//===--- XCOFFObjectFile.cpp - XCOFF object file implementation -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the XCOFFObjectFile class. // //===----------------------------------------------------------------------===// #include "llvm/Object/XCOFFObjectFile.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/DataExtractor.h" #include "llvm/TargetParser/SubtargetFeature.h" #include #include namespace llvm { using namespace XCOFF; namespace object { static const uint8_t FunctionSym = 0x20; static const uint16_t NoRelMask = 0x0001; static const size_t SymbolAuxTypeOffset = 17; // Checks that [Ptr, Ptr + Size) bytes fall inside the memory buffer // 'M'. Returns a pointer to the underlying object on success. template static Expected getObject(MemoryBufferRef M, const void *Ptr, const uint64_t Size = sizeof(T)) { uintptr_t Addr = reinterpret_cast(Ptr); if (Error E = Binary::checkOffset(M, Addr, Size)) return std::move(E); return reinterpret_cast(Addr); } static uintptr_t getWithOffset(uintptr_t Base, ptrdiff_t Offset) { return reinterpret_cast(reinterpret_cast(Base) + Offset); } template static const T *viewAs(uintptr_t in) { return reinterpret_cast(in); } static StringRef generateXCOFFFixedNameStringRef(const char *Name) { auto NulCharPtr = static_cast(memchr(Name, '\0', XCOFF::NameSize)); return NulCharPtr ? StringRef(Name, NulCharPtr - Name) : StringRef(Name, XCOFF::NameSize); } template StringRef XCOFFSectionHeader::getName() const { const T &DerivedXCOFFSectionHeader = static_cast(*this); return generateXCOFFFixedNameStringRef(DerivedXCOFFSectionHeader.Name); } template uint16_t XCOFFSectionHeader::getSectionType() const { const T &DerivedXCOFFSectionHeader = static_cast(*this); return DerivedXCOFFSectionHeader.Flags & SectionFlagsTypeMask; } template bool XCOFFSectionHeader::isReservedSectionType() const { return getSectionType() & SectionFlagsReservedMask; } template bool XCOFFRelocation::isRelocationSigned() const { return Info & XR_SIGN_INDICATOR_MASK; } template bool XCOFFRelocation::isFixupIndicated() const { return Info & XR_FIXUP_INDICATOR_MASK; } template uint8_t XCOFFRelocation::getRelocatedLength() const { // The relocation encodes the bit length being relocated minus 1. Add back // the 1 to get the actual length being relocated. return (Info & XR_BIASED_LENGTH_MASK) + 1; } template struct ExceptionSectionEntry; template struct ExceptionSectionEntry; template Expected getLoaderSecSymNameInStrTbl(const T *LoaderSecHeader, uint64_t Offset) { if (LoaderSecHeader->LengthOfStrTbl > Offset) return (reinterpret_cast(LoaderSecHeader) + LoaderSecHeader->OffsetToStrTbl + Offset); return createError("entry with offset 0x" + Twine::utohexstr(Offset) + " in the loader section's string table with size 0x" + Twine::utohexstr(LoaderSecHeader->LengthOfStrTbl) + " is invalid"); } Expected LoaderSectionSymbolEntry32::getSymbolName( const LoaderSectionHeader32 *LoaderSecHeader32) const { const NameOffsetInStrTbl *NameInStrTbl = reinterpret_cast(SymbolName); if (NameInStrTbl->IsNameInStrTbl != XCOFFSymbolRef::NAME_IN_STR_TBL_MAGIC) return generateXCOFFFixedNameStringRef(SymbolName); return getLoaderSecSymNameInStrTbl(LoaderSecHeader32, NameInStrTbl->Offset); } Expected LoaderSectionSymbolEntry64::getSymbolName( const LoaderSectionHeader64 *LoaderSecHeader64) const { return getLoaderSecSymNameInStrTbl(LoaderSecHeader64, Offset); } uintptr_t XCOFFObjectFile::getAdvancedSymbolEntryAddress(uintptr_t CurrentAddress, uint32_t Distance) { return getWithOffset(CurrentAddress, Distance * XCOFF::SymbolTableEntrySize); } const XCOFF::SymbolAuxType * XCOFFObjectFile::getSymbolAuxType(uintptr_t AuxEntryAddress) const { assert(is64Bit() && "64-bit interface called on a 32-bit object file."); return viewAs( getWithOffset(AuxEntryAddress, SymbolAuxTypeOffset)); } void XCOFFObjectFile::checkSectionAddress(uintptr_t Addr, uintptr_t TableAddress) const { if (Addr < TableAddress) report_fatal_error("Section header outside of section header table."); uintptr_t Offset = Addr - TableAddress; if (Offset >= getSectionHeaderSize() * getNumberOfSections()) report_fatal_error("Section header outside of section header table."); if (Offset % getSectionHeaderSize() != 0) report_fatal_error( "Section header pointer does not point to a valid section header."); } const XCOFFSectionHeader32 * XCOFFObjectFile::toSection32(DataRefImpl Ref) const { assert(!is64Bit() && "32-bit interface called on 64-bit object file."); #ifndef NDEBUG checkSectionAddress(Ref.p, getSectionHeaderTableAddress()); #endif return viewAs(Ref.p); } const XCOFFSectionHeader64 * XCOFFObjectFile::toSection64(DataRefImpl Ref) const { assert(is64Bit() && "64-bit interface called on a 32-bit object file."); #ifndef NDEBUG checkSectionAddress(Ref.p, getSectionHeaderTableAddress()); #endif return viewAs(Ref.p); } XCOFFSymbolRef XCOFFObjectFile::toSymbolRef(DataRefImpl Ref) const { assert(Ref.p != 0 && "Symbol table pointer can not be nullptr!"); #ifndef NDEBUG checkSymbolEntryPointer(Ref.p); #endif return XCOFFSymbolRef(Ref, this); } const XCOFFFileHeader32 *XCOFFObjectFile::fileHeader32() const { assert(!is64Bit() && "32-bit interface called on 64-bit object file."); return static_cast(FileHeader); } const XCOFFFileHeader64 *XCOFFObjectFile::fileHeader64() const { assert(is64Bit() && "64-bit interface called on a 32-bit object file."); return static_cast(FileHeader); } const XCOFFAuxiliaryHeader32 *XCOFFObjectFile::auxiliaryHeader32() const { assert(!is64Bit() && "32-bit interface called on 64-bit object file."); return static_cast(AuxiliaryHeader); } const XCOFFAuxiliaryHeader64 *XCOFFObjectFile::auxiliaryHeader64() const { assert(is64Bit() && "64-bit interface called on a 32-bit object file."); return static_cast(AuxiliaryHeader); } template const T *XCOFFObjectFile::sectionHeaderTable() const { return static_cast(SectionHeaderTable); } const XCOFFSectionHeader32 * XCOFFObjectFile::sectionHeaderTable32() const { assert(!is64Bit() && "32-bit interface called on 64-bit object file."); return static_cast(SectionHeaderTable); } const