//===- yaml2elf - Convert YAML to a ELF object file -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// The ELF component of yaml2obj. /// //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringSet.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ELFTypes.h" #include "llvm/ObjectYAML/DWARFEmitter.h" #include "llvm/ObjectYAML/DWARFYAML.h" #include "llvm/ObjectYAML/ELFYAML.h" #include "llvm/ObjectYAML/yaml2obj.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; // This class is used to build up a contiguous binary blob while keeping // track of an offset in the output (which notionally begins at // `InitialOffset`). // The blob might be limited to an arbitrary size. All attempts to write data // are ignored and the error condition is remembered once the limit is reached. // Such an approach allows us to simplify the code by delaying error reporting // and doing it at a convenient time. namespace { class ContiguousBlobAccumulator { const uint64_t InitialOffset; const uint64_t MaxSize; SmallVector Buf; raw_svector_ostream OS; Error ReachedLimitErr = Error::success(); bool checkLimit(uint64_t Size) { if (!ReachedLimitErr && getOffset() + Size <= MaxSize) return true; if (!ReachedLimitErr) ReachedLimitErr = createStringError(errc::invalid_argument, "reached the output size limit"); return false; } public: ContiguousBlobAccumulator(uint64_t BaseOffset, uint64_t SizeLimit) : InitialOffset(BaseOffset), MaxSize(SizeLimit), OS(Buf) {} uint64_t tell() const { return OS.tell(); } uint64_t getOffset() const { return InitialOffset + OS.tell(); } void writeBlobToStream(raw_ostream &Out) const { Out << OS.str(); } Error takeLimitError() { // Request to write 0 bytes to check we did not reach the limit. checkLimit(0); return std::move(ReachedLimitErr); } /// \returns The new offset. uint64_t padToAlignment(unsigned Align) { uint64_t CurrentOffset = getOffset(); if (ReachedLimitErr) return CurrentOffset; uint64_t AlignedOffset = alignTo(CurrentOffset, Align == 0 ? 1 : Align); uint64_t PaddingSize = AlignedOffset - CurrentOffset; if (!checkLimit(PaddingSize)) return CurrentOffset; writeZeros(PaddingSize); return AlignedOffset; } raw_ostream *getRawOS(uint64_t Size) { if (checkLimit(Size)) return &OS; return nullptr; } void writeAsBinary(const yaml::BinaryRef &Bin, uint64_t N = UINT64_MAX) { if (!checkLimit(Bin.binary_size())) return; Bin.writeAsBinary(OS, N); } void writeZeros(uint64_t Num) { if (checkLimit(Num)) OS.write_zeros(Num); } void write(const char *Ptr, size_t Size) { if (checkLimit(Size)) OS.write(Ptr, Size); } void write(unsigned char C) { if (checkLimit(1)) OS.write(C); } unsigned writeULEB128(uint64_t Val) { if (!checkLimit(sizeof(uint64_t))) return 0; return encodeULEB128(Val, OS); } template void write(T Val, support::endianness E) { if (checkLimit(sizeof(T))) support::endian::write(OS, Val, E); } void updateDataAt(uint64_t Pos, void *Data, size_t Size) { assert(Pos >= InitialOffset && Pos + Size <= getOffset()); memcpy(&Buf[Pos - InitialOffset], Data, Size); } }; // Used to keep track of section and symbol names, so that in the YAML file // sections and symbols can be referenced by name instead of by index. class NameToIdxMap { StringMap Map; public: /// \Returns false if name is already present in the map. bool addName(StringRef Name, unsigned Ndx) { return Map.insert({Name, Ndx}).second; } /// \Returns false if name is not present in the map. bool lookup(StringRef Name, unsigned &Idx) const { auto I = Map.find(Name); if (I == Map.end()) return false; Idx = I->getValue(); return true; } /// Asserts if name is not present in the map. unsigned get(StringRef Name) const { unsigned Idx; if (lookup(Name, Idx)) return Idx; assert(false && "Expected section not found in index"); return 0; } unsigned size() const { return Map.size(); } }; namespace { struct Fragment { uint64_t Offset; uint64_t Size; uint32_t Type; uint64_t AddrAlign; }; } // namespace /// "Single point of truth" for the ELF file construction. /// TODO: This class still has a ways to go before it is truly a "single /// point of truth". template class ELFState { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) enum class SymtabType { Static, Dynamic }; /// The future symbol table string section. StringTableBuilder DotStrtab{StringTableBuilder::ELF}; /// The future section header string table section, if a unique string table /// is needed. Don't reference this variable direectly: use the /// ShStrtabStrings member instead. StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; /// The future dynamic symbol string section. StringTableBuilder DotDynstr{StringTableBuilder::ELF}; /// The name of the section header string table section. If it is .strtab or /// .dynstr, the section header strings will be written to the same string /// table as the static/dynamic symbols respectively. Otherwise a dedicated /// section will be created with that name. StringRef SectionHeaderStringTableName = ".shstrtab"; StringTableBuilder *ShStrtabStrings = &DotShStrtab; NameToIdxMap SN2I; NameToIdxMap SymN2I; NameToIdxMap DynSymN2I; ELFYAML::Object &Doc; StringSet<> ExcludedSectionHeaders; uint64_t LocationCounter = 0; bool HasError = false; yaml::ErrorHandler ErrHandler; void reportError(const Twine &Msg); void reportError(Error Err); std::vector toELFSymbols(ArrayRef Symbols, const StringTableBuilder &Strtab); unsigned toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym = ""); unsigned toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic); void buildSectionIndex(); void buildSymbolIndexes(); void initProgramHeaders(std::vector &PHeaders); bool initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, StringRef SecName, ELFYAML::Section *YAMLSec); void initSectionHeaders(std::vector &SHeaders, ContiguousBlobAccumulator &CBA); void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec); void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, StringTableBuilder &STB, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec); void initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec); void setProgramHeaderLayout(std::vector &PHeaders, std::vector &SHeaders); std::vector getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, ArrayRef SHeaders); void finalizeStrings(); void writeELFHeader(raw_ostream &OS); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::NoBitsSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelrSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::GroupSection &Group, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymverSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerneedSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerdefSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::ARMIndexTableSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::MipsABIFlags &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DynamicSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::BBAddrMapSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::HashSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::AddrsigSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::NoteSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::GnuHashSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, ContiguousBlobAccumulator &CBA); void writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section, ContiguousBlobAccumulator &CBA); void writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA); ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH); void assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec); DenseMap buildSectionHeaderReorderMap(); BumpPtrAllocator StringAlloc; uint64_t alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, std::optional Offset); uint64_t getSectionNameOffset(StringRef Name); public: static bool writeELF(raw_ostream &OS, ELFYAML::Object &Doc, yaml::ErrorHandler EH, uint64_t MaxSize); }; } // end anonymous namespace template static size_t arrayDataSize(ArrayRef A) { return A.size() * sizeof(T); } template static void writeArrayData(raw_ostream &OS, ArrayRef A) { OS.write((const char *)A.data(), arrayDataSize(A)); } template static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } template ELFState::ELFState(ELFYAML::Object &D, yaml::ErrorHandler EH) : Doc(D), ErrHandler(EH) { // The input may explicitly request to store the section header table strings // in the same string table as dynamic or static symbol names. Set the // ShStrtabStrings member accordingly. if (Doc.Header.SectionHeaderStringTable) { SectionHeaderStringTableName = *Doc.Header.SectionHeaderStringTable; if (*Doc.Header.SectionHeaderStringTable == ".strtab") ShStrtabStrings = &DotStrtab; else if (*Doc.Header.SectionHeaderStringTable == ".dynstr") ShStrtabStrings = &DotDynstr; // Otherwise, the unique table will be used. } std::vector Sections = Doc.getSections(); // Insert SHT_NULL section implicitly when it is not defined in YAML. if (Sections.empty() || Sections.front()->Type != ELF::SHT_NULL) Doc.Chunks.insert( Doc.Chunks.begin(), std::make_unique( ELFYAML::Chunk::ChunkKind::RawContent, /*IsImplicit=*/true)); StringSet<> DocSections; ELFYAML::SectionHeaderTable *SecHdrTable = nullptr; for (size_t I = 0; I < Doc.Chunks.size(); ++I) { const std::unique_ptr &C = Doc.Chunks[I]; // We might have an explicit section header table declaration. if (auto S = dyn_cast(C.get())) { if (SecHdrTable) reportError("multiple section header tables are not allowed"); SecHdrTable = S; continue; } // We add a technical suffix for each unnamed section/fill. It does not // affect the output, but allows us to map them by name in the code and // report better error messages. if (C->Name.empty()) { std::string NewName = ELFYAML::appendUniqueSuffix( /*Name=*/"", "index " + Twine(I)); C->Name = StringRef(NewName).copy(StringAlloc); assert(ELFYAML::dropUniqueSuffix(C->Name).empty()); } if (!DocSections.insert(C->Name).second) reportError("repeated section/fill name: '" + C->Name + "' at YAML section/fill number " + Twine(I)); } SmallSetVector ImplicitSections; if (Doc.DynamicSymbols) { if (SectionHeaderStringTableName == ".dynsym") reportError("cannot use '.dynsym' as the section header name table when " "there are dynamic symbols"); ImplicitSections.insert(".dynsym"); ImplicitSections.insert(".dynstr"); } if (Doc.Symbols) { if (SectionHeaderStringTableName == ".symtab") reportError("cannot use '.symtab' as the section header name table when " "there are symbols"); ImplicitSections.insert(".symtab"); } if (Doc.DWARF) for (StringRef DebugSecName : Doc.DWARF->getNonEmptySectionNames()) { std::string SecName = ("." + DebugSecName).str(); // TODO: For .debug_str it should be possible to share the string table, // in the same manner as the symbol string tables. if (SectionHeaderStringTableName == SecName) reportError("cannot use '" + SecName + "' as the section header name table when it is needed for " "DWARF output"); ImplicitSections.insert(StringRef(SecName).copy(StringAlloc)); } // TODO: Only create the .strtab here if any symbols have been requested. ImplicitSections.insert(".strtab"); if (!SecHdrTable || !SecHdrTable->NoHeaders.value_or(false)) ImplicitSections.insert(SectionHeaderStringTableName); // Insert placeholders for implicit sections that are not // defined explicitly in YAML. for (StringRef SecName : ImplicitSections) { if (DocSections.count(SecName)) continue; std::unique_ptr Sec = std::make_unique( ELFYAML::Chunk::ChunkKind::RawContent, true /*IsImplicit*/); Sec->Name = SecName; if (SecName == SectionHeaderStringTableName) Sec->Type = ELF::SHT_STRTAB; else if (SecName == ".dynsym") Sec->Type = ELF::SHT_DYNSYM; else if (SecName == ".symtab") Sec->Type = ELF::SHT_SYMTAB; else Sec->Type = ELF::SHT_STRTAB; // When the section header table is explicitly defined at the end of the // sections list, it is reasonable to assume that the user wants to reorder // section headers, but still wants to place the section header table after // all sections, like it normally happens. In this case we want to insert // other implicit sections right before the section header table. if (Doc.Chunks.back().get() == SecHdrTable) Doc.Chunks.insert(Doc.Chunks.end() - 1, std::move(Sec)); else Doc.Chunks.push_back(std::move(Sec)); } // Insert the section header table implicitly at the end, when it is not // explicitly defined. if (!SecHdrTable) Doc.Chunks.push_back( std::make_unique(/*IsImplicit=*/true)); } template void ELFState::writeELFHeader(raw_ostream &OS) { using namespace llvm::ELF; Elf_Ehdr Header; zero(Header); Header.e_ident[EI_MAG0] = 0x7f; Header.e_ident[EI_MAG1] = 'E'; Header.e_ident[EI_MAG2] = 'L'; Header.e_ident[EI_MAG3] = 'F'; Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; Header.e_ident[EI_DATA] = Doc.Header.Data; Header.e_ident[EI_VERSION] = EV_CURRENT; Header.e_ident[EI_OSABI] = Doc.Header.OSABI; Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; Header.e_type = Doc.Header.Type; if (Doc.Header.Machine) Header.e_machine = *Doc.Header.Machine; else Header.e_machine = EM_NONE; Header.e_version = EV_CURRENT; Header.e_entry = Doc.Header.Entry; Header.e_flags = Doc.Header.Flags; Header.e_ehsize = sizeof(Elf_Ehdr); if (Doc.Header.EPhOff) Header.e_phoff = *Doc.Header.EPhOff; else if (!Doc.ProgramHeaders.empty()) Header.e_phoff = sizeof(Header); else Header.e_phoff = 0; if (Doc.Header.EPhEntSize) Header.e_phentsize = *Doc.Header.EPhEntSize; else if (!Doc.ProgramHeaders.empty()) Header.e_phentsize = sizeof(Elf_Phdr); else Header.e_phentsize = 0; if (Doc.Header.EPhNum) Header.e_phnum = *Doc.Header.EPhNum; else if (!Doc.ProgramHeaders.empty()) Header.e_phnum = Doc.ProgramHeaders.size(); else Header.e_phnum = 0; Header.e_shentsize = Doc.Header.EShEntSize ? (uint16_t)*Doc.Header.EShEntSize : sizeof(Elf_Shdr); const ELFYAML::SectionHeaderTable &SectionHeaders = Doc.getSectionHeaderTable(); if (Doc.Header.EShOff) Header.e_shoff = *Doc.Header.EShOff; else if (SectionHeaders.Offset) Header.e_shoff = *SectionHeaders.Offset; else Header.e_shoff = 0; if (Doc.Header.EShNum) Header.e_shnum = *Doc.Header.EShNum; else Header.e_shnum = SectionHeaders.getNumHeaders(Doc.getSections().size()); if (Doc.Header.EShStrNdx) Header.e_shstrndx = *Doc.Header.EShStrNdx; else if (SectionHeaders.Offset && !ExcludedSectionHeaders.count(SectionHeaderStringTableName)) Header.e_shstrndx = SN2I.get(SectionHeaderStringTableName); else Header.e_shstrndx = 0; OS.write((const char *)&Header, sizeof(Header)); } template void ELFState::initProgramHeaders(std::vector &PHeaders) { DenseMap NameToFill; DenseMap NameToIndex; for (size_t I = 0, E = Doc.Chunks.size(); I != E; ++I) { if (auto S = dyn_cast(Doc.Chunks[I].get())) NameToFill[S->Name] = S; NameToIndex[Doc.Chunks[I]->Name] = I + 1; } std::vector Sections = Doc.getSections(); for (size_t I = 0, E = Doc.ProgramHeaders.size(); I != E; ++I) { ELFYAML::ProgramHeader &YamlPhdr = Doc.ProgramHeaders[I]; Elf_Phdr Phdr; zero(Phdr); Phdr.p_type = YamlPhdr.Type; Phdr.p_flags = YamlPhdr.Flags; Phdr.p_vaddr = YamlPhdr.VAddr; Phdr.p_paddr = YamlPhdr.PAddr; PHeaders.push_back(Phdr); if (!YamlPhdr.FirstSec && !YamlPhdr.LastSec) continue; // Get the index of the section, or 0 in the case when the section doesn't exist. size_t First = NameToIndex[*YamlPhdr.FirstSec]; if (!First) reportError("unknown section or fill referenced: '" + *YamlPhdr.FirstSec + "' by the 'FirstSec' key of the program header with index " + Twine(I)); size_t Last = NameToIndex[*YamlPhdr.LastSec]; if (!Last) reportError("unknown section or fill referenced: '" + *YamlPhdr.LastSec + "' by the 'LastSec' key of the program header with index " + Twine(I)); if (!First || !Last) continue; if (First > Last) reportError("program header with index " + Twine(I) + ": the section index of " + *YamlPhdr.FirstSec + " is greater than the index of " + *YamlPhdr.LastSec); for (size_t I = First; I <= Last; ++I) YamlPhdr.Chunks.push_back(Doc.Chunks[I - 1].get()); } } template unsigned ELFState::toSectionIndex(StringRef S, StringRef LocSec, StringRef LocSym) { assert(LocSec.empty() || LocSym.empty()); unsigned Index; if (!SN2I.lookup(S, Index) && !to_integer(S, Index)) { if (!LocSym.empty()) reportError("unknown section referenced: '" + S + "' by YAML symbol '" + LocSym + "'"); else reportError("unknown section referenced: '" + S + "' by YAML section '" + LocSec + "'"); return 0; } const ELFYAML::SectionHeaderTable &SectionHeaders = Doc.getSectionHeaderTable(); if (SectionHeaders.IsImplicit || (SectionHeaders.NoHeaders && !*SectionHeaders.NoHeaders) || SectionHeaders.isDefault()) return Index; assert(!SectionHeaders.NoHeaders.value_or(false) || !SectionHeaders.Sections); size_t FirstExcluded = SectionHeaders.Sections ? SectionHeaders.Sections->size() : 0; if (Index > FirstExcluded) { if (LocSym.empty()) reportError("unable to link '" + LocSec + "' to excluded section '" + S + "'"); else reportError("excluded section referenced: '" + S + "' by symbol '" + LocSym + "'"); } return Index; } template unsigned ELFState::toSymbolIndex(StringRef S, StringRef LocSec, bool IsDynamic) { const NameToIdxMap &SymMap = IsDynamic ? DynSymN2I : SymN2I; unsigned Index; // Here we try to look up S in the symbol table. If it is not there, // treat its value as a symbol index. if (!SymMap.lookup(S, Index) && !to_integer(S, Index)) { reportError("unknown symbol referenced: '" + S + "' by YAML section '" + LocSec + "'"); return 0; } return Index; } template static void overrideFields(ELFYAML::Section *From, typename ELFT::Shdr &To) { if (!From) return; if (From->ShAddrAlign) To.sh_addralign = *From->ShAddrAlign; if (From->ShFlags) To.sh_flags = *From->ShFlags; if (From->ShName) To.sh_name = *From->ShName; if (From->ShOffset) To.sh_offset = *From->ShOffset; if (From->ShSize) To.sh_size = *From->ShSize; if (From->ShType) To.sh_type = *From->ShType; } template bool ELFState::initImplicitHeader(ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, StringRef SecName, ELFYAML::Section *YAMLSec) { // Check if the header was already initialized. if (Header.sh_offset) return false; if (SecName == ".strtab") initStrtabSectionHeader(Header, SecName, DotStrtab, CBA, YAMLSec); else if (SecName == ".dynstr") initStrtabSectionHeader(Header, SecName, DotDynstr, CBA, YAMLSec); else if (SecName == SectionHeaderStringTableName) initStrtabSectionHeader(Header, SecName, *ShStrtabStrings, CBA, YAMLSec); else if (SecName == ".symtab") initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); else if (SecName == ".dynsym") initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); else if (SecName.startswith(".debug_")) { // If a ".debug_*" section's type is a preserved one, e.g., SHT_DYNAMIC, we // will not treat it as a debug section. if (YAMLSec && !isa(YAMLSec)) return false; initDWARFSectionHeader(Header, SecName, CBA, YAMLSec); } else return false; LocationCounter += Header.sh_size; // Override section fields if requested. overrideFields(YAMLSec, Header); return true; } constexpr char SuffixStart = '('; constexpr char SuffixEnd = ')'; std::string llvm::ELFYAML::appendUniqueSuffix(StringRef Name, const Twine &Msg) { // Do not add a space when a Name is empty. std::string Ret = Name.empty() ? "" : Name.str() + ' '; return Ret + (Twine(SuffixStart) + Msg + Twine(SuffixEnd)).str(); } StringRef llvm::ELFYAML::dropUniqueSuffix(StringRef S) { if (S.empty() || S.back() != SuffixEnd) return S; // A special case for empty names. See appendUniqueSuffix() above. size_t SuffixPos = S.rfind(SuffixStart); if (SuffixPos == 0) return ""; if (SuffixPos == StringRef::npos || S[SuffixPos - 1] != ' ') return S; return S.substr(0, SuffixPos - 1); } template uint64_t ELFState::getSectionNameOffset(StringRef Name) { // If a section is excluded from section headers, we do not save its name in // the string table. if (ExcludedSectionHeaders.count(Name)) return 0; return ShStrtabStrings->getOffset(Name); } static uint64_t writeContent(ContiguousBlobAccumulator &CBA, const std::optional &Content, const std::optional &Size) { size_t ContentSize = 0; if (Content) { CBA.writeAsBinary(*Content); ContentSize = Content->binary_size(); } if (!Size) return ContentSize; CBA.writeZeros(*Size - ContentSize); return *Size; } static StringRef getDefaultLinkSec(unsigned SecType) { switch (SecType) { case ELF::SHT_REL: case ELF::SHT_RELA: case ELF::SHT_GROUP: case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: case ELF::SHT_LLVM_ADDRSIG: return ".symtab"; case ELF::SHT_GNU_versym: case ELF::SHT_HASH: case ELF::SHT_GNU_HASH: return ".dynsym"; case ELF::SHT_DYNSYM: case ELF::SHT_GNU_verdef: case ELF::SHT_GNU_verneed: return ".dynstr"; case ELF::SHT_SYMTAB: return ".strtab"; default: return ""; } } template void ELFState::initSectionHeaders(std::vector &SHeaders, ContiguousBlobAccumulator &CBA) { // Ensure SHN_UNDEF entry is present. An all-zero section header is a // valid SHN_UNDEF entry since SHT_NULL == 0. SHeaders.resize(Doc.getSections().size()); for (const std::unique_ptr &D : Doc.Chunks) { if (ELFYAML::Fill *S = dyn_cast(D.get())) { S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset); writeFill(*S, CBA); LocationCounter += S->Size; continue; } if (ELFYAML::SectionHeaderTable *S = dyn_cast(D.get())) { if (S->NoHeaders.value_or(false)) continue; if (!S->Offset) S->Offset = alignToOffset(CBA, sizeof(typename ELFT::uint), /*Offset=*/std::nullopt); else S->Offset = alignToOffset(CBA, /*Align=*/1, S->Offset); uint64_t Size = S->getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr); // The full section header information might be not available here, so // fill the space with zeroes as a placeholder. CBA.writeZeros(Size); LocationCounter += Size; continue; } ELFYAML::Section *Sec = cast(D.get()); bool IsFirstUndefSection = Sec == Doc.getSections().front(); if (IsFirstUndefSection && Sec->IsImplicit) continue; Elf_Shdr &SHeader = SHeaders[SN2I.get(Sec->Name)]; if (Sec->Link) { SHeader.sh_link = toSectionIndex(*Sec->Link, Sec->Name); } else { StringRef LinkSec = getDefaultLinkSec(Sec->Type); unsigned Link = 0; if (!LinkSec.empty() && !ExcludedSectionHeaders.count(LinkSec) && SN2I.lookup(LinkSec, Link)) SHeader.sh_link = Link; } if (Sec->EntSize) SHeader.sh_entsize = *Sec->EntSize; else SHeader.sh_entsize = ELFYAML::getDefaultShEntSize( Doc.Header.Machine.value_or(ELF::EM_NONE), Sec->Type, Sec->Name); // We have a few sections like string or symbol tables that are usually // added implicitly to the end. However, if they are explicitly specified // in the YAML, we need to write them here. This ensures the file offset // remains correct. if (initImplicitHeader(CBA, SHeader, Sec->Name, Sec->IsImplicit ? nullptr : Sec)) continue; assert(Sec && "It can't be null unless it is an implicit section. But all " "implicit sections should already have been handled above."); SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Sec->Name)); SHeader.sh_type = Sec->Type; if (Sec->Flags) SHeader.sh_flags = *Sec->Flags; SHeader.sh_addralign = Sec->AddressAlign; // Set the offset for all sections, except the SHN_UNDEF section with index // 0 when not explicitly requested. if (!IsFirstUndefSection || Sec->Offset) SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, Sec->Offset); assignSectionAddress(SHeader, Sec); if (IsFirstUndefSection) { if (auto RawSec = dyn_cast(Sec)) { // We do not write any content for special SHN_UNDEF section. if (RawSec->Size) SHeader.sh_size = *RawSec->Size; if (RawSec->Info) SHeader.sh_info = *RawSec->Info; } LocationCounter += SHeader.sh_size; overrideFields(Sec, SHeader); continue; } if (!isa(Sec) && (Sec->Content || Sec->Size)) SHeader.sh_size = writeContent(CBA, Sec->Content, Sec->Size); if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else if (auto S = dyn_cast(Sec)) { writeSectionContent(SHeader, *S, CBA); } else { llvm_unreachable("Unknown section type"); } LocationCounter += SHeader.sh_size; // Override section fields if requested. overrideFields(Sec, SHeader); } } template void ELFState::assignSectionAddress(Elf_Shdr &SHeader, ELFYAML::Section *YAMLSec) { if (YAMLSec && YAMLSec->Address) { SHeader.sh_addr = *YAMLSec->Address; LocationCounter = *YAMLSec->Address; return; } // sh_addr represents the address in the memory image of a process. Sections // in a relocatable object file or non-allocatable sections do not need // sh_addr assignment. if (Doc.Header.Type.value == ELF::ET_REL || !(SHeader.sh_flags & ELF::SHF_ALLOC)) return; LocationCounter = alignTo(LocationCounter, SHeader.sh_addralign ? SHeader.sh_addralign : 1); SHeader.sh_addr = LocationCounter; } static size_t findFirstNonGlobal(ArrayRef Symbols) { for (size_t I = 0; I < Symbols.size(); ++I) if (Symbols[I].Binding.value != ELF::STB_LOCAL) return I; return Symbols.size(); } template std::vector ELFState::toELFSymbols(ArrayRef Symbols, const StringTableBuilder &Strtab) { std::vector Ret; Ret.resize(Symbols.size() + 1); size_t I = 0; for (const ELFYAML::Symbol &Sym : Symbols) { Elf_Sym &Symbol = Ret[++I]; // If NameIndex, which contains the name offset, is explicitly specified, we // use it. This is useful for preparing broken objects. Otherwise, we add // the specified Name to the string table builder to get its offset. if (Sym.StName) Symbol.st_name = *Sym.StName; else if (!Sym.Name.empty()) Symbol.st_name = Strtab.getOffset(ELFYAML::dropUniqueSuffix(Sym.Name)); Symbol.setBindingAndType(Sym.Binding, Sym.Type); if (Sym.Section) Symbol.st_shndx = toSectionIndex(*Sym.Section, "", Sym.Name); else if (Sym.Index) Symbol.st_shndx = *Sym.Index; Symbol.st_value = Sym.Value.value_or(yaml::Hex64(0)); Symbol.st_other = Sym.Other ? *Sym.Other : 0; Symbol.st_size = Sym.Size.value_or(yaml::Hex64(0)); } return Ret; } template void ELFState::initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec) { bool IsStatic = STType == SymtabType::Static; ArrayRef Symbols; if (IsStatic && Doc.Symbols) Symbols = *Doc.Symbols; else if (!IsStatic && Doc.DynamicSymbols) Symbols = *Doc.DynamicSymbols; ELFYAML::RawContentSection *RawSec = dyn_cast_or_null(YAMLSec); if (RawSec && (RawSec->Content || RawSec->Size)) { bool HasSymbolsDescription = (IsStatic && Doc.Symbols) || (!IsStatic && Doc.DynamicSymbols); if (HasSymbolsDescription) { StringRef Property = (IsStatic ? "`Symbols`" : "`DynamicSymbols`"); if (RawSec->Content) reportError("cannot specify both `Content` and " + Property + " for symbol table section '" + RawSec->Name + "'"); if (RawSec->Size) reportError("cannot specify both `Size` and " + Property + " for symbol table section '" + RawSec->Name + "'"); return; } } SHeader.sh_name = getSectionNameOffset(IsStatic ? ".symtab" : ".dynsym"); if (YAMLSec) SHeader.sh_type = YAMLSec->Type; else SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; if (YAMLSec && YAMLSec->Flags) SHeader.sh_flags = *YAMLSec->Flags; else if (!IsStatic) SHeader.sh_flags = ELF::SHF_ALLOC; // If the symbol table section is explicitly described in the YAML // then we should set the fields requested. SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) : findFirstNonGlobal(Symbols) + 1; SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; assignSectionAddress(SHeader, YAMLSec); SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, RawSec ? RawSec->Offset : std::nullopt); if (RawSec && (RawSec->Content || RawSec->Size)) { assert(Symbols.empty()); SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size); return; } std::vector