//===- ELFObject.cpp ------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ELFObject.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Object/ELF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/Compression.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::objcopy::elf; using namespace llvm::object; template void ELFWriter::writePhdr(const Segment &Seg) { uint8_t *B = reinterpret_cast(Buf->getBufferStart()) + Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); Elf_Phdr &Phdr = *reinterpret_cast(B); Phdr.p_type = Seg.Type; Phdr.p_flags = Seg.Flags; Phdr.p_offset = Seg.Offset; Phdr.p_vaddr = Seg.VAddr; Phdr.p_paddr = Seg.PAddr; Phdr.p_filesz = Seg.FileSize; Phdr.p_memsz = Seg.MemSize; Phdr.p_align = Seg.Align; } Error SectionBase::removeSectionReferences( bool, function_ref) { return Error::success(); } Error SectionBase::removeSymbols(function_ref) { return Error::success(); } Error SectionBase::initialize(SectionTableRef) { return Error::success(); } void SectionBase::finalize() {} void SectionBase::markSymbols() {} void SectionBase::replaceSectionReferences( const DenseMap &) {} void SectionBase::onRemove() {} template void ELFWriter::writeShdr(const SectionBase &Sec) { uint8_t *B = reinterpret_cast(Buf->getBufferStart()) + Sec.HeaderOffset; Elf_Shdr &Shdr = *reinterpret_cast(B); Shdr.sh_name = Sec.NameIndex; Shdr.sh_type = Sec.Type; Shdr.sh_flags = Sec.Flags; Shdr.sh_addr = Sec.Addr; Shdr.sh_offset = Sec.Offset; Shdr.sh_size = Sec.Size; Shdr.sh_link = Sec.Link; Shdr.sh_info = Sec.Info; Shdr.sh_addralign = Sec.Align; Shdr.sh_entsize = Sec.EntrySize; } template Error ELFSectionSizer::visit(Section &) { return Error::success(); } template Error ELFSectionSizer::visit(OwnedDataSection &) { return Error::success(); } template Error ELFSectionSizer::visit(StringTableSection &) { return Error::success(); } template Error ELFSectionSizer::visit(DynamicRelocationSection &) { return Error::success(); } template Error ELFSectionSizer::visit(SymbolTableSection &Sec) { Sec.EntrySize = sizeof(Elf_Sym); Sec.Size = Sec.Symbols.size() * Sec.EntrySize; // Align to the largest field in Elf_Sym. Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); return Error::success(); } template Error ELFSectionSizer::visit(RelocationSection &Sec) { Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); Sec.Size = Sec.Relocations.size() * Sec.EntrySize; // Align to the largest field in Elf_Rel(a). Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); return Error::success(); } template Error ELFSectionSizer::visit(GnuDebugLinkSection &) { return Error::success(); } template Error ELFSectionSizer::visit(GroupSection &Sec) { Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word); return Error::success(); } template Error ELFSectionSizer::visit(SectionIndexSection &) { return Error::success(); } template Error ELFSectionSizer::visit(CompressedSection &) { return Error::success(); } template Error ELFSectionSizer::visit(DecompressedSection &) { return Error::success(); } Error BinarySectionWriter::visit(const SectionIndexSection &Sec) { return createStringError(errc::operation_not_permitted, "cannot write symbol section index table '" + Sec.Name + "' "); } Error BinarySectionWriter::visit(const SymbolTableSection &Sec) { return createStringError(errc::operation_not_permitted, "cannot write symbol table '" + Sec.Name + "' out to binary"); } Error BinarySectionWriter::visit(const RelocationSection &Sec) { return createStringError(errc::operation_not_permitted, "cannot write relocation section '" + Sec.Name + "' out to binary"); } Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { return createStringError(errc::operation_not_permitted, "cannot write '" + Sec.Name + "' out to binary"); } Error BinarySectionWriter::visit(const GroupSection &Sec) { return createStringError(errc::operation_not_permitted, "cannot write '" + Sec.Name + "' out to binary"); } Error SectionWriter::visit(const Section &Sec) { if (Sec.Type != SHT_NOBITS) llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); return Error::success(); } static bool addressOverflows32bit(uint64_t Addr) { // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX; } template static T checkedGetHex(StringRef S) { T Value; bool Fail = S.getAsInteger(16, Value); assert(!Fail); (void)Fail; return Value; } // Fills exactly Len bytes of buffer with hexadecimal characters // representing value 'X' template static Iterator toHexStr(T X, Iterator It, size_t Len) { // Fill range with '0' std::fill(It, It + Len, '0'); for (long I = Len - 1; I >= 0; --I) { unsigned char Mod = static_cast(X) & 15; *(It + I) = hexdigit(Mod, false); X >>= 4; } assert(X == 0); return It + Len; } uint8_t IHexRecord::getChecksum(StringRef S) { assert((S.size() & 1) == 0); uint8_t Checksum = 0; while (!S.empty()) { Checksum += checkedGetHex(S.take_front(2)); S = S.drop_front(2); } return -Checksum; } IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr, ArrayRef Data) { IHexLineData Line(getLineLength(Data.size())); assert(Line.size()); auto Iter = Line.begin(); *Iter++ = ':'; Iter = toHexStr(Data.size(), Iter, 2); Iter = toHexStr(Addr, Iter, 4); Iter = toHexStr(Type, Iter, 2); for (uint8_t X : Data) Iter = toHexStr(X, Iter, 2); StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter)); Iter = toHexStr(getChecksum(S), Iter, 2); *Iter++ = '\r'; *Iter++ = '\n'; assert(Iter == Line.end()); return Line; } static Error checkRecord(const IHexRecord &R) { switch (R.Type) { case IHexRecord::Data: if (R.HexData.size() == 0) return createStringError( errc::invalid_argument, "zero data length is not allowed for data records"); break; case IHexRecord::EndOfFile: break; case IHexRecord::SegmentAddr: // 20-bit segment address. Data length must be 2 bytes // (4 bytes in hex) if (R.HexData.size() != 4) return createStringError( errc::invalid_argument, "segment address data should be 2 bytes in size"); break; case IHexRecord::StartAddr80x86: case IHexRecord::StartAddr: if (R.HexData.size() != 8) return createStringError(errc::invalid_argument, "start address data should be 4 bytes in size"); // According to Intel HEX specification '03' record // only specifies the code address within the 20-bit // segmented address space of the 8086/80186. This // means 12 high order bits should be zeroes. if (R.Type == IHexRecord::StartAddr80x86 && R.HexData.take_front(3) != "000") return createStringError(errc::invalid_argument, "start address exceeds 20 bit for 80x86"); break; case IHexRecord::ExtendedAddr: // 16-31 bits of linear base address if (R.HexData.size() != 4) return createStringError( errc::invalid_argument, "extended address data should be 2 bytes in size"); break; default: // Unknown record type return createStringError(errc::invalid_argument, "unknown record type: %u", static_cast(R.Type)); } return Error::success(); } // Checks that IHEX line contains valid characters. // This allows converting hexadecimal data to integers // without extra verification. static Error checkChars(StringRef Line) { assert(!Line.empty()); if (Line[0] != ':') return createStringError(errc::invalid_argument, "missing ':' in the beginning of line."); for (size_t Pos = 1; Pos < Line.size(); ++Pos) if (hexDigitValue(Line[Pos]) == -1U) return createStringError(errc::invalid_argument, "invalid character at position %zu.", Pos + 1); return Error::success(); } Expected IHexRecord::parse(StringRef Line) { assert(!Line.empty()); // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC' if (Line.size() < 11) return createStringError(errc::invalid_argument, "line is too short: %zu chars.", Line.size()); if (Error E = checkChars(Line)) return std::move(E); IHexRecord Rec; size_t DataLen = checkedGetHex(Line.substr(1, 2)); if (Line.size() != getLength(DataLen)) return createStringError(errc::invalid_argument, "invalid line length %zu (should be %zu)", Line.size(), getLength(DataLen)); Rec.Addr = checkedGetHex(Line.substr(3, 4)); Rec.Type = checkedGetHex(Line.substr(7, 2)); Rec.HexData = Line.substr(9, DataLen * 2); if (getChecksum(Line.drop_front(1)) != 0) return createStringError(errc::invalid_argument, "incorrect checksum."); if (Error E = checkRecord(Rec)) return std::move(E); return Rec; } static uint64_t sectionPhysicalAddr(const SectionBase *Sec) { Segment *Seg = Sec->ParentSegment; if (Seg && Seg->Type != ELF::PT_LOAD) Seg = nullptr; return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset : Sec->Addr; } void IHexSectionWriterBase::writeSection(const SectionBase *Sec, ArrayRef