//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for writing profiling data for clang's // instrumentation based PGO and coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/InstrProfWriter.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/ProfileSummary.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/ProfileData/MemProf.h" #include "llvm/ProfileData/ProfileCommon.h" #include "llvm/Support/Endian.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/Error.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/OnDiskHashTable.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; // A struct to define how the data stream should be patched. For Indexed // profiling, only uint64_t data type is needed. struct PatchItem { uint64_t Pos; // Where to patch. uint64_t *D; // Pointer to an array of source data. int N; // Number of elements in \c D array. }; namespace llvm { // A wrapper class to abstract writer stream with support of bytes // back patching. class ProfOStream { public: ProfOStream(raw_fd_ostream &FD) : IsFDOStream(true), OS(FD), LE(FD, support::little) {} ProfOStream(raw_string_ostream &STR) : IsFDOStream(false), OS(STR), LE(STR, support::little) {} uint64_t tell() { return OS.tell(); } void write(uint64_t V) { LE.write(V); } void writeByte(uint8_t V) { LE.write(V); } // \c patch can only be called when all data is written and flushed. // For raw_string_ostream, the patch is done on the target string // directly and it won't be reflected in the stream's internal buffer. void patch(PatchItem *P, int NItems) { using namespace support; if (IsFDOStream) { raw_fd_ostream &FDOStream = static_cast(OS); const uint64_t LastPos = FDOStream.tell(); for (int K = 0; K < NItems; K++) { FDOStream.seek(P[K].Pos); for (int I = 0; I < P[K].N; I++) write(P[K].D[I]); } // Reset the stream to the last position after patching so that users // don't accidentally overwrite data. This makes it consistent with // the string stream below which replaces the data directly. FDOStream.seek(LastPos); } else { raw_string_ostream &SOStream = static_cast(OS); std::string &Data = SOStream.str(); // with flush for (int K = 0; K < NItems; K++) { for (int I = 0; I < P[K].N; I++) { uint64_t Bytes = endian::byte_swap(P[K].D[I]); Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t), (const char *)&Bytes, sizeof(uint64_t)); } } } } // If \c OS is an instance of \c raw_fd_ostream, this field will be // true. Otherwise, \c OS will be an raw_string_ostream. bool IsFDOStream; raw_ostream &OS; support::endian::Writer LE; }; class InstrProfRecordWriterTrait { public: using key_type = StringRef; using key_type_ref = StringRef; using data_type = const InstrProfWriter::ProfilingData *const; using data_type_ref = const InstrProfWriter::ProfilingData *const; using hash_value_type = uint64_t; using offset_type = uint64_t; support::endianness ValueProfDataEndianness = support::little; InstrProfSummaryBuilder *SummaryBuilder; InstrProfSummaryBuilder *CSSummaryBuilder; InstrProfRecordWriterTrait() = default; static hash_value_type ComputeHash(key_type_ref K) { return IndexedInstrProf::ComputeHash(K); } static std::pair EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) { using namespace support; endian::Writer LE(Out, little); offset_type N = K.size(); LE.write(N); offset_type M = 0; for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; M += sizeof(uint64_t); // The function hash M += sizeof(uint64_t); // The size of the Counts vector M += ProfRecord.Counts.size() * sizeof(uint64_t); // Value data M += ValueProfData::getSize(ProfileData.second); } LE.write(M); return std::make_pair(N, M); } void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) { Out.write(K.data(), N); } void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) { using namespace support; endian::Writer LE(Out, little); for (const auto &ProfileData : *V) { const InstrProfRecord &ProfRecord = ProfileData.second; if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first)) CSSummaryBuilder->addRecord(ProfRecord); else