//===- Standard pass instrumentations handling ----------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines IR-printing pass instrumentation callbacks as well as
/// StandardInstrumentations class that manages standard pass instrumentations.
///
//===----------------------------------------------------------------------===//
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/ADT/Any.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassInstrumentation.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PrintPasses.h"
#include "llvm/IR/StructuralHash.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/raw_ostream.h"
#include
#include
#include
#include
using namespace llvm;
static cl::opt VerifyAnalysisInvalidation("verify-analysis-invalidation",
cl::Hidden,
#ifdef EXPENSIVE_CHECKS
cl::init(true)
#else
cl::init(false)
#endif
);
// An option that supports the -print-changed option. See
// the description for -print-changed for an explanation of the use
// of this option. Note that this option has no effect without -print-changed.
static cl::opt
PrintChangedBefore("print-before-changed",
cl::desc("Print before passes that change them"),
cl::init(false), cl::Hidden);
// An option for specifying the dot used by
// print-changed=[dot-cfg | dot-cfg-quiet]
static cl::opt
DotBinary("print-changed-dot-path", cl::Hidden, cl::init("dot"),
cl::desc("system dot used by change reporters"));
// An option that determines the colour used for elements that are only
// in the before part. Must be a colour named in appendix J of
// https://graphviz.org/pdf/dotguide.pdf
static cl::opt
BeforeColour("dot-cfg-before-color",
cl::desc("Color for dot-cfg before elements"), cl::Hidden,
cl::init("red"));
// An option that determines the colour used for elements that are only
// in the after part. Must be a colour named in appendix J of
// https://graphviz.org/pdf/dotguide.pdf
static cl::opt
AfterColour("dot-cfg-after-color",
cl::desc("Color for dot-cfg after elements"), cl::Hidden,
cl::init("forestgreen"));
// An option that determines the colour used for elements that are in both
// the before and after parts. Must be a colour named in appendix J of
// https://graphviz.org/pdf/dotguide.pdf
static cl::opt
CommonColour("dot-cfg-common-color",
cl::desc("Color for dot-cfg common elements"), cl::Hidden,
cl::init("black"));
// An option that determines where the generated website file (named
// passes.html) and the associated pdf files (named diff_*.pdf) are saved.
static cl::opt DotCfgDir(
"dot-cfg-dir",
cl::desc("Generate dot files into specified directory for changed IRs"),
cl::Hidden, cl::init("./"));
// Options to print the IR that was being processed when a pass crashes.
static cl::opt PrintOnCrashPath(
"print-on-crash-path",
cl::desc("Print the last form of the IR before crash to a file"),
cl::Hidden);
static cl::opt PrintOnCrash(
"print-on-crash",
cl::desc("Print the last form of the IR before crash (use -print-on-crash-path to dump to a file)"),
cl::Hidden);
static cl::opt OptBisectPrintIRPath(
"opt-bisect-print-ir-path",
cl::desc("Print IR to path when opt-bisect-limit is reached"), cl::Hidden);
static cl::opt PrintPassNumbers(
"print-pass-numbers", cl::init(false), cl::Hidden,
cl::desc("Print pass names and their ordinals"));
static cl::opt
PrintAtPassNumber("print-at-pass-number", cl::init(0), cl::Hidden,
cl::desc("Print IR at pass with this number as "
"reported by print-passes-names"));
namespace {
// An option for specifying an executable that will be called with the IR
// everytime it changes in the opt pipeline. It will also be called on
// the initial IR as it enters the pipeline. The executable will be passed
// the name of a temporary file containing the IR and the PassID. This may
// be used, for example, to call llc on the IR and run a test to determine
// which pass makes a change that changes the functioning of the IR.
// The usual modifier options work as expected.
static cl::opt
TestChanged("exec-on-ir-change", cl::Hidden, cl::init(""),
cl::desc("exe called with module IR after each pass that "
"changes it"));
/// Extract Module out of \p IR unit. May return nullptr if \p IR does not match
/// certain global filters. Will never return nullptr if \p Force is true.
const Module *unwrapModule(Any IR, bool Force = false) {
if (const auto **M = any_cast(&IR))
return *M;
if (const auto **F = any_cast(&IR)) {
if (!Force && !isFunctionInPrintList((*F)->getName()))
return nullptr;
return (*F)->getParent();
}
if (const auto **C = any_cast(&IR)) {
for (const LazyCallGraph::Node &N : **C) {
const Function &F = N.getFunction();
if (Force || (!F.isDeclaration() && isFunctionInPrintList(F.getName()))) {
return F.getParent();
}
}
assert(!Force && "Expected a module");
return nullptr;
}
if (const auto **L = any_cast(&IR)) {
const Function *F = (*L)->getHeader()->getParent();
if (!Force && !isFunctionInPrintList(F->getName()))
return nullptr;
return F->getParent();
}
llvm_unreachable("Unknown IR unit");
}
void printIR(raw_ostream &OS, const Function *F) {
if (!isFunctionInPrintList(F->getName()))
return;
OS << *F;
}
void printIR(raw_ostream &OS, const Module *M) {
if (isFunctionInPrintList("*") || forcePrintModuleIR()) {
M->print(OS, nullptr);
} else {
for (const auto &F : M->functions()) {
printIR(OS, &F);
}
}
}
void printIR(raw_ostream &OS, const LazyCallGraph::SCC *C) {
for (const LazyCallGraph::Node &N : *C) {
const Function &F = N.getFunction();
if (!F.isDeclaration() && isFunctionInPrintList(F.getName())) {
F.print(OS);
}
}
}
void printIR(raw_ostream &OS, const Loop *L) {
const Function *F = L->getHeader()->getParent();
if (!isFunctionInPrintList(F->getName()))
return;
printLoop(const_cast(*L), OS);
}
std::string getIRName(Any IR) {
if (any_cast(&IR))
return "[module]";
if (const auto **F = any_cast(&IR))
return (*F)->getName().str();
if (const auto **C = any_cast(&IR))
return (*C)->getName();
if (const auto **L = any_cast(&IR))
return (*L)->getName().str();
llvm_unreachable("Unknown wrapped IR type");
}
bool moduleContainsFilterPrintFunc(const Module &M) {
return any_of(M.functions(),
[](const Function &F) {
return isFunctionInPrintList(F.getName());
}) ||
isFunctionInPrintList("*");
}
bool sccContainsFilterPrintFunc(const LazyCallGraph::SCC &C) {
return any_of(C,
[](const LazyCallGraph::Node &N) {
return isFunctionInPrintList(N.getName());
}) ||
isFunctionInPrintList("*");
}
bool shouldPrintIR(Any IR) {
if (const auto **M = any_cast(&IR))
return moduleContainsFilterPrintFunc(**M);
if (const auto **F = any_cast(&IR))
return isFunctionInPrintList((*F)->getName());
if (const auto **C = any_cast(&IR))
return sccContainsFilterPrintFunc(**C);
if (const auto **L = any_cast(&IR))
return isFunctionInPrintList((*L)->getHeader()->getParent()->getName());
llvm_unreachable("Unknown wrapped IR type");
}
/// Generic IR-printing helper that unpacks a pointer to IRUnit wrapped into
/// Any and does actual print job.
void unwrapAndPrint(raw_ostream &OS, Any IR) {
if (!shouldPrintIR(IR))
return;
if (forcePrintModuleIR()) {
auto *M = unwrapModule(IR);
assert(M && "should have unwrapped module");
printIR(OS, M);
return;
}
if (const auto **M = any_cast(&IR)) {
printIR(OS, *M);
return;
}
if (const auto **F = any_cast(&IR)) {
printIR(OS, *F);
return;
}
if (const auto **C = any_cast(&IR)) {
printIR(OS, *C);
return;
}
if (const auto **L = any_cast(&IR)) {
printIR(OS, *L);
return;
}
llvm_unreachable("Unknown wrapped IR type");
}
// Return true when this is a pass for which changes should be ignored
bool isIgnored(StringRef PassID) {
return isSpecialPass(PassID,
{"PassManager", "PassAdaptor", "AnalysisManagerProxy",
"DevirtSCCRepeatedPass", "ModuleInlinerWrapperPass"});
}
std::string makeHTMLReady(StringRef SR) {
std::string S;
while (true) {
StringRef Clean =
SR.take_until([](char C) { return C == '<' || C == '>'; });
S.append(Clean.str());
SR = SR.drop_front(Clean.size());
if (SR.size() == 0)
return S;
S.append(SR[0] == '<' ? "<" : ">");
SR = SR.drop_front();
}
llvm_unreachable("problems converting string to HTML");
}
// Return the module when that is the appropriate level of comparison for \p IR.
const Module *getModuleForComparison(Any IR) {
if (const auto **M = any_cast(&IR))
return *M;
if (const auto **C = any_cast(&IR))
return (*C)
->begin()
->getFunction()
.getParent();
return nullptr;
}
bool isInterestingFunction(const Function &F) {
return isFunctionInPrintList(F.getName());
}
// Return true when this is a pass on IR for which printing
// of changes is desired.
bool isInteresting(Any IR, StringRef PassID, StringRef PassName) {
if (isIgnored(PassID) || !isPassInPrintList(PassName))
return false;
if (const auto **F = any_cast(&IR))
return isInterestingFunction(**F);
return true;
}
} // namespace
template ChangeReporter::~ChangeReporter() {
assert(BeforeStack.empty() && "Problem with Change Printer stack.");
}
template
void ChangeReporter::saveIRBeforePass(Any IR, StringRef PassID,
StringRef PassName) {
// Is this the initial IR?
if (InitialIR) {
InitialIR = false;
if (VerboseMode)
handleInitialIR(IR);
}
// Always need to place something on the stack because invalidated passes
// are not given the IR so it cannot be determined whether the pass was for
// something that was filtered out.
