big-endian - the destination is an array of 64 bit words ordered from // LSW to MSW. Each word must be ordered from MSB to LSB. The source is // ordered from MSB to LSB: Reverse the word order, but not the bytes in // a word. while (LoadBytes > sizeof(uint64_t)) { LoadBytes -= sizeof(uint64_t); // May not be aligned so use memcpy. memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); Dst += sizeof(uint64_t); } memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); } }