SummaryBuilder->addRecord(ProfRecord); LE.write(ProfileData.first); // Function hash LE.write(ProfRecord.Counts.size()); for (uint64_t I : ProfRecord.Counts) LE.write(I); // Write value data std::unique_ptr VDataPtr = ValueProfData::serializeFrom(ProfileData.second); uint32_t S = VDataPtr->getSize(); VDataPtr->swapBytesFromHost(ValueProfDataEndianness); Out.write((const char *)VDataPtr.get(), S); } } }; } // end namespace llvm InstrProfWriter::InstrProfWriter(bool Sparse, uint64_t TemporalProfTraceReservoirSize, uint64_t MaxTemporalProfTraceLength) : Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength), TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize), InfoObj(new InstrProfRecordWriterTrait()) {} InstrProfWriter::~InstrProfWriter() { delete InfoObj; } // Internal interface for testing purpose only. void InstrProfWriter::setValueProfDataEndianness( support::endianness Endianness) { InfoObj->ValueProfDataEndianness = Endianness; } void InstrProfWriter::setOutputSparse(bool Sparse) { this->Sparse = Sparse; } void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight, function_ref Warn) { auto Name = I.Name; auto Hash = I.Hash; addRecord(Name, Hash, std::move(I), Weight, Warn); } void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other, OverlapStats &Overlap, OverlapStats &FuncLevelOverlap, const OverlapFuncFilters &FuncFilter) { auto Name = Other.Name; auto Hash = Other.Hash; Other.accumulateCounts(FuncLevelOverlap.Test); if (!FunctionData.contains(Name)) { Overlap.addOneUnique(FuncLevelOverlap.Test); return; } if (FuncLevelOverlap.Test.CountSum < 1.0f) { Overlap.Overlap.NumEntries += 1; return; } auto &ProfileDataMap = FunctionData[Name]; bool NewFunc; ProfilingData::iterator Where; std::tie(Where, NewFunc) = ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); if (NewFunc) { Overlap.addOneMismatch(FuncLevelOverlap.Test); return; } InstrProfRecord &Dest = Where->second; uint64_t ValueCutoff = FuncFilter.ValueCutoff; if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter)) ValueCutoff = 0; Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff); } void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash, InstrProfRecord &&I, uint64_t Weight, function_ref Warn) { auto &ProfileDataMap = FunctionData[Name]; bool NewFunc; ProfilingData::iterator Where; std::tie(Where, NewFunc) = ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord())); InstrProfRecord &Dest = Where->second; auto MapWarn = [&](instrprof_error E) { Warn(make_error(E)); }; if (NewFunc) { // We've never seen a function with this name and hash, add it. Dest = std::move(I); if (Weight > 1) Dest.scale(Weight, 1, MapWarn); } else { // We're updating a function we've seen before. Dest.merge(I, Weight, MapWarn); } Dest.sortValueData(); } void InstrProfWriter::addMemProfRecord( const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) { auto Result = MemProfRecordData.insert({Id, Record}); // If we inserted a new record then we are done. if (Result.second) { return; } memprof::IndexedMemProfRecord &Existing = Result.first->second; Existing.merge(Record); } bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id, const memprof::Frame &Frame, function_ref Warn) { auto Result = MemProfFrameData.insert({Id, Frame}); // If a mapping already exists for the current frame id and it does not // match the new mapping provided then reset the existing contents and bail // out. We don't support the merging of memprof data whose Frame -> Id // mapping across profiles is inconsistent. if (!Result.second && Result.first->second != Frame) { Warn(make_error(instrprof_error::malformed, "frame to id mapping mismatch")); return false; } return true; } void InstrProfWriter::addBinaryIds(ArrayRef BIs) { llvm::append_range(BinaryIds, BIs); } void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) { if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength) Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength); if (Trace.FunctionNameRefs.empty()) return; if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) { // Simply append the