Syms = toELFSymbols(Symbols, IsStatic ? DotStrtab : DotDynstr); SHeader.sh_size = Syms.size() * sizeof(Elf_Sym); CBA.write((const char *)Syms.data(), SHeader.sh_size); } template void ELFState::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, StringTableBuilder &STB, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec) { SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name)); SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; ELFYAML::RawContentSection *RawSec = dyn_cast_or_null(YAMLSec); SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, YAMLSec ? YAMLSec->Offset : std::nullopt); if (RawSec && (RawSec->Content || RawSec->Size)) { SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size); } else { if (raw_ostream *OS = CBA.getRawOS(STB.getSize())) STB.write(*OS); SHeader.sh_size = STB.getSize(); } if (RawSec && RawSec->Info) SHeader.sh_info = *RawSec->Info; if (YAMLSec && YAMLSec->Flags) SHeader.sh_flags = *YAMLSec->Flags; else if (Name == ".dynstr") SHeader.sh_flags = ELF::SHF_ALLOC; assignSectionAddress(SHeader, YAMLSec); } static bool shouldEmitDWARF(DWARFYAML::Data &DWARF, StringRef Name) { SetVector DebugSecNames = DWARF.getNonEmptySectionNames(); return Name.consume_front(".") && DebugSecNames.count(Name); } template Expected emitDWARF(typename ELFT::Shdr &SHeader, StringRef Name, const DWARFYAML::Data &DWARF, ContiguousBlobAccumulator &CBA) { // We are unable to predict the size of debug data, so we request to write 0 // bytes. This should always return us an output stream unless CBA is already // in an error state. raw_ostream *OS = CBA.getRawOS(0); if (!OS) return 0; uint64_t BeginOffset = CBA.tell(); auto EmitFunc = DWARFYAML::getDWARFEmitterByName(Name.substr(1)); if (Error Err = EmitFunc(*OS, DWARF)) return std::move(Err); return CBA.tell() - BeginOffset; } template void ELFState::initDWARFSectionHeader(Elf_Shdr &SHeader, StringRef Name, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec) { SHeader.sh_name = getSectionNameOffset(ELFYAML::dropUniqueSuffix(Name)); SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_PROGBITS; SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; SHeader.sh_offset = alignToOffset(CBA, SHeader.sh_addralign, YAMLSec ? YAMLSec->Offset : std::nullopt); ELFYAML::RawContentSection *RawSec = dyn_cast_or_null(YAMLSec); if (Doc.DWARF && shouldEmitDWARF(*Doc.DWARF, Name)) { if (RawSec && (RawSec->Content || RawSec->Size)) reportError("cannot specify section '" + Name + "' contents in the 'DWARF' entry and the 'Content' " "or 'Size' in the 'Sections' entry at the same time"); else { if (Expected ShSizeOrErr = emitDWARF(SHeader, Name, *Doc.DWARF, CBA)) SHeader.sh_size = *ShSizeOrErr; else reportError(ShSizeOrErr.takeError()); } } else if (RawSec) SHeader.sh_size = writeContent(CBA, RawSec->Content, RawSec->Size); else llvm_unreachable("debug sections can only be initialized via the 'DWARF' " "entry or a RawContentSection"); if (RawSec && RawSec->Info) SHeader.sh_info = *RawSec->Info; if (YAMLSec && YAMLSec->Flags) SHeader.sh_flags = *YAMLSec->Flags; else if (Name == ".debug_str") SHeader.sh_flags = ELF::SHF_MERGE | ELF::SHF_STRINGS; assignSectionAddress(SHeader, YAMLSec); } template void ELFState::reportError(const Twine &Msg) { ErrHandler(Msg); HasError = true; } template void ELFState::reportError(Error Err) { handleAllErrors(std::move(Err), [&](const ErrorInfoBase &Err) { reportError(Err.message()); }); } template std::vector ELFState::getPhdrFragments(const ELFYAML::ProgramHeader &Phdr, ArrayRef SHeaders) { std::vector Ret; for (const ELFYAML::Chunk *C : Phdr.Chunks) { if (const ELFYAML::Fill *F = dyn_cast(C)) { Ret.push_back({*F->Offset, F->Size, llvm::ELF::SHT_PROGBITS, /*ShAddrAlign=*/1}); continue; } const ELFYAML::Section *S = cast(C); const Elf_Shdr &H = SHeaders[SN2I.get(S->Name)]; Ret.push_back({H.sh_offset, H.sh_size, H.sh_type, H.sh_addralign}); } return Ret; } template void ELFState::setProgramHeaderLayout(std::vector &PHeaders, std::vector &SHeaders) { uint32_t PhdrIdx = 0; for (auto &YamlPhdr : Doc.ProgramHeaders) { Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; std::vector Fragments = getPhdrFragments(YamlPhdr, SHeaders); if (!llvm::is_sorted(Fragments, [](const Fragment &A, const Fragment &B) { return A.Offset < B.Offset; })) reportError("sections in the program header with index " + Twine(PhdrIdx) + " are not sorted by their file offset"); if (YamlPhdr.Offset) { if (!Fragments.empty() && *YamlPhdr.Offset > Fragments.front().Offset) reportError("'Offset' for segment with index " + Twine(PhdrIdx) + " must be less than or equal to the minimum file offset of " "all included sections (0x" + Twine::utohexstr(Fragments.front().Offset) + ")"); PHeader.p_offset = *YamlPhdr.Offset; } else if (!Fragments.empty()) { PHeader.p_offset = Fragments.front().Offset; } // Set the file size if not set explicitly. if (YamlPhdr.FileSize) { PHeader.p_filesz = *YamlPhdr.FileSize; } else if (!Fragments.empty()) { uint64_t FileSize = Fragments.back().Offset - PHeader.p_offset; // SHT_NOBITS sections occupy no physical space in a file, we should not // take their sizes into account when calculating the file size of a // segment. if (Fragments.back().Type != llvm::ELF::SHT_NOBITS) FileSize += Fragments.back().Size; PHeader.p_filesz = FileSize; } // Find the maximum offset of the end of a section in order to set p_memsz. uint64_t MemOffset = PHeader.p_offset; for (const Fragment &F : Fragments) MemOffset = std::max(MemOffset, F.Offset + F.Size); // Set the memory size if not set explicitly. PHeader.p_memsz = YamlPhdr.MemSize ? uint64_t(*YamlPhdr.MemSize) : MemOffset - PHeader.p_offset; if (YamlPhdr.Align) { PHeader.p_align = *YamlPhdr.Align; } else { // Set the alignment of the segment to be the maximum alignment of the // sections so that by default the segment has a valid and sensible // alignment. PHeader.p_align = 1; for (const Fragment &F : Fragments) PHeader.p_align = std::max((uint64_t)PHeader.p_align, F.AddrAlign); } } } bool llvm::ELFYAML::shouldAllocateFileSpace( ArrayRef Phdrs, const ELFYAML::NoBitsSection &S) { for (const ELFYAML::ProgramHeader &PH : Phdrs) { auto It = llvm::find_if( PH.Chunks, [&](ELFYAML::Chunk *C) { return C->Name == S.Name; }); if (std::any_of(It, PH.Chunks.end(), [](ELFYAML::Chunk *C) { return (isa(C) || cast(C)->Type != ELF::SHT_NOBITS); })) return true; } return false; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::NoBitsSection &S, ContiguousBlobAccumulator &CBA) { if (!S.Size) return; SHeader.sh_size = *S.Size; // When a nobits section is followed by a non-nobits section or fill // in the same segment, we allocate the file space for it. This behavior // matches linkers. if (shouldAllocateFileSpace(Doc.ProgramHeaders, S)) CBA.writeZeros(*S.Size); } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, ContiguousBlobAccumulator &CBA) { if (Section.Info) SHeader.sh_info = *Section.Info; } static bool isMips64EL(const ELFYAML::Object &Obj) { return Obj.getMachine() == llvm::ELF::EM_MIPS && Obj.