BeforeStack.emplace_back();
if (!isInteresting(IR, PassID, PassName))
return;
// Save the IR representation on the stack.
T &Data = BeforeStack.back();
generateIRRepresentation(IR, PassID, Data);
}
template
void ChangeReporter::handleIRAfterPass(Any IR, StringRef PassID,
StringRef PassName) {
assert(!BeforeStack.empty() && "Unexpected empty stack encountered.");
std::string Name = getIRName(IR);
if (isIgnored(PassID)) {
if (VerboseMode)
handleIgnored(PassID, Name);
} else if (!isInteresting(IR, PassID, PassName)) {
if (VerboseMode)
handleFiltered(PassID, Name);
} else {
// Get the before rep from the stack
T &Before = BeforeStack.back();
// Create the after rep
T After;
generateIRRepresentation(IR, PassID, After);
// Was there a change in IR?
if (Before == After) {
if (VerboseMode)
omitAfter(PassID, Name);
} else
handleAfter(PassID, Name, Before, After, IR);
}
BeforeStack.pop_back();
}
template
void ChangeReporter::handleInvalidatedPass(StringRef PassID) {
assert(!BeforeStack.empty() && "Unexpected empty stack encountered.");
// Always flag it as invalidated as we cannot determine when
// a pass for a filtered function is invalidated since we do not
// get the IR in the call. Also, the output is just alternate
// forms of the banner anyway.
if (VerboseMode)
handleInvalidated(PassID);
BeforeStack.pop_back();
}
template
void ChangeReporter::registerRequiredCallbacks(
PassInstrumentationCallbacks &PIC) {
PIC.registerBeforeNonSkippedPassCallback([&PIC, this](StringRef P, Any IR) {
saveIRBeforePass(IR, P, PIC.getPassNameForClassName(P));
});
PIC.registerAfterPassCallback(
[&PIC, this](StringRef P, Any IR, const PreservedAnalyses &) {
handleIRAfterPass(IR, P, PIC.getPassNameForClassName(P));
});
PIC.registerAfterPassInvalidatedCallback(
[this](StringRef P, const PreservedAnalyses &) {
handleInvalidatedPass(P);
});
}
template
TextChangeReporter::TextChangeReporter(bool Verbose)
: ChangeReporter(Verbose), Out(dbgs()) {}
template void TextChangeReporter::handleInitialIR(Any IR) {
// Always print the module.
// Unwrap and print directly to avoid filtering problems in general routines.
auto *M = unwrapModule(IR, /*Force=*/true);
assert(M && "Expected module to be unwrapped when forced.");
Out << "*** IR Dump At Start ***\n";
M->print(Out, nullptr);
}
template
void TextChangeReporter::omitAfter(StringRef PassID, std::string &Name) {
Out << formatv("*** IR Dump After {0} on {1} omitted because no change ***\n",
PassID, Name);
}
template
void TextChangeReporter::handleInvalidated(StringRef PassID) {
Out << formatv("*** IR Pass {0} invalidated ***\n", PassID);
}
template
void TextChangeReporter::handleFiltered(StringRef PassID,
std::string &Name) {
SmallString<20> Banner =
formatv("*** IR Dump After {0} on {1} filtered out ***\n", PassID, Name);
Out << Banner;
}
template
void TextChangeReporter::handleIgnored(StringRef PassID, std::string &Name) {
Out << formatv("*** IR Pass {0} on {1} ignored ***\n", PassID, Name);
}
IRChangedPrinter::~IRChangedPrinter() = default;
void IRChangedPrinter::registerCallbacks(PassInstrumentationCallbacks &PIC) {
if (PrintChanged == ChangePrinter::Verbose ||
PrintChanged == ChangePrinter::Quiet)
TextChangeReporter::registerRequiredCallbacks(PIC);
}
void IRChangedPrinter::generateIRRepresentation(Any IR, StringRef PassID,
std::string &Output) {
raw_string_ostream OS(Output);
unwrapAndPrint(OS, IR);
OS.str();
}
void IRChangedPrinter::handleAfter(StringRef PassID, std::string &Name,
const std::string &Before,
const std::string &After, Any) {
// Report the IR before the changes when requested.
if (PrintChangedBefore)
Out << "*** IR Dump Before " << PassID << " on " << Name << " ***\n"
<< Before;
// We might not get anything to print if we only want to print a specific
// function but it gets deleted.
if (After.empty()) {
Out << "*** IR Deleted After " << PassID << " on " << Name << " ***\n";
return;
}
Out << "*** IR Dump After " << PassID << " on " << Name << " ***\n" << After;
}
IRChangedTester::~IRChangedTester() {}
void IRChangedTester::registerCallbacks(PassInstrumentationCallbacks &PIC) {
if (TestChanged != "")
TextChangeReporter::registerRequiredCallbacks(PIC);
}
void IRChangedTester::handleIR(const std::string &S, StringRef PassID) {
// Store the body into a temporary file
static SmallVector FD{-1};
SmallVector SR{S};
static SmallVector FileName{""};
if (auto Err = prepareTempFiles(FD, SR, FileName)) {
dbgs() << "Unable to create temporary file.";
return;
}
static ErrorOr Exe = sys::findProgramByName(TestChanged);
if (!Exe) {
dbgs() << "Unable to find test-changed executable.";
return;
}
StringRef Args[] = {TestChanged, FileName[0], PassID};
int Result = sys::ExecuteAndWait(*Exe, Args);
if (Result < 0) {
dbgs() << "Error executing test-changed executable.";
return;
}
if (auto Err = cleanUpTempFiles(FileName))
dbgs() << "Unable to remove temporary file.";
}
void IRChangedTester::handleInitialIR(Any IR) {
// Always test the initial module.
// Unwrap and print directly to avoid filtering problems in general routines.
std::string S;
generateIRRepresentation(IR, "Initial IR", S);
handleIR(S, "Initial IR");
}
void IRChangedTester::omitAfter(StringRef PassID, std::string &Name) {}
void IRChangedTester::handleInvalidated(StringRef PassID) {}
void IRChangedTester::handleFiltered(StringRef PassID, std::string &Name) {}
void IRChangedTester::handleIgnored(StringRef PassID, std::string &Name) {}
void IRChangedTester::handleAfter(StringRef PassID, std::string &Name,
const std::string &Before,
const std::string &After, Any) {
handleIR(After, PassID);
}
template
void OrderedChangedData::report(
const OrderedChangedData &Before, const OrderedChangedData &After,
function_ref HandlePair) {
const auto &BFD = Before.getData();
const auto &AFD = After.getData();
std::vector::const_iterator BI = Before.getOrder().begin();
std::vector::const_iterator BE = Before.getOrder().end();
std::vector::const_iterator AI = After.getOrder().begin();
std::vector::const_iterator AE = After.getOrder().end();
auto HandlePotentiallyRemovedData = [&](std::string S) {
// The order in LLVM may have changed so check if still exists.
if (!AFD.count(S)) {
// This has been removed.
HandlePair(&BFD.find(*BI)->getValue(), nullptr);
}
};
auto HandleNewData = [&](std::vector &Q) {
// Print out any queued up new sections
for (const T *NBI : Q)
HandlePair(nullptr, NBI);
Q.clear();
};
// Print out the data in the after order, with before ones interspersed
// appropriately (ie, somewhere near where they were in the before list).
// Start at the beginning of both lists. Loop through the
// after list. If an element is common, then advance in the before list
// reporting the removed ones until the common one is reached. Report any
// queued up new ones and then report the common one. If an element is not
// common, then enqueue it for reporting. When the after list is exhausted,
// loop through the before list, reporting any removed ones. Finally,
// report the rest of the enqueued new ones.
std::vector NewDataQueue;
while (AI != AE) {
if (!BFD.count(*AI)) {
// This section is new so place it in the queue. This will cause it
// to be reported after deleted sections.
NewDataQueue.emplace_back(&AFD.find(*AI)->getValue());
++AI;
continue;
}
// This section is in both; advance and print out any before-only
// until we get to it.
// It's possible that this section has moved to be later than before. This
// will mess up printing most blocks side by side, but it's a rare case and
// it's better than crashing.
while (BI != BE && *BI != *AI) {
HandlePotentiallyRemovedData(*BI);
++BI;
}
// Report any new sections that were queued up and waiting.
