//===- ELFYAML.cpp - ELF YAMLIO implementation ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines classes for handling the YAML representation of ELF. // //===----------------------------------------------------------------------===// #include "llvm/ObjectYAML/ELFYAML.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/ARMEHABI.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MipsABIFlags.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/WithColor.h" #include #include namespace llvm { ELFYAML::Chunk::~Chunk() = default; namespace ELFYAML { ELF_ELFOSABI Object::getOSAbi() const { return Header.OSABI; } unsigned Object::getMachine() const { if (Header.Machine) return *Header.Machine; return llvm::ELF::EM_NONE; } constexpr StringRef SectionHeaderTable::TypeStr; } // namespace ELFYAML namespace yaml { void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_ET &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(ET_NONE); ECase(ET_REL); ECase(ET_EXEC); ECase(ET_DYN); ECase(ET_CORE); #undef ECase IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_PT &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(PT_NULL); ECase(PT_LOAD); ECase(PT_DYNAMIC); ECase(PT_INTERP); ECase(PT_NOTE); ECase(PT_SHLIB); ECase(PT_PHDR); ECase(PT_TLS); ECase(PT_GNU_EH_FRAME); ECase(PT_GNU_STACK); ECase(PT_GNU_RELRO); ECase(PT_GNU_PROPERTY); #undef ECase IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_NT &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) // Generic note types. ECase(NT_VERSION); ECase(NT_ARCH); ECase(NT_GNU_BUILD_ATTRIBUTE_OPEN); ECase(NT_GNU_BUILD_ATTRIBUTE_FUNC); // Core note types. ECase(NT_PRSTATUS); ECase(NT_FPREGSET); ECase(NT_PRPSINFO); ECase(NT_TASKSTRUCT); ECase(NT_AUXV); ECase(NT_PSTATUS); ECase(NT_FPREGS); ECase(NT_PSINFO); ECase(NT_LWPSTATUS); ECase(NT_LWPSINFO); ECase(NT_WIN32PSTATUS); ECase(NT_PPC_VMX); ECase(NT_PPC_VSX); ECase(NT_PPC_TAR); ECase(NT_PPC_PPR); ECase(NT_PPC_DSCR); ECase(NT_PPC_EBB); ECase(NT_PPC_PMU); ECase(NT_PPC_TM_CGPR); ECase(NT_PPC_TM_CFPR); ECase(NT_PPC_TM_CVMX); ECase(NT_PPC_TM_CVSX); ECase(NT_PPC_TM_SPR); ECase(NT_PPC_TM_CTAR); ECase(NT_PPC_TM_CPPR); ECase(NT_PPC_TM_CDSCR); ECase(NT_386_TLS); ECase(NT_386_IOPERM); ECase(NT_X86_XSTATE); ECase(NT_S390_HIGH_GPRS); ECase(NT_S390_TIMER); ECase(NT_S390_TODCMP); ECase(NT_S390_TODPREG); ECase(NT_S390_CTRS); ECase(NT_S390_PREFIX); ECase(NT_S390_LAST_BREAK); ECase(NT_S390_SYSTEM_CALL); ECase(NT_S390_TDB); ECase(NT_S390_VXRS_LOW); ECase(NT_S390_VXRS_HIGH); ECase(NT_S390_GS_CB); ECase(NT_S390_GS_BC); ECase(NT_ARM_VFP); ECase(NT_ARM_TLS); ECase(NT_ARM_HW_BREAK); ECase(NT_ARM_HW_WATCH); ECase(NT_ARM_SVE); ECase(NT_ARM_PAC_MASK); ECase(NT_FILE); ECase(NT_PRXFPREG); ECase(NT_SIGINFO); // LLVM-specific notes. ECase(NT_LLVM_HWASAN_GLOBALS); // GNU note types ECase(NT_GNU_ABI_TAG); ECase(NT_GNU_HWCAP); ECase(NT_GNU_BUILD_ID); ECase(NT_GNU_GOLD_VERSION); ECase(NT_GNU_PROPERTY_TYPE_0); // FreeBSD note types. ECase(NT_FREEBSD_ABI_TAG); ECase(NT_FREEBSD_NOINIT_TAG); ECase(NT_FREEBSD_ARCH_TAG); ECase(NT_FREEBSD_FEATURE_CTL); // FreeBSD core note types. ECase(NT_FREEBSD_THRMISC); ECase(NT_FREEBSD_PROCSTAT_PROC); ECase(NT_FREEBSD_PROCSTAT_FILES); ECase(NT_FREEBSD_PROCSTAT_VMMAP); ECase(NT_FREEBSD_PROCSTAT_GROUPS); ECase(NT_FREEBSD_PROCSTAT_UMASK); ECase(NT_FREEBSD_PROCSTAT_RLIMIT); ECase(NT_FREEBSD_PROCSTAT_OSREL); ECase(NT_FREEBSD_PROCSTAT_PSSTRINGS); ECase(NT_FREEBSD_PROCSTAT_AUXV); // NetBSD core note types. ECase(NT_NETBSDCORE_PROCINFO); ECase(NT_NETBSDCORE_AUXV); ECase(NT_NETBSDCORE_LWPSTATUS); // OpenBSD core note types. ECase(NT_OPENBSD_PROCINFO); ECase(NT_OPENBSD_AUXV); ECase(NT_OPENBSD_REGS); ECase(NT_OPENBSD_FPREGS); ECase(NT_OPENBSD_XFPREGS); ECase(NT_OPENBSD_WCOOKIE); // AMD specific notes. (Code Object V2) ECase(NT_AMD_HSA_CODE_OBJECT_VERSION); ECase(NT_AMD_HSA_HSAIL); ECase(NT_AMD_HSA_ISA_VERSION); ECase(NT_AMD_HSA_METADATA); ECase(NT_AMD_HSA_ISA_NAME); ECase(NT_AMD_PAL_METADATA); // AMDGPU specific notes. (Code Object V3) ECase(NT_AMDGPU_METADATA); // Android specific notes. ECase(NT_ANDROID_TYPE_IDENT); ECase(NT_ANDROID_TYPE_KUSER); ECase(NT_ANDROID_TYPE_MEMTAG); #undef ECase IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_EM &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(EM_NONE); ECase(EM_M32); ECase(EM_SPARC); ECase(EM_386); ECase(EM_68K); ECase(EM_88K); ECase(EM_IAMCU); ECase(EM_860); ECase(EM_MIPS); ECase(EM_S370); ECase(EM_MIPS_RS3_LE); ECase(EM_PARISC); ECase(EM_VPP500); ECase(EM_SPARC32PLUS); ECase(EM_960); ECase(EM_PPC); ECase(EM_PPC64); ECase(EM_S390); ECase(EM_SPU); ECase(EM_V800); ECase(EM_FR20); ECase(EM_RH32); ECase(EM_RCE); ECase(EM_ARM); ECase(EM_ALPHA); ECase(EM_SH); ECase(EM_SPARCV9); ECase(EM_TRICORE); ECase(EM_ARC); ECase(EM_H8_300); ECase(EM_H8_300H); ECase(EM_H8S); ECase(EM_H8_500); ECase(EM_IA_64); ECase(EM_MIPS_X); ECase(EM_COLDFIRE); ECase(EM_68HC12); ECase(EM_MMA); ECase(EM_PCP); ECase(EM_NCPU); ECase(EM_NDR1); ECase(EM_STARCORE); ECase(EM_ME16); ECase(EM_ST100); ECase(EM_TINYJ); ECase(EM_X86_64); ECase(EM_PDSP); ECase(EM_PDP10); ECase(EM_PDP11); ECase(EM_FX66); ECase(EM_ST9PLUS); ECase(EM_ST7); ECase(EM_68HC16); ECase(EM_68HC11); ECase(EM_68HC08); ECase(EM_68HC05); ECase(EM_SVX); ECase(EM_ST19); ECase(EM_VAX); ECase(EM_CRIS); ECase(EM_JAVELIN); ECase(EM_FIREPATH); ECase(EM_ZSP); ECase(EM_MMIX); ECase(EM_HUANY); ECase(EM_PRISM); ECase(EM_AVR); ECase(EM_FR30); ECase(EM_D10V); ECase(EM_D30V); ECase(EM_V850); ECase(EM_M32R); ECase(EM_MN10300); ECase(EM_MN10200); ECase(EM_PJ); ECase(EM_OPENRISC); ECase(EM_ARC_COMPACT); ECase(EM_XTENSA); ECase(EM_VIDEOCORE); ECase(EM_TMM_GPP); ECase(EM_NS32K); ECase(EM_TPC); ECase(EM_SNP1K); ECase(EM_ST200); ECase(EM_IP2K); ECase(EM_MAX); ECase(EM_CR); ECase(EM_F2MC16); ECase(EM_MSP430); ECase(EM_BLACKFIN); ECase(EM_SE_C33); ECase(EM_SEP); ECase(EM_ARCA); ECase(EM_UNICORE); ECase(EM_EXCESS); ECase(EM_DXP); ECase(EM_ALTERA_NIOS2); ECase(EM_CRX); ECase(EM_XGATE); ECase(EM_C166); ECase(EM_M16C); ECase(EM_DSPIC30F); ECase(EM_CE); ECase(EM_M32C); ECase(EM_TSK3000); ECase(EM_RS08); ECase(EM_SHARC); ECase(EM_ECOG2); ECase(EM_SCORE7); ECase(EM_DSP24); ECase(EM_VIDEOCORE3); ECase(EM_LATTICEMICO32); ECase(EM_SE_C17); ECase(EM_TI_C6000); ECase(EM_TI_C2000); ECase(EM_TI_C5500); ECase(EM_MMDSP_PLUS); ECase(EM_CYPRESS_M8C); ECase(EM_R32C); ECase(EM_TRIMEDIA); ECase(EM_HEXAGON); ECase(EM_8051); ECase(EM_STXP7X); ECase(EM_NDS32); ECase(EM_ECOG1); ECase(EM_ECOG1X); ECase(EM_MAXQ30); ECase(EM_XIMO16); ECase(EM_MANIK); ECase(EM_CRAYNV2); ECase(EM_RX); ECase(EM_METAG); ECase(EM_MCST_ELBRUS); ECase(EM_ECOG16); ECase(EM_CR16); ECase(EM_ETPU); ECase(EM_SLE9X); ECase(EM_L10M); ECase(EM_K10M); ECase(EM_AARCH64); ECase(EM_AVR32); ECase(EM_STM8); ECase(EM_TILE64); ECase(EM_TILEPRO); ECase(EM_MICROBLAZE); ECase(EM_CUDA); ECase(EM_TILEGX); ECase(EM_CLOUDSHIELD); ECase(EM_COREA_1ST); ECase(EM_COREA_2ND); ECase(EM_ARC_COMPACT2); ECase(EM_OPEN8); ECase(EM_RL78); ECase(EM_VIDEOCORE5); ECase(EM_78KOR); ECase(EM_56800EX); ECase(EM_AMDGPU); ECase(EM_RISCV); ECase(EM_LANAI); ECase(EM_BPF); ECase(EM_VE); ECase(EM_CSKY); ECase(EM_LOONGARCH); #undef