XCOFFSectionHeader64 * XCOFFObjectFile::sectionHeaderTable64() const { assert(is64Bit() && "64-bit interface called on a 32-bit object file."); return static_cast(SectionHeaderTable); } void XCOFFObjectFile::moveSymbolNext(DataRefImpl &Symb) const { uintptr_t NextSymbolAddr = getAdvancedSymbolEntryAddress( Symb.p, toSymbolRef(Symb).getNumberOfAuxEntries() + 1); #ifndef NDEBUG // This function is used by basic_symbol_iterator, which allows to // point to the end-of-symbol-table address. if (NextSymbolAddr != getEndOfSymbolTableAddress()) checkSymbolEntryPointer(NextSymbolAddr); #endif Symb.p = NextSymbolAddr; } Expected XCOFFObjectFile::getStringTableEntry(uint32_t Offset) const { // The byte offset is relative to the start of the string table. // A byte offset value of 0 is a null or zero-length symbol // name. A byte offset in the range 1 to 3 (inclusive) points into the length // field; as a soft-error recovery mechanism, we treat such cases as having an // offset of 0. if (Offset < 4) return StringRef(nullptr, 0); if (StringTable.Data != nullptr && StringTable.Size > Offset) return (StringTable.Data + Offset); return createError("entry with offset 0x" + Twine::utohexstr(Offset) + " in a string table with size 0x" + Twine::utohexstr(StringTable.Size) + " is invalid"); } StringRef XCOFFObjectFile::getStringTable() const { // If the size is less than or equal to 4, then the string table contains no // string data. return StringRef(StringTable.Data, StringTable.Size <= 4 ? 0 : StringTable.Size); } Expected XCOFFObjectFile::getCFileName(const XCOFFFileAuxEnt *CFileEntPtr) const { if (CFileEntPtr->NameInStrTbl.Magic != XCOFFSymbolRef::NAME_IN_STR_TBL_MAGIC) return generateXCOFFFixedNameStringRef(CFileEntPtr->Name); return getStringTableEntry(CFileEntPtr->NameInStrTbl.Offset); } Expected XCOFFObjectFile::getSymbolName(DataRefImpl Symb) const { return toSymbolRef(Symb).getName(); } Expected XCOFFObjectFile::getSymbolAddress(DataRefImpl Symb) const { return toSymbolRef(Symb).getValue(); } uint64_t XCOFFObjectFile::getSymbolValueImpl(DataRefImpl Symb) const { return toSymbolRef(Symb).getValue(); } uint32_t XCOFFObjectFile::getSymbolAlignment(DataRefImpl Symb) const { uint64_t Result = 0; XCOFFSymbolRef XCOFFSym = toSymbolRef(Symb); if (XCOFFSym.isCsectSymbol()) { Expected CsectAuxRefOrError = XCOFFSym.getXCOFFCsectAuxRef(); if (!CsectAuxRefOrError) // TODO: report the error up the stack. consumeError(CsectAuxRefOrError.takeError()); else Result = 1ULL << CsectAuxRefOrError.get().getAlignmentLog2(); } return Result; } uint64_t XCOFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Symb) const { uint64_t Result = 0; XCOFFSymbolRef XCOFFSym = toSymbolRef(Symb); if (XCOFFSym.isCsectSymbol()) { Expected CsectAuxRefOrError = XCOFFSym.getXCOFFCsectAuxRef(); if (!CsectAuxRefOrError) // TODO: report the error up the stack. consumeError(CsectAuxRefOrError.takeError()); else { XCOFFCsectAuxRef CsectAuxRef = CsectAuxRefOrError.get(); assert(CsectAuxRef.getSymbolType() == XCOFF::XTY_CM); Result = CsectAuxRef.getSectionOrLength(); } } return Result; } Expected XCOFFObjectFile::getSymbolType(DataRefImpl Symb) const { XCOFFSymbolRef XCOFFSym = toSymbolRef(Symb); if (XCOFFSym.isFunction()) return SymbolRef::ST_Function; if (XCOFF::C_FILE == XCOFFSym.getStorageClass()) return SymbolRef::ST_File; int16_t SecNum = XCOFFSym.getSectionNumber(); if (SecNum <= 0) return SymbolRef::ST_Other; Expected SecDRIOrErr = getSectionByNum(XCOFFSym.getSectionNumber()); if (!SecDRIOrErr) return SecDRIOrErr.takeError(); DataRefImpl SecDRI = SecDRIOrErr.get(); Expected SymNameOrError = XCOFFSym.getName(); if (SymNameOrError) { // The "TOC" symbol is treated as SymbolRef::ST_Other. if (SymNameOrError.get() == "TOC") return SymbolRef::ST_Other; // The symbol for a section name is treated as SymbolRef::ST_Other. StringRef SecName; if (is64Bit()) SecName = XCOFFObjectFile::toSection64(SecDRIOrErr.get())->getName(); else SecName = XCOFFObjectFile::toSection32(SecDRIOrErr.get())->getName(); if (SecName == SymNameOrError.get()) return SymbolRef::ST_Other; } else return SymNameOrError.takeError(); if (isSectionData(SecDRI) || isSectionBSS(SecDRI)) return SymbolRef::ST_Data; if (isDebugSection(SecDRI)) return SymbolRef::ST_Debug; return SymbolRef::ST_Other; } Expected XCOFFObjectFile::getSymbolSection(DataRefImpl Symb) const { const int16_t SectNum = toSymbolRef(Symb).getSectionNumber(); if (isReservedSectionNumber(SectNum)) return section_end(); Expected ExpSec = getSectionByNum(SectNum); if (!ExpSec) return ExpSec.takeError(); return section_iterator(SectionRef(ExpSec.get(), this)); } void XCOFFObjectFile::moveSectionNext(DataRefImpl &Sec) const { const char *Ptr = reinterpret_cast(Sec.p); Sec.p = reinterpret_cast(Ptr + getSectionHeaderSize()); } Expected XCOFFObjectFile::getSectionName(DataRefImpl Sec) const { return generateXCOFFFixedNameStringRef(getSectionNameInternal(Sec)); } uint64_t XCOFFObjectFile::getSectionAddress(DataRefImpl Sec) const { // Avoid ternary due to failure to convert the ubig32_t value to a unit64_t // with MSVC. if (is64Bit()) return toSection64(Sec)->VirtualAddress; return toSection32(Sec)->VirtualAddress; } uint64_t XCOFFObjectFile::getSectionIndex(DataRefImpl Sec) const { // Section numbers in XCOFF are numbered beginning at 1. A section number of // zero is used to indicate that a symbol is being imported or is undefined. if (is64Bit()) return toSection64(Sec) - sectionHeaderTable64() + 1; else return toSection32(Sec) - sectionHeaderTable32() + 1; } uint64_t XCOFFObjectFile::getSectionSize(DataRefImpl Sec) const { // Avoid ternary due to failure to convert the ubig32_t value to a unit64_t // with MSVC. if (is64Bit()) return toSection64(Sec)->SectionSize; return toSection32(Sec)->SectionSize; } Expected> XCOFFObjectFile::getSectionContents(DataRefImpl Sec) const { if (isSectionVirtual(Sec)) return ArrayRef(); uint64_t OffsetToRaw; if (is64Bit()) OffsetToRaw = toSection64(Sec)->FileOffsetToRawData; else OffsetToRaw = toSection32(Sec)->FileOffsetToRawData; const uint8_t * ContentStart = base() + OffsetToRaw; uint64_t SectionSize = getSectionSize(Sec); if (Error E = Binary::checkOffset( Data, reinterpret_cast(ContentStart), SectionSize)) return createError( toString(std::move(E)) + ": section data with offset 0x" + Twine::utohexstr(OffsetToRaw) + " and size 0x" + Twine::utohexstr(SectionSize) + " goes past the end of the file"); return ArrayRef(ContentStart, SectionSize); } uint64_t XCOFFObjectFile::getSectionAlignment(DataRefImpl Sec) const { uint64_t Result = 0; llvm_unreachable("Not yet implemented!"); return Result; } uint64_t XCOFFObjectFile::getSectionFileOffsetToRawData(DataRefImpl Sec) const { if (is64Bit()) return toSection64(Sec)->FileOffsetToRawData; return toSection32(Sec)->FileOffsetToRawData; } Expected XCOFFObjectFile::getSectionFileOffsetToRawData( XCOFF::SectionTypeFlags SectType) const { DataRefImpl DRI = getSectionByType(SectType); if (DRI.p == 0) // No section is not an error. return 0; uint64_t SectionOffset = getSectionFileOffsetToRawData(DRI); uint64_t SizeOfSection = getSectionSize(DRI); uintptr_t SectionStart = reinterpret_cast(base() + SectionOffset); if (Error E = Binary::checkOffset(Data, SectionStart, SizeOfSection)) { SmallString<32> UnknownType; Twine(("") .toVector(UnknownType); const char *SectionName = UnknownType.c_str(); switch (SectType) { #define ECASE(Value, String) \ case XCOFF::Value: \ SectionName = String; \ break ECASE(STYP_PAD, "pad"); ECASE(STYP_DWARF, "dwarf"); ECASE(STYP_TEXT, "text"); ECASE(STYP_DATA, "data"); ECASE(STYP_BSS, "bss"); ECASE(STYP_EXCEPT, "expect"); ECASE(STYP_INFO, "info"); ECASE(STYP_TDATA, "tdata"); ECASE(STYP_TBSS, "tbss"); ECASE(STYP_LOADER, "loader"); ECASE(STYP_DEBUG, "debug"); ECASE(STYP_TYPCHK, "typchk"); ECASE(STYP_OVRFLO, "ovrflo"); #undef ECASE } return createError(toString(std::move(E)) + ": " + SectionName + " section with offset 0x" + Twine::utohexstr(SectionOffset) + " and size 0x" + Twine::utohexstr(SizeOfSection) + " goes past the end of the file"); } return SectionStart; } bool XCOFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { return false; } bool XCOFFObjectFile::isSectionText(DataRefImpl Sec) const { return getSectionFlags(Sec) & XCOFF::STYP_TEXT; } bool XCOFFObjectFile::isSectionData(DataRefImpl Sec) const { uint32_t Flags = getSectionFlags(Sec); return Flags & (XCOFF::STYP_DATA | XCOFF::STYP_TDATA); } bool XCOFFObjectFile::isSectionBSS(DataRefImpl Sec) const { uint32_t Flags = getSectionFlags(Sec); return Flags & (XCOFF::STYP_BSS | XCOFF::STYP_TBSS); } bool XCOFFObjectFile::isDebugSection(DataRefImpl Sec) const { uint32_t Flags = getSectionFlags(Sec); return Flags & (XCOFF::STYP_DEBUG | XCOFF::STYP_DWARF); } bool XCOFFObjectFile::isSectionVirtual(DataRefImpl Sec) const { return is64Bit() ? toSection64(Sec)->FileOffsetToRawData == 0 : toSection32(Sec)->FileOffsetToRawData == 0; } relocation_iterator XCOFFObjectFile::section_rel_begin(DataRefImpl Sec) const { DataRefImpl Ret; if (is64Bit()) { const XCOFFSectionHeader64 *SectionEntPtr = toSection64(Sec); auto RelocationsOrErr = relocations(*SectionEntPtr); if (Error E = RelocationsOrErr.takeError()) { // TODO: report the error up the stack. consumeError(std::move(E)); return relocation_iterator(RelocationRef()); } Ret.p = reinterpret_cast(&*RelocationsOrErr.get().begin()); } else { const XCOFFSectionHeader32 *SectionEntPtr = toSection32(Sec); auto RelocationsOrErr = relocations(*SectionEntPtr); if (Error E = RelocationsOrErr.takeError()) { // TODO: report the error up the stack. consumeError(std::move(E)); return relocation_iterator(RelocationRef()); } Ret.p = reinterpret_cast(&*RelocationsOrErr.get().begin()); } return relocation_iterator(RelocationRef(Ret, this)); } relocation_iterator XCOFFObjectFile::section_rel_end(DataRefImpl Sec) const { DataRefImpl Ret; if (is64Bit()) { const XCOFFSectionHeader64 *SectionEntPtr = toSection64(Sec); auto RelocationsOrErr = relocations(*SectionEntPtr); if (Error E = RelocationsOrErr.takeError()) { // TODO: report the error up the stack. consumeError(std::move(E)); return relocation_iterator(RelocationRef()); } Ret.p = reinterpret_cast(&*RelocationsOrErr.get().end()); } else { const XCOFFSectionHeader32 *SectionEntPtr = toSection32(Sec); auto RelocationsOrErr = relocations(*SectionEntPtr); if (Error E = RelocationsOrErr.takeError()) { // TODO: report the error up the stack. consumeError(std::move(E)); return relocation_iterator(RelocationRef()); } Ret.p = reinterpret_cast(&*RelocationsOrErr.get().end()); } return relocation_iterator(RelocationRef(Ret, this)); } void XCOFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { if (is64Bit()) Rel.p = reinterpret_cast(viewAs(Rel.p) + 1); else Rel.p = reinterpret_cast(viewAs(Rel.p) + 1); } uint64_t XCOFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { if (is64Bit()) { const XCOFFRelocation64 *Reloc = viewAs(Rel.p); const XCOFFSectionHeader64 *Sec64 = sectionHeaderTable64(); const uint64_t RelocAddress = Reloc->VirtualAddress; const uint16_t NumberOfSections = getNumberOfSections(); for (uint16_t I = 0; I < NumberOfSections; ++I) { // Find which section this relocation belongs to, and get the // relocation offset relative to the start of the section. if (Sec64->VirtualAddress <= RelocAddress && RelocAddress < Sec64->VirtualAddress + Sec64->SectionSize) { return RelocAddress - Sec64->VirtualAddress; } ++Sec64; } } else { const XCOFFRelocation32 *Reloc = viewAs(Rel.p); const XCOFFSectionHeader32 *Sec32 = sectionHeaderTable32(); const uint32_t RelocAddress = Reloc->VirtualAddress; const uint16_t NumberOfSections = getNumberOfSections(); for (uint16_t I = 0; I < NumberOfSections; ++I) { // Find which section this relocation belongs to, and get the // relocation offset relative to the start of the section. if (Sec32->VirtualAddress <= RelocAddress && RelocAddress < Sec32->VirtualAddress + Sec32->SectionSize) { return RelocAddress - Sec32->VirtualAddress; } ++Sec32; } } return InvalidRelocOffset; } symbol_iterator XCOFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { uint32_t Index; if (is64Bit()) { const XCOFFRelocation64 *Reloc = viewAs(Rel.p); Index = Reloc->SymbolIndex; if (Index >= getNumberOfSymbolTableEntries64()) return symbol_end(); } else { const XCOFFRelocation32 *Reloc = viewAs(Rel.p); Index = Reloc->SymbolIndex; if (Index >= getLogicalNumberOfSymbolTableEntries32()) return symbol_end(); } DataRefImpl SymDRI; SymDRI.p = getSymbolEntryAddressByIndex(Index); return symbol_iterator(SymbolRef(SymDRI, this)); } uint64_t XCOFFObjectFile::getRelocationType(DataRefImpl Rel) const { if (is64Bit()) return viewAs(Rel.p)->Type; return viewAs(Rel.p)->Type; } void XCOFFObjectFile::getRelocationTypeName( DataRefImpl Rel, SmallVectorImpl &Result) const { StringRef Res; if (is64Bit()) { const XCOFFRelocation64 *Reloc = viewAs(Rel.p); Res = XCOFF::getRelocationTypeString(Reloc->Type); } else { const XCOFFRelocation32 *Reloc = viewAs(Rel.p); Res = XCOFF::getRelocationTypeString(Reloc->Type); } Result.append(Res.begin(), Res.end()); } Expected XCOFFObjectFile::getSymbolFlags(DataRefImpl Symb) const { XCOFFSymbolRef XCOFFSym = toSymbolRef(Symb); uint32_t Result = SymbolRef::SF_None; if (XCOFFSym.getSectionNumber() == XCOFF::N_ABS) Result |= SymbolRef::SF_Absolute; XCOFF::StorageClass SC = XCOFFSym.getStorageClass(); if (XCOFF::C_EXT == SC || XCOFF::C_WEAKEXT == SC) Result |= SymbolRef::SF_Global; if (XCOFF::C_WEAKEXT == SC) Result |= SymbolRef::SF_Weak; if (XCOFFSym.isCsectSymbol()) { Expected CsectAuxEntOrErr = XCOFFSym.getXCOFFCsectAuxRef(); if (CsectAuxEntOrErr) { if (CsectAuxEntOrErr.get().getSymbolType() == XCOFF::XTY_CM) Result |= SymbolRef::SF_Common; } else return CsectAuxEntOrErr.takeError(); } if (XCOFFSym.getSectionNumber() == XCOFF::N_UNDEF) Result |= SymbolRef::SF_Undefined; // There is no visibility in old 32 bit XCOFF object file interpret. if (is64Bit() || (auxiliaryHeader32() && (auxiliaryHeader32()->getVersion() == NEW_XCOFF_INTERPRET))) { uint16_t SymType = XCOFFSym.getSymbolType(); if ((SymType & VISIBILITY_MASK) == SYM_V_HIDDEN) Result |= SymbolRef::SF_Hidden; if ((SymType & VISIBILITY_MASK) == SYM_V_EXPORTED) Result |= SymbolRef::SF_Exported; } return Result; } basic_symbol_iterator XCOFFObjectFile::symbol_begin() const { DataRefImpl SymDRI; SymDRI.p = reinterpret_cast(SymbolTblPtr); return basic_symbol_iterator(SymbolRef(SymDRI, this)); } basic_symbol_iterator XCOFFObjectFile::symbol_end() const { DataRefImpl SymDRI; const uint32_t NumberOfSymbolTableEntries = getNumberOfSymbolTableEntries(); SymDRI.p = getSymbolEntryAddressByIndex(NumberOfSymbolTableEntries); return basic_symbol_iterator(SymbolRef(SymDRI, this)); } section_iterator XCOFFObjectFile::section_begin() const { DataRefImpl DRI; DRI.p = getSectionHeaderTableAddress(); return section_iterator(SectionRef(DRI, this)); } section_iterator XCOFFObjectFile::section_end() const { DataRefImpl DRI; DRI.p = getWithOffset(getSectionHeaderTableAddress(), getNumberOfSections() * getSectionHeaderSize()); return section_iterator(SectionRef(DRI, this)); } uint8_t XCOFFObjectFile::getBytesInAddress() const { return is64Bit() ? 8 : 4; } StringRef XCOFFObjectFile::getFileFormatName() const { return is64Bit() ? "aix5coff64-rs6000" : "aixcoff-rs6000"; } Triple::ArchType XCOFFObjectFile::getArch() const { return is64Bit() ? Triple::ppc64 : Triple::ppc; } Expected XCOFFObjectFile::getFeatures() const { return SubtargetFeatures(); } bool XCOFFObjectFile::isRelocatableObject() const { if (is64Bit()) return !(fileHeader64()->Flags & NoRelMask); return !(fileHeader32()->Flags & NoRelMask); } Expected XCOFFObjectFile::getStartAddress() const { // TODO FIXME Should get from auxiliary_header->o_entry when support for the // auxiliary_header is added. return 0; } StringRef XCOFFObjectFile::mapDebugSectionName(StringRef Name) const { return StringSwitch(Name) .Case("dwinfo", "debug_info") .Case("dwline", "debug_line") .Case("dwpbnms", "debug_pubnames") .Case("dwpbtyp", "debug_pubtypes") .Case("dwarnge", "debug_aranges") .Case("dwabrev", "debug_abbrev") .Case("dwstr", "debug_str") .Case("dwrnges", "debug_ranges") .Case("dwloc", "debug_loc") .Case("dwframe", "debug_frame") .Case("dwmac", "debug_macinfo") .Default(Name); } size_t XCOFFObjectFile::getFileHeaderSize() const { return is64Bit() ? sizeof(XCOFFFileHeader64) : sizeof(XCOFFFileHeader32); } size_t XCOFFObjectFile::getSectionHeaderSize() const { return is64Bit() ? sizeof(XCOFFSectionHeader64) : sizeof(XCOFFSectionHeader32); } bool XCOFFObjectFile::is64Bit() const { return Binary::ID_XCOFF64 == getType(); } Expected XCOFFObjectFile::getRawData(const char *Start, uint64_t Size, StringRef Name) const { uintptr_t StartPtr = reinterpret_cast(Start); // TODO: this path is untested. if (Error E = Binary::checkOffset(Data, StartPtr, Size)) return createError(toString(std::move(E)) + ": " + Name.data() + " data with offset 0x" + Twine::utohexstr(StartPtr) + " and size 0x" + Twine::utohexstr(Size) + " goes past the end of the file"); return StringRef(Start, Size); } uint16_t XCOFFObjectFile::getMagic() const { return is64Bit() ? fileHeader64()->Magic : fileHeader32()->Magic; } Expected XCOFFObjectFile::getSectionByNum(int16_t Num) const { if (Num <= 0 || Num > getNumberOfSections()) return createStringError(object_error::invalid_section_index, "the section index (" + Twine(Num) + ") is invalid"); DataRefImpl DRI; DRI.p = getWithOffset(getSectionHeaderTableAddress(), getSectionHeaderSize() * (Num - 1)); return DRI; } DataRefImpl XCOFFObjectFile::getSectionByType(XCOFF::SectionTypeFlags SectType) const { DataRefImpl DRI; auto GetSectionAddr = [&](const auto &Sections) -> uintptr_t { for (const auto &Sec : Sections) if (Sec.getSectionType() == SectType) return reinterpret_cast(&Sec); return uintptr_t(0); }; if (is64Bit()) DRI.p = GetSectionAddr(sections64()); else DRI.p = GetSectionAddr(sections32()); return DRI; } Expected XCOFFObjectFile::getSymbolSectionName(XCOFFSymbolRef SymEntPtr) const { const int16_t SectionNum = SymEntPtr.getSectionNumber(); switch (SectionNum) { case XCOFF::N_DEBUG: return "N_DEBUG"; case XCOFF::N_ABS: return "N_ABS"; case XCOFF::N_UNDEF: return "N_UNDEF"; default: Expected SecRef = getSectionByNum(SectionNum); if (SecRef) return generateXCOFFFixedNameStringRef( getSectionNameInternal(SecRef.get())); return SecRef.takeError(); } } unsigned XCOFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { XCOFFSymbolRef XCOFFSymRef(Sym.getRawDataRefImpl(), this); return XCOFFSymRef.getSectionNumber(); } bool XCOFFObjectFile::isReservedSectionNumber(int16_t SectionNumber) { return (SectionNumber <= 0 && SectionNumber >= -2); } uint16_t XCOFFObjectFile::getNumberOfSections() const { return is64Bit() ? fileHeader64()->NumberOfSections : fileHeader32()->NumberOfSections; } int32_t XCOFFObjectFile::getTimeStamp() const { return is64Bit() ? fileHeader64()->TimeStamp : fileHeader32()->TimeStamp; } uint16_t XCOFFObjectFile::getOptionalHeaderSize() const { return is64Bit() ? fileHeader64()->AuxHeaderSize : fileHeader32()->AuxHeaderSize; } uint32_t XCOFFObjectFile::getSymbolTableOffset32() const { return fileHeader32()->SymbolTableOffset; } int32_t XCOFFObjectFile::getRawNumberOfSymbolTableEntries32() const { // As far as symbol table size is concerned, if this field is negative it is // to be treated as a 0. However since this field is also used for printing we // don't want to truncate any negative values. return fileHeader32()->NumberOfSymTableEntries; } uint32_t XCOFFObjectFile::getLogicalNumberOfSymbolTableEntries32() const { return (fileHeader32()->NumberOfSymTableEntries >= 0 ? fileHeader32()->NumberOfSymTableEntries : 0); } uint64_t XCOFFObjectFile::getSymbolTableOffset64() const { return fileHeader64()->SymbolTableOffset; } uint32_t XCOFFObjectFile::getNumberOfSymbolTableEntries64() const { return fileHeader64()->NumberOfSymTableEntries; } uint32_t XCOFFObjectFile::getNumberOfSymbolTableEntries() const { return is64Bit() ? getNumberOfSymbolTableEntries64() : getLogicalNumberOfSymbolTableEntries32(); } uintptr_t XCOFFObjectFile::getEndOfSymbolTableAddress() const { const uint32_t NumberOfSymTableEntries = getNumberOfSymbolTableEntries(); return getWithOffset(reinterpret_cast(SymbolTblPtr), XCOFF::SymbolTableEntrySize * NumberOfSymTableEntries); } void XCOFFObjectFile::checkSymbolEntryPointer(uintptr_t SymbolEntPtr) const { if (SymbolEntPtr < reinterpret_cast(SymbolTblPtr)) report_fatal_error("Symbol table entry is outside of symbol table."); if (SymbolEntPtr >= getEndOfSymbolTableAddress()) report_fatal_error("Symbol table entry is outside of symbol table."); ptrdiff_t Offset = reinterpret_cast(SymbolEntPtr) - reinterpret_cast(SymbolTblPtr); if (Offset % XCOFF::SymbolTableEntrySize != 0) report_fatal_error( "Symbol table entry position is not valid inside of symbol table."); } uint32_t XCOFFObjectFile::getSymbolIndex(uintptr_t SymbolEntPtr) const { return (reinterpret_cast(SymbolEntPtr) - reinterpret_cast(SymbolTblPtr)) / XCOFF::SymbolTableEntrySize; } uint64_t XCOFFObjectFile::getSymbolSize(DataRefImpl Symb) const { uint64_t Result = 0; XCOFFSymbolRef XCOFFSym = toSymbolRef(Symb); if (XCOFFSym.isCsectSymbol()) { Expected CsectAuxRefOrError = XCOFFSym.getXCOFFCsectAuxRef(); if (!CsectAuxRefOrError) // TODO: report the error up the stack. consumeError(CsectAuxRefOrError.takeError()); else { XCOFFCsectAuxRef CsectAuxRef = CsectAuxRefOrError.get(); uint8_t SymType = CsectAuxRef.getSymbolType(); if (SymType == XCOFF::XTY_SD || SymType == XCOFF::XTY_CM) Result = CsectAuxRef.getSectionOrLength(); } } return Result; } uintptr_t XCOFFObjectFile::getSymbolEntryAddressByIndex(uint32_t Index) const { return getAdvancedSymbolEntryAddress( reinterpret_cast(getPointerToSymbolTable()), Index); } Expected XCOFFObjectFile::getSymbolNameByIndex(uint32_t Index) const { const uint32_t NumberOfSymTableEntries = getNumberOfSymbolTableEntries(); if (Index >= NumberOfSymTableEntries) return createError("symbol index " + Twine(Index) + " exceeds symbol count " + Twine(NumberOfSymTableEntries)); DataRefImpl SymDRI; SymDRI.p = getSymbolEntryAddressByIndex(Index); return getSymbolName(SymDRI); } uint16_t XCOFFObjectFile::getFlags() const { return is64Bit() ? fileHeader64()->Flags : fileHeader32()->Flags; } const char *XCOFFObjectFile::getSectionNameInternal(DataRefImpl Sec) const { return is64Bit() ? toSection64(Sec)->Name : toSection32(Sec)->Name; } uintptr_t XCOFFObjectFile::getSectionHeaderTableAddress() const { return reinterpret_cast(SectionHeaderTable); } int32_t XCOFFObjectFile::getSectionFlags(DataRefImpl Sec) const { return is64Bit() ? toSection64(Sec)->Flags : toSection32(Sec)->Flags; } XCOFFObjectFile::XCOFFObjectFile(unsigned int Type, MemoryBufferRef Object) : ObjectFile(Type, Object) { assert(Type == Binary::ID_XCOFF32 || Type == Binary::ID_XCOFF64); } ArrayRef XCOFFObjectFile::sections64() const { assert(is64Bit() && "64-bit interface called for non 64-bit file."); const XCOFFSectionHeader64 *TablePtr = sectionHeaderTable64(); return ArrayRef(TablePtr, TablePtr + getNumberOfSections()); } ArrayRef XCOFFObjectFile::sections32() const { assert(!is64Bit() && "32-bit interface called for non 32-bit file."); const XCOFFSectionHeader32 *TablePtr = sectionHeaderTable32(); return ArrayRef(TablePtr, TablePtr + getNumberOfSections()); } // In an XCOFF32 file, when the field value is 65535, then an STYP_OVRFLO // section header contains the actual count of relocation entries in the s_paddr // field. STYP_OVRFLO headers contain the section index of their corresponding // sections as their raw "NumberOfRelocations" field value. template Expected XCOFFObjectFile::getNumberOfRelocationEntries( const XCOFFSectionHeader &Sec) const { const T &Section = static_cast(Sec); if (is64Bit()) return Section.NumberOfRelocations; uint16_t SectionIndex = &Section - sectionHeaderTable() + 1; if (Section.NumberOfRelocations < XCOFF::RelocOverflow) return Section.NumberOfRelocations; for (const auto &Sec : sections32()) { if (Sec.Flags == XCOFF::STYP_OVRFLO && Sec.NumberOfRelocations == SectionIndex) return Sec.PhysicalAddress; } return errorCodeToError(object_error::parse_failed); } template Expected> XCOFFObjectFile::relocations(const Shdr &Sec) const { uintptr_t RelocAddr = getWithOffset(reinterpret_cast(FileHeader), Sec.FileOffsetToRelocationInfo); auto NumRelocEntriesOrErr = getNumberOfRelocationEntries(Sec); if (Error E = NumRelocEntriesOrErr.takeError()) return std::move(E); uint32_t NumRelocEntries = NumRelocEntriesOrErr.get(); static_assert((sizeof(Reloc) == XCOFF::RelocationSerializationSize64 || sizeof(Reloc) == XCOFF::RelocationSerializationSize32), "Relocation structure is incorrect"); auto RelocationOrErr = getObject(Data, reinterpret_cast(RelocAddr), NumRelocEntries * sizeof(Reloc)); if (!RelocationOrErr) return createError( toString(RelocationOrErr.takeError()) + ": relocations with offset 0x" + Twine::utohexstr(Sec.FileOffsetToRelocationInfo) + " and size 0x" + Twine::utohexstr(NumRelocEntries * sizeof(Reloc)) + " go past the end of the file"); const Reloc *StartReloc = RelocationOrErr.get(); return ArrayRef(StartReloc, StartReloc + NumRelocEntries); } template Expected> XCOFFObjectFile::getExceptionEntries() const { assert((is64Bit() && sizeof(ExceptEnt) == sizeof(ExceptionSectionEntry64)) || (!is64Bit() && sizeof(ExceptEnt) == sizeof(ExceptionSectionEntry32))); Expected ExceptionSectOrErr = getSectionFileOffsetToRawData(XCOFF::STYP_EXCEPT); if (!ExceptionSectOrErr) return ExceptionSectOrErr.takeError(); DataRefImpl DRI = getSectionByType(XCOFF::STYP_EXCEPT); if (DRI.p == 0) return ArrayRef(); ExceptEnt *ExceptEntStart = reinterpret_cast(*ExceptionSectOrErr); return ArrayRef( ExceptEntStart, ExceptEntStart + getSectionSize(DRI) / sizeof(ExceptEnt)); } template Expected> XCOFFObjectFile::getExceptionEntries() const; template Expected> XCOFFObjectFile::getExceptionEntries() const; Expected XCOFFObjectFile::parseStringTable(const XCOFFObjectFile *Obj, uint64_t Offset) { // If there is a string table, then the buffer must contain at least 4 bytes // for the string table's size. Not having a string table is not an error. if (Error E = Binary::checkOffset( Obj->Data, reinterpret_cast(Obj->base() + Offset), 4)) { consumeError(std::move(E)); return XCOFFStringTable{0, nullptr}; } // Read the size out of the buffer. uint32_t Size = support::endian::read32be(Obj->base() + Offset); // If the size is less then 4, then the string table is just a size and no // string data. if (Size <= 4) return XCOFFStringTable{4, nullptr}; auto StringTableOrErr = getObject(Obj->Data, Obj->base() + Offset, Size); if (!StringTableOrErr) return createError(toString(StringTableOrErr.takeError()) + ": string table with offset 0x" + Twine::utohexstr(Offset) + " and size 0x" + Twine::utohexstr(Size) + " goes past the end of the file"); const char *StringTablePtr = StringTableOrErr.get(); if (StringTablePtr[Size - 1] != '\0') return errorCodeToError(object_error::string_table_non_null_end); return XCOFFStringTable{Size, StringTablePtr}; } // This function returns the import file table. Each entry in the import file // table consists of: "path_name\0base_name\0archive_member_name\0". Expected XCOFFObjectFile::getImportFileTable() const { Expected LoaderSectionAddrOrError = getSectionFileOffsetToRawData(XCOFF::STYP_LOADER); if (!LoaderSectionAddrOrError) return LoaderSectionAddrOrError.takeError(); uintptr_t LoaderSectionAddr = LoaderSectionAddrOrError.get(); if (!LoaderSectionAddr) return StringRef(); uint64_t OffsetToImportFileTable = 0; uint64_t LengthOfImportFileTable = 0; if (is64Bit()) { const LoaderSectionHeader64 *LoaderSec64 = viewAs(LoaderSectionAddr); OffsetToImportFileTable = LoaderSec64->OffsetToImpid; LengthOfImportFileTable = LoaderSec64->LengthOfImpidStrTbl; } else { const LoaderSectionHeader32 *LoaderSec32 = viewAs(LoaderSectionAddr); OffsetToImportFileTable = LoaderSec32->OffsetToImpid; LengthOfImportFileTable = LoaderSec32->LengthOfImpidStrTbl; } auto ImportTableOrErr = getObject( Data, reinterpret_cast(LoaderSectionAddr + OffsetToImportFileTable), LengthOfImportFileTable); if (!ImportTableOrErr) return createError( toString(ImportTableOrErr.takeError()) + ": import file table with offset 0x" + Twine::utohexstr(LoaderSectionAddr + OffsetToImportFileTable) + " and size 0x" + Twine::utohexstr(LengthOfImportFileTable) + " goes past the end of the file"); const char *ImportTablePtr = ImportTableOrErr.get(); if (ImportTablePtr[LengthOfImportFileTable - 1] != '\0') return createError( ": import file name table with offset 0x" + Twine::utohexstr(LoaderSectionAddr + OffsetToImportFileTable) + " and size 0x" + Twine::utohexstr(LengthOfImportFileTable) + " must end with a null terminator"); return StringRef(ImportTablePtr, LengthOfImportFileTable); } Expected> XCOFFObjectFile::create(unsigned Type, MemoryBufferRef MBR) { // Can't use std::make_unique because of the private constructor. std::unique_ptr Obj; Obj.reset(new XCOFFObjectFile(Type, MBR)); uint64_t CurOffset = 0; const auto *Base = Obj->base(); MemoryBufferRef Data = Obj->Data; // Parse file header. auto FileHeaderOrErr = getObject(Data, Base + CurOffset, Obj->getFileHeaderSize()); if (Error E = FileHeaderOrErr.takeError()) return std::move(E); Obj->FileHeader = FileHeaderOrErr.get(); CurOffset += Obj->getFileHeaderSize(); if (Obj->getOptionalHeaderSize()) { auto AuxiliaryHeaderOrErr = getObject(Data, Base + CurOffset, Obj->getOptionalHeaderSize()); if (Error E = AuxiliaryHeaderOrErr.takeError()) return std::move(E); Obj->AuxiliaryHeader = AuxiliaryHeaderOrErr.get(); } CurOffset += Obj->getOptionalHeaderSize(); // Parse the section header table if it is present. if (Obj->getNumberOfSections()) { uint64_t SectionHeadersSize = Obj->getNumberOfSections() * Obj->getSectionHeaderSize(); auto SecHeadersOrErr = getObject(Data, Base + CurOffset, SectionHeadersSize); if (!SecHeadersOrErr) return createError(toString(SecHeadersOrErr.takeError()) + ": section headers with offset 0x" + Twine::utohexstr(CurOffset) + " and size 0x" + Twine::utohexstr(SectionHeadersSize) + " go past the end of the file"); Obj->SectionHeaderTable = SecHeadersOrErr.get(); } const uint32_t NumberOfSymbolTableEntries = Obj->getNumberOfSymbolTableEntries(); // If there is no symbol table we are done parsing the memory buffer. if (NumberOfSymbolTableEntries == 