Data) { assert(Data.size() == Sec->Size); const uint32_t ChunkSize = 16; uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU; while (!Data.empty()) { uint64_t DataSize = std::min(Data.size(), ChunkSize); if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) { if (Addr > 0xFFFFFU) { // Write extended address record, zeroing segment address // if needed. if (SegmentAddr != 0) SegmentAddr = writeSegmentAddr(0U); BaseAddr = writeBaseAddr(Addr); } else { // We can still remain 16-bit SegmentAddr = writeSegmentAddr(Addr); } } uint64_t SegOffset = Addr - BaseAddr - SegmentAddr; assert(SegOffset <= 0xFFFFU); DataSize = std::min(DataSize, 0x10000U - SegOffset); writeData(0, SegOffset, Data.take_front(DataSize)); Addr += DataSize; Data = Data.drop_front(DataSize); } } uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) { assert(Addr <= 0xFFFFFU); uint8_t Data[] = {static_cast((Addr & 0xF0000U) >> 12), 0}; writeData(2, 0, Data); return Addr & 0xF0000U; } uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) { assert(Addr <= 0xFFFFFFFFU); uint64_t Base = Addr & 0xFFFF0000U; uint8_t Data[] = {static_cast(Base >> 24), static_cast((Base >> 16) & 0xFF)}; writeData(4, 0, Data); return Base; } void IHexSectionWriterBase::writeData(uint8_t, uint16_t, ArrayRef Data) { Offset += IHexRecord::getLineLength(Data.size()); } Error IHexSectionWriterBase::visit(const Section &Sec) { writeSection(&Sec, Sec.Contents); return Error::success(); } Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) { writeSection(&Sec, Sec.Data); return Error::success(); } Error IHexSectionWriterBase::visit(const StringTableSection &Sec) { // Check that sizer has already done its work assert(Sec.Size == Sec.StrTabBuilder.getSize()); // We are free to pass an invalid pointer to writeSection as long // as we don't actually write any data. The real writer class has // to override this method . writeSection(&Sec, {nullptr, static_cast(Sec.Size)}); return Error::success(); } Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) { writeSection(&Sec, Sec.Contents); return Error::success(); } void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr, ArrayRef Data) { IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data); memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size()); Offset += HexData.size(); } Error IHexSectionWriter::visit(const StringTableSection &Sec) { assert(Sec.Size == Sec.StrTabBuilder.getSize()); std::vector Data(Sec.Size); Sec.StrTabBuilder.write(Data.data()); writeSection(&Sec, Data); return Error::success(); } Error Section::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error Section::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } void Section::restoreSymTabLink(SymbolTableSection &SymTab) { if (HasSymTabLink) { assert(LinkSection == nullptr); LinkSection = &SymTab; } } Error SectionWriter::visit(const OwnedDataSection &Sec) { llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset); return Error::success(); } template Error ELFSectionWriter::visit(const DecompressedSection &Sec) { ArrayRef Compressed = Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl)); SmallVector Decompressed; DebugCompressionType Type; switch (Sec.ChType) { case ELFCOMPRESS_ZLIB: Type = DebugCompressionType::Zlib; break; case ELFCOMPRESS_ZSTD: Type = DebugCompressionType::Zstd; break; default: return createStringError(errc::invalid_argument, "--decompress-debug-sections: ch_type (" + Twine(Sec.ChType) + ") of section '" + Sec.Name + "' is unsupported"); } if (auto *Reason = compression::getReasonIfUnsupported(compression::formatFor(Type))) return createStringError(errc::invalid_argument, "failed to decompress section '" + Sec.Name + "': " + Reason); if (Error E = compression::decompress(Type, Compressed, Decompressed, static_cast(Sec.Size))) return createStringError(errc::invalid_argument, "failed to decompress section '" + Sec.Name + "': " + toString(std::move(E))); uint8_t *Buf = reinterpret_cast(Out.getBufferStart()) + Sec.Offset; std::copy(Decompressed.begin(), Decompressed.end(), Buf); return Error::success(); } Error BinarySectionWriter::visit(const DecompressedSection &Sec) { return createStringError(errc::operation_not_permitted, "cannot write compressed section '" + Sec.Name + "' "); } Error DecompressedSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error DecompressedSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } Error OwnedDataSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } void OwnedDataSection::appendHexData(StringRef HexData) { assert((HexData.size() & 1) == 0); while (!HexData.empty()) { Data.push_back(checkedGetHex(HexData.take_front(2))); HexData = HexData.drop_front(2); } Size = Data.size(); } Error BinarySectionWriter::visit(const CompressedSection &Sec) { return createStringError(errc::operation_not_permitted, "cannot write compressed section '" + Sec.Name + "' "); } template Error ELFSectionWriter::visit(const CompressedSection &Sec) { uint8_t *Buf = reinterpret_cast(Out.getBufferStart()) + Sec.Offset; Elf_Chdr_Impl Chdr = {}; switch (Sec.CompressionType) { case DebugCompressionType::None: std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); return Error::success(); case DebugCompressionType::Zlib: Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; break; case DebugCompressionType::Zstd: Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD; break; } Chdr.ch_size = Sec.DecompressedSize; Chdr.ch_addralign = Sec.DecompressedAlign; memcpy(Buf, &Chdr, sizeof(Chdr)); Buf += sizeof(Chdr); std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); return Error::success(); } CompressedSection::CompressedSection(const SectionBase &Sec, DebugCompressionType CompressionType, bool Is64Bits) : SectionBase(Sec), CompressionType(CompressionType), DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { compression::compress(compression::Params(CompressionType), OriginalData, CompressedData); Flags |= ELF::SHF_COMPRESSED; size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl) : sizeof(object::Elf_Chdr_Impl); Size = ChdrSize + CompressedData.size(); Align = 8; } CompressedSection::CompressedSection(ArrayRef CompressedData, uint32_t ChType, uint64_t DecompressedSize, uint64_t DecompressedAlign) : ChType(ChType), CompressionType(DebugCompressionType::None), DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { OriginalData = CompressedData; } Error CompressedSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error CompressedSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); } uint32_t StringTableSection::findIndex(StringRef Name) const { return StrTabBuilder.getOffset(Name); } void StringTableSection::prepareForLayout() { StrTabBuilder.finalize(); Size = StrTabBuilder.getSize(); } Error SectionWriter::visit(const StringTableSection &Sec) { Sec.StrTabBuilder.write(reinterpret_cast(Out.getBufferStart()) + Sec.Offset); return Error::success(); } Error StringTableSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error StringTableSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } template Error ELFSectionWriter::visit(const SectionIndexSection &Sec) { uint8_t *Buf = reinterpret_cast(Out.getBufferStart()) + Sec.Offset; llvm::copy(Sec.Indexes, reinterpret_cast(Buf)); return Error::success(); } Error SectionIndexSection::initialize(SectionTableRef SecTable) { Size = 0; Expected Sec = SecTable.getSectionOfType( Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid", "Link field value " + Twine(Link) + " in section " + Name + " is not a symbol table"); if (!Sec) return Sec.takeError(); setSymTab(*Sec); Symbols->setShndxTable(this); return Error::success(); } void SectionIndexSection::finalize() { Link = Symbols->Index; } Error SectionIndexSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { switch (Index) { case SHN_ABS: case SHN_COMMON: return true; } if (Machine == EM_AMDGPU) { return Index == SHN_AMDGPU_LDS; } if (Machine == EM_MIPS) { switch (Index) { case SHN_MIPS_ACOMMON: case SHN_MIPS_SCOMMON: case SHN_MIPS_SUNDEFINED: return true; } } if (Machine == EM_HEXAGON) { switch (Index) { case SHN_HEXAGON_SCOMMON: case SHN_HEXAGON_SCOMMON_1: case SHN_HEXAGON_SCOMMON_2: case SHN_HEXAGON_SCOMMON_4: case SHN_HEXAGON_SCOMMON_8: return true; } } return false; } // Large indexes force us to clarify exactly what this function should do. This // function should return the value that will appear in st_shndx when written // out. uint16_t Symbol::getShndx() const { if (DefinedIn != nullptr) { if (DefinedIn->Index >= SHN_LORESERVE) return SHN_XINDEX; return