ECase IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_ELFCLASS &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) // Since the semantics of ELFCLASSNONE is "invalid", just don't accept it // here. ECase(ELFCLASS32); ECase(ELFCLASS64); #undef ECase } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_ELFDATA &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) // ELFDATANONE is an invalid data encoding, but we accept it because // we want to be able to produce invalid binaries for the tests. ECase(ELFDATANONE); ECase(ELFDATA2LSB); ECase(ELFDATA2MSB); #undef ECase } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_ELFOSABI &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(ELFOSABI_NONE); ECase(ELFOSABI_HPUX); ECase(ELFOSABI_NETBSD); ECase(ELFOSABI_GNU); ECase(ELFOSABI_LINUX); ECase(ELFOSABI_HURD); ECase(ELFOSABI_SOLARIS); ECase(ELFOSABI_AIX); ECase(ELFOSABI_IRIX); ECase(ELFOSABI_FREEBSD); ECase(ELFOSABI_TRU64); ECase(ELFOSABI_MODESTO); ECase(ELFOSABI_OPENBSD); ECase(ELFOSABI_OPENVMS); ECase(ELFOSABI_NSK); ECase(ELFOSABI_AROS); ECase(ELFOSABI_FENIXOS); ECase(ELFOSABI_CLOUDABI); ECase(ELFOSABI_AMDGPU_HSA); ECase(ELFOSABI_AMDGPU_PAL); ECase(ELFOSABI_AMDGPU_MESA3D); ECase(ELFOSABI_ARM); ECase(ELFOSABI_C6000_ELFABI); ECase(ELFOSABI_C6000_LINUX); ECase(ELFOSABI_STANDALONE); #undef ECase IO.enumFallback(Value); } void ScalarBitSetTraits::bitset(IO &IO, ELFYAML::ELF_EF &Value) { const auto *Object = static_cast(IO.getContext()); assert(Object && "The IO context is not initialized"); #define BCase(X) IO.bitSetCase(Value, #X, ELF::X) #define BCaseMask(X, M) IO.maskedBitSetCase(Value, #X, ELF::X, ELF::M) switch (Object->getMachine()) { case ELF::EM_ARM: BCase(EF_ARM_SOFT_FLOAT); BCase(EF_ARM_VFP_FLOAT); BCaseMask(EF_ARM_EABI_UNKNOWN, EF_ARM_EABIMASK); BCaseMask(EF_ARM_EABI_VER1, EF_ARM_EABIMASK); BCaseMask(EF_ARM_EABI_VER2, EF_ARM_EABIMASK); BCaseMask(EF_ARM_EABI_VER3, EF_ARM_EABIMASK); BCaseMask(EF_ARM_EABI_VER4, EF_ARM_EABIMASK); BCaseMask(EF_ARM_EABI_VER5, EF_ARM_EABIMASK); break; case ELF::EM_MIPS: BCase(EF_MIPS_NOREORDER); BCase(EF_MIPS_PIC); BCase(EF_MIPS_CPIC); BCase(EF_MIPS_ABI2); BCase(EF_MIPS_32BITMODE); BCase(EF_MIPS_FP64); BCase(EF_MIPS_NAN2008); BCase(EF_MIPS_MICROMIPS); BCase(EF_MIPS_ARCH_ASE_M16); BCase(EF_MIPS_ARCH_ASE_MDMX); BCaseMask(EF_MIPS_ABI_O32, EF_MIPS_ABI); BCaseMask(EF_MIPS_ABI_O64, EF_MIPS_ABI); BCaseMask(EF_MIPS_ABI_EABI32, EF_MIPS_ABI); BCaseMask(EF_MIPS_ABI_EABI64, EF_MIPS_ABI); BCaseMask(EF_MIPS_MACH_3900, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_4010, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_4100, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_4650, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_4120, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_4111, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_SB1, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_OCTEON, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_XLR, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_OCTEON2, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_OCTEON3, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_5400, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_5900, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_5500, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_9000, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_LS2E, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_LS2F, EF_MIPS_MACH); BCaseMask(EF_MIPS_MACH_LS3A, EF_MIPS_MACH); BCaseMask(EF_MIPS_ARCH_1, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_2, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_3, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_4, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_5, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_32, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_64, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_32R2, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_64R2, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_32R6, EF_MIPS_ARCH); BCaseMask(EF_MIPS_ARCH_64R6, EF_MIPS_ARCH); break; case ELF::EM_HEXAGON: BCaseMask(EF_HEXAGON_MACH_V2, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V3, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V4, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V5, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V55, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V60, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V62, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V65, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V66, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V67, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V67T, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V68, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_MACH_V69, EF_HEXAGON_MACH); BCaseMask(EF_HEXAGON_ISA_V2, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V3, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V4, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V5, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V55, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V60, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V62, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V65, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V66, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V67, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V68, EF_HEXAGON_ISA); BCaseMask(EF_HEXAGON_ISA_V69, EF_HEXAGON_ISA); break; case ELF::EM_AVR: BCaseMask(EF_AVR_ARCH_AVR1, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR2, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR25, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR3, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR31, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR35, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR4, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR5, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR51, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVR6, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_AVRTINY, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_XMEGA1, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_XMEGA2, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_XMEGA3, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_XMEGA4, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_XMEGA5, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_XMEGA6, EF_AVR_ARCH_MASK); BCaseMask(EF_AVR_ARCH_XMEGA7, EF_AVR_ARCH_MASK); BCase(EF_AVR_LINKRELAX_PREPARED); break; case