0) return std::move(Obj); // Parse symbol table. CurOffset = Obj->is64Bit() ? Obj->getSymbolTableOffset64() : Obj->getSymbolTableOffset32(); const uint64_t SymbolTableSize = static_cast(XCOFF::SymbolTableEntrySize) * NumberOfSymbolTableEntries; auto SymTableOrErr = getObject(Data, Base + CurOffset, SymbolTableSize); if (!SymTableOrErr) return createError( toString(SymTableOrErr.takeError()) + ": symbol table with offset 0x" + Twine::utohexstr(CurOffset) + " and size 0x" + Twine::utohexstr(SymbolTableSize) + " goes past the end of the file"); Obj->SymbolTblPtr = SymTableOrErr.get(); CurOffset += SymbolTableSize; // Parse String table. Expected StringTableOrErr = parseStringTable(Obj.get(), CurOffset); if (Error E = StringTableOrErr.takeError()) return std::move(E); Obj->StringTable = StringTableOrErr.get(); return std::move(Obj); } Expected> ObjectFile::createXCOFFObjectFile(MemoryBufferRef MemBufRef, unsigned FileType) { return XCOFFObjectFile::create(FileType, MemBufRef); } std::optional XCOFFObjectFile::tryGetCPUName() const { return StringRef("future"); } bool XCOFFSymbolRef::isFunction() const { if (!isCsectSymbol()) return false; if (getSymbolType() & FunctionSym) return true; Expected ExpCsectAuxEnt = getXCOFFCsectAuxRef(); if (!ExpCsectAuxEnt) { // If we could not get the CSECT auxiliary entry, then treat this symbol as // if it isn't a function. Consume the error and return `false` to move on. consumeError(ExpCsectAuxEnt.takeError()); return false; } const XCOFFCsectAuxRef CsectAuxRef = ExpCsectAuxEnt.get(); // A function definition should be a label definition. // FIXME: This is not necessarily the case when -ffunction-sections is // enabled. if (!CsectAuxRef.isLabel()) return false; if (CsectAuxRef.getStorageMappingClass() != XCOFF::XMC_PR) return false; const int16_t SectNum = getSectionNumber(); Expected SI = OwningObjectPtr->getSectionByNum(SectNum); if (!SI) { // If we could not get the section, then this symbol should not be // a function. So consume the error and return `false` to move on. consumeError(SI.takeError()); return false; } return (OwningObjectPtr->getSectionFlags(SI.get()) & XCOFF::STYP_TEXT); } bool XCOFFSymbolRef::isCsectSymbol() const { XCOFF::StorageClass SC = getStorageClass(); return (SC == XCOFF::C_EXT || SC == XCOFF::C_WEAKEXT || SC == XCOFF::C_HIDEXT); } Expected XCOFFSymbolRef::getXCOFFCsectAuxRef() const { assert(isCsectSymbol() && "Calling csect symbol interface with a non-csect symbol."); uint8_t NumberOfAuxEntries = getNumberOfAuxEntries(); Expected NameOrErr = getName(); if (auto Err = NameOrErr.takeError()) return std::move(Err); uint32_t SymbolIdx = OwningObjectPtr->getSymbolIndex(getEntryAddress()); if (!NumberOfAuxEntries) { return createError("csect symbol \"" + *NameOrErr + "\" with index " + Twine(SymbolIdx) + " contains no auxiliary entry"); } if (!OwningObjectPtr->is64Bit()) { // In XCOFF32, the csect auxilliary entry is always the last auxiliary // entry for the symbol. uintptr_t AuxAddr = XCOFFObjectFile::getAdvancedSymbolEntryAddress( getEntryAddress(), NumberOfAuxEntries); return XCOFFCsectAuxRef(viewAs(AuxAddr)); } // XCOFF64 uses SymbolAuxType to identify the auxiliary entry type. // We need to iterate through all the auxiliary entries to find it. for (uint8_t Index = NumberOfAuxEntries; Index > 0; --Index) { uintptr_t AuxAddr = XCOFFObjectFile::getAdvancedSymbolEntryAddress( getEntryAddress(), Index); if (*OwningObjectPtr->getSymbolAuxType(AuxAddr) == XCOFF::SymbolAuxType::AUX_CSECT) { #ifndef NDEBUG OwningObjectPtr->checkSymbolEntryPointer(AuxAddr); #endif return XCOFFCsectAuxRef(viewAs(AuxAddr)); } } return createError( "a csect auxiliary entry has not been found for symbol \"" + *NameOrErr + "\" with index " + Twine(SymbolIdx)); } Expected XCOFFSymbolRef::getName() const { // A storage class value with the high-order bit on indicates that the name is // a symbolic debugger stabstring. if (getStorageClass() & 0x80) return StringRef("Unimplemented Debug Name"); if (Entry32) { if (Entry32->NameInStrTbl.Magic != XCOFFSymbolRef::NAME_IN_STR_TBL_MAGIC) return generateXCOFFFixedNameStringRef(Entry32->SymbolName); return OwningObjectPtr->getStringTableEntry(Entry32->NameInStrTbl.Offset); } return OwningObjectPtr->getStringTableEntry(Entry64->Offset); } // Explictly instantiate template classes. template struct XCOFFSectionHeader; template struct XCOFFSectionHeader; template struct XCOFFRelocation; template struct XCOFFRelocation; template llvm::Expected> llvm::object::XCOFFObjectFile::relocations( llvm::object::XCOFFSectionHeader64 const &) const; template llvm::Expected> llvm::object::XCOFFObjectFile::relocations( llvm::object::XCOFFSectionHeader32 const &) const; bool doesXCOFFTracebackTableBegin(ArrayRef Bytes) { if (Bytes.size() < 4) return false; return support::endian::read32be(Bytes.data()) == 0; } #define GETVALUEWITHMASK(X) (Data & (TracebackTable::X)) #define GETVALUEWITHMASKSHIFT(X, S) \ ((Data & (TracebackTable::X)) >> (TracebackTable::S)) Expected TBVectorExt::create(StringRef TBvectorStrRef) { Error Err = Error::success(); TBVectorExt TBTVecExt(TBvectorStrRef, Err); if (Err) return std::move(Err); return TBTVecExt; } TBVectorExt::TBVectorExt(StringRef TBvectorStrRef, Error &Err) { const uint8_t *Ptr = reinterpret_cast(TBvectorStrRef.data()); Data = support::endian::read16be(Ptr); uint32_t VecParmsTypeValue = support::endian::read32be(Ptr + 2); unsigned ParmsNum = GETVALUEWITHMASKSHIFT(NumberOfVectorParmsMask, NumberOfVectorParmsShift); ErrorAsOutParameter EAO(&Err); Expected> VecParmsTypeOrError = parseVectorParmsType(VecParmsTypeValue, ParmsNum); if (!VecParmsTypeOrError) Err = VecParmsTypeOrError.takeError(); else VecParmsInfo = VecParmsTypeOrError.get(); } uint8_t TBVectorExt::getNumberOfVRSaved() const { return GETVALUEWITHMASKSHIFT(NumberOfVRSavedMask, NumberOfVRSavedShift); } bool TBVectorExt::isVRSavedOnStack() const { return GETVALUEWITHMASK(IsVRSavedOnStackMask); } bool TBVectorExt::hasVarArgs() const { return GETVALUEWITHMASK(HasVarArgsMask); } uint8_t TBVectorExt::getNumberOfVectorParms() const { return GETVALUEWITHMASKSHIFT(NumberOfVectorParmsMask, NumberOfVectorParmsShift); } bool TBVectorExt::hasVMXInstruction() const { return GETVALUEWITHMASK(HasVMXInstructionMask); } #undef GETVALUEWITHMASK #undef GETVALUEWITHMASKSHIFT Expected XCOFFTracebackTable::create(const uint8_t *Ptr, uint64_t &Size, bool Is64Bit) { Error Err = Error::success(); XCOFFTracebackTable TBT(Ptr, Size, Err, Is64Bit); if (Err) return std::move(Err); return TBT; } XCOFFTracebackTable::XCOFFTracebackTable(const uint8_t *Ptr, uint64_t &Size, Error &Err, bool Is64Bit) : TBPtr(Ptr), Is64BitObj(Is64Bit) { ErrorAsOutParameter EAO(&Err); DataExtractor DE(ArrayRef(Ptr, Size), /*IsLittleEndian=*/false, /*AddressSize=*/0); DataExtractor::Cursor Cur(/*Offset=*/0); // Skip 8 bytes of mandatory fields. DE.getU64(Cur); unsigned FixedParmsNum = getNumberOfFixedParms(); unsigned FloatingParmsNum = getNumberOfFPParms(); uint32_t ParamsTypeValue = 0; // Begin to parse optional fields. if (Cur && (FixedParmsNum + FloatingParmsNum) > 0) ParamsTypeValue = DE.getU32(Cur); if (Cur && hasTraceBackTableOffset()) TraceBackTableOffset = DE.getU32(Cur); if (Cur && isInterruptHandler()) HandlerMask = DE.getU32(Cur); if (Cur && hasControlledStorage()) { NumOfCtlAnchors = DE.getU32(Cur); if (Cur && NumOfCtlAnchors) { SmallVector Disp; Disp.reserve(*NumOfCtlAnchors); for (uint32_t I = 0; I < NumOfCtlAnchors && Cur; ++I) Disp.push_back(DE.getU32(Cur)); if (Cur) ControlledStorageInfoDisp = std::move(Disp); } } if (Cur && isFuncNamePresent()) { uint16_t FunctionNameLen = DE.getU16(Cur); if (Cur) FunctionName = DE.getBytes(Cur, FunctionNameLen); } if (Cur && isAllocaUsed()) AllocaRegister = DE.getU8(Cur); unsigned VectorParmsNum = 0; if (Cur && hasVectorInfo()) { StringRef VectorExtRef = DE.getBytes(Cur, 6); if (Cur) { Expected TBVecExtOrErr = TBVectorExt::create(VectorExtRef); if (!TBVecExtOrErr) { Err = TBVecExtOrErr.takeError(); return; } VecExt = TBVecExtOrErr.get(); VectorParmsNum = VecExt->getNumberOfVectorParms(); // Skip two bytes of padding after vector info. DE.skip(Cur, 2); } } // As long as there is no fixed-point or floating-point parameter, this // field remains not present even when hasVectorInfo gives true and // indicates the presence of vector parameters. if (Cur && (FixedParmsNum + FloatingParmsNum) > 0) { Expected> ParmsTypeOrError = hasVectorInfo() ? parseParmsTypeWithVecInfo(ParamsTypeValue, FixedParmsNum, FloatingParmsNum, VectorParmsNum) : parseParmsType(ParamsTypeValue, FixedParmsNum, FloatingParmsNum); if (!ParmsTypeOrError) { Err = ParmsTypeOrError.takeError(); return; } ParmsType = ParmsTypeOrError.get(); } if (Cur && hasExtensionTable()) { ExtensionTable = DE.getU8(Cur); if (*ExtensionTable & ExtendedTBTableFlag::TB_EH_INFO) { // eh_info displacement must be 4-byte aligned. Cur.seek(alignTo(Cur.tell(), 4)); EhInfoDisp = Is64BitObj ? DE.getU64(Cur) : DE.getU32(Cur); } } if (!Cur) Err = Cur.takeError(); Size = Cur.tell(); } #define GETBITWITHMASK(P, X) \ (support::endian::read32be(TBPtr + (P)) & (TracebackTable::X)) #define GETBITWITHMASKSHIFT(P, X, S) \ ((support::endian::read32be(TBPtr + (P)) & (TracebackTable::X)) >> \ (TracebackTable::S)) uint8_t XCOFFTracebackTable::getVersion() const { return GETBITWITHMASKSHIFT(0, VersionMask, VersionShift); } uint8_t XCOFFTracebackTable::getLanguageID() const { return GETBITWITHMASKSHIFT(0, LanguageIdMask, LanguageIdShift); } bool XCOFFTracebackTable::isGlobalLinkage() const { return GETBITWITHMASK(0, IsGlobaLinkageMask); } bool XCOFFTracebackTable::isOutOfLineEpilogOrPrologue() const { return GETBITWITHMASK(0, IsOutOfLineEpilogOrPrologueMask); } bool XCOFFTracebackTable::hasTraceBackTableOffset() const { return GETBITWITHMASK(0, HasTraceBackTableOffsetMask); } bool XCOFFTracebackTable::isInternalProcedure() const { return GETBITWITHMASK(0, IsInternalProcedureMask); } bool XCOFFTracebackTable::hasControlledStorage() const { return GETBITWITHMASK(0, HasControlledStorageMask); } bool XCOFFTracebackTable::isTOCless() const { return GETBITWITHMASK(0, IsTOClessMask); } bool XCOFFTracebackTable::isFloatingPointPresent() const { return GETBITWITHMASK(0, IsFloatingPointPresentMask); } bool XCOFFTracebackTable::isFloatingPointOperationLogOrAbortEnabled() const { return GETBITWITHMASK(0, IsFloatingPointOperationLogOrAbortEnabledMask); } bool XCOFFTracebackTable::isInterruptHandler() const { return GETBITWITHMASK(0, IsInterruptHandlerMask); } bool XCOFFTracebackTable::isFuncNamePresent() const { return GETBITWITHMASK(0, IsFunctionNamePresentMask); } bool XCOFFTracebackTable::isAllocaUsed() const { return GETBITWITHMASK(0, IsAllocaUsedMask); } uint8_t XCOFFTracebackTable::getOnConditionDirective() const { return GETBITWITHMASKSHIFT(0, OnConditionDirectiveMask, OnConditionDirectiveShift); } bool XCOFFTracebackTable::isCRSaved() const { return GETBITWITHMASK(0, IsCRSavedMask); } bool XCOFFTracebackTable::isLRSaved() const { return GETBITWITHMASK(0, IsLRSavedMask); } bool XCOFFTracebackTable::isBackChainStored() const { return GETBITWITHMASK(4, IsBackChainStoredMask); } bool XCOFFTracebackTable::isFixup() const { return GETBITWITHMASK(4, IsFixupMask); } uint8_t XCOFFTracebackTable::getNumOfFPRsSaved() const { return GETBITWITHMASKSHIFT(4, FPRSavedMask, FPRSavedShift); } bool XCOFFTracebackTable::hasExtensionTable() const { return GETBITWITHMASK(4, HasExtensionTableMask); } bool XCOFFTracebackTable::hasVectorInfo() const { return GETBITWITHMASK(4, HasVectorInfoMask); } uint8_t XCOFFTracebackTable::getNumOfGPRsSaved() const { return GETBITWITHMASKSHIFT(4, GPRSavedMask, GPRSavedShift); } uint8_t XCOFFTracebackTable::getNumberOfFixedParms() const { return GETBITWITHMASKSHIFT(4, NumberOfFixedParmsMask, NumberOfFixedParmsShift); } uint8_t XCOFFTracebackTable::getNumberOfFPParms() const { return GETBITWITHMASKSHIFT(4, NumberOfFloatingPointParmsMask, NumberOfFloatingPointParmsShift); } bool XCOFFTracebackTable::hasParmsOnStack() const { return GETBITWITHMASK(4, HasParmsOnStackMask); } #undef GETBITWITHMASK #undef GETBITWITHMASKSHIFT } // namespace object } // namespace llvm