trace if we have not yet hit our reservoir size limit. TemporalProfTraces.push_back(std::move(Trace)); } else { // Otherwise, replace a random trace in the stream. std::uniform_int_distribution Distribution( 0, TemporalProfTraceStreamSize); uint64_t RandomIndex = Distribution(RNG); if (RandomIndex < TemporalProfTraces.size()) TemporalProfTraces[RandomIndex] = std::move(Trace); } ++TemporalProfTraceStreamSize; } void InstrProfWriter::addTemporalProfileTraces( SmallVectorImpl &SrcTraces, uint64_t SrcStreamSize) { // Assume that the source has the same reservoir size as the destination to // avoid needing to record it in the indexed profile format. bool IsDestSampled = (TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize); bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize); if (!IsDestSampled && IsSrcSampled) { // If one of the traces are sampled, ensure that it belongs to Dest. std::swap(TemporalProfTraces, SrcTraces); std::swap(TemporalProfTraceStreamSize, SrcStreamSize); std::swap(IsDestSampled, IsSrcSampled); } if (!IsSrcSampled) { // If the source stream is not sampled, we add each source trace normally. for (auto &Trace : SrcTraces) addTemporalProfileTrace(std::move(Trace)); return; } // Otherwise, we find the traces that would have been removed if we added // the whole source stream. SmallSetVector IndicesToReplace; for (uint64_t I = 0; I < SrcStreamSize; I++) { std::uniform_int_distribution Distribution( 0, TemporalProfTraceStreamSize); uint64_t RandomIndex = Distribution(RNG); if (RandomIndex < TemporalProfTraces.size()) IndicesToReplace.insert(RandomIndex); ++TemporalProfTraceStreamSize; } // Then we insert a random sample of the source traces. llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG); for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces)) TemporalProfTraces[Index] = std::move(Trace); } void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW, function_ref Warn) { for (auto &I : IPW.FunctionData) for (auto &Func : I.getValue()) addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn); BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size()); for (auto &I : IPW.BinaryIds) addBinaryIds(I); addTemporalProfileTraces(IPW.TemporalProfTraces, IPW.TemporalProfTraceStreamSize); MemProfFrameData.reserve(IPW.MemProfFrameData.size()); for (auto &I : IPW.MemProfFrameData) { // If we weren't able to add the frame mappings then it doesn't make sense // to try to merge the records from this profile. if (!addMemProfFrame(I.first, I.second, Warn)) return; } MemProfRecordData.reserve(IPW.MemProfRecordData.size()); for (auto &I : IPW.MemProfRecordData) { addMemProfRecord(I.first, I.second); } } bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) { if (!Sparse) return true; for (const auto &Func : PD) { const InstrProfRecord &IPR = Func.second; if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; })) return true; } return false; } static void setSummary(IndexedInstrProf::Summary *TheSummary, ProfileSummary &PS) { using namespace IndexedInstrProf; const std::vector &Res = PS.getDetailedSummary(); TheSummary->NumSummaryFields = Summary::NumKinds; TheSummary->NumCutoffEntries = Res.size(); TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount()); TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount()); TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount()); TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount()); TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts()); TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions()); for (unsigned I = 0; I < Res.size(); I++) TheSummary->setEntry(I, Res[I]); } Error InstrProfWriter::writeImpl(ProfOStream &OS) { using namespace IndexedInstrProf; using namespace support; OnDiskChainedHashTableGenerator Generator; InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs); InfoObj->SummaryBuilder = &ISB; InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs); InfoObj->CSSummaryBuilder = &CSISB; // Populate the hash table generator. SmallVector, 0> OrderedData; for (const auto &I : FunctionData) if (shouldEncodeData(I.getValue())) OrderedData.emplace_back((I.getKey()), &I.getValue()); llvm::sort(OrderedData, less_first()); for (const auto &I : OrderedData) Generator.insert(I.first, I.second); // Write the header. IndexedInstrProf::Header Header; Header.Magic = IndexedInstrProf::Magic; Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion; if (static_cast(ProfileKind & InstrProfKind::IRInstrumentation)) Header.Version |= VARIANT_MASK_IR_PROF; if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) Header.Version |= VARIANT_MASK_CSIR_PROF; if (static_cast(ProfileKind & InstrProfKind::FunctionEntryInstrumentation)) Header.Version |= VARIANT_MASK_INSTR_ENTRY; if (static_cast(ProfileKind & InstrProfKind::SingleByteCoverage)) Header.Version |= VARIANT_MASK_BYTE_COVERAGE; if (static_cast(ProfileKind & InstrProfKind::FunctionEntryOnly)) Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY; if (static_cast(ProfileKind & InstrProfKind::MemProf)) Header.Version |= VARIANT_MASK_MEMPROF; if (static_cast(ProfileKind & InstrProfKind::TemporalProfile)) Header.Version |= VARIANT_MASK_TEMPORAL_PROF; Header.Unused = 0; Header.HashType = static_cast(IndexedInstrProf::HashType); Header.HashOffset = 0; Header.MemProfOffset = 0; Header.BinaryIdOffset = 0; Header.TemporalProfTracesOffset = 0; int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t); // Only write out all the fields except 'HashOffset', 'MemProfOffset', // 'BinaryIdOffset' and `TemporalProfTracesOffset`. We need to remember the // offset of these fields to allow back patching later. for (int I = 0; I < N - 4; I++) OS.write(reinterpret_cast(&Header)[I]); // Save the location of Header.HashOffset field in \c OS. uint64_t HashTableStartFieldOffset = OS.tell(); // Reserve the space for HashOffset field. OS.write(0); // Save the location of MemProf profile data. This is stored in two parts as // the schema and as a separate on-disk chained hashtable. uint64_t MemProfSectionOffset = OS.tell(); // Reserve space for the MemProf table field to be patched later if this // profile contains memory profile information. OS.write(0); // Save the location of binary ids section. uint64_t BinaryIdSectionOffset = OS.tell(); // Reserve space for the BinaryIdOffset field to be patched later if this // profile contains binary ids. OS.write(0); uint64_t TemporalProfTracesOffset = OS.tell(); OS.write(0); // Reserve space to write profile summary data. uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size(); uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries); // Remember the summary offset. uint64_t SummaryOffset = OS.tell(); for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++) OS.write(0); uint64_t CSSummaryOffset = 0; uint64_t CSSummarySize = 0; if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) { CSSummaryOffset = OS.tell(); CSSummarySize = SummarySize / sizeof(uint64_t); for (unsigned I = 0; I < CSSummarySize; I++) OS.write(0); } // Write the hash table. uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj); // Write the MemProf profile data if we have it. This includes a simple schema // with the format described below followed by the hashtable: // uint64_t RecordTableOffset = RecordTableGenerator.Emit // uint64_t FramePayloadOffset = Stream offset before emitting the frame table // uint64_t FrameTableOffset = FrameTableGenerator.Emit // uint64_t Num schema entries // uint64_t Schema entry 0 // uint64_t Schema entry 1 // .... // uint64_t Schema entry N - 1 // OnDiskChainedHashTable MemProfRecordData // OnDiskChainedHashTable MemProfFrameData uint64_t MemProfSectionStart = 0; if (static_cast(ProfileKind & InstrProfKind::MemProf)) { MemProfSectionStart = OS.tell(); OS.write(0ULL); // Reserve space for the memprof record table offset. OS.write(0ULL); // Reserve space for the memprof frame payload offset. OS.write(0ULL); // Reserve space for the memprof frame table offset. auto Schema = memprof::PortableMemInfoBlock::getSchema(); OS.write(static_cast(Schema.size())); for (const auto Id : Schema) { OS.write(static_cast(Id)); } auto