ELF::EM_LOONGARCH: BCaseMask(EF_LOONGARCH_BASE_ABI_ILP32S, EF_LOONGARCH_BASE_ABI_MASK); BCaseMask(EF_LOONGARCH_BASE_ABI_ILP32F, EF_LOONGARCH_BASE_ABI_MASK); BCaseMask(EF_LOONGARCH_BASE_ABI_ILP32D, EF_LOONGARCH_BASE_ABI_MASK); BCaseMask(EF_LOONGARCH_BASE_ABI_LP64S, EF_LOONGARCH_BASE_ABI_MASK); BCaseMask(EF_LOONGARCH_BASE_ABI_LP64F, EF_LOONGARCH_BASE_ABI_MASK); BCaseMask(EF_LOONGARCH_BASE_ABI_LP64D, EF_LOONGARCH_BASE_ABI_MASK); break; case ELF::EM_RISCV: BCase(EF_RISCV_RVC); BCaseMask(EF_RISCV_FLOAT_ABI_SOFT, EF_RISCV_FLOAT_ABI); BCaseMask(EF_RISCV_FLOAT_ABI_SINGLE, EF_RISCV_FLOAT_ABI); BCaseMask(EF_RISCV_FLOAT_ABI_DOUBLE, EF_RISCV_FLOAT_ABI); BCaseMask(EF_RISCV_FLOAT_ABI_QUAD, EF_RISCV_FLOAT_ABI); BCase(EF_RISCV_RVE); BCase(EF_RISCV_TSO); break; case ELF::EM_AMDGPU: BCaseMask(EF_AMDGPU_MACH_NONE, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_R600, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_R630, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_RS880, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_RV670, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_RV710, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_RV730, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_RV770, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_CEDAR, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_CYPRESS, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_JUNIPER, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_REDWOOD, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_SUMO, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_BARTS, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_CAICOS, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_CAYMAN, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_R600_TURKS, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX600, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX601, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX602, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX700, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX701, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX702, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX703, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX704, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX705, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX801, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX802, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX803, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX805, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX810, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX900, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX902, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX904, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX906, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX908, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX909, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX90A, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX90C, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX940, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1010, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1011, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1012, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1013, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1030, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1031, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1032, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1033, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1034, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1035, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1036, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1100, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1101, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1102, EF_AMDGPU_MACH); BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1103, EF_AMDGPU_MACH); switch (Object->Header.ABIVersion) { default: // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. LLVM_FALLTHROUGH; case ELF::ELFABIVERSION_AMDGPU_HSA_V3: BCase(EF_AMDGPU_FEATURE_XNACK_V3); BCase(EF_AMDGPU_FEATURE_SRAMECC_V3); break; case ELF::ELFABIVERSION_AMDGPU_HSA_V4: case ELF::ELFABIVERSION_AMDGPU_HSA_V5: BCaseMask(EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4, EF_AMDGPU_FEATURE_XNACK_V4); BCaseMask(EF_AMDGPU_FEATURE_XNACK_ANY_V4, EF_AMDGPU_FEATURE_XNACK_V4); BCaseMask(EF_AMDGPU_FEATURE_XNACK_OFF_V4, EF_AMDGPU_FEATURE_XNACK_V4); BCaseMask(EF_AMDGPU_FEATURE_XNACK_ON_V4, EF_AMDGPU_FEATURE_XNACK_V4); BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4, EF_AMDGPU_FEATURE_SRAMECC_V4); BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, EF_AMDGPU_FEATURE_SRAMECC_V4); BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, EF_AMDGPU_FEATURE_SRAMECC_V4); BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, EF_AMDGPU_FEATURE_SRAMECC_V4); break; } break; default: break; } #undef BCase #undef BCaseMask } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_SHT &Value) { const auto *Object = static_cast(IO.getContext()); assert(Object && "The IO context is not initialized"); #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(SHT_NULL); ECase(SHT_PROGBITS); ECase(SHT_SYMTAB); // FIXME: Issue a diagnostic with this information. ECase(SHT_STRTAB); ECase(SHT_RELA); ECase(SHT_HASH); ECase(SHT_DYNAMIC); ECase(SHT_NOTE); ECase(SHT_NOBITS); ECase(SHT_REL); ECase(SHT_SHLIB); ECase(SHT_DYNSYM); ECase(SHT_INIT_ARRAY); ECase(SHT_FINI_ARRAY); ECase(SHT_PREINIT_ARRAY); ECase(SHT_GROUP); ECase(SHT_SYMTAB_SHNDX); ECase(SHT_RELR); ECase(SHT_ANDROID_REL); ECase(SHT_ANDROID_RELA); ECase(SHT_ANDROID_RELR); ECase(SHT_LLVM_ODRTAB); ECase(SHT_LLVM_LINKER_OPTIONS); ECase(SHT_LLVM_CALL_GRAPH_PROFILE); ECase(SHT_LLVM_ADDRSIG); ECase(SHT_LLVM_DEPENDENT_LIBRARIES); ECase(SHT_LLVM_SYMPART); ECase(SHT_LLVM_PART_EHDR); ECase(SHT_LLVM_PART_PHDR); ECase(SHT_LLVM_BB_ADDR_MAP_V0); ECase(SHT_LLVM_BB_ADDR_MAP); ECase(SHT_LLVM_OFFLOADING); ECase(SHT_GNU_ATTRIBUTES); ECase(SHT_GNU_HASH); ECase(SHT_GNU_verdef); ECase(SHT_GNU_verneed); ECase(SHT_GNU_versym); switch (Object->getMachine()) { case ELF::EM_ARM: ECase(SHT_ARM_EXIDX); ECase(SHT_ARM_PREEMPTMAP); ECase(SHT_ARM_ATTRIBUTES); ECase(SHT_ARM_DEBUGOVERLAY); ECase(SHT_ARM_OVERLAYSECTION); break; case ELF::EM_HEXAGON: ECase(SHT_HEX_ORDERED); break; case ELF::EM_X86_64: ECase(SHT_X86_64_UNWIND); break; case ELF::EM_MIPS: ECase(SHT_MIPS_REGINFO); ECase(SHT_MIPS_OPTIONS); ECase(SHT_MIPS_DWARF); ECase(SHT_MIPS_ABIFLAGS); break; case ELF::EM_RISCV: ECase(SHT_RISCV_ATTRIBUTES); break; case ELF::EM_MSP430: ECase(SHT_MSP430_ATTRIBUTES); break; default: // Nothing to do. break; } #undef ECase IO.enumFallback(Value); } void ScalarBitSetTraits::bitset(IO &IO, ELFYAML::ELF_PF &Value) { #define BCase(X) IO.bitSetCase(Value, #X, ELF::X) BCase(PF_X); BCase(PF_W); BCase(PF_R); } void ScalarBitSetTraits::bitset(IO &IO, ELFYAML::ELF_SHF &Value) { const auto *Object = static_cast(IO.getContext()); #define BCase(X) IO.bitSetCase(Value, #X, ELF::X) BCase(SHF_WRITE); BCase(SHF_ALLOC); BCase(SHF_EXCLUDE); BCase(SHF_EXECINSTR); BCase(SHF_MERGE); BCase(SHF_STRINGS); BCase(SHF_INFO_LINK); BCase(SHF_LINK_ORDER); BCase(SHF_OS_NONCONFORMING); BCase(SHF_GROUP); BCase(SHF_TLS); BCase(SHF_COMPRESSED); switch (Object->getOSAbi()) { case ELF::ELFOSABI_SOLARIS: BCase(SHF_SUNW_NODISCARD); break; default: BCase(SHF_GNU_RETAIN); break; } switch (Object->getMachine()) { case ELF::EM_ARM: BCase(SHF_ARM_PURECODE); break; case ELF::EM_HEXAGON: BCase(SHF_HEX_GPREL); break; case ELF::EM_MIPS: BCase(SHF_MIPS_NODUPES); BCase(SHF_MIPS_NAMES); BCase(SHF_MIPS_LOCAL); BCase(SHF_MIPS_NOSTRIP); BCase(SHF_MIPS_GPREL); BCase(SHF_MIPS_MERGE); BCase(SHF_MIPS_ADDR); BCase(SHF_MIPS_STRING); break; case ELF::EM_X86_64: BCase(SHF_X86_64_LARGE); break; default: // Nothing to do. break; } #undef BCase } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_SHN &Value) { const auto *Object = static_cast(IO.getContext()); assert(Object && "The IO context is not initialized"); #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(SHN_UNDEF); ECase(SHN_LORESERVE); ECase(SHN_LOPROC); ECase(SHN_HIPROC); ECase(SHN_LOOS); ECase(SHN_HIOS); ECase(SHN_ABS); ECase(SHN_COMMON); ECase(SHN_XINDEX); ECase(SHN_HIRESERVE); ECase(SHN_AMDGPU_LDS); if (!IO.outputting() || Object->getMachine() == ELF::EM_MIPS) { ECase(SHN_MIPS_ACOMMON); ECase(SHN_MIPS_TEXT); ECase(SHN_MIPS_DATA); ECase(SHN_MIPS_SCOMMON); ECase(SHN_MIPS_SUNDEFINED); } ECase(SHN_HEXAGON_SCOMMON); ECase(SHN_HEXAGON_SCOMMON_1); ECase(SHN_HEXAGON_SCOMMON_2); ECase(SHN_HEXAGON_SCOMMON_4); ECase(SHN_HEXAGON_SCOMMON_8); #undef ECase IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_STB &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(STB_LOCAL); ECase(STB_GLOBAL); ECase(STB_WEAK); ECase(STB_GNU_UNIQUE); #undef ECase IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_STT &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(STT_NOTYPE); ECase(STT_OBJECT); ECase(STT_FUNC); ECase(STT_SECTION); ECase(STT_FILE); ECase(STT_COMMON); ECase(STT_TLS); ECase(STT_GNU_IFUNC); #undef ECase IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_RSS &Value) { #define ECase(X) IO.enumCase(Value, #X, ELF::X) ECase(RSS_UNDEF); ECase(RSS_GP); ECase(RSS_GP0); ECase(RSS_LOC); #undef ECase } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_REL &Value) { const auto *Object = static_cast(IO.getContext()); assert(Object && "The IO context is not initialized"); #define ELF_RELOC(X, Y) IO.enumCase(Value, #X, ELF::X); switch (Object->getMachine()) { case ELF::EM_X86_64: #include "llvm/BinaryFormat/ELFRelocs/x86_64.def" break; case ELF::EM_MIPS: #include "llvm/BinaryFormat/ELFRelocs/Mips.def" break; case ELF::EM_HEXAGON: #include "llvm/BinaryFormat/ELFRelocs/Hexagon.def" break; case ELF::EM_386: case ELF::EM_IAMCU: #include "llvm/BinaryFormat/ELFRelocs/i386.def" break; case ELF::EM_AARCH64: #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" break; case ELF::EM_ARM: #include "llvm/BinaryFormat/ELFRelocs/ARM.def" break; case ELF::EM_ARC: #include "llvm/BinaryFormat/ELFRelocs/ARC.def" break; case ELF::EM_RISCV: #include "llvm/BinaryFormat/ELFRelocs/RISCV.def" break; case ELF::EM_LANAI: #include "llvm/BinaryFormat/ELFRelocs/Lanai.def" break; case ELF::EM_AMDGPU: #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def" break; case ELF::EM_BPF: #include "llvm/BinaryFormat/ELFRelocs/BPF.def" break; case ELF::EM_VE: #include "llvm/BinaryFormat/ELFRelocs/VE.def" break; case ELF::EM_CSKY: #include "llvm/BinaryFormat/ELFRelocs/CSKY.def" break; case ELF::EM_PPC: #include "llvm/BinaryFormat/ELFRelocs/PowerPC.def" break; case ELF::EM_PPC64: #include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def" break; case ELF::EM_68K: #include "llvm/BinaryFormat/ELFRelocs/M68k.def" break; case ELF::EM_LOONGARCH: #include "llvm/BinaryFormat/ELFRelocs/LoongArch.def" break; default: // Nothing to do. break; } #undef ELF_RELOC IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::ELF_DYNTAG &Value) { const auto *Object = static_cast(IO.getContext()); assert(Object && "The IO context is not initialized"); // Disable architecture specific tags by default. We might enable them below. #define AARCH64_DYNAMIC_TAG(name, value) #define MIPS_DYNAMIC_TAG(name, value) #define HEXAGON_DYNAMIC_TAG(name, value) #define PPC_DYNAMIC_TAG(name, value) #define PPC64_DYNAMIC_TAG(name, value) // Ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. #define DYNAMIC_TAG_MARKER(name, value) #define STRINGIFY(X) (#X) #define DYNAMIC_TAG(X, Y) IO.enumCase(Value, STRINGIFY(DT_##X), ELF::DT_##X); switch (Object->getMachine()) { case ELF::EM_AARCH64: #undef AARCH64_DYNAMIC_TAG #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value) #include "llvm/BinaryFormat/DynamicTags.def" #undef AARCH64_DYNAMIC_TAG #define AARCH64_DYNAMIC_TAG(name, value) break; case ELF::EM_MIPS: #undef MIPS_DYNAMIC_TAG #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value) #include "llvm/BinaryFormat/DynamicTags.def" #undef MIPS_DYNAMIC_TAG #define MIPS_DYNAMIC_TAG(name, value) break; case ELF::EM_HEXAGON: #undef HEXAGON_DYNAMIC_TAG #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value) #include "llvm/BinaryFormat/DynamicTags.def" #undef HEXAGON_DYNAMIC_TAG #define HEXAGON_DYNAMIC_TAG(name, value) break; case ELF::EM_PPC: #undef PPC_DYNAMIC_TAG #define PPC_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value) #include "llvm/BinaryFormat/DynamicTags.def" #undef PPC_DYNAMIC_TAG #define PPC_DYNAMIC_TAG(name, value) break; case ELF::EM_PPC64: #undef PPC64_DYNAMIC_TAG #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value) #include "llvm/BinaryFormat/DynamicTags.def" #undef PPC64_DYNAMIC_TAG #define PPC64_DYNAMIC_TAG(name, value) break; case ELF::EM_RISCV: #undef RISCV_DYNAMIC_TAG #define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value) #include "llvm/BinaryFormat/DynamicTags.def" #undef RISCV_DYNAMIC_TAG #define RISCV_DYNAMIC_TAG(name, value) break; default: #include "llvm/BinaryFormat/DynamicTags.def" break; } #undef AARCH64_DYNAMIC_TAG #undef MIPS_DYNAMIC_TAG #undef HEXAGON_DYNAMIC_TAG #undef PPC_DYNAMIC_TAG #undef PPC64_DYNAMIC_TAG #undef DYNAMIC_TAG_MARKER #undef STRINGIFY #undef DYNAMIC_TAG IO.enumFallback(Value); } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::MIPS_AFL_REG &Value) { #define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X) ECase(REG_NONE); ECase(REG_32); ECase(REG_64); ECase(REG_128); #undef