HandleNewData(NewDataQueue);
const T &AData = AFD.find(*AI)->getValue();
const T &BData = BFD.find(*AI)->getValue();
HandlePair(&BData, &AData);
if (BI != BE)
++BI;
++AI;
}
// Check any remaining before sections to see if they have been removed
while (BI != BE) {
HandlePotentiallyRemovedData(*BI);
++BI;
}
HandleNewData(NewDataQueue);
}
template
void IRComparer::compare(
bool CompareModule,
std::function &Before, const FuncDataT &After)>
CompareFunc) {
if (!CompareModule) {
// Just handle the single function.
assert(Before.getData().size() == 1 && After.getData().size() == 1 &&
"Expected only one function.");
CompareFunc(false, 0, Before.getData().begin()->getValue(),
After.getData().begin()->getValue());
return;
}
unsigned Minor = 0;
FuncDataT Missing("");
IRDataT::report(Before, After,
[&](const FuncDataT *B, const FuncDataT *A) {
assert((B || A) && "Both functions cannot be missing.");
if (!B)
B = &Missing;
else if (!A)
A = &Missing;
CompareFunc(true, Minor++, *B, *A);
});
}
template void IRComparer::analyzeIR(Any IR, IRDataT &Data) {
if (const Module *M = getModuleForComparison(IR)) {
// Create data for each existing/interesting function in the module.
for (const Function &F : *M)
generateFunctionData(Data, F);
return;
}
const Function **FPtr = any_cast(&IR);
const Function *F = FPtr ? *FPtr : nullptr;
if (!F) {
const Loop **L = any_cast(&IR);
assert(L && "Unknown IR unit.");
F = (*L)->getHeader()->getParent();
}
assert(F && "Unknown IR unit.");
generateFunctionData(Data, *F);
}
template
bool IRComparer::generateFunctionData(IRDataT &Data, const Function &F) {
if (!F.isDeclaration() && isFunctionInPrintList(F.getName())) {
FuncDataT FD(F.getEntryBlock().getName().str());
int I = 0;
for (const auto &B : F) {
std::string BBName = B.getName().str();
if (BBName.empty()) {
BBName = formatv("{0}", I);
++I;
}
FD.getOrder().emplace_back(BBName);
FD.getData().insert({BBName, B});
}
Data.getOrder().emplace_back(F.getName());
Data.getData().insert({F.getName(), FD});
return true;
}
return false;
}
PrintIRInstrumentation::~PrintIRInstrumentation() {
assert(ModuleDescStack.empty() && "ModuleDescStack is not empty at exit");
}
void PrintIRInstrumentation::pushModuleDesc(StringRef PassID, Any IR) {
const Module *M = unwrapModule(IR);
ModuleDescStack.emplace_back(M, getIRName(IR), PassID);
}
PrintIRInstrumentation::PrintModuleDesc
PrintIRInstrumentation::popModuleDesc(StringRef PassID) {
assert(!ModuleDescStack.empty() && "empty ModuleDescStack");
PrintModuleDesc ModuleDesc = ModuleDescStack.pop_back_val();
assert(std::get<2>(ModuleDesc).equals(PassID) && "malformed ModuleDescStack");
return ModuleDesc;
}
void PrintIRInstrumentation::printBeforePass(StringRef PassID, Any IR) {
if (isIgnored(PassID))
return;
// Saving Module for AfterPassInvalidated operations.
// Note: here we rely on a fact that we do not change modules while
// traversing the pipeline, so the latest captured module is good
// for all print operations that has not happen yet.
if (shouldPrintPassNumbers() || shouldPrintAtPassNumber() ||
shouldPrintAfterPass(PassID))
pushModuleDesc(PassID, IR);
if (!shouldPrintIR(IR))
return;
++CurrentPassNumber;
if (shouldPrintPassNumbers())
dbgs() << " Running pass " << CurrentPassNumber << " " << PassID << "\n";
if (!shouldPrintBeforePass(PassID))
return;
dbgs() << "*** IR Dump Before " << PassID << " on " << getIRName(IR)
<< " ***\n";
unwrapAndPrint(dbgs(), IR);
}
void PrintIRInstrumentation::printAfterPass(StringRef PassID, Any IR) {
if (isIgnored(PassID))
return;
if (!shouldPrintAfterPass(PassID) && !shouldPrintPassNumbers() &&
!shouldPrintAtPassNumber())
return;
const Module *M;
std::string IRName;
StringRef StoredPassID;
std::tie(M, IRName, StoredPassID) = popModuleDesc(PassID);
assert(StoredPassID == PassID && "mismatched PassID");
if (!shouldPrintIR(IR) || !shouldPrintAfterPass(PassID))
return;
dbgs() << "*** IR Dump "
<< (shouldPrintAtPassNumber()
? StringRef(formatv("At {0}-{1}", CurrentPassNumber, PassID))
: StringRef(formatv("After {0}", PassID)))
<< " on " << IRName << " ***\n";
unwrapAndPrint(dbgs(), IR);
}
void PrintIRInstrumentation::printAfterPassInvalidated(StringRef PassID) {
if (isIgnored(PassID))
return;
if (!shouldPrintAfterPass(PassID) && !shouldPrintPassNumbers() &&
!shouldPrintAtPassNumber())
return;
const Module *M;
std::string IRName;
StringRef StoredPassID;
std::tie(M, IRName, StoredPassID) = popModuleDesc(PassID);
assert(StoredPassID == PassID && "mismatched PassID");
// Additional filtering (e.g. -filter-print-func) can lead to module
// printing being skipped.
if (!M || !shouldPrintAfterPass(PassID))
return;
SmallString<20> Banner;
if (shouldPrintAtPassNumber())
Banner = formatv("*** IR Dump At {0}-{1} on {2} (invalidated) ***",
CurrentPassNumber, PassID, IRName);
else
Banner = formatv("*** IR Dump After {0} on {1} (invalidated) ***",
PassID, IRName);
dbgs() << Banner << "\n";
printIR(dbgs(), M);
}
bool PrintIRInstrumentation::shouldPrintBeforePass(StringRef PassID) {
if (shouldPrintBeforeAll())
return true;
StringRef PassName = PIC->getPassNameForClassName(PassID);
return is_contained(printBeforePasses(), PassName);
}
bool PrintIRInstrumentation::shouldPrintAfterPass(StringRef PassID) {
if (shouldPrintAfterAll())
return true;
if (shouldPrintAtPassNumber() && CurrentPassNumber == PrintAtPassNumber)
return true;
StringRef PassName = PIC->getPassNameForClassName(PassID);
return is_contained(printAfterPasses(), PassName);
}
bool PrintIRInstrumentation::shouldPrintPassNumbers() {
return PrintPassNumbers;
}
bool PrintIRInstrumentation::shouldPrintAtPassNumber() {
return PrintAtPassNumber > 0;
}
void PrintIRInstrumentation::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
this->PIC = &PIC;
// BeforePass callback is not just for printing, it also saves a Module
// for later use in AfterPassInvalidated.
if (shouldPrintPassNumbers() || shouldPrintAtPassNumber() ||
shouldPrintBeforeSomePass() || shouldPrintAfterSomePass())
PIC.registerBeforeNonSkippedPassCallback(
[this](StringRef P, Any IR) { this->printBeforePass(P, IR); });
if (shouldPrintPassNumbers() || shouldPrintAtPassNumber() ||
shouldPrintAfterSomePass()) {
PIC.registerAfterPassCallback(
[this](StringRef P, Any IR, const PreservedAnalyses &) {
this->printAfterPass(P, IR);
});
PIC.registerAfterPassInvalidatedCallback(
[this](StringRef P, const PreservedAnalyses &) {
this->printAfterPassInvalidated(P);
});
}
}
void OptNoneInstrumentation::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
PIC.registerShouldRunOptionalPassCallback(
[this](StringRef P, Any IR) { return this->shouldRun(P, IR); });
}
bool OptNoneInstrumentation::shouldRun(StringRef PassID, Any IR) {
const Function **FPtr = any_cast(&IR);
const Function *F = FPtr ? *FPtr : nullptr;
if (!F) {
if (const auto **L = any_cast(&IR))
F = (*L)->getHeader()->getParent();
}
bool ShouldRun = !(F && F->hasOptNone());
if (!ShouldRun && DebugLogging) {
errs() << "Skipping pass " << PassID << " on " << F->getName()
<< " due to optnone attribute\n";
}
return ShouldRun;
}
bool OptPassGateInstrumentation::shouldRun(StringRef PassName, Any IR) {
if (isIgnored(PassName))
return true;
bool ShouldRun =
Context.getOptPassGate().shouldRunPass(PassName, getIRName(IR));
if (!ShouldRun && !this->HasWrittenIR && !OptBisectPrintIRPath.empty()) {
// FIXME: print IR if limit is higher than number of opt-bisect
// invocations
this->HasWrittenIR = true;
const Module *M = unwrapModule(IR, /*Force=*/true);
assert((M && &M->getContext() == &Context) && "Missing/Mismatching Module");
std::error_code EC;
raw_fd_ostream OS(OptBisectPrintIRPath, EC);
if (EC)
report_fatal_error(errorCodeToError(EC));
M->print(OS, nullptr);
}
return ShouldRun;
