//===- ELFObjectFile.cpp - ELF object file implementation -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Part of the ELFObjectFile class implementation. // //===----------------------------------------------------------------------===// #include "llvm/Object/ELFObjectFile.h" #include "llvm/ADT/Triple.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/ELF.h" #include "llvm/Object/ELFTypes.h" #include "llvm/Object/Error.h" #include "llvm/Support/ARMAttributeParser.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/RISCVAttributeParser.h" #include "llvm/Support/RISCVAttributes.h" #include #include #include #include #include #include #include using namespace llvm; using namespace object; const EnumEntry llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = { {"None", "NOTYPE", ELF::STT_NOTYPE}, {"Object", "OBJECT", ELF::STT_OBJECT}, {"Function", "FUNC", ELF::STT_FUNC}, {"Section", "SECTION", ELF::STT_SECTION}, {"File", "FILE", ELF::STT_FILE}, {"Common", "COMMON", ELF::STT_COMMON}, {"TLS", "TLS", ELF::STT_TLS}, {"Unknown", ": 7", 7}, {"Unknown", ": 8", 8}, {"Unknown", ": 9", 9}, {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC}, {"OS Specific", ": 11", 11}, {"OS Specific", ": 12", 12}, {"Proc Specific", ": 13", 13}, {"Proc Specific", ": 14", 14}, {"Proc Specific", ": 15", 15} }; ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source) : ObjectFile(Type, Source) {} template static Expected>> createPtr(MemoryBufferRef Object, bool InitContent) { auto Ret = ELFObjectFile::create(Object, InitContent); if (Error E = Ret.takeError()) return std::move(E); return std::make_unique>(std::move(*Ret)); } Expected> ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) { std::pair Ident = getElfArchType(Obj.getBuffer()); std::size_t MaxAlignment = 1ULL << countTrailingZeros( reinterpret_cast(Obj.getBufferStart())); if (MaxAlignment < 2) return createError("Insufficient alignment"); if (Ident.first == ELF::ELFCLASS32) { if (Ident.second == ELF::ELFDATA2LSB) return createPtr(Obj, InitContent); else if (Ident.second == ELF::ELFDATA2MSB) return createPtr(Obj, InitContent); else return createError("Invalid ELF data"); } else if (Ident.first == ELF::ELFCLASS64) { if (Ident.second == ELF::ELFDATA2LSB) return createPtr(Obj, InitContent); else if (Ident.second == ELF::ELFDATA2MSB) return createPtr(Obj, InitContent); else return createError("Invalid ELF data"); } return createError("Invalid ELF class"); } SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const { SubtargetFeatures Features; unsigned PlatformFlags = getPlatformFlags(); switch (PlatformFlags & ELF::EF_MIPS_ARCH) { case ELF::EF_MIPS_ARCH_1: break; case ELF::EF_MIPS_ARCH_2: Features.AddFeature("mips2"); break; case ELF::EF_MIPS_ARCH_3: Features.AddFeature("mips3"); break; case ELF::EF_MIPS_ARCH_4: Features.AddFeature("mips4"); break; case ELF::EF_MIPS_ARCH_5: Features.AddFeature("mips5"); break; case ELF::EF_MIPS_ARCH_32: Features.AddFeature("mips32"); break; case ELF::EF_MIPS_ARCH_64: Features.AddFeature("mips64"); break; case ELF::EF_MIPS_ARCH_32R2: Features.AddFeature("mips32r2"); break; case ELF::EF_MIPS_ARCH_64R2: Features.AddFeature("mips64r2"); break; case ELF::EF_MIPS_ARCH_32R6: Features.AddFeature("mips32r6"); break; case ELF::EF_MIPS_ARCH_64R6: Features.AddFeature("mips64r6"); break; default: llvm_unreachable("Unknown EF_MIPS_ARCH value"); } switch (PlatformFlags & ELF::EF_MIPS_MACH) { case ELF::EF_MIPS_MACH_NONE: // No feature associated with this value. break; case ELF::EF_MIPS_MACH_OCTEON: Features.AddFeature("cnmips"); break; default: llvm_unreachable("Unknown EF_MIPS_ARCH