ECase } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::MIPS_ABI_FP &Value) { #define ECase(X) IO.enumCase(Value, #X, Mips::Val_GNU_MIPS_ABI_##X) ECase(FP_ANY); ECase(FP_DOUBLE); ECase(FP_SINGLE); ECase(FP_SOFT); ECase(FP_OLD_64); ECase(FP_XX); ECase(FP_64); ECase(FP_64A); #undef ECase } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::MIPS_AFL_EXT &Value) { #define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X) ECase(EXT_NONE); ECase(EXT_XLR); ECase(EXT_OCTEON2); ECase(EXT_OCTEONP); ECase(EXT_LOONGSON_3A); ECase(EXT_OCTEON); ECase(EXT_5900); ECase(EXT_4650); ECase(EXT_4010); ECase(EXT_4100); ECase(EXT_3900); ECase(EXT_10000); ECase(EXT_SB1); ECase(EXT_4111); ECase(EXT_4120); ECase(EXT_5400); ECase(EXT_5500); ECase(EXT_LOONGSON_2E); ECase(EXT_LOONGSON_2F); ECase(EXT_OCTEON3); #undef ECase } void ScalarEnumerationTraits::enumeration( IO &IO, ELFYAML::MIPS_ISA &Value) { IO.enumCase(Value, "MIPS1", 1); IO.enumCase(Value, "MIPS2", 2); IO.enumCase(Value, "MIPS3", 3); IO.enumCase(Value, "MIPS4", 4); IO.enumCase(Value, "MIPS5", 5); IO.enumCase(Value, "MIPS32", 32); IO.enumCase(Value, "MIPS64", 64); IO.enumFallback(Value); } void ScalarBitSetTraits::bitset( IO &IO, ELFYAML::MIPS_AFL_ASE &Value) { #define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_ASE_##X) BCase(DSP); BCase(DSPR2); BCase(EVA); BCase(MCU); BCase(MDMX); BCase(MIPS3D); BCase(MT); BCase(SMARTMIPS); BCase(VIRT); BCase(MSA); BCase(MIPS16); BCase(MICROMIPS); BCase(XPA); BCase(CRC); BCase(GINV); #undef BCase } void ScalarBitSetTraits::bitset( IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value) { #define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_FLAGS1_##X) BCase(ODDSPREG); #undef BCase } void MappingTraits::mapping( IO &IO, ELFYAML::SectionHeader &SHdr) { IO.mapRequired("Name", SHdr.Name); } void MappingTraits::mapping(IO &IO, ELFYAML::FileHeader &FileHdr) { IO.mapRequired("Class", FileHdr.Class); IO.mapRequired("Data", FileHdr.Data); IO.mapOptional("OSABI", FileHdr.OSABI, ELFYAML::ELF_ELFOSABI(0)); IO.mapOptional("ABIVersion", FileHdr.ABIVersion, Hex8(0)); IO.mapRequired("Type", FileHdr.Type); IO.mapOptional("Machine", FileHdr.Machine); IO.mapOptional("Flags", FileHdr.Flags, ELFYAML::ELF_EF(0)); IO.mapOptional("Entry", FileHdr.Entry, Hex64(0)); IO.mapOptional("SectionHeaderStringTable", FileHdr.SectionHeaderStringTable); // obj2yaml does not dump these fields. assert(!IO.outputting() || (!FileHdr.EPhOff && !FileHdr.EPhEntSize && !FileHdr.EPhNum)); IO.mapOptional("EPhOff", FileHdr.EPhOff); IO.mapOptional("EPhEntSize", FileHdr.EPhEntSize); IO.mapOptional("EPhNum", FileHdr.EPhNum); IO.mapOptional("EShEntSize", FileHdr.EShEntSize); IO.mapOptional("EShOff", FileHdr.EShOff); IO.mapOptional("EShNum", FileHdr.EShNum); IO.mapOptional("EShStrNdx", FileHdr.EShStrNdx); } void MappingTraits::mapping( IO &IO, ELFYAML::ProgramHeader &Phdr) { IO.mapRequired("Type", Phdr.Type); IO.mapOptional("Flags", Phdr.Flags, ELFYAML::ELF_PF(0)); IO.mapOptional("FirstSec", Phdr.FirstSec); IO.mapOptional("LastSec", Phdr.LastSec); IO.mapOptional("VAddr", Phdr.VAddr, Hex64(0)); IO.mapOptional("PAddr", Phdr.PAddr, Phdr.VAddr); IO.mapOptional("Align", Phdr.Align); IO.mapOptional("FileSize", Phdr.FileSize); IO.mapOptional("MemSize", Phdr.MemSize); IO.mapOptional("Offset", Phdr.Offset); } std::string MappingTraits::validate( IO &IO, ELFYAML::ProgramHeader &FileHdr) { if (!FileHdr.FirstSec && FileHdr.LastSec) return "the \"LastSec\" key can't be used without the \"FirstSec\" key"; if (FileHdr.FirstSec && !FileHdr.LastSec) return "the \"FirstSec\" key can't be used without the \"LastSec\" key"; return ""; } LLVM_YAML_STRONG_TYPEDEF(StringRef, StOtherPiece) template <> struct ScalarTraits { static void output(const StOtherPiece &Val, void *, raw_ostream &Out) { Out << Val; } static StringRef input(StringRef Scalar, void *, StOtherPiece &Val) { Val = Scalar; return {}; } static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template <> struct SequenceElementTraits { static const bool flow = true; }; template <> struct ScalarTraits { static void output(const ELFYAML::YAMLFlowString &Val, void *, raw_ostream &Out) { Out << Val; } static StringRef input(StringRef Scalar, void *, ELFYAML::YAMLFlowString &Val) { Val = Scalar; return {}; } static QuotingType mustQuote(StringRef S) { return ScalarTraits::mustQuote(S); } }; template <> struct SequenceElementTraits { static const bool flow = true; }; namespace { struct NormalizedOther { NormalizedOther(IO &IO) : YamlIO(IO) {} NormalizedOther(IO &IO, Optional Original) : YamlIO(IO) { assert(Original && "This constructor is only used for outputting YAML and " "assumes a non-empty Original"); std::vector Ret; const auto *Object = static_cast(YamlIO.getContext()); for (std::pair &P : getFlags(Object->getMachine()).takeVector()) { uint8_t FlagValue = P.second; if ((*Original & FlagValue) != FlagValue) continue; *Original &= ~FlagValue; Ret.push_back({P.first}); } if (*Original != 0) { UnknownFlagsHolder = std::to_string(*Original); Ret.push_back({UnknownFlagsHolder}); } if (!Ret.empty()) Other = std::move(Ret); } uint8_t toValue(StringRef Name) { const auto *Object = static_cast(YamlIO.getContext()); MapVector Flags = getFlags(Object->getMachine()); auto It = Flags.find(Name); if (It != Flags.end()) return It->second; uint8_t Val; if (to_integer(Name, Val)) return Val; YamlIO.setError("an unknown value is used for symbol's 'Other' field: " + Name); return 0; } Optional denormalize(IO &) { if (!Other) return None; uint8_t Ret = 0; for (StOtherPiece &Val : *Other) Ret |= toValue(Val); return Ret; } // st_other field is used to encode symbol visibility and platform-dependent // flags and values. This method returns a name to value map that is used for // parsing and encoding this field. MapVector getFlags(unsigned EMachine) { MapVector Map; // STV_* values are just enumeration values. We add them in a reversed order // because when we convert the st_other to named constants when printing // YAML we want to use a maximum number of bits on each step: // when we have st_other == 3, we want to print it as STV_PROTECTED (3), but // not as STV_HIDDEN (2) + STV_INTERNAL (1). Map["STV_PROTECTED"] = ELF::STV_PROTECTED; Map["STV_HIDDEN"] = ELF::STV_HIDDEN; Map["STV_INTERNAL"] = ELF::STV_INTERNAL; // STV_DEFAULT is used to represent the default visibility and has a value // 0. We want to be able to read it from YAML documents, but there is no // reason to print it. if (!YamlIO.outputting()) Map["STV_DEFAULT"] = ELF::STV_DEFAULT; // MIPS is not consistent. All of the STO_MIPS_* values are bit flags, // except STO_MIPS_MIPS16 which overlaps them. It should be checked and // consumed first when we print the output, because we do not want to print // any other flags