}
void OptPassGateInstrumentation::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
OptPassGate &PassGate = Context.getOptPassGate();
if (!PassGate.isEnabled())
return;
PIC.registerShouldRunOptionalPassCallback([this](StringRef PassName, Any IR) {
return this->shouldRun(PassName, IR);
});
}
raw_ostream &PrintPassInstrumentation::print() {
if (Opts.Indent) {
assert(Indent >= 0);
dbgs().indent(Indent);
}
return dbgs();
}
void PrintPassInstrumentation::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
if (!Enabled)
return;
std::vector SpecialPasses;
if (!Opts.Verbose) {
SpecialPasses.emplace_back("PassManager");
SpecialPasses.emplace_back("PassAdaptor");
}
PIC.registerBeforeSkippedPassCallback([this, SpecialPasses](StringRef PassID,
Any IR) {
assert(!isSpecialPass(PassID, SpecialPasses) &&
"Unexpectedly skipping special pass");
print() << "Skipping pass: " << PassID << " on " << getIRName(IR) << "\n";
});
PIC.registerBeforeNonSkippedPassCallback([this, SpecialPasses](
StringRef PassID, Any IR) {
if (isSpecialPass(PassID, SpecialPasses))
return;
auto &OS = print();
OS << "Running pass: " << PassID << " on " << getIRName(IR);
if (const auto **F = any_cast(&IR)) {
unsigned Count = (*F)->getInstructionCount();
OS << " (" << Count << " instruction";
if (Count != 1)
OS << 's';
OS << ')';
} else if (const auto **C = any_cast(&IR)) {
int Count = (*C)->size();
OS << " (" << Count << " node";
if (Count != 1)
OS << 's';
OS << ')';
}
OS << "\n";
Indent += 2;
});
PIC.registerAfterPassCallback(
[this, SpecialPasses](StringRef PassID, Any IR,
const PreservedAnalyses &) {
if (isSpecialPass(PassID, SpecialPasses))
return;
Indent -= 2;
});
PIC.registerAfterPassInvalidatedCallback(
[this, SpecialPasses](StringRef PassID, Any IR) {
if (isSpecialPass(PassID, SpecialPasses))
return;
Indent -= 2;
});
if (!Opts.SkipAnalyses) {
PIC.registerBeforeAnalysisCallback([this](StringRef PassID, Any IR) {
print() << "Running analysis: " << PassID << " on " << getIRName(IR)
<< "\n";
Indent += 2;
});
PIC.registerAfterAnalysisCallback(
[this](StringRef PassID, Any IR) { Indent -= 2; });
PIC.registerAnalysisInvalidatedCallback([this](StringRef PassID, Any IR) {
print() << "Invalidating analysis: " << PassID << " on " << getIRName(IR)
<< "\n";
});
PIC.registerAnalysesClearedCallback([this](StringRef IRName) {
print() << "Clearing all analysis results for: " << IRName << "\n";
});
}
}
PreservedCFGCheckerInstrumentation::CFG::CFG(const Function *F,
bool TrackBBLifetime) {
if (TrackBBLifetime)
BBGuards = DenseMap(F->size());
for (const auto &BB : *F) {
if (BBGuards)
BBGuards->try_emplace(intptr_t(&BB), &BB);
for (const auto *Succ : successors(&BB)) {
Graph[&BB][Succ]++;
if (BBGuards)
BBGuards->try_emplace(intptr_t(Succ), Succ);
}
}
}
static void printBBName(raw_ostream &out, const BasicBlock *BB) {
if (BB->hasName()) {
out << BB->getName() << "<" << BB << ">";
return;
}
if (!BB->getParent()) {
out << "unnamed_removed<" << BB << ">";
return;
}
if (BB->isEntryBlock()) {
out << "entry"
<< "<" << BB << ">";
return;
}
unsigned FuncOrderBlockNum = 0;
for (auto &FuncBB : *BB->getParent()) {
if (&FuncBB == BB)
break;
FuncOrderBlockNum++;
}
out << "unnamed_" << FuncOrderBlockNum << "<" << BB << ">";
}
void PreservedCFGCheckerInstrumentation::CFG::printDiff(raw_ostream &out,
const CFG &Before,
const CFG &After) {
assert(!After.isPoisoned());
if (Before.isPoisoned()) {
out << "Some blocks were deleted\n";
return;
}
// Find and print graph differences.
if (Before.Graph.size() != After.Graph.size())
out << "Different number of non-leaf basic blocks: before="
<< Before.Graph.size() << ", after=" << After.Graph.size() << "\n";
for (auto &BB : Before.Graph) {
auto BA = After.Graph.find(BB.first);
if (BA == After.Graph.end()) {
out << "Non-leaf block ";
printBBName(out, BB.first);
out << " is removed (" << BB.second.size() << " successors)\n";
}
}
for (auto &BA : After.Graph) {
auto BB = Before.Graph.find(BA.first);
if (BB == Before.Graph.end()) {
out << "Non-leaf block ";
printBBName(out, BA.first);
out << " is added (" << BA.second.size() << " successors)\n";
continue;
}
if (BB->second == BA.second)
continue;
out << "Different successors of block ";
printBBName(out, BA.first);
out << " (unordered):\n";
out << "- before (" << BB->second.size() << "): ";
for (auto &SuccB : BB->second) {
printBBName(out, SuccB.first);
if (SuccB.second != 1)
out << "(" << SuccB.second << "), ";
else
out << ", ";
}
out << "\n";
out << "- after (" << BA.second.size() << "): ";
for (auto &SuccA : BA.second) {
printBBName(out, SuccA.first);
if (SuccA.second != 1)
out << "(" << SuccA.second << "), ";
else
out << ", ";
}
out << "\n";
}
}
// PreservedCFGCheckerInstrumentation uses PreservedCFGCheckerAnalysis to check
// passes, that reported they kept CFG analyses up-to-date, did not actually
// change CFG. This check is done as follows. Before every functional pass in
// BeforeNonSkippedPassCallback a CFG snapshot (an instance of
// PreservedCFGCheckerInstrumentation::CFG) is requested from
// FunctionAnalysisManager as a result of PreservedCFGCheckerAnalysis. When the
// functional pass finishes and reports that CFGAnalyses or AllAnalyses are
// up-to-date then the cached result of PreservedCFGCheckerAnalysis (if
// available) is checked to be equal to a freshly created CFG snapshot.
struct PreservedCFGCheckerAnalysis
: public AnalysisInfoMixin {
friend AnalysisInfoMixin;
static AnalysisKey Key;
public:
/// Provide the result type for this analysis pass.
using Result = PreservedCFGCheckerInstrumentation::CFG;
/// Run the analysis pass over a function and produce CFG.
Result run(Function &F, FunctionAnalysisManager &FAM) {
return Result(&F, /* TrackBBLifetime */ true);
}
};
AnalysisKey PreservedCFGCheckerAnalysis::Key;
struct PreservedFunctionHashAnalysis
: public AnalysisInfoMixin {
static AnalysisKey Key;
struct FunctionHash {
uint64_t Hash;
};
using Result = FunctionHash;
Result run(Function &F, FunctionAnalysisManager &FAM) {
return Result{StructuralHash(F)};
}
};
AnalysisKey PreservedFunctionHashAnalysis::Key;
struct PreservedModuleHashAnalysis
: public AnalysisInfoMixin {
static AnalysisKey Key;
struct ModuleHash {
uint64_t Hash;
};
using Result = ModuleHash;
Result run(Module &F, ModuleAnalysisManager &FAM) {
return Result{StructuralHash(F)};
}
};
AnalysisKey PreservedModuleHashAnalysis::Key;
bool PreservedCFGCheckerInstrumentation::CFG::invalidate(
Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &) {
auto PAC = PA.getChecker();
return !(PAC.preserved() || PAC.preservedSet>() ||
PAC.preservedSet());
}
static SmallVector GetFunctions(Any IR) {
SmallVector Functions;
if (const auto **MaybeF = any_cast(&IR)) {
Functions.push_back(*const_cast(MaybeF));
} else if (const auto **MaybeM = any_cast(&IR)) {
for (Function &F : **const_cast(MaybeM))
Functions.push_back(&F);
}
return Functions;
}
void PreservedCFGCheckerInstrumentation::registerCallbacks(
PassInstrumentationCallbacks &PIC, ModuleAnalysisManager &MAM) {
if (!VerifyAnalysisInvalidation)
return;
bool Registered = false;
PIC.registerBeforeNonSkippedPassCallback([this, &MAM, Registered](
StringRef P, Any IR) mutable {
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
assert(&PassStack.emplace_back(P));
#endif
(void)this;
auto &FAM = MAM.getResult(
*const_cast(unwrapModule(IR, /*Force=*/true)))
.getManager();
if (!Registered) {
FAM.registerPass([&] { return PreservedCFGCheckerAnalysis(); });
FAM.registerPass([&] { return PreservedFunctionHashAnalysis(); });
MAM.registerPass([&] { return PreservedModuleHashAnalysis(); });
Registered = true;
}
for (Function *F : GetFunctions(IR)) {
// Make sure a fresh CFG snapshot is available before the pass.