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && Obj.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, ContiguousBlobAccumulator &CBA) { assert((Section.Type == llvm::ELF::SHT_REL || Section.Type == llvm::ELF::SHT_RELA) && "Section type is not SHT_REL nor SHT_RELA"); if (!Section.RelocatableSec.empty()) SHeader.sh_info = toSectionIndex(Section.RelocatableSec, Section.Name); if (!Section.Relocations) return; const bool IsRela = Section.Type == llvm::ELF::SHT_RELA; for (const ELFYAML::Relocation &Rel : *Section.Relocations) { const bool IsDynamic = Section.Link && (*Section.Link == ".dynsym"); unsigned SymIdx = Rel.Symbol ? toSymbolIndex(*Rel.Symbol, Section.Name, IsDynamic) : 0; if (IsRela) { Elf_Rela REntry; zero(REntry); REntry.r_offset = Rel.Offset; REntry.r_addend = Rel.Addend; REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); CBA.write((const char *)&REntry, sizeof(REntry)); } else { Elf_Rel REntry; zero(REntry); REntry.r_offset = Rel.Offset; REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); CBA.write((const char *)&REntry, sizeof(REntry)); } } SHeader.sh_size = (IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)) * Section.Relocations->size(); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelrSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Entries) return; for (llvm::yaml::Hex64 E : *Section.Entries) { if (!ELFT::Is64Bits && E > UINT32_MAX) reportError(Section.Name + ": the value is too large for 32-bits: 0x" + Twine::utohexstr(E)); CBA.write(E, ELFT::TargetEndianness); } SHeader.sh_size = sizeof(uintX_t) * Section.Entries->size(); } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx, ContiguousBlobAccumulator &CBA) { if (Shndx.Content || Shndx.Size) { SHeader.sh_size = writeContent(CBA, Shndx.Content, Shndx.Size); return; } if (!Shndx.Entries) return; for (uint32_t E : *Shndx.Entries) CBA.write(E, ELFT::TargetEndianness); SHeader.sh_size = Shndx.Entries->size() * SHeader.sh_entsize; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::GroupSection &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_GROUP && "Section type is not SHT_GROUP"); if (Section.Signature) SHeader.sh_info = toSymbolIndex(*Section.Signature, Section.Name, /*IsDynamic=*/false); if (!Section.Members) return; for (const ELFYAML::SectionOrType &Member : *Section.Members) { unsigned int SectionIndex = 0; if (Member.sectionNameOrType == "GRP_COMDAT") SectionIndex = llvm::ELF::GRP_COMDAT; else SectionIndex = toSectionIndex(Member.sectionNameOrType, Section.Name); CBA.write(SectionIndex, ELFT::TargetEndianness); } SHeader.sh_size = SHeader.sh_entsize * Section.Members->size(); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymverSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Entries) return; for (uint16_t Version : *Section.Entries) CBA.write(Version, ELFT::TargetEndianness); SHeader.sh_size = Section.Entries->size() * SHeader.sh_entsize; } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::StackSizesSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Entries) return; for (const ELFYAML::StackSizeEntry &E : *Section.Entries) { CBA.write(E.Address, ELFT::TargetEndianness); SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(E.Size); } } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::BBAddrMapSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Entries) return; for (const ELFYAML::BBAddrMapEntry &E : *Section.Entries) { // Write version and feature values. if (Section.Type == llvm::ELF::SHT_LLVM_BB_ADDR_MAP) { if (E.Version > 2) WithColor::warning() << "unsupported SHT_LLVM_BB_ADDR_MAP version: " << static_cast(E.Version) << "; encoding using the most recent version"; CBA.write(E.Version); CBA.write(E.Feature); SHeader.sh_size += 2; } // Write the address of the function. CBA.write(E.Address, ELFT::TargetEndianness); // Write number of BBEntries (number of basic blocks in the function). This // is overridden by the 'NumBlocks' YAML field when specified. uint64_t NumBlocks = E.NumBlocks.value_or(E.BBEntries ? E.BBEntries->size() : 0); SHeader.sh_size += sizeof(uintX_t) + CBA.writeULEB128(NumBlocks); // Write all BBEntries. if (!E.BBEntries) continue; for (const ELFYAML::BBAddrMapEntry::BBEntry &BBE : *E.BBEntries) { if (Section.Type == llvm::ELF::SHT_LLVM_BB_ADDR_MAP && E.Version > 1) SHeader.sh_size += CBA.writeULEB128(BBE.ID); SHeader.sh_size += CBA.writeULEB128(BBE.AddressOffset) + CBA.writeULEB128(BBE.Size) + CBA.writeULEB128(BBE.Metadata); } } } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::LinkerOptionsSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Options) return; for (const ELFYAML::LinkerOption &LO : *Section.Options) { CBA.write(LO.Key.data(), LO.Key.size()); CBA.write('\0'); CBA.write(LO.Value.data(), LO.Value.size()); CBA.write('\0'); SHeader.sh_size += (LO.Key.size() + LO.Value.size() + 2); } } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::DependentLibrariesSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Libs) return; for (StringRef Lib : *Section.Libs) { CBA.write(Lib.data(), Lib.size()); CBA.write('\0'); SHeader.sh_size += Lib.size() + 1; } } template uint64_t ELFState::alignToOffset(ContiguousBlobAccumulator &CBA, uint64_t Align, std::optional Offset) { uint64_t CurrentOffset = CBA.getOffset(); uint64_t AlignedOffset; if (Offset) { if ((uint64_t)*Offset < CurrentOffset) { reportError("the 'Offset' value (0x" + Twine::utohexstr((uint64_t)*Offset) + ") goes backward"); return CurrentOffset; } // We ignore an alignment when an explicit offset has been requested. AlignedOffset = *Offset; } else { AlignedOffset = alignTo(CurrentOffset, std::max(Align, (uint64_t)1)); } CBA.writeZeros(AlignedOffset - CurrentOffset); return AlignedOffset; } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::CallGraphProfileSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Entries) return; for (const ELFYAML::CallGraphEntryWeight &E : *Section.Entries) { CBA.write(E.Weight, ELFT::TargetEndianness); SHeader.sh_size += sizeof(object::Elf_CGProfile_Impl); } } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::HashSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Bucket) return; CBA.write( Section.NBucket.value_or(llvm::yaml::Hex64(Section.Bucket->size())), ELFT::TargetEndianness); CBA.write( Section.NChain.value_or(llvm::yaml::Hex64(Section.Chain->size())), ELFT::TargetEndianness); for (uint32_t Val : *Section.Bucket) CBA.write(Val, ELFT::TargetEndianness); for (uint32_t Val : *Section.Chain) CBA.write(Val, ELFT::TargetEndianness); SHeader.sh_size = (2 + Section.Bucket->size() + Section.Chain->size()) * 4; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerdefSection &Section, ContiguousBlobAccumulator &CBA) { if (Section.Info) SHeader.sh_info = *Section.Info; else if (Section.Entries) SHeader.sh_info = Section.Entries->size(); if (!Section.Entries) return; uint64_t AuxCnt = 0; for (size_t I = 0; I < Section.Entries->size(); ++I) { const ELFYAML::VerdefEntry &E = (*Section.Entries)[I]; Elf_Verdef VerDef; VerDef.vd_version = E.Version.value_or(1); VerDef.vd_flags = E.Flags.value_or(0); VerDef.vd_ndx = E.VersionNdx.value_or(0); VerDef.vd_hash = E.Hash.value_or(0); VerDef.vd_aux = sizeof(Elf_Verdef); VerDef.vd_cnt = E.VerNames.size(); if (I == Section.Entries->size() - 1) VerDef.vd_next = 0; else VerDef.vd_next = sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); CBA.write((const char *)&VerDef, sizeof(Elf_Verdef)); for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { Elf_Verdaux VernAux; VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); if (J == E.VerNames.size() - 1) VernAux.vda_next = 0; else VernAux.vda_next = sizeof(Elf_Verdaux); CBA.write((const char *)&VernAux, sizeof(Elf_Verdaux)); } } SHeader.sh_size = Section.Entries->size() * sizeof(Elf_Verdef) + AuxCnt * sizeof(Elf_Verdaux); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerneedSection &Section, ContiguousBlobAccumulator &CBA) { if (Section.Info) SHeader.sh_info = *Section.Info; else if (Section.VerneedV) SHeader.sh_info = Section.VerneedV->size(); if (!Section.VerneedV) return; uint64_t AuxCnt = 0; for (size_t I = 0; I < Section.VerneedV->size(); ++I) { const ELFYAML::VerneedEntry &VE = (*Section.VerneedV)[I]; Elf_Verneed VerNeed; VerNeed.vn_version = VE.Version; VerNeed.vn_file = DotDynstr.getOffset(VE.File); if (I == Section.VerneedV->size() - 1) VerNeed.vn_next = 0; else VerNeed.vn_next = sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); VerNeed.vn_cnt = VE.AuxV.size(); VerNeed.vn_aux = sizeof(Elf_Verneed); CBA.write((const char *)&VerNeed, sizeof(Elf_Verneed)); for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; Elf_Vernaux VernAux; VernAux.vna_hash = VAuxE.Hash; VernAux.vna_flags = VAuxE.Flags; VernAux.vna_other = VAuxE.Other; VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); if (J == VE.AuxV.size() - 1) VernAux.vna_next = 0; else VernAux.vna_next = sizeof(Elf_Vernaux); CBA.write((const char *)&VernAux, sizeof(Elf_Vernaux)); } } SHeader.sh_size = Section.VerneedV->size() * sizeof(Elf_Verneed) + AuxCnt * sizeof(Elf_Vernaux); } template void ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::ARMIndexTableSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Entries) return; for (const ELFYAML::ARMIndexTableEntry &E : *Section.Entries) { CBA.write(E.Offset, ELFT::TargetEndianness); CBA.write(E.Value, ELFT::TargetEndianness); } SHeader.sh_size = Section.Entries->size() * 8; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::MipsABIFlags &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && "Section type is not SHT_MIPS_ABIFLAGS"); object::Elf_Mips_ABIFlags Flags; zero(Flags); SHeader.sh_size = SHeader.sh_entsize; Flags.version = Section.Version; Flags.isa_level = Section.ISALevel; Flags.isa_rev = Section.ISARevision; Flags.gpr_size = Section.GPRSize; Flags.cpr1_size = Section.CPR1Size; Flags.cpr2_size = Section.CPR2Size; Flags.fp_abi = Section.FpABI; Flags.isa_ext = Section.ISAExtension; Flags.ases = Section.ASEs; Flags.flags1 = Section.Flags1; Flags.flags2 = Section.Flags2; CBA.write((const char *)&Flags, sizeof(Flags)); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DynamicSection &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_DYNAMIC && "Section type is not SHT_DYNAMIC"); if (!Section.Entries) return; for (const ELFYAML::DynamicEntry &DE : *Section.Entries) { CBA.write(DE.Tag, ELFT::TargetEndianness); CBA.write(DE.Val, ELFT::TargetEndianness); } SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries->size(); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::AddrsigSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Symbols) return; for (StringRef Sym : *Section.Symbols) SHeader.sh_size += CBA.writeULEB128(toSymbolIndex(Sym, Section.Name, /*IsDynamic=*/false)); } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::NoteSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.Notes) return; uint64_t Offset = CBA.tell(); for (const ELFYAML::NoteEntry &NE : *Section.Notes) { // Write name size. if (NE.Name.empty()) CBA.write(0, ELFT::TargetEndianness); else CBA.write(NE.Name.size() + 1, ELFT::TargetEndianness); // Write description size. if (NE.Desc.binary_size() == 0) CBA.write(0, ELFT::TargetEndianness); else CBA.write(NE.Desc.binary_size(), ELFT::TargetEndianness); // Write type. CBA.write(NE.Type, ELFT::TargetEndianness); // Write name, null terminator and padding. if (!NE.Name.empty()) { CBA.write(NE.Name.data(), NE.Name.size()); CBA.write('\0'); CBA.padToAlignment(4); } // Write description and padding. if (NE.Desc.binary_size() != 0) { CBA.writeAsBinary(NE.Desc); CBA.padToAlignment(4); } } SHeader.sh_size = CBA.tell() - Offset; } template void ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::GnuHashSection &Section, ContiguousBlobAccumulator &CBA) { if (!Section.HashBuckets) return; if (!Section.Header) return; // We write the header first, starting with the hash buckets count. Normally // it is the number of entries in HashBuckets, but the "NBuckets" property can // be used to override this field, which is useful for producing broken // objects. if (Section.Header->NBuckets) CBA.write(*Section.Header->NBuckets, ELFT::TargetEndianness); else CBA.write(Section.HashBuckets->size(), ELFT::TargetEndianness); // Write the index of the first symbol in the dynamic symbol table accessible // via the hash table. CBA.write(Section.Header->SymNdx, ELFT::TargetEndianness); // Write the number of words in the Bloom filter. As above, the "MaskWords" // property can be used to set this field to any value. if (Section.Header->MaskWords) CBA.write(*Section.Header->MaskWords, ELFT::TargetEndianness); else CBA.write(Section.BloomFilter->size(), ELFT::TargetEndianness); // Write the shift constant used by the Bloom filter. CBA.write(Section.Header->Shift2, ELFT::TargetEndianness); // We've finished writing the header. Now write the Bloom filter. for (llvm::yaml::Hex64 Val : *Section.BloomFilter) CBA.write(Val, ELFT::TargetEndianness); // Write an array of hash buckets. for (llvm::yaml::Hex32 Val : *Section.HashBuckets) CBA.write(Val, ELFT::TargetEndianness); // Write an array of hash values. for (llvm::yaml::Hex32 Val : *Section.HashValues) CBA.write(Val, ELFT::TargetEndianness); SHeader.sh_size = 16 /*Header size*/ + Section.BloomFilter->size() * sizeof(typename ELFT::uint) + Section.HashBuckets->size() * 4 + Section.HashValues->size() * 4; } template void ELFState::writeFill(ELFYAML::Fill &Fill, ContiguousBlobAccumulator &CBA) { size_t PatternSize = Fill.Pattern ? Fill.Pattern->binary_size() : 0; if (!PatternSize) { CBA.writeZeros(Fill.Size); return; } // Fill the content with the specified pattern. uint64_t Written = 0; for (; Written + PatternSize <= Fill.Size; Written += PatternSize) CBA.writeAsBinary(*Fill.Pattern); CBA.writeAsBinary(*Fill.Pattern, Fill.Size - Written); } template DenseMap ELFState::buildSectionHeaderReorderMap() { const ELFYAML::SectionHeaderTable &SectionHeaders = Doc.getSectionHeaderTable(); if (SectionHeaders.IsImplicit || SectionHeaders.NoHeaders || SectionHeaders.isDefault()) return DenseMap(); DenseMap Ret; size_t SecNdx = 0; StringSet<> Seen; auto AddSection = [&](const ELFYAML::SectionHeader &Hdr) { if (!Ret.try_emplace(Hdr.Name, ++SecNdx).second) reportError("repeated section name: '" + Hdr.Name + "' in the section header description"); Seen.insert(Hdr.Name); }; if (SectionHeaders.Sections) for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Sections) AddSection(Hdr); if (SectionHeaders.Excluded) for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded) AddSection(Hdr); for (const ELFYAML::Section *S : Doc.getSections()) { // Ignore special first SHT_NULL section. if (S == Doc.getSections().front()) continue; if (!Seen.count(S->Name)) reportError("section '" + S->Name + "' should be present in the 'Sections' or 'Excluded' lists"); Seen.erase(S->Name); } for (const auto &It : Seen) reportError("section header contains undefined section '" + It.getKey() + "'"); return Ret; } template void ELFState::buildSectionIndex() { // A YAML description can have an explicit section header declaration that // allows to change the order of section headers. DenseMap ReorderMap = buildSectionHeaderReorderMap(); if (HasError) return; // Build excluded section headers map. std::vector Sections = Doc.getSections(); const ELFYAML::SectionHeaderTable &SectionHeaders = Doc.getSectionHeaderTable(); if (SectionHeaders.Excluded) for (const ELFYAML::SectionHeader &Hdr : *SectionHeaders.Excluded) if (!ExcludedSectionHeaders.insert(Hdr.Name).second) llvm_unreachable("buildSectionIndex() failed"); if (SectionHeaders.NoHeaders.value_or(false)) for (const ELFYAML::Section *S : Sections) if (!ExcludedSectionHeaders.insert(S->Name).second) llvm_unreachable("buildSectionIndex() failed"); size_t SecNdx = -1; for (const ELFYAML::Section *S : Sections) { ++SecNdx; size_t Index = ReorderMap.empty() ? SecNdx : ReorderMap.lookup(S->Name); if (!SN2I.addName(S->Name, Index)) llvm_unreachable("buildSectionIndex() failed"); if (!ExcludedSectionHeaders.count(S->Name)) ShStrtabStrings->add(ELFYAML::dropUniqueSuffix(S->Name)); } } template void ELFState::buildSymbolIndexes() { auto Build = [this](ArrayRef V, NameToIdxMap &Map) { for (size_t I = 0, S = V.size(); I < S; ++I) { const ELFYAML::Symbol &Sym = V[I]; if (!Sym.Name.empty() && !Map.addName(Sym.Name, I + 1)) reportError("repeated symbol name: '" + Sym.Name + "'"); } }; if (Doc.Symbols) Build(*Doc.Symbols, SymN2I); if (Doc.DynamicSymbols) Build(*Doc.DynamicSymbols, DynSymN2I); } template void ELFState::finalizeStrings() { // Add the regular symbol names to .strtab section. if (Doc.Symbols) for (const ELFYAML::Symbol &Sym : *Doc.Symbols) DotStrtab.add(ELFYAML::dropUniqueSuffix(Sym.Name)); DotStrtab.finalize(); // Add the dynamic symbol names to .dynstr section. if (Doc.DynamicSymbols) for (const ELFYAML::Symbol &Sym : *Doc.DynamicSymbols) DotDynstr.add(ELFYAML::dropUniqueSuffix(Sym.Name)); // SHT_GNU_verdef and SHT_GNU_verneed sections might also // add strings to .dynstr section. for (const ELFYAML::Chunk *Sec : Doc.getSections()) { if (auto VerNeed = dyn_cast(Sec)) { if (VerNeed->VerneedV) { for (const ELFYAML::VerneedEntry &VE : *VerNeed->VerneedV) { DotDynstr.add(VE.File); for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) DotDynstr.add(Aux.Name); } } } else if (auto VerDef = dyn_cast(Sec)) { if (VerDef->Entries) for (const ELFYAML::VerdefEntry &E : *VerDef->Entries) for (StringRef Name : E.VerNames) DotDynstr.add(Name); } } DotDynstr.finalize(); // Don't finalize the section header string table a second time if it has // already been finalized due to being one of the symbol string tables. if (ShStrtabStrings != &DotStrtab && ShStrtabStrings != &DotDynstr) ShStrtabStrings->finalize(); } template bool ELFState::writeELF(raw_ostream &OS, ELFYAML::Object &Doc, yaml::ErrorHandler EH, uint64_t MaxSize) { ELFState State(Doc, EH); if (State.HasError) return false; // Build the section index, which adds sections to the section header string // table first, so that we can finalize the section header string table. State.buildSectionIndex(); State.buildSymbolIndexes(); // Finalize section header string table and the .strtab and .dynstr sections. // We do this early because we want to finalize the string table builders // before writing the content of the sections that might want to use them. State.finalizeStrings(); if (State.HasError) return false; std::vector PHeaders; State.initProgramHeaders(PHeaders); // XXX: This offset is tightly coupled with the order that we write // things to `OS`. const size_t SectionContentBeginOffset = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); // It is quite easy to accidentally create output with yaml2obj that is larger // than intended, for example, due to an issue in the YAML description. // We limit the maximum allowed output size, but also provide a command line // option to change this limitation. ContiguousBlobAccumulator CBA(SectionContentBeginOffset, MaxSize); std::vector SHeaders; State.initSectionHeaders(SHeaders, CBA); // Now we can decide segment offsets. State.setProgramHeaderLayout(PHeaders, SHeaders); bool ReachedLimit = CBA.getOffset() > MaxSize; if (Error E = CBA.takeLimitError()) { // We report a custom error message instead below. consumeError(std::move(E)); ReachedLimit = true; } if (ReachedLimit) State.reportError( "the desired output size is greater than permitted. Use the " "--max-size option to change the limit"); if (State.HasError) return false; State.writeELFHeader(OS); writeArrayData(OS, ArrayRef(PHeaders)); const ELFYAML::SectionHeaderTable &SHT = Doc.getSectionHeaderTable(); if (!SHT.NoHeaders.value_or(false)) CBA.updateDataAt(*SHT.Offset, SHeaders.data(), SHT.getNumHeaders(SHeaders.size()) * sizeof(Elf_Shdr)); CBA.writeBlobToStream(OS); return true; } namespace llvm { namespace yaml { bool yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out, ErrorHandler EH, uint64_t MaxSize) { bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); if (Is64Bit) { if (IsLE) return ELFState::writeELF(Out, Doc, EH, MaxSize); return ELFState::writeELF(Out, Doc, EH, MaxSize); } if (IsLE) return ELFState::writeELF(Out, Doc, EH, MaxSize); return ELFState::writeELF(Out, Doc, EH, MaxSize); } } // namespace yaml } // namespace llvm