that have the same bits instead. if (EMachine == ELF::EM_MIPS) { Map["STO_MIPS_MIPS16"] = ELF::STO_MIPS_MIPS16; Map["STO_MIPS_MICROMIPS"] = ELF::STO_MIPS_MICROMIPS; Map["STO_MIPS_PIC"] = ELF::STO_MIPS_PIC; Map["STO_MIPS_PLT"] = ELF::STO_MIPS_PLT; Map["STO_MIPS_OPTIONAL"] = ELF::STO_MIPS_OPTIONAL; } if (EMachine == ELF::EM_AARCH64) Map["STO_AARCH64_VARIANT_PCS"] = ELF::STO_AARCH64_VARIANT_PCS; if (EMachine == ELF::EM_RISCV) Map["STO_RISCV_VARIANT_CC"] = ELF::STO_RISCV_VARIANT_CC; return Map; } IO &YamlIO; Optional> Other; std::string UnknownFlagsHolder; }; } // end anonymous namespace void ScalarTraits::output(const ELFYAML::YAMLIntUInt &Val, void *Ctx, raw_ostream &Out) { Out << Val; } StringRef ScalarTraits::input(StringRef Scalar, void *Ctx, ELFYAML::YAMLIntUInt &Val) { const bool Is64 = static_cast(Ctx)->Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); StringRef ErrMsg = "invalid number"; // We do not accept negative hex numbers because their meaning is ambiguous. // For example, would -0xfffffffff mean 1 or INT32_MIN? if (Scalar.empty() || Scalar.startswith("-0x")) return ErrMsg; if (Scalar.startswith("-")) { const int64_t MinVal = Is64 ? INT64_MIN : INT32_MIN; long long Int; if (getAsSignedInteger(Scalar, /*Radix=*/0, Int) || (Int < MinVal)) return ErrMsg; Val = Int; return ""; } const uint64_t MaxVal = Is64 ? UINT64_MAX : UINT32_MAX; unsigned long long UInt; if (getAsUnsignedInteger(Scalar, /*Radix=*/0, UInt) || (UInt > MaxVal)) return ErrMsg; Val = UInt; return ""; } void MappingTraits::mapping(IO &IO, ELFYAML::Symbol &Symbol) { IO.mapOptional("Name", Symbol.Name, StringRef()); IO.mapOptional("StName", Symbol.StName); IO.mapOptional("Type", Symbol.Type, ELFYAML::ELF_STT(0)); IO.mapOptional("Section", Symbol.Section); IO.mapOptional("Index", Symbol.Index); IO.mapOptional("Binding", Symbol.Binding, ELFYAML::ELF_STB(0)); IO.mapOptional("Value", Symbol.Value); IO.mapOptional("Size", Symbol.Size); // Symbol's Other field is a bit special. It is usually a field that // represents st_other and holds the symbol visibility. However, on some // platforms, it can contain bit fields and regular values, or even sometimes a // crazy mix of them (see comments for NormalizedOther). Because of this, we // need special handling. MappingNormalization> Keys(IO, Symbol.Other); IO.mapOptional("Other", Keys->Other); } std::string MappingTraits::validate(IO &IO, ELFYAML::Symbol &Symbol) { if (Symbol.Index && Symbol.Section) return "Index and Section cannot both be specified for Symbol"; return ""; } static void commonSectionMapping(IO &IO, ELFYAML::Section &Section) { IO.mapOptional("Name", Section.Name, StringRef()); IO.mapRequired("Type", Section.Type); IO.mapOptional("Flags", Section.Flags); IO.mapOptional("Address", Section.Address); IO.mapOptional("Link", Section.Link); IO.mapOptional("AddressAlign", Section.AddressAlign, Hex64(0)); IO.mapOptional("EntSize", Section.EntSize); IO.mapOptional("Offset", Section.Offset); IO.mapOptional("Content", Section.Content); IO.mapOptional("Size", Section.Size); // obj2yaml does not dump these fields. They are expected to be empty when we // are producing YAML, because yaml2obj sets appropriate values for them // automatically when they are not explicitly defined. assert(!IO.outputting() || (!Section.ShOffset && !Section.ShSize && !Section.ShName && !Section.ShFlags && !Section.ShType && !Section.ShAddrAlign)); IO.mapOptional("ShAddrAlign", Section.ShAddrAlign); IO.mapOptional("ShName", Section.ShName); IO.mapOptional("ShOffset", Section.ShOffset); IO.mapOptional("ShSize", Section.ShSize); IO.mapOptional("ShFlags", Section.ShFlags); IO.mapOptional("ShType", Section.ShType); } static void sectionMapping(IO &IO, ELFYAML::DynamicSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Entries", Section.Entries); } static void sectionMapping(IO &IO, ELFYAML::RawContentSection &Section) { commonSectionMapping(IO, Section); // We also support reading a content as array of bytes using the ContentArray // key. obj2yaml never prints this field. assert(!IO.outputting() || !Section.ContentBuf); IO.mapOptional("ContentArray", Section.ContentBuf); if (Section.ContentBuf) { if (Section.Content) IO.setError("Content and ContentArray can't be used together"); Section.Content = yaml::BinaryRef(*Section.ContentBuf); } IO.mapOptional("Info", Section.Info); } static void sectionMapping(IO &IO, ELFYAML::BBAddrMapSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Content", Section.Content); IO.mapOptional("Entries", Section.Entries); } static void sectionMapping(IO &IO, ELFYAML::StackSizesSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Entries", Section.Entries); } static void sectionMapping(IO &IO, ELFYAML::HashSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Bucket", Section.Bucket); IO.mapOptional("Chain", Section.Chain); // obj2yaml does not dump these fields. They can be used to override nchain // and nbucket values for creating broken sections. assert(!IO.outputting() || (!Section.NBucket && !Section.NChain)); IO.mapOptional("NChain", Section.NChain); IO.mapOptional("NBucket", Section.NBucket); } static void sectionMapping(IO &IO, ELFYAML::NoteSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Notes", Section.Notes); } static void sectionMapping(IO &IO, ELFYAML::GnuHashSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Header", Section.Header); IO.mapOptional("BloomFilter", Section.BloomFilter); IO.mapOptional("HashBuckets", Section.HashBuckets); IO.mapOptional("HashValues", Section.HashValues); } static void sectionMapping(IO &IO, ELFYAML::NoBitsSection &Section) { commonSectionMapping(IO, Section); } static void sectionMapping(IO &IO, ELFYAML::VerdefSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Info", Section.Info); IO.mapOptional("Entries", Section.Entries); } static void sectionMapping(IO &IO, ELFYAML::SymverSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Entries", Section.Entries); } static void sectionMapping(IO &IO, ELFYAML::VerneedSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Info", Section.Info); IO.mapOptional("Dependencies", Section.VerneedV); } static void sectionMapping(IO &IO, ELFYAML::RelocationSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Info", Section.RelocatableSec, StringRef()); IO.mapOptional("Relocations", Section.Relocations); } static void sectionMapping(IO &IO, ELFYAML::RelrSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Entries", Section.Entries); } static void groupSectionMapping(IO &IO, ELFYAML::GroupSection &Group) { commonSectionMapping(IO, Group); IO.mapOptional("Info", Group.Signature); IO.mapOptional("Members", Group.Members); } static void sectionMapping(IO &IO, ELFYAML::SymtabShndxSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Entries", Section.Entries); } static void sectionMapping(IO &IO, ELFYAML::AddrsigSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Symbols", Section.Symbols); } static void fillMapping(IO &IO, ELFYAML::Fill &Fill) { IO.mapOptional("Name", Fill.Name, StringRef()); IO.mapOptional("Pattern", Fill.Pattern); IO.mapOptional("Offset", Fill.Offset); IO.mapRequired("Size", Fill.Size); } static void sectionHeaderTableMapping(IO &IO, ELFYAML::SectionHeaderTable &SHT) { IO.mapOptional("Offset", SHT.Offset); IO.mapOptional("Sections", SHT.Sections); IO.mapOptional("Excluded", SHT.Excluded); IO.mapOptional("NoHeaders", SHT.NoHeaders); } static void sectionMapping(IO &IO, ELFYAML::LinkerOptionsSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Options", Section.Options); } static void sectionMapping(IO &IO, ELFYAML::DependentLibrariesSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Libraries", Section.Libs); } static void sectionMapping(IO &IO, ELFYAML::CallGraphProfileSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Entries", Section.Entries); } void MappingTraits::mapping( IO &IO, ELFYAML::SectionOrType §ionOrType) { IO.mapRequired("SectionOrType", sectionOrType.sectionNameOrType); } static void sectionMapping(IO &IO, ELFYAML::ARMIndexTableSection &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Entries", Section.Entries); } static void sectionMapping(IO &IO, ELFYAML::MipsABIFlags &Section) { commonSectionMapping(IO, Section); IO.mapOptional("Version", Section.Version, Hex16(0)); IO.mapRequired("ISA", Section.ISALevel); IO.mapOptional("ISARevision", Section.ISARevision, Hex8(0)); IO.mapOptional("ISAExtension", Section.ISAExtension, ELFYAML::MIPS_AFL_EXT(Mips::AFL_EXT_NONE)); IO.mapOptional("ASEs", Section.ASEs, ELFYAML::MIPS_AFL_ASE(0)); IO.mapOptional("FpABI", Section.FpABI, ELFYAML::MIPS_ABI_FP(Mips::Val_GNU_MIPS_ABI_FP_ANY)); IO.mapOptional("GPRSize", Section.GPRSize, ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE)); IO.mapOptional("CPR1Size", Section.CPR1Size, ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE)); IO.mapOptional("CPR2Size", Section.CPR2Size, ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE)); IO.mapOptional("Flags1", Section.Flags1, ELFYAML::MIPS_AFL_FLAGS1(0)); IO.mapOptional("Flags2", Section.Flags2, Hex32(0)); } static StringRef getStringValue(IO &IO, const char *Key) { StringRef Val; IO.mapRequired(Key, Val); return Val; } static void setStringValue(IO &IO, const char *Key, StringRef Val) { IO.mapRequired(Key, Val); } static bool isInteger(StringRef Val) { APInt Tmp; return !Val.getAsInteger(0, Tmp); } void MappingTraits>::mapping( IO &IO, std::unique_ptr &Section) { ELFYAML::ELF_SHT Type; StringRef TypeStr; if (IO.outputting()) { if (auto *S = dyn_cast(Section.get())) Type = S->Type; else if (auto *SHT = dyn_cast(Section.get())) TypeStr = SHT->TypeStr; } else { // When the Type string does not have a "SHT_" prefix, we know it is not a // description of a regular ELF output section. TypeStr = getStringValue(IO, "Type"); if (TypeStr.startswith("SHT_") || isInteger(TypeStr)) IO.mapRequired("Type", Type); } if (TypeStr == "Fill") { assert(!IO.outputting()); // We don't dump fills currently. Section.reset(new ELFYAML::Fill()); fillMapping(IO, *cast(Section.get())); return; } if (TypeStr == ELFYAML::SectionHeaderTable::TypeStr) { if (IO.outputting()) setStringValue(IO, "Type", TypeStr); else Section.reset(new ELFYAML::SectionHeaderTable(/*IsImplicit=*/false)); sectionHeaderTableMapping( IO, *cast(Section.get())); return; } const auto &Obj = *static_cast(IO.getContext()); if (Obj.getMachine() == ELF::EM_MIPS && Type == ELF::SHT_MIPS_ABIFLAGS) { if (!IO.outputting()) Section.reset(new ELFYAML::MipsABIFlags()); sectionMapping(IO, *cast(Section.get())); return; } if (Obj.getMachine() == ELF::EM_ARM && Type == ELF::SHT_ARM_EXIDX) { if (!IO.outputting()) Section.reset(new ELFYAML::ARMIndexTableSection()); sectionMapping(IO, *cast(Section.get())); return; } switch (Type) { case ELF::SHT_DYNAMIC: if (!IO.outputting()) Section.reset(new ELFYAML::DynamicSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_REL: case ELF::SHT_RELA: if (!IO.outputting()) Section.reset(new ELFYAML::RelocationSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_RELR: if (!IO.outputting()) Section.reset(new ELFYAML::RelrSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_GROUP: if (!IO.outputting()) Section.reset(new ELFYAML::GroupSection()); groupSectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_NOBITS: if (!IO.outputting()) Section.reset(new ELFYAML::NoBitsSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_HASH: if (!IO.outputting()) Section.reset(new ELFYAML::HashSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_NOTE: if (!IO.outputting()) Section.reset(new ELFYAML::NoteSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_GNU_HASH: if (!IO.outputting()) Section.reset(new ELFYAML::GnuHashSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_GNU_verdef: if (!IO.outputting()) Section.reset(new ELFYAML::VerdefSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_GNU_versym: if (!IO.outputting()) Section.reset(new ELFYAML::SymverSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_GNU_verneed: if (!IO.outputting()) Section.reset(new ELFYAML::VerneedSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_SYMTAB_SHNDX: if (!IO.outputting()) Section.reset(new ELFYAML::SymtabShndxSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_LLVM_ADDRSIG: if (!IO.outputting()) Section.reset(new ELFYAML::AddrsigSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_LLVM_LINKER_OPTIONS: if (!IO.outputting()) Section.reset(new ELFYAML::LinkerOptionsSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_LLVM_DEPENDENT_LIBRARIES: if (!IO.outputting()) Section.reset(new ELFYAML::DependentLibrariesSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: if (!IO.outputting()) Section.reset(new ELFYAML::CallGraphProfileSection()); sectionMapping(IO, *cast(Section.get())); break; case ELF::SHT_LLVM_BB_ADDR_MAP_V0: case ELF::SHT_LLVM_BB_ADDR_MAP: if (!IO.outputting()) Section.reset(new ELFYAML::BBAddrMapSection()); sectionMapping(IO, *cast(Section.get())); break; default: if (!IO.outputting()) { StringRef Name; IO.mapOptional("Name", Name, StringRef()); Name = ELFYAML::dropUniqueSuffix(Name); if (ELFYAML::StackSizesSection::nameMatches(Name)) Section = std::make_unique(); else Section = std::make_unique(); } if (auto S = dyn_cast(Section.get())) sectionMapping(IO, *S); else sectionMapping(IO, *cast(Section.get())); } } std::string MappingTraits>::validate( IO &io, std::unique_ptr &C) { if (const auto *F = dyn_cast(C.get())) { if (F->Pattern && F->Pattern->binary_size() != 0 && !F->Size) return "\"Size\" can't be 0 when \"Pattern\" is not empty"; return ""; } if (const auto *SHT = dyn_cast(C.get())) { if (SHT->NoHeaders && (SHT->Sections || SHT->Excluded || SHT->Offset)) return "NoHeaders can't be used together with Offset/Sections/Excluded"; return ""; } const ELFYAML::Section &Sec = *cast(C.get()); if (Sec.Size && Sec.Content && (uint64_t)(*Sec.Size) < Sec.Content->binary_size()) return "Section size must be greater than or equal to the content size"; auto BuildErrPrefix = [](ArrayRef> EntV) { std::string Msg; for (size_t I = 0, E = EntV.size(); I != E; ++I) { StringRef Name = EntV[I].first; if (I == 0) { Msg = "\"" + Name.str() + "\""; continue; } if (I != EntV.size() - 1) Msg += ", \"" + Name.str() + "\""; else Msg += " and \"" + Name.str() + "\""; } return Msg; }; std::vector> Entries = Sec.getEntries(); const size_t NumUsedEntries = llvm::count_if( Entries, [](const std::pair &P) { return P.second; }); if ((Sec.Size || Sec.Content) && NumUsedEntries > 0) return BuildErrPrefix(Entries) + " cannot be used with \"Content\" or \"Size\""; if (NumUsedEntries > 0 && Entries.size() != NumUsedEntries) return BuildErrPrefix(Entries) + " must be used together"; if (const auto *RawSection = dyn_cast(C.get())) { if (RawSection->Flags && RawSection->ShFlags) return "ShFlags and Flags cannot be used together"; return ""; } if (const auto *NB = dyn_cast(C.get())) { if (NB->Content) return "SHT_NOBITS section cannot have \"Content\""; return ""; } if (const auto *MF = dyn_cast(C.get())) { if (MF->Content) return "\"Content\" key is not implemented for SHT_MIPS_ABIFLAGS " "sections"; if (MF->Size) return "\"Size\" key is not implemented for SHT_MIPS_ABIFLAGS sections"; return ""; } return ""; } namespace { struct NormalizedMips64RelType { NormalizedMips64RelType(IO &) : Type(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)), Type2(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)), Type3(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)), SpecSym(ELFYAML::ELF_REL(ELF::RSS_UNDEF)) {} NormalizedMips64RelType(IO &, ELFYAML::ELF_REL Original) : Type(Original & 0xFF), Type2(Original >> 8 & 0xFF), Type3(Original >> 16 & 0xFF), SpecSym(Original >> 24 & 0xFF) {} ELFYAML::ELF_REL denormalize(IO &) { ELFYAML::ELF_REL Res = Type | Type2 << 8 | Type3 << 16 | SpecSym << 24; return Res; } ELFYAML::ELF_REL Type; ELFYAML::ELF_REL Type2; ELFYAML::ELF_REL Type3; ELFYAML::ELF_RSS SpecSym; }; } // end anonymous namespace void MappingTraits::mapping( IO &IO, ELFYAML::StackSizeEntry &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapOptional("Address", E.Address, Hex64(0)); IO.mapRequired("Size", E.Size); } void MappingTraits::mapping( IO &IO, ELFYAML::BBAddrMapEntry &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("Version", E.Version); IO.mapOptional("Feature", E.Feature, Hex8(0)); IO.mapOptional("Address", E.Address, Hex64(0)); IO.mapOptional("NumBlocks", E.NumBlocks); IO.mapOptional("BBEntries", E.BBEntries); } void MappingTraits::mapping( IO &IO, ELFYAML::BBAddrMapEntry::BBEntry &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("AddressOffset", E.AddressOffset); IO.mapRequired("Size", E.Size); IO.mapRequired("Metadata", E.Metadata); } void MappingTraits::mapping(IO &IO, ELFYAML::GnuHashHeader &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapOptional("NBuckets", E.NBuckets); IO.mapRequired("SymNdx", E.SymNdx); IO.mapOptional("MaskWords", E.MaskWords); IO.mapRequired("Shift2", E.Shift2); } void MappingTraits::mapping(IO &IO, ELFYAML::DynamicEntry &Rel) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("Tag", Rel.Tag); IO.mapRequired("Value", Rel.Val); } void MappingTraits::mapping(IO &IO, ELFYAML::NoteEntry &N) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapOptional("Name", N.Name); IO.mapOptional("Desc", N.Desc); IO.mapRequired("Type", N.Type); } void MappingTraits::mapping(IO &IO, ELFYAML::VerdefEntry &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapOptional("Version", E.Version); IO.mapOptional("Flags", E.Flags); IO.mapOptional("VersionNdx", E.VersionNdx); IO.mapOptional("Hash", E.Hash); IO.mapRequired("Names", E.VerNames); } void MappingTraits::mapping(IO &IO, ELFYAML::VerneedEntry &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("Version", E.Version); IO.mapRequired("File", E.File); IO.mapRequired("Entries", E.AuxV); } void MappingTraits::mapping(IO &IO, ELFYAML::VernauxEntry &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("Name", E.Name); IO.mapRequired("Hash", E.Hash); IO.mapRequired("Flags", E.Flags); IO.mapRequired("Other", E.Other); } void MappingTraits::mapping(IO &IO, ELFYAML::Relocation &Rel) { const auto *Object = static_cast(IO.getContext()); assert(Object && "The IO context is not initialized"); IO.mapOptional("Offset", Rel.Offset, (Hex64)0); IO.mapOptional("Symbol", Rel.Symbol); if (Object->getMachine() == ELFYAML::ELF_EM(ELF::EM_MIPS) && Object->Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64)) { MappingNormalization Key( IO, Rel.Type); IO.mapRequired("Type", Key->Type); IO.mapOptional("Type2", Key->Type2, ELFYAML::ELF_REL(ELF::R_MIPS_NONE)); IO.mapOptional("Type3", Key->Type3, ELFYAML::ELF_REL(ELF::R_MIPS_NONE)); IO.mapOptional("SpecSym", Key->SpecSym, ELFYAML::ELF_RSS(ELF::RSS_UNDEF)); } else IO.mapRequired("Type", Rel.Type); IO.mapOptional("Addend", Rel.Addend, (ELFYAML::YAMLIntUInt)0); } void MappingTraits::mapping( IO &IO, ELFYAML::ARMIndexTableEntry &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("Offset", E.Offset); StringRef CantUnwind = "EXIDX_CANTUNWIND"; if (IO.outputting() && (uint32_t)E.Value == ARM::EHABI::EXIDX_CANTUNWIND) IO.mapRequired("Value", CantUnwind); else if (!IO.outputting() && getStringValue(IO, "Value") == CantUnwind) E.Value = ARM::EHABI::EXIDX_CANTUNWIND; else IO.mapRequired("Value", E.Value); } void MappingTraits::mapping(IO &IO, ELFYAML::Object &Object) { assert(!IO.getContext() && "The IO context is initialized already"); IO.setContext(&Object); IO.mapTag("!ELF", true); IO.mapRequired("FileHeader", Object.Header); IO.mapOptional("ProgramHeaders", Object.ProgramHeaders); IO.mapOptional("Sections", Object.Chunks); IO.mapOptional("Symbols", Object.Symbols); IO.mapOptional("DynamicSymbols", Object.DynamicSymbols); IO.mapOptional("DWARF", Object.DWARF); if (Object.DWARF) { Object.DWARF->IsLittleEndian = Object.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); Object.DWARF->Is64BitAddrSize = Object.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); } IO.setContext(nullptr); } void MappingTraits::mapping(IO &IO, ELFYAML::LinkerOption &Opt) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("Name", Opt.Key); IO.mapRequired("Value", Opt.Value); } void MappingTraits::mapping( IO &IO, ELFYAML::CallGraphEntryWeight &E) { assert(IO.getContext() && "The IO context is not initialized"); IO.mapRequired("Weight", E.Weight); } LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1) } // end namespace yaml } // end namespace llvm