RecordWriter = std::make_unique(); RecordWriter->Schema = &Schema; OnDiskChainedHashTableGenerator RecordTableGenerator; for (auto &I : MemProfRecordData) { // Insert the key (func hash) and value (memprof record). RecordTableGenerator.insert(I.first, I.second); } uint64_t RecordTableOffset = RecordTableGenerator.Emit(OS.OS, *RecordWriter); uint64_t FramePayloadOffset = OS.tell(); auto FrameWriter = std::make_unique(); OnDiskChainedHashTableGenerator FrameTableGenerator; for (auto &I : MemProfFrameData) { // Insert the key (frame id) and value (frame contents). FrameTableGenerator.insert(I.first, I.second); } uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter); PatchItem PatchItems[] = { {MemProfSectionStart, &RecordTableOffset, 1}, {MemProfSectionStart + sizeof(uint64_t), &FramePayloadOffset, 1}, {MemProfSectionStart + 2 * sizeof(uint64_t), &FrameTableOffset, 1}, }; OS.patch(PatchItems, 3); } // BinaryIdSection has two parts: // 1. uint64_t BinaryIdsSectionSize // 2. list of binary ids that consist of: // a. uint64_t BinaryIdLength // b. uint8_t BinaryIdData // c. uint8_t Padding (if necessary) uint64_t BinaryIdSectionStart = OS.tell(); // Calculate size of binary section. uint64_t BinaryIdsSectionSize = 0; // Remove duplicate binary ids. llvm::sort(BinaryIds); BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()), BinaryIds.end()); for (auto BI : BinaryIds) { // Increment by binary id length data type size. BinaryIdsSectionSize += sizeof(uint64_t); // Increment by binary id data length, aligned to 8 bytes. BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t)); } // Write binary ids section size. OS.write(BinaryIdsSectionSize); for (auto BI : BinaryIds) { uint64_t BILen = BI.size(); // Write binary id length. OS.write(BILen); // Write binary id data. for (unsigned K = 0; K < BILen; K++) OS.writeByte(BI[K]); // Write padding if necessary. uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen; for (unsigned K = 0; K < PaddingSize; K++) OS.writeByte(0); } uint64_t TemporalProfTracesSectionStart = 0; if (static_cast(ProfileKind & InstrProfKind::TemporalProfile)) { TemporalProfTracesSectionStart = OS.tell(); OS.write(TemporalProfTraces.size()); OS.write(TemporalProfTraceStreamSize); for (auto &Trace : TemporalProfTraces) { OS.write(Trace.Weight); OS.write(Trace.FunctionNameRefs.size()); for (auto &NameRef : Trace.FunctionNameRefs) OS.write(NameRef); } } // Allocate space for data to be serialized out. std::unique_ptr TheSummary = IndexedInstrProf::allocSummary(SummarySize); // Compute the Summary and copy the data to the data // structure to be serialized out (to disk or buffer). std::unique_ptr PS = ISB.getSummary(); setSummary(TheSummary.get(), *PS); InfoObj->SummaryBuilder = nullptr; // For Context Sensitive summary. std::unique_ptr TheCSSummary = nullptr; if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) { TheCSSummary = IndexedInstrProf::allocSummary(SummarySize); std::unique_ptr CSPS = CSISB.getSummary(); setSummary(TheCSSummary.get(), *CSPS); } InfoObj->CSSummaryBuilder = nullptr; // Now do the final patch: PatchItem PatchItems[] = { // Patch the Header.HashOffset field. {HashTableStartFieldOffset, &HashTableStart, 1}, // Patch the Header.MemProfOffset (=0 for profiles without MemProf // data). {MemProfSectionOffset, &MemProfSectionStart, 1}, // Patch the Header.BinaryIdSectionOffset. {BinaryIdSectionOffset, &BinaryIdSectionStart, 1}, // Patch the Header.TemporalProfTracesOffset (=0 for profiles without // traces). {TemporalProfTracesOffset, &TemporalProfTracesSectionStart, 1}, // Patch the summary data. {SummaryOffset, reinterpret_cast(TheSummary.get()), (int)(SummarySize / sizeof(uint64_t))}, {CSSummaryOffset, reinterpret_cast(TheCSSummary.get()), (int)CSSummarySize}}; OS.patch(PatchItems, std::size(PatchItems)); for (const auto &I : FunctionData) for (const auto &F : I.getValue()) if (Error E = validateRecord(F.second)) return E; return Error::success(); } Error InstrProfWriter::write(raw_fd_ostream &OS) { // Write the hash table. ProfOStream