DefinedIn->Index; } if (ShndxType == SYMBOL_SIMPLE_INDEX) { // This means that we don't have a defined section but we do need to // output a legitimate section index. return SHN_UNDEF; } assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON || (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) || (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS)); return static_cast(ShndxType); } bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } void SymbolTableSection::assignIndices() { uint32_t Index = 0; for (auto &Sym : Symbols) { if (Sym->Index != Index) IndicesChanged = true; Sym->Index = Index++; } } void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, SectionBase *DefinedIn, uint64_t Value, uint8_t Visibility, uint16_t Shndx, uint64_t SymbolSize) { Symbol Sym; Sym.Name = Name.str(); Sym.Binding = Bind; Sym.Type = Type; Sym.DefinedIn = DefinedIn; if (DefinedIn != nullptr) DefinedIn->HasSymbol = true; if (DefinedIn == nullptr) { if (Shndx >= SHN_LORESERVE) Sym.ShndxType = static_cast(Shndx); else Sym.ShndxType = SYMBOL_SIMPLE_INDEX; } Sym.Value = Value; Sym.Visibility = Visibility; Sym.Size = SymbolSize; Sym.Index = Symbols.size(); Symbols.emplace_back(std::make_unique(Sym)); Size += this->EntrySize; } Error SymbolTableSection::removeSectionReferences( bool AllowBrokenLinks, function_ref ToRemove) { if (ToRemove(SectionIndexTable)) SectionIndexTable = nullptr; if (ToRemove(SymbolNames)) { if (!AllowBrokenLinks) return createStringError( llvm::errc::invalid_argument, "string table '%s' cannot be removed because it is " "referenced by the symbol table '%s'", SymbolNames->Name.data(), this->Name.data()); SymbolNames = nullptr; } return removeSymbols( [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); }); } void SymbolTableSection::updateSymbols(function_ref Callable) { for (SymPtr &Sym : llvm::drop_begin(Symbols)) Callable(*Sym); std::stable_partition( std::begin(Symbols), std::end(Symbols), [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); assignIndices(); } Error SymbolTableSection::removeSymbols( function_ref ToRemove) { Symbols.erase( std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), std::end(Symbols)); auto PrevSize = Size; Size = Symbols.size() * EntrySize; if (Size < PrevSize) IndicesChanged = true; assignIndices(); return Error::success(); } void SymbolTableSection::replaceSectionReferences( const DenseMap &FromTo) { for (std::unique_ptr &Sym : Symbols) if (SectionBase *To = FromTo.lookup(Sym->DefinedIn)) Sym->DefinedIn = To; } Error SymbolTableSection::initialize(SectionTableRef SecTable) { Size = 0; Expected Sec = SecTable.getSectionOfType( Link, "Symbol table has link index of " + Twine(Link) + " which is not a valid index", "Symbol table has link index of " + Twine(Link) + " which is not a string table"); if (!Sec) return Sec.takeError(); setStrTab(*Sec); return Error::success(); } void SymbolTableSection::finalize() { uint32_t MaxLocalIndex = 0; for (std::unique_ptr &Sym : Symbols) { Sym->NameIndex = SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name); if (Sym->Binding == STB_LOCAL) MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); } // Now we need to set the Link and Info fields. Link = SymbolNames == nullptr ? 0 : SymbolNames->Index; Info = MaxLocalIndex + 1; } void SymbolTableSection::prepareForLayout() { // Reserve proper amount of space in section index table, so we can // layout sections correctly. We will fill the table with correct // indexes later in fillShdnxTable. if (SectionIndexTable) SectionIndexTable->reserve(Symbols.size()); // Add all of our strings to SymbolNames so that SymbolNames has the right // size before layout is decided. // If the symbol names section has been removed, don't try to add strings to // the table. if (SymbolNames != nullptr) for (std::unique_ptr &Sym : Symbols) SymbolNames->addString(Sym->Name); } void SymbolTableSection::fillShndxTable() { if (SectionIndexTable == nullptr) return; // Fill section index table with real section indexes. This function must // be called after assignOffsets. for (const std::unique_ptr &Sym : Symbols) { if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) SectionIndexTable->addIndex(Sym->DefinedIn->Index); else SectionIndexTable->addIndex(SHN_UNDEF); } } Expected