value"); } if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16) Features.AddFeature("mips16"); if (PlatformFlags & ELF::EF_MIPS_MICROMIPS) Features.AddFeature("micromips"); return Features; } SubtargetFeatures ELFObjectFileBase::getARMFeatures() const { SubtargetFeatures Features; ARMAttributeParser Attributes; if (Error E = getBuildAttributes(Attributes)) { consumeError(std::move(E)); return SubtargetFeatures(); } // both ARMv7-M and R have to support thumb hardware div bool isV7 = false; Optional Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); if (Attr.hasValue()) isV7 = Attr.getValue() == ARMBuildAttrs::v7; Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile); if (Attr.hasValue()) { switch (Attr.getValue()) { case ARMBuildAttrs::ApplicationProfile: Features.AddFeature("aclass"); break; case ARMBuildAttrs::RealTimeProfile: Features.AddFeature("rclass"); if (isV7) Features.AddFeature("hwdiv"); break; case ARMBuildAttrs::MicroControllerProfile: Features.AddFeature("mclass"); if (isV7) Features.AddFeature("hwdiv"); break; } } Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use); if (Attr.hasValue()) { switch (Attr.getValue()) { default: break; case ARMBuildAttrs::Not_Allowed: Features.AddFeature("thumb", false); Features.AddFeature("thumb2", false); break; case ARMBuildAttrs::AllowThumb32: Features.AddFeature("thumb2"); break; } } Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch); if (Attr.hasValue()) { switch (Attr.getValue()) { default: break; case ARMBuildAttrs::Not_Allowed: Features.AddFeature("vfp2sp", false); Features.AddFeature("vfp3d16sp", false); Features.AddFeature("vfp4d16sp", false); break; case ARMBuildAttrs::AllowFPv2: Features.AddFeature("vfp2"); break; case ARMBuildAttrs::AllowFPv3A: case ARMBuildAttrs::AllowFPv3B: Features.AddFeature("vfp3"); break; case ARMBuildAttrs::AllowFPv4A: case ARMBuildAttrs::AllowFPv4B: Features.AddFeature("vfp4"); break; } } Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch); if (Attr.hasValue()) { switch (Attr.getValue()) { default: break; case ARMBuildAttrs::Not_Allowed: Features.AddFeature("neon", false); Features.AddFeature("fp16", false); break; case ARMBuildAttrs::AllowNeon: Features.AddFeature("neon"); break; case ARMBuildAttrs::AllowNeon2: Features.AddFeature("neon"); Features.AddFeature("fp16"); break; } } Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch); if (Attr.hasValue()) { switch (Attr.getValue()) { default: break; case ARMBuildAttrs::Not_Allowed: Features.AddFeature("mve", false); Features.AddFeature("mve.fp", false); break; case ARMBuildAttrs::AllowMVEInteger: Features.AddFeature("mve.fp", false); Features.AddFeature("mve"); break; case ARMBuildAttrs::AllowMVEIntegerAndFloat: Features.AddFeature("mve.fp"); break; } } Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use); if (Attr.hasValue()) { switch (Attr.getValue()) { default: break; case ARMBuildAttrs::DisallowDIV: Features.AddFeature("hwdiv", false); Features.AddFeature("hwdiv-arm", false); break; case ARMBuildAttrs::AllowDIVExt: Features.AddFeature("hwdiv"); Features.AddFeature("hwdiv-arm"); break; } } return Features; } SubtargetFeatures ELFObjectFileBase::getRISCVFeatures() const { SubtargetFeatures Features; unsigned PlatformFlags = getPlatformFlags(); if (PlatformFlags & ELF::EF_RISCV_RVC) { Features.AddFeature("c"); } // Add features according to the ELF attribute section. // If there are any unrecognized features, ignore them. RISCVAttributeParser Attributes; if (Error E = getBuildAttributes(Attributes)) { // TODO Propagate Error. consumeError(std::move(E)); return Features; // Keep "c" feature if there is one in PlatformFlags. } Optional Attr = Attributes.getAttributeString(RISCVAttrs::ARCH); if (Attr.hasValue()) { // The Arch pattern is [rv32|rv64][i|e]version(_[m|a|f|d|c]version)* // Version string pattern is (major)p(minor). Major and minor are optional. // For example, a version number could be 2p0, 2, or p92. StringRef Arch = Attr.getValue(); if (Arch.consume_front("rv32")) Features.AddFeature("64bit", false); else if (Arch.consume_front("rv64")) Features.AddFeature("64bit"); while (!Arch.empty()) { switch (Arch[0]) { default: break; // Ignore unexpected features. case 'i': Features.AddFeature("e", false); break; case 'd': Features.AddFeature("f"); // D-ext will imply F-ext. LLVM_FALLTHROUGH; case 'e': case 'm': case 'a': case 'f': case 'c': Features.AddFeature(Arch.take_front()); break; } // FIXME: Handle version numbers. Arch = Arch.drop_until([](char c) { return c == '_' || c == '\0'; }); Arch = Arch.drop_while([](char c) { return c == '_'; }); } } return Features; } SubtargetFeatures ELFObjectFileBase::getFeatures() const { switch (getEMachine()) { case ELF::EM_MIPS: return getMIPSFeatures(); case ELF::EM_ARM: return getARMFeatures(); case ELF::EM_RISCV: return getRISCVFeatures(); default: return SubtargetFeatures(); } } Optional ELFObjectFileBase::tryGetCPUName() const { switch (getEMachine()) { case ELF::EM_AMDGPU: return getAMDGPUCPUName(); default: return None; } } StringRef ELFObjectFileBase::getAMDGPUCPUName() const { assert(getEMachine() == ELF::EM_AMDGPU); unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH; switch (CPU) { // Radeon HD 2000/3000 Series (R600). case ELF::EF_AMDGPU_MACH_R600_R600: return "r600"; case ELF::EF_AMDGPU_MACH_R600_R630: return "r630"; case ELF::EF_AMDGPU_MACH_R600_RS880: return "rs880"; case ELF::EF_AMDGPU_MACH_R600_RV670: return "rv670"; // Radeon HD 4000 Series (R700). case ELF::EF_AMDGPU_MACH_R600_RV710: return "rv710"; case ELF::EF_AMDGPU_MACH_R600_RV730: return "rv730"; case ELF::EF_AMDGPU_MACH_R600_RV770: return "rv770"; // Radeon HD 5000 Series (Evergreen). case ELF::EF_AMDGPU_MACH_R600_CEDAR: return "cedar"; case ELF::EF_AMDGPU_MACH_R600_CYPRESS: return "cypress"; case ELF::EF_AMDGPU_MACH_R600_JUNIPER: return "juniper"; case ELF::EF_AMDGPU_MACH_R600_REDWOOD: return "redwood"; case ELF::EF_AMDGPU_MACH_R600_SUMO: return "sumo"; // Radeon HD 6000 Series (Northern Islands). case ELF::EF_AMDGPU_MACH_R600_BARTS: return "barts"; case ELF::EF_AMDGPU_MACH_R600_CAICOS: return "caicos"; case ELF::EF_AMDGPU_MACH_R600_CAYMAN: return "cayman"; case ELF::EF_AMDGPU_MACH_R600_TURKS: return "turks"; // AMDGCN GFX6. case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600: return "gfx600"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601: return "gfx601"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602: return "gfx602"; // AMDGCN GFX7. case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700: return "gfx700"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701: return "gfx701"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702: return "gfx702"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703: return "gfx703"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704: return "gfx704"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705: return "gfx705"; // AMDGCN GFX8. case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801: return "gfx801"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802: return "gfx802"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803: return "gfx803"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805: return "gfx805"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810: return "gfx810"; // AMDGCN GFX9. case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900: return "gfx900"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902: return "gfx902"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904: return "gfx904"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906: return "gfx906"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908: return "gfx908"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909: return "gfx909"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A: return "gfx90a"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C: return "gfx90c"; // AMDGCN GFX10. case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010: return "gfx1010"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011: return "gfx1011"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012: return "gfx1012"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013: return "gfx1013"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030: return "gfx1030"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031: return "gfx1031"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032: return "gfx1032"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033: return "gfx1033"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034: return "gfx1034"; case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035: return "gfx1035"; default: llvm_unreachable("Unknown EF_AMDGPU_MACH value"); } } // FIXME Encode from a tablegen description or target parser. void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const { if (TheTriple.getSubArch() != Triple::NoSubArch) return; ARMAttributeParser Attributes; if (Error E = getBuildAttributes(Attributes)) { // TODO Propagate Error. consumeError(std::move(E)); return; } std::string Triple; // Default to ARM, but use the triple if it's been set. if (TheTriple.isThumb()) Triple = "thumb"; else Triple = "arm"; Optional Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); if (Attr.hasValue()) { switch (Attr.getValue()) { case ARMBuildAttrs::v4: Triple += "v4"; break; case ARMBuildAttrs::v4T: Triple += "v4t"; break; case ARMBuildAttrs::v5T: Triple += "v5t"; break; case ARMBuildAttrs::v5TE: Triple += "v5te"; break; case ARMBuildAttrs::v5TEJ: Triple += "v5tej"; break; case ARMBuildAttrs::v6: Triple += "v6"; break; case ARMBuildAttrs::v6KZ: Triple += "v6kz"; break; case ARMBuildAttrs::v6T2: Triple += "v6t2"; break; case ARMBuildAttrs::v6K: Triple += "v6k"; break; case ARMBuildAttrs::v7: { Optional ArchProfileAttr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile); if (ArchProfileAttr.hasValue() && ArchProfileAttr.getValue() == ARMBuildAttrs::MicroControllerProfile) Triple += "v7m"; else Triple += "v7"; break; } case ARMBuildAttrs::v6_M: Triple += "v6m"; break; case ARMBuildAttrs::v6S_M: Triple += "v6sm"; break; case ARMBuildAttrs::v7E_M: Triple += "v7em"; break; case ARMBuildAttrs::v8_A: Triple += "v8a"; break; case ARMBuildAttrs::v8_R: Triple += "v8r"; break; case ARMBuildAttrs::v8_M_Base: Triple += "v8m.base"; break; case ARMBuildAttrs::v8_M_Main: Triple += "v8m.main"; break; case ARMBuildAttrs::v8_1_M_Main: Triple += "v8.1m.main"; break; } } if (!isLittleEndian()) Triple += "eb"; TheTriple.setArchName(Triple); } std::vector, uint64_t>> ELFObjectFileBase::getPltAddresses() const { std::string Err; const auto Triple = makeTriple(); const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err); if (!T) return {}; uint64_t JumpSlotReloc = 0; switch (Triple.getArch()) { case Triple::x86: JumpSlotReloc = ELF::R_386_JUMP_SLOT; break; case Triple::x86_64: JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT; break; case Triple::aarch64: case Triple::aarch64_be: JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT; break; default: return {}; } std::unique_ptr MII(T->createMCInstrInfo()); std::unique_ptr MIA( T->createMCInstrAnalysis(MII.get())); if (!MIA) return {}; Optional Plt = None, RelaPlt = None, GotPlt = None; for (const SectionRef &Section : sections()) { Expected NameOrErr = Section.getName(); if (!NameOrErr) { consumeError(NameOrErr.takeError()); continue; } StringRef Name = *NameOrErr; if (Name == ".plt") Plt = Section; else if (Name == ".rela.plt" || Name == ".rel.plt") RelaPlt = Section; else if (Name == ".got.plt") GotPlt = Section; } if (!Plt || !RelaPlt || !GotPlt) return {}; Expected PltContents = Plt->getContents(); if (!PltContents) { consumeError(PltContents.takeError()); return {}; } auto PltEntries = MIA->findPltEntries(Plt->getAddress(), arrayRefFromStringRef(*PltContents), GotPlt->getAddress(), Triple); // Build a map from GOT entry virtual address to PLT entry virtual address. DenseMap GotToPlt; for (const auto &Entry : PltEntries) GotToPlt.insert(std::make_pair(Entry.second, Entry.first)); // Find the relocations in the dynamic relocation table that point to // locations in the GOT for which we know the corresponding PLT entry. std::vector, uint64_t>> Result; for (const auto &Relocation : RelaPlt->relocations()) { if (Relocation.getType() != JumpSlotReloc) continue; auto PltEntryIter = GotToPlt.find(Relocation.getOffset()); if (PltEntryIter != GotToPlt.end()) { symbol_iterator Sym = Relocation.getSymbol(); if (Sym == symbol_end()) Result.emplace_back(None, PltEntryIter->second); else Result.emplace_back(Sym->getRawDataRefImpl(), PltEntryIter->second); } } return Result; } template static Expected> readDynsymVersionsImpl(const ELFFile &EF, ELFObjectFileBase::elf_symbol_iterator_range Symbols) { using Elf_Shdr = typename ELFT::Shdr; const Elf_Shdr *VerSec = nullptr; const Elf_Shdr *VerNeedSec = nullptr; const Elf_Shdr *VerDefSec = nullptr; // The user should ensure sections() can't fail here. for (const Elf_Shdr &Sec : cantFail(EF.sections())) { if (Sec.sh_type == ELF::SHT_GNU_versym) VerSec = &Sec; else if (Sec.sh_type == ELF::SHT_GNU_verdef) VerDefSec = &Sec; else if (Sec.sh_type == ELF::SHT_GNU_verneed) VerNeedSec = &Sec; } if (!VerSec) return std::vector(); Expected, 0>> MapOrErr = EF.loadVersionMap(VerNeedSec, VerDefSec); if (!MapOrErr) return MapOrErr.takeError(); std::vector Ret; size_t I = 0; for (const ELFSymbolRef &Sym : Symbols) { ++I; Expected VerEntryOrErr = EF.template getEntry(*VerSec, I); if (!VerEntryOrErr) return createError("unable to read an entry with index " + Twine(I) + " from " + describe(EF, *VerSec) + ": " + toString(VerEntryOrErr.takeError())); Expected FlagsOrErr = Sym.getFlags(); if (!FlagsOrErr) return createError("unable to read flags for symbol with index " + Twine(I) + ": " + toString(FlagsOrErr.takeError())); bool IsDefault; Expected VerOrErr = EF.getSymbolVersionByIndex( (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr, (*FlagsOrErr) & SymbolRef::SF_Undefined); if (!VerOrErr) return createError("unable to get a version for entry " + Twine(I) + " of " + describe(EF, *VerSec) + ": " + toString(VerOrErr.takeError())); Ret.push_back({(*VerOrErr).str(), IsDefault}); } return Ret; } Expected> ELFObjectFileBase::readDynsymVersions() const { elf_symbol_iterator_range Symbols = getDynamicSymbolIterators(); if (const auto *Obj = dyn_cast(this)) return readDynsymVersionsImpl(Obj->getELFFile(), Symbols); if (const auto *Obj = dyn_cast(this)) return readDynsymVersionsImpl(Obj->getELFFile(), Symbols); if (const auto *Obj = dyn_cast(this)) return readDynsymVersionsImpl(Obj->getELFFile(), Symbols); return readDynsymVersionsImpl(cast(this)->getELFFile(), Symbols); }