FAM.getResult(*F);
FAM.getResult(*F);
}
if (auto *MaybeM = any_cast(&IR)) {
Module &M = **const_cast(MaybeM);
MAM.getResult(M);
}
});
PIC.registerAfterPassInvalidatedCallback(
[this](StringRef P, const PreservedAnalyses &PassPA) {
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
assert(PassStack.pop_back_val() == P &&
"Before and After callbacks must correspond");
#endif
(void)this;
});
PIC.registerAfterPassCallback([this, &MAM](StringRef P, Any IR,
const PreservedAnalyses &PassPA) {
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
assert(PassStack.pop_back_val() == P &&
"Before and After callbacks must correspond");
#endif
(void)this;
// We have to get the FAM via the MAM, rather than directly use a passed in
// FAM because if MAM has not cached the FAM, it won't invalidate function
// analyses in FAM.
auto &FAM = MAM.getResult(
*const_cast(unwrapModule(IR, /*Force=*/true)))
.getManager();
for (Function *F : GetFunctions(IR)) {
if (auto *HashBefore =
FAM.getCachedResult(*F)) {
if (HashBefore->Hash != StructuralHash(*F)) {
report_fatal_error(formatv(
"Function @{0} changed by {1} without invalidating analyses",
F->getName(), P));
}
}
auto CheckCFG = [](StringRef Pass, StringRef FuncName,
const CFG &GraphBefore, const CFG &GraphAfter) {
if (GraphAfter == GraphBefore)
return;
dbgs()
<< "Error: " << Pass
<< " does not invalidate CFG analyses but CFG changes detected in "
"function @"
<< FuncName << ":\n";
CFG::printDiff(dbgs(), GraphBefore, GraphAfter);
report_fatal_error(Twine("CFG unexpectedly changed by ", Pass));
};
if (auto *GraphBefore =
FAM.getCachedResult(*F))
CheckCFG(P, F->getName(), *GraphBefore,
CFG(F, /* TrackBBLifetime */ false));
}
if (auto *MaybeM = any_cast(&IR)) {
Module &M = **const_cast(MaybeM);
if (auto *HashBefore =
MAM.getCachedResult(M)) {
if (HashBefore->Hash != StructuralHash(M)) {
report_fatal_error(formatv(
"Module changed by {0} without invalidating analyses", P));
}
}
}
});
}
void VerifyInstrumentation::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
PIC.registerAfterPassCallback(
[this](StringRef P, Any IR, const PreservedAnalyses &PassPA) {
if (isIgnored(P) || P == "VerifierPass")
return;
const Function **FPtr = any_cast(&IR);
const Function *F = FPtr ? *FPtr : nullptr;
if (!F) {
if (const auto **L = any_cast(&IR))
F = (*L)->getHeader()->getParent();
}
if (F) {
if (DebugLogging)
dbgs() << "Verifying function " << F->getName() << "\n";
if (verifyFunction(*F, &errs()))
report_fatal_error("Broken function found, compilation aborted!");
} else {
const Module **MPtr = any_cast(&IR);
const Module *M = MPtr ? *MPtr : nullptr;
if (!M) {
if (const auto **C = any_cast(&IR))
M = (*C)->begin()->getFunction().getParent();
}
if (M) {
if (DebugLogging)
dbgs() << "Verifying module " << M->getName() << "\n";
if (verifyModule(*M, &errs()))
report_fatal_error("Broken module found, compilation aborted!");
}
}
});
}
InLineChangePrinter::~InLineChangePrinter() = default;
void InLineChangePrinter::generateIRRepresentation(Any IR,
StringRef PassID,
IRDataT &D) {
IRComparer::analyzeIR(IR, D);
}
void InLineChangePrinter::handleAfter(StringRef PassID, std::string &Name,
const IRDataT &Before,
const IRDataT &After,
Any IR) {
SmallString<20> Banner =
formatv("*** IR Dump After {0} on {1} ***\n", PassID, Name);
Out << Banner;
IRComparer(Before, After)
.compare(getModuleForComparison(IR),
[&](bool InModule, unsigned Minor,
const FuncDataT &Before,
const FuncDataT &After) -> void {
handleFunctionCompare(Name, "", PassID, " on ", InModule,
Minor, Before, After);
});
Out << "\n";
}
void InLineChangePrinter::handleFunctionCompare(
StringRef Name, StringRef Prefix, StringRef PassID, StringRef Divider,
bool InModule, unsigned Minor, const FuncDataT &Before,
const FuncDataT &After) {
// Print a banner when this is being shown in the context of a module
if (InModule)
Out << "\n*** IR for function " << Name << " ***\n";
FuncDataT::report(
Before, After,
[&](const BlockDataT *B, const BlockDataT *A) {
StringRef BStr = B ? B->getBody() : "\n";
StringRef AStr = A ? A->getBody() : "\n";
const std::string Removed =
UseColour ? "\033[31m-%l\033[0m\n" : "-%l\n";
const std::string Added = UseColour ? "\033[32m+%l\033[0m\n" : "+%l\n";
const std::string NoChange = " %l\n";
Out << doSystemDiff(BStr, AStr, Removed, Added, NoChange);
});
}
void InLineChangePrinter::registerCallbacks(PassInstrumentationCallbacks &PIC) {
if (PrintChanged == ChangePrinter::DiffVerbose ||
PrintChanged == ChangePrinter::DiffQuiet ||
PrintChanged == ChangePrinter::ColourDiffVerbose ||
PrintChanged == ChangePrinter::ColourDiffQuiet)
TextChangeReporter>::registerRequiredCallbacks(PIC);
}
TimeProfilingPassesHandler::TimeProfilingPassesHandler() {}
void TimeProfilingPassesHandler::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
if (!getTimeTraceProfilerInstance())
return;
PIC.registerBeforeNonSkippedPassCallback(
[this](StringRef P, Any IR) { this->runBeforePass(P, IR); });
PIC.registerAfterPassCallback(
[this](StringRef P, Any IR, const PreservedAnalyses &) {
this->runAfterPass();
},
true);
PIC.registerAfterPassInvalidatedCallback(
[this](StringRef P, const PreservedAnalyses &) { this->runAfterPass(); },
true);
PIC.registerBeforeAnalysisCallback(
[this](StringRef P, Any IR) { this->runBeforePass(P, IR); });
PIC.registerAfterAnalysisCallback(
[this](StringRef P, Any IR) { this->runAfterPass(); }, true);
}
void TimeProfilingPassesHandler::runBeforePass(StringRef PassID, Any IR) {
timeTraceProfilerBegin(PassID, getIRName(IR));
}
void TimeProfilingPassesHandler::runAfterPass() { timeTraceProfilerEnd(); }
namespace {
class DisplayNode;
class DotCfgDiffDisplayGraph;
// Base class for a node or edge in the dot-cfg-changes graph.
class DisplayElement {
public:
// Is this in before, after, or both?
StringRef getColour() const { return Colour; }
protected:
DisplayElement(StringRef Colour) : Colour(Colour) {}
const StringRef Colour;
};
// An edge representing a transition between basic blocks in the
// dot-cfg-changes graph.
class DisplayEdge : public DisplayElement {
public:
DisplayEdge(std::string Value, DisplayNode &Node, StringRef Colour)
: DisplayElement(Colour), Value(Value), Node(Node) {}
// The value on which the transition is made.
std::string getValue() const { return Value; }
// The node (representing a basic block) reached by this transition.
const DisplayNode &getDestinationNode() const { return Node; }
protected:
std::string Value;
const DisplayNode &Node;
};
// A node in the dot-cfg-changes graph which represents a basic block.
class DisplayNode : public DisplayElement {
public:
// \p C is the content for the node, \p T indicates the colour for the
// outline of the node
DisplayNode(std::string Content, StringRef Colour)
: DisplayElement(Colour), Content(Content) {}
// Iterator to the child nodes. Required by GraphWriter.
using ChildIterator = std::unordered_set::const_iterator;
ChildIterator children_begin() const { return Children.cbegin(); }
ChildIterator children_end() const { return Children.cend(); }
// Iterator for the edges. Required by GraphWriter.
using EdgeIterator = std::vector::const_iterator;
EdgeIterator edges_begin() const { return EdgePtrs.cbegin(); }
EdgeIterator edges_end() const { return EdgePtrs.cend(); }
// Create an edge to \p Node on value \p Value, with colour \p Colour.
void createEdge(StringRef Value, DisplayNode &Node, StringRef Colour);
// Return the content of this node.
std::string getContent() const { return Content; }
// Return the edge to node \p S.
const DisplayEdge &getEdge(const DisplayNode &To) const {
assert(EdgeMap.find(&To) != EdgeMap.end() && "Expected to find edge.");
return *EdgeMap.find(&To)->second;
}
// Return the value for the transition to basic block \p S.
// Required by GraphWriter.
std::string getEdgeSourceLabel(const DisplayNode &Sink) const {
return getEdge(Sink).getValue();
}
void createEdgeMap();
protected:
const std::string Content;
// Place to collect all of the edges. Once they are all in the vector,
// the vector will not reallocate so then we can use pointers to them,
// which are required by the graph writing routines.
std::vector Edges;
std::vector EdgePtrs;
std::unordered_set Children;
std::unordered_map EdgeMap;
// Safeguard adding of edges.
bool AllEdgesCreated = false;
};
// Class representing a difference display (corresponds to a pdf file).
class DotCfgDiffDisplayGraph {
public:
DotCfgDiffDisplayGraph(std::string Name) : GraphName(Name) {}
// Generate the file into \p DotFile.
void generateDotFile(StringRef DotFile);
// Iterator to the nodes. Required by GraphWriter.
using NodeIterator = std::vector::const_iterator;
NodeIterator nodes_begin() const {
assert(NodeGenerationComplete && "Unexpected children iterator creation");
return NodePtrs.cbegin();
}
NodeIterator nodes_end() const {
assert(NodeGenerationComplete && "Unexpected children iterator creation");
return NodePtrs.cend();
}
// Record the index of the entry node. At this point, we can build up
// vectors of pointers that are required by the graph routines.
void setEntryNode(unsigned N) {
// At this point, there will be no new nodes.
assert(!NodeGenerationComplete && "Unexpected node creation");
NodeGenerationComplete = true;
for (auto &N : Nodes)
NodePtrs.emplace_back(&N);
EntryNode = NodePtrs[N];
}
// Create a node.
void createNode(std::string C, StringRef Colour) {
assert(!NodeGenerationComplete && "Unexpected node creation");
Nodes.emplace_back(C, Colour);
}
// Return the node at index \p N to avoid problems with vectors reallocating.