POS(OS); return writeImpl(POS); } Error InstrProfWriter::write(raw_string_ostream &OS) { ProfOStream POS(OS); return writeImpl(POS); } std::unique_ptr InstrProfWriter::writeBuffer() { std::string Data; raw_string_ostream OS(Data); // Write the hash table. if (Error E = write(OS)) return nullptr; // Return this in an aligned memory buffer. return MemoryBuffer::getMemBufferCopy(Data); } static const char *ValueProfKindStr[] = { #define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator, #include "llvm/ProfileData/InstrProfData.inc" }; Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) { for (uint32_t VK = 0; VK <= IPVK_Last; VK++) { uint32_t NS = Func.getNumValueSites(VK); if (!NS) continue; for (uint32_t S = 0; S < NS; S++) { uint32_t ND = Func.getNumValueDataForSite(VK, S); std::unique_ptr VD = Func.getValueForSite(VK, S); DenseSet SeenValues; for (uint32_t I = 0; I < ND; I++) if ((VK != IPVK_IndirectCallTarget) && !SeenValues.insert(VD[I].Value).second) return make_error(instrprof_error::invalid_prof); } } return Error::success(); } void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash, const InstrProfRecord &Func, InstrProfSymtab &Symtab, raw_fd_ostream &OS) { OS << Name << "\n"; OS << "# Func Hash:\n" << Hash << "\n"; OS << "# Num Counters:\n" << Func.Counts.size() << "\n"; OS << "# Counter Values:\n"; for (uint64_t Count : Func.Counts) OS << Count << "\n"; uint32_t NumValueKinds = Func.getNumValueKinds(); if (!NumValueKinds) { OS << "\n"; return; } OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n"; for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) { uint32_t NS = Func.getNumValueSites(VK); if (!NS) continue; OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n"; OS << "# NumValueSites:\n" << NS << "\n"; for (uint32_t S = 0; S < NS; S++) { uint32_t ND = Func.getNumValueDataForSite(VK, S); OS << ND << "\n"; std::unique_ptr VD = Func.getValueForSite(VK, S); for (uint32_t I = 0; I < ND; I++) { if (VK == IPVK_IndirectCallTarget) OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":" << VD[I].Count << "\n"; else OS << VD[I].Value << ":" << VD[I].Count << "\n"; } } } OS << "\n"; } Error InstrProfWriter::writeText(raw_fd_ostream &OS) { // Check CS first since it implies an IR level profile. if (static_cast(ProfileKind & InstrProfKind::ContextSensitive)) OS << "# CSIR level Instrumentation Flag\n:csir\n"; else if (static_cast(ProfileKind & InstrProfKind::IRInstrumentation)) OS << "# IR level Instrumentation Flag\n:ir\n"; if (static_cast(ProfileKind & InstrProfKind::FunctionEntryInstrumentation)) OS << "# Always instrument the function entry block\n:entry_first\n"; InstrProfSymtab Symtab; using FuncPair = detail::DenseMapPair; using RecordType = std::pair; SmallVector OrderedFuncData; for (const auto &I : FunctionData) { if (shouldEncodeData(I.getValue())) { if (Error E = Symtab.addFuncName(I.getKey())) return E; for (const auto &Func : I.getValue()) OrderedFuncData.push_back(std::make_pair(I.getKey(), Func)); } } if (static_cast(ProfileKind & InstrProfKind::TemporalProfile)) writeTextTemporalProfTraceData(OS, Symtab); llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) { return std::tie(A.first, A.second.first) < std::tie(B.first, B.second.first); }); for (const auto &record : OrderedFuncData) { const StringRef &Name = record.first; const FuncPair &Func = record.second; writeRecordInText(Name, Func.first, Func.second, Symtab, OS); } for (const auto &record : OrderedFuncData) { const FuncPair &Func = record.second; if (Error E = validateRecord(Func.second)) return E; } return Error::success(); } void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS, InstrProfSymtab &Symtab) { OS << ":temporal_prof_traces\n"; OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n"; OS << "# Temporal Profile Trace Stream Size:\n" << TemporalProfTraceStreamSize << "\n"; for (auto &Trace : TemporalProfTraces) { OS << "# Weight:\n" << Trace.Weight << "\n"; for (auto &NameRef : Trace.FunctionNameRefs) OS << Symtab.getFuncName(NameRef) << ","; OS << "\n"; } OS << "\n"; }