SymbolTableSection::getSymbolByIndex(uint32_t Index) const { if (Symbols.size() <= Index) return createStringError(errc::invalid_argument, "invalid symbol index: " + Twine(Index)); return Symbols[Index].get(); } Expected SymbolTableSection::getSymbolByIndex(uint32_t Index) { Expected Sym = static_cast(this)->getSymbolByIndex(Index); if (!Sym) return Sym.takeError(); return const_cast(*Sym); } template Error ELFSectionWriter::visit(const SymbolTableSection &Sec) { Elf_Sym *Sym = reinterpret_cast(Out.getBufferStart() + Sec.Offset); // Loop though symbols setting each entry of the symbol table. for (const std::unique_ptr &Symbol : Sec.Symbols) { Sym->st_name = Symbol->NameIndex; Sym->st_value = Symbol->Value; Sym->st_size = Symbol->Size; Sym->st_other = Symbol->Visibility; Sym->setBinding(Symbol->Binding); Sym->setType(Symbol->Type); Sym->st_shndx = Symbol->getShndx(); ++Sym; } return Error::success(); } Error SymbolTableSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } StringRef RelocationSectionBase::getNamePrefix() const { switch (Type) { case SHT_REL: return ".rel"; case SHT_RELA: return ".rela"; default: llvm_unreachable("not a relocation section"); } } Error RelocationSection::removeSectionReferences( bool AllowBrokenLinks, function_ref ToRemove) { if (ToRemove(Symbols)) { if (!AllowBrokenLinks) return createStringError( llvm::errc::invalid_argument, "symbol table '%s' cannot be removed because it is " "referenced by the relocation section '%s'", Symbols->Name.data(), this->Name.data()); Symbols = nullptr; } for (const Relocation &R : Relocations) { if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn || !ToRemove(R.RelocSymbol->DefinedIn)) continue; return createStringError(llvm::errc::invalid_argument, "section '%s' cannot be removed: (%s+0x%" PRIx64 ") has relocation against symbol '%s'", R.RelocSymbol->DefinedIn->Name.data(), SecToApplyRel->Name.data(), R.Offset, R.RelocSymbol->Name.c_str()); } return Error::success(); } template Error RelocSectionWithSymtabBase::initialize( SectionTableRef SecTable) { if (Link != SHN_UNDEF) { Expected Sec = SecTable.getSectionOfType( Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid", "Link field value " + Twine(Link) + " in section " + Name + " is not a symbol table"); if (!Sec) return Sec.takeError(); setSymTab(*Sec); } if (Info != SHN_UNDEF) { Expected Sec = SecTable.getSection(Info, "Info field value " + Twine(Info) + " in section " + Name + " is invalid"); if (!Sec) return Sec.takeError(); setSection(*Sec); } else setSection(nullptr); return Error::success(); } template void RelocSectionWithSymtabBase::finalize() { this->Link = Symbols ? Symbols->Index : 0; if (SecToApplyRel != nullptr) this->Info = SecToApplyRel->Index; } template static void setAddend(Elf_Rel_Impl &, uint64_t) {} template static void setAddend(Elf_Rel_Impl &Rela, uint64_t Addend) { Rela.r_addend = Addend; } template static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) { for (const auto &Reloc : Relocations) { Buf->r_offset = Reloc.Offset; setAddend(*Buf, Reloc.Addend); Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0, Reloc.Type, IsMips64EL); ++Buf; } } template Error ELFSectionWriter::visit(const RelocationSection &Sec) { uint8_t *Buf = reinterpret_cast(Out.getBufferStart()) + Sec.Offset; if (Sec.Type == SHT_REL) writeRel(Sec.Relocations, reinterpret_cast(Buf), Sec.getObject().IsMips64EL); else writeRel(Sec.Relocations, reinterpret_cast(Buf), Sec.getObject().IsMips64EL); return Error::success(); } Error RelocationSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error RelocationSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } Error RelocationSection::removeSymbols( function_ref ToRemove) { for (const Relocation &Reloc : Relocations) if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol)) return createStringError( llvm::errc::invalid_argument, "not stripping symbol '%s' because it is named in a relocation", Reloc.RelocSymbol->Name.data()); return Error::success(); } void RelocationSection::markSymbols() { for (const Relocation &Reloc : Relocations) if (Reloc.RelocSymbol) Reloc.RelocSymbol->Referenced = true; } void RelocationSection::replaceSectionReferences( const DenseMap &FromTo) { // Update the target section if it