DisplayNode &getNode(unsigned N) {
assert(N < Nodes.size() && "Node is out of bounds");
return Nodes[N];
}
unsigned size() const {
assert(NodeGenerationComplete && "Unexpected children iterator creation");
return Nodes.size();
}
// Return the name of the graph. Required by GraphWriter.
std::string getGraphName() const { return GraphName; }
// Return the string representing the differences for basic block \p Node.
// Required by GraphWriter.
std::string getNodeLabel(const DisplayNode &Node) const {
return Node.getContent();
}
// Return a string with colour information for Dot. Required by GraphWriter.
std::string getNodeAttributes(const DisplayNode &Node) const {
return attribute(Node.getColour());
}
// Return a string with colour information for Dot. Required by GraphWriter.
std::string getEdgeColorAttr(const DisplayNode &From,
const DisplayNode &To) const {
return attribute(From.getEdge(To).getColour());
}
// Get the starting basic block. Required by GraphWriter.
DisplayNode *getEntryNode() const {
assert(NodeGenerationComplete && "Unexpected children iterator creation");
return EntryNode;
}
protected:
// Return the string containing the colour to use as a Dot attribute.
std::string attribute(StringRef Colour) const {
return "color=" + Colour.str();
}
bool NodeGenerationComplete = false;
const std::string GraphName;
std::vector Nodes;
std::vector NodePtrs;
DisplayNode *EntryNode = nullptr;
};
void DisplayNode::createEdge(StringRef Value, DisplayNode &Node,
StringRef Colour) {
assert(!AllEdgesCreated && "Expected to be able to still create edges.");
Edges.emplace_back(Value.str(), Node, Colour);
Children.insert(&Node);
}
void DisplayNode::createEdgeMap() {
// No more edges will be added so we can now use pointers to the edges
// as the vector will not grow and reallocate.
AllEdgesCreated = true;
for (auto &E : Edges)
EdgeMap.insert({&E.getDestinationNode(), &E});
}
class DotCfgDiffNode;
class DotCfgDiff;
// A class representing a basic block in the Dot difference graph.
class DotCfgDiffNode {
public:
DotCfgDiffNode() = delete;
// Create a node in Dot difference graph \p G representing the basic block
// represented by \p BD with colour \p Colour (where it exists).
DotCfgDiffNode(DotCfgDiff &G, unsigned N, const BlockDataT &BD,
StringRef Colour)
: Graph(G), N(N), Data{&BD, nullptr}, Colour(Colour) {}
DotCfgDiffNode(const DotCfgDiffNode &DN)
: Graph(DN.Graph), N(DN.N), Data{DN.Data[0], DN.Data[1]},
Colour(DN.Colour), EdgesMap(DN.EdgesMap), Children(DN.Children),
Edges(DN.Edges) {}
unsigned getIndex() const { return N; }
// The label of the basic block
StringRef getLabel() const {
assert(Data[0] && "Expected Data[0] to be set.");
return Data[0]->getLabel();
}
// Return the colour for this block
StringRef getColour() const { return Colour; }
// Change this basic block from being only in before to being common.
// Save the pointer to \p Other.
void setCommon(const BlockDataT &Other) {
assert(!Data[1] && "Expected only one block datum");
Data[1] = &Other;
Colour = CommonColour;
}
// Add an edge to \p E of colour {\p Value, \p Colour}.
void addEdge(unsigned E, StringRef Value, StringRef Colour) {
// This is a new edge or it is an edge being made common.
assert((EdgesMap.count(E) == 0 || Colour == CommonColour) &&
"Unexpected edge count and color.");
EdgesMap[E] = {Value.str(), Colour};
}
// Record the children and create edges.
void finalize(DotCfgDiff &G);
// Return the colour of the edge to node \p S.
StringRef getEdgeColour(const unsigned S) const {
assert(EdgesMap.count(S) == 1 && "Expected to find edge.");
return EdgesMap.at(S).second;
}
// Return the string representing the basic block.
std::string getBodyContent() const;
void createDisplayEdges(DotCfgDiffDisplayGraph &Graph, unsigned DisplayNode,
std::map &NodeMap) const;
protected:
DotCfgDiff &Graph;
const unsigned N;
const BlockDataT *Data[2];
StringRef Colour;
std::map> EdgesMap;
std::vector Children;
std::vector Edges;
};
// Class representing the difference graph between two functions.
class DotCfgDiff {
public:
// \p Title is the title given to the graph. \p EntryNodeName is the
// entry node for the function. \p Before and \p After are the before
// after versions of the function, respectively. \p Dir is the directory
// in which to store the results.
DotCfgDiff(StringRef Title, const FuncDataT &Before,
const FuncDataT &After);
DotCfgDiff(const DotCfgDiff &) = delete;
DotCfgDiff &operator=(const DotCfgDiff &) = delete;
DotCfgDiffDisplayGraph createDisplayGraph(StringRef Title,
StringRef EntryNodeName);
// Return a string consisting of the labels for the \p Source and \p Sink.
// The combination allows distinguishing changing transitions on the
// same value (ie, a transition went to X before and goes to Y after).
// Required by GraphWriter.
StringRef getEdgeSourceLabel(const unsigned &Source,
const unsigned &Sink) const {
std::string S =
getNode(Source).getLabel().str() + " " + getNode(Sink).getLabel().str();
assert(EdgeLabels.count(S) == 1 && "Expected to find edge label.");
return EdgeLabels.find(S)->getValue();
}
// Return the number of basic blocks (nodes). Required by GraphWriter.
unsigned size() const { return Nodes.size(); }
const DotCfgDiffNode &getNode(unsigned N) const {
assert(N < Nodes.size() && "Unexpected index for node reference");
return Nodes[N];
}
protected:
// Return the string surrounded by HTML to make it the appropriate colour.
std::string colourize(std::string S, StringRef Colour) const;
void createNode(StringRef Label, const BlockDataT &BD, StringRef C) {
unsigned Pos = Nodes.size();
Nodes.emplace_back(*this, Pos, BD, C);
NodePosition.insert({Label, Pos});
}
// TODO Nodes should probably be a StringMap after the
// display graph is separated out, which would remove the need for
// NodePosition.
std::vector Nodes;
StringMap NodePosition;
const std::string GraphName;
StringMap EdgeLabels;
};
std::string DotCfgDiffNode::getBodyContent() const {
if (Colour == CommonColour) {
assert(Data[1] && "Expected Data[1] to be set.");
StringRef SR[2];
for (unsigned I = 0; I < 2; ++I) {
SR[I] = Data[I]->getBody();
// drop initial '\n' if present
if (SR[I][0] == '\n')
SR[I] = SR[I].drop_front();
// drop predecessors as they can be big and are redundant
SR[I] = SR[I].drop_until([](char C) { return C == '\n'; }).drop_front();
}
SmallString<80> OldLineFormat = formatv(
"%l ", BeforeColour);
SmallString<80> NewLineFormat = formatv(
"%l ", AfterColour);
SmallString<80> UnchangedLineFormat = formatv(
"%l ", CommonColour);
std::string Diff = Data[0]->getLabel().str();
Diff += ":\n " +
doSystemDiff(makeHTMLReady(SR[0]), makeHTMLReady(SR[1]),
OldLineFormat, NewLineFormat, UnchangedLineFormat);
// Diff adds in some empty colour changes which are not valid HTML
// so remove them. Colours are all lowercase alpha characters (as
// listed in https://graphviz.org/pdf/dotguide.pdf).
Regex R("");
while (true) {
std::string Error;
std::string S = R.sub("", Diff, &Error);
if (Error != "")
return Error;
if (S == Diff)
return Diff;
Diff = S;
}
llvm_unreachable("Should not get here");
}
// Put node out in the appropriate colour.
assert(!Data[1] && "Data[1] is set unexpectedly.");
std::string Body = makeHTMLReady(Data[0]->getBody());
const StringRef BS = Body;
StringRef BS1 = BS;
// Drop leading newline, if present.
if (BS.front() == '\n')
BS1 = BS1.drop_front(1);
// Get label.
StringRef Label = BS1.take_until([](char C) { return C == ':'; });
// drop predecessors as they can be big and are redundant
BS1 = BS1.drop_until([](char C) { return C == '\n'; }).drop_front();
std::string S = "" + Label.str() + ":";
// align each line to the left.
while (BS1.size()) {
S.append(" ");
StringRef Line = BS1.take_until([](char C) { return C == '\n'; });
S.append(Line.str());
BS1 = BS1.drop_front(Line.size() + 1);
}
S.append(" ");
return S;
}
std::string DotCfgDiff::colourize(std::string S, StringRef Colour) const {
if (S.length() == 0)
return S;
return "" + S + "";
}
DotCfgDiff::DotCfgDiff(StringRef Title, const FuncDataT &Before,
const FuncDataT &After)
: GraphName(Title.str()) {
StringMap EdgesMap;
// Handle each basic block in the before IR.
for (auto &B : Before.getData()) {
StringRef Label = B.getKey();
const BlockDataT &BD = B.getValue();
createNode(Label, BD, BeforeColour);
// Create transitions with names made up of the from block label, the value
// on which the transition is made and the to block label.
for (StringMap::const_iterator Sink = BD.getData().begin(),
E = BD.getData().end();
Sink != E; ++Sink) {
std::string Key = (Label + " " + Sink->getKey().str()).str() + " " +
BD.getData().getSuccessorLabel(Sink->getKey()).str();
EdgesMap.insert({Key, BeforeColour});
}
}
// Handle each basic block in the after IR
for (auto &A : After.getData()) {
StringRef Label = A.getKey();
const BlockDataT &BD = A.getValue();
unsigned C = NodePosition.count(Label);
if (C == 0)
// This only exists in the after IR. Create the node.
createNode(Label, BD, AfterColour);
else {
assert(C == 1 && "Unexpected multiple nodes.");
Nodes[NodePosition[Label]].setCommon(BD);
}
// Add in the edges between the nodes (as common or only in after).
for (StringMap::const_iterator Sink = BD.getData().begin(),
E = BD.getData().end();
Sink != E; ++Sink) {
std::string Key = (Label + " " + Sink->getKey().str()).str() + " " +
BD.getData().getSuccessorLabel(Sink->getKey()).str();
unsigned C = EdgesMap.count(Key);
if (C == 0)
EdgesMap.insert({Key, AfterColour});
else {
EdgesMap[Key] = CommonColour;
}
}
}
// Now go through the map of edges and add them to the node.
for (auto &E : EdgesMap) {
// Extract the source, sink and value from the edge key.
StringRef S = E.getKey();
auto SP1 = S.rsplit(' ');
auto &SourceSink = SP1.first;
auto SP2 = SourceSink.split(' ');
StringRef Source = SP2.first;
StringRef Sink = SP2.second;
StringRef Value = SP1.second;
assert(NodePosition.count(Source) == 1 && "Expected to find node.");
DotCfgDiffNode &SourceNode = Nodes[NodePosition[Source]];
assert(NodePosition.count(Sink) == 1 && "Expected to find node.");
unsigned SinkNode = NodePosition[Sink];
StringRef Colour = E.second;
// Look for an edge from Source to Sink
if (EdgeLabels.count(SourceSink) == 0)
EdgeLabels.insert({SourceSink, colourize(Value.str(), Colour)});
else {
StringRef V = EdgeLabels.find(SourceSink)->getValue();
std::string NV = colourize(V.str() + " " + Value.str(), Colour);
Colour = CommonColour;
EdgeLabels[SourceSink] = NV;
}
SourceNode.addEdge(SinkNode, Value, Colour);
}
for (auto &I : Nodes)
I.finalize(*this);
}
DotCfgDiffDisplayGraph DotCfgDiff::createDisplayGraph(StringRef Title,
StringRef EntryNodeName) {
assert(NodePosition.count(EntryNodeName) == 1 &&
"Expected to find entry block in map.");
unsigned Entry = NodePosition[EntryNodeName];
assert(Entry < Nodes.size() && "Expected to find entry node");
DotCfgDiffDisplayGraph G(Title.str());
std::map NodeMap;
int EntryIndex = -1;
unsigned Index = 0;
for (auto &I : Nodes) {
if (I.getIndex() == Entry)
EntryIndex = Index;
G.createNode(I.getBodyContent(), I.getColour());
NodeMap.insert({I.getIndex(), Index++});
}
assert(EntryIndex >= 0 && "Expected entry node index to be set.");
G.setEntryNode(EntryIndex);
for (auto &I : NodeMap) {
unsigned SourceNode = I.first;
unsigned DisplayNode = I.second;
getNode(SourceNode).createDisplayEdges(G, DisplayNode, NodeMap);
}
return G;
}
void DotCfgDiffNode::createDisplayEdges(
DotCfgDiffDisplayGraph &DisplayGraph, unsigned DisplayNodeIndex,
std::map &NodeMap) const {
DisplayNode &SourceDisplayNode = DisplayGraph.getNode(DisplayNodeIndex);
for (auto I : Edges) {
unsigned SinkNodeIndex = I;
StringRef Colour = getEdgeColour(SinkNodeIndex);
const DotCfgDiffNode *SinkNode = &Graph.getNode(SinkNodeIndex);
StringRef Label = Graph.getEdgeSourceLabel(getIndex(), SinkNodeIndex);
DisplayNode &SinkDisplayNode = DisplayGraph.getNode(SinkNode->getIndex());
SourceDisplayNode.createEdge(Label, SinkDisplayNode, Colour);
}
SourceDisplayNode.createEdgeMap();
}
void DotCfgDiffNode::finalize(DotCfgDiff &G) {
for (auto E : EdgesMap) {
Children.emplace_back(E.first);
Edges.emplace_back(E.first);
}
}
} // namespace
namespace llvm {
template <> struct GraphTraits {
using NodeRef = const DisplayNode *;
using ChildIteratorType = DisplayNode::ChildIterator;
using nodes_iterator = DotCfgDiffDisplayGraph::NodeIterator;
using EdgeRef = const DisplayEdge *;
using ChildEdgeIterator = DisplayNode::EdgeIterator;
static NodeRef getEntryNode(const DotCfgDiffDisplayGraph *G) {
return G->getEntryNode();
}
static ChildIteratorType child_begin(NodeRef N) {
return N->children_begin();
}
static ChildIteratorType child_end(NodeRef N) { return N->children_end(); }
static nodes_iterator nodes_begin(const DotCfgDiffDisplayGraph *G) {
return G->nodes_begin();
}
static nodes_iterator nodes_end(const DotCfgDiffDisplayGraph *G) {
return G->nodes_end();
}
static ChildEdgeIterator child_edge_begin(NodeRef N) {
return N->edges_begin();
}
static ChildEdgeIterator child_edge_end(NodeRef N) { return N->edges_end(); }
static NodeRef edge_dest(EdgeRef E) { return &E->getDestinationNode(); }
static unsigned size(const DotCfgDiffDisplayGraph *G) { return G->size(); }
};
template <>
struct DOTGraphTraits : public DefaultDOTGraphTraits {
explicit DOTGraphTraits(bool Simple = false)
: DefaultDOTGraphTraits(Simple) {}
static bool renderNodesUsingHTML() { return true; }
static std::string getGraphName(const DotCfgDiffDisplayGraph *DiffData) {
return DiffData->getGraphName();
}
static std::string
getGraphProperties(const DotCfgDiffDisplayGraph *DiffData) {
return "\tsize=\"190, 190\";\n";
}
static std::string getNodeLabel(const DisplayNode *Node,
const DotCfgDiffDisplayGraph *DiffData) {
return DiffData->getNodeLabel(*Node);
}
static std::string getNodeAttributes(const DisplayNode *Node,
const DotCfgDiffDisplayGraph *DiffData) {
return DiffData->getNodeAttributes(*Node);
}
static std::string getEdgeSourceLabel(const DisplayNode *From,
DisplayNode::ChildIterator &To) {
return From->getEdgeSourceLabel(**To);
}
static std::string getEdgeAttributes(const DisplayNode *From,
DisplayNode::ChildIterator &To,
const DotCfgDiffDisplayGraph *DiffData) {
return DiffData->getEdgeColorAttr(*From, **To);
}
};
} // namespace llvm
namespace {
void DotCfgDiffDisplayGraph::generateDotFile(StringRef DotFile) {
std::error_code EC;
raw_fd_ostream OutStream(DotFile, EC);
if (EC) {
errs() << "Error: " << EC.message() << "\n";
return;
}
WriteGraph(OutStream, this, false);
OutStream.flush();
OutStream.close();
}
} // namespace
namespace llvm {
DCData::DCData(const BasicBlock &B) {
// Build up transition labels.
const Instruction *Term = B.getTerminator();
if (const BranchInst *Br = dyn_cast(Term))
if (Br->isUnconditional())
addSuccessorLabel(Br->getSuccessor(0)->getName().str(), "");
else {
addSuccessorLabel(Br->getSuccessor(0)->getName().str(), "true");
addSuccessorLabel(Br->getSuccessor(1)->getName().str(), "false");
}
else if (const SwitchInst *Sw = dyn_cast(Term)) {
addSuccessorLabel(Sw->case_default()->getCaseSuccessor()->getName().str(),
"default");
for (auto &C : Sw->cases()) {
assert(C.getCaseValue() && "Expected to find case value.");
SmallString<20> Value = formatv("{0}", C.getCaseValue()->getSExtValue());
addSuccessorLabel(C.getCaseSuccessor()->getName().str(), Value);
}
} else
for (const_succ_iterator I = succ_begin(&B), E = succ_end(&B); I != E; ++I)
addSuccessorLabel((*I)->getName().str(), "");
}
DotCfgChangeReporter::DotCfgChangeReporter(bool Verbose)
: ChangeReporter>(Verbose) {}
void DotCfgChangeReporter::handleFunctionCompare(
StringRef Name, StringRef Prefix, StringRef PassID, StringRef Divider,
bool InModule, unsigned Minor, const FuncDataT &Before,
const FuncDataT &After) {
assert(HTML && "Expected outstream to be set");
SmallString<8> Extender;
SmallString<8> Number;
// Handle numbering and file names.
if (InModule) {
Extender = formatv("{0}_{1}", N, Minor);
Number = formatv("{0}.{1}", N, Minor);
} else {
Extender = formatv("{0}", N);
Number = formatv("{0}", N);
}
// Create a temporary file name for the dot file.
SmallVector SV;
sys::fs::createUniquePath("cfgdot-%%%%%%.dot", SV, true);
std::string DotFile = Twine(SV).str();
SmallString<20> PDFFileName = formatv("diff_{0}.pdf", Extender);
SmallString<200> Text;
Text = formatv("{0}.{1}{2}{3}{4}", Number, Prefix, makeHTMLReady(PassID),
Divider, Name);
DotCfgDiff Diff(Text, Before, After);
std::string EntryBlockName = After.getEntryBlockName();
// Use the before entry block if the after entry block was removed.
if (EntryBlockName == "")
EntryBlockName = Before.getEntryBlockName();
assert(EntryBlockName != "" && "Expected to find entry block");
DotCfgDiffDisplayGraph DG = Diff.createDisplayGraph(Text, EntryBlockName);
DG.generateDotFile(DotFile);
*HTML << genHTML(Text, DotFile, PDFFileName);
std::error_code EC = sys::fs::remove(DotFile);
if (EC)
errs() << "Error: " << EC.message() << "\n";
}
std::string DotCfgChangeReporter::genHTML(StringRef Text, StringRef DotFile,
StringRef PDFFileName) {
SmallString<20> PDFFile = formatv("{0}/{1}", DotCfgDir, PDFFileName);
// Create the PDF file.
static ErrorOr DotExe = sys::findProgramByName(DotBinary);
if (!DotExe)
return "Unable to find dot executable.";
StringRef Args[] = {DotBinary, "-Tpdf", "-o", PDFFile, DotFile};
int Result = sys::ExecuteAndWait(*DotExe, Args, std::nullopt);
if (Result < 0)
return "Error executing system dot.";
// Create the HTML tag refering to the PDF file.
SmallString<200> S = formatv(
" {1} \n", PDFFileName, Text);
return S.c_str();
}
void DotCfgChangeReporter::handleInitialIR(Any IR) {
assert(HTML && "Expected outstream to be set");
*HTML << "\n"
<< "
\n"
<< "
\n";
// Create representation of IR
IRDataT Data;
IRComparer::analyzeIR(IR, Data);
// Now compare it against itself, which will have everything the
// same and will generate the files.
IRComparer(Data, Data)
.compare(getModuleForComparison(IR),
[&](bool InModule, unsigned Minor,
const FuncDataT &Before,
const FuncDataT &After) -> void {
handleFunctionCompare("", " ", "Initial IR", "", InModule,
Minor, Before, After);
});
*HTML << "
\n"
<< "
\n";
++N;
}
void DotCfgChangeReporter::generateIRRepresentation(Any IR, StringRef PassID,
IRDataT &Data) {
IRComparer::analyzeIR(IR, Data);
}
void DotCfgChangeReporter::omitAfter(StringRef PassID, std::string &Name) {
assert(HTML && "Expected outstream to be set");
SmallString<20> Banner =
formatv(" {0}. Pass {1} on {2} omitted because no change \n",
N, makeHTMLReady(PassID), Name);
*HTML << Banner;
++N;
}
void DotCfgChangeReporter::handleAfter(StringRef PassID, std::string &Name,
const IRDataT &Before,
const IRDataT &After, Any IR) {
assert(HTML && "Expected outstream to be set");
IRComparer(Before, After)
.compare(getModuleForComparison(IR),
[&](bool InModule, unsigned Minor,
const FuncDataT &Before,
const FuncDataT &After) -> void {
handleFunctionCompare(Name, " Pass ", PassID, " on ", InModule,
Minor, Before, After);
});
*HTML << "
\n";
++N;
}
void DotCfgChangeReporter::handleInvalidated(StringRef PassID) {
assert(HTML && "Expected outstream to be set");
SmallString<20> Banner =
formatv(" {0}. {1} invalidated \n", N, makeHTMLReady(PassID));
*HTML << Banner;
++N;
}
void DotCfgChangeReporter::handleFiltered(StringRef PassID, std::string &Name) {
assert(HTML && "Expected outstream to be set");
SmallString<20> Banner =
formatv(" {0}. Pass {1} on {2} filtered out \n", N,
makeHTMLReady(PassID), Name);
*HTML << Banner;
++N;
}
void DotCfgChangeReporter::handleIgnored(StringRef PassID, std::string &Name) {
assert(HTML && "Expected outstream to be set");
SmallString<20> Banner = formatv(" {0}. {1} on {2} ignored \n", N,
makeHTMLReady(PassID), Name);
*HTML << Banner;
++N;
}
bool DotCfgChangeReporter::initializeHTML() {
std::error_code EC;
HTML = std::make_unique(DotCfgDir + "/passes.html", EC);
if (EC) {
HTML = nullptr;
return false;
}
*HTML << ""
<< ""
<< ""
<< ""
<< "passes.html"
<< "\n"
<< "";
return true;
}
DotCfgChangeReporter::~DotCfgChangeReporter() {
if (!HTML)
return;
*HTML
<< ""
<< ""
<< "\n";
HTML->flush();
HTML->close();
}
void DotCfgChangeReporter::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
if (PrintChanged == ChangePrinter::DotCfgVerbose ||
PrintChanged == ChangePrinter::DotCfgQuiet) {
SmallString<128> OutputDir;
sys::fs::expand_tilde(DotCfgDir, OutputDir);
sys::fs::make_absolute(OutputDir);
assert(!OutputDir.empty() && "expected output dir to be non-empty");
DotCfgDir = OutputDir.c_str();
if (initializeHTML()) {
ChangeReporter>::registerRequiredCallbacks(PIC);
return;
}
dbgs() << "Unable to open output stream for -cfg-dot-changed\n";
}
}
StandardInstrumentations::StandardInstrumentations(
LLVMContext &Context, bool DebugLogging, bool VerifyEach,
PrintPassOptions PrintPassOpts)
: PrintPass(DebugLogging, PrintPassOpts),
OptNone(DebugLogging),
OptPassGate(Context),
PrintChangedIR(PrintChanged == ChangePrinter::Verbose),
PrintChangedDiff(PrintChanged == ChangePrinter::DiffVerbose ||
PrintChanged == ChangePrinter::ColourDiffVerbose,
PrintChanged == ChangePrinter::ColourDiffVerbose ||
PrintChanged == ChangePrinter::ColourDiffQuiet),
WebsiteChangeReporter(PrintChanged == ChangePrinter::DotCfgVerbose),
Verify(DebugLogging), VerifyEach(VerifyEach) {}
PrintCrashIRInstrumentation *PrintCrashIRInstrumentation::CrashReporter =
nullptr;
void PrintCrashIRInstrumentation::reportCrashIR() {
if (!PrintOnCrashPath.empty()) {
std::error_code EC;
raw_fd_ostream Out(PrintOnCrashPath, EC);
if (EC)
report_fatal_error(errorCodeToError(EC));
Out << SavedIR;
} else {
dbgs() << SavedIR;
}
}
void PrintCrashIRInstrumentation::SignalHandler(void *) {
// Called by signal handlers so do not lock here
// Is the PrintCrashIRInstrumentation still alive?
if (!CrashReporter)
return;
assert((PrintOnCrash || !PrintOnCrashPath.empty()) &&
"Did not expect to get here without option set.");
CrashReporter->reportCrashIR();
}
PrintCrashIRInstrumentation::~PrintCrashIRInstrumentation() {
if (!CrashReporter)
return;
assert((PrintOnCrash || !PrintOnCrashPath.empty()) &&
"Did not expect to get here without option set.");
CrashReporter = nullptr;
}
void PrintCrashIRInstrumentation::registerCallbacks(
PassInstrumentationCallbacks &PIC) {
if ((!PrintOnCrash && PrintOnCrashPath.empty()) || CrashReporter)
return;
sys::AddSignalHandler(SignalHandler, nullptr);
CrashReporter = this;
PIC.registerBeforeNonSkippedPassCallback(
[&PIC, this](StringRef PassID, Any IR) {
SavedIR.clear();
raw_string_ostream OS(SavedIR);
OS << formatv("*** Dump of {0}IR Before Last Pass {1}",
llvm::forcePrintModuleIR() ? "Module " : "", PassID);
if (!isInteresting(IR, PassID, PIC.getPassNameForClassName(PassID))) {
OS << " Filtered Out ***\n";
return;
}
OS << " Started ***\n";
unwrapAndPrint(OS, IR);
});
}
void StandardInstrumentations::registerCallbacks(
PassInstrumentationCallbacks &PIC, ModuleAnalysisManager *MAM) {
PrintIR.registerCallbacks(PIC);
PrintPass.registerCallbacks(PIC);
TimePasses.registerCallbacks(PIC);
OptNone.registerCallbacks(PIC);
OptPassGate.registerCallbacks(PIC);
PrintChangedIR.registerCallbacks(PIC);
PseudoProbeVerification.registerCallbacks(PIC);
if (VerifyEach)
Verify.registerCallbacks(PIC);
PrintChangedDiff.registerCallbacks(PIC);
WebsiteChangeReporter.registerCallbacks(PIC);
ChangeTester.registerCallbacks(PIC);
PrintCrashIR.registerCallbacks(PIC);
if (MAM)
PreservedCFGChecker.registerCallbacks(PIC, *MAM);
// TimeProfiling records the pass running time cost.
// Its 'BeforePassCallback' can be appended at the tail of all the
// BeforeCallbacks by calling `registerCallbacks` in the end.
// Its 'AfterPassCallback' is put at the front of all the
// AfterCallbacks by its `registerCallbacks`. This is necessary
// to ensure that other callbacks are not included in the timings.
TimeProfilingPasses.registerCallbacks(PIC);
}
template class ChangeReporter;
template class TextChangeReporter;
template class BlockDataT;
template class FuncDataT;
template class IRDataT;
template class ChangeReporter>;
template class TextChangeReporter>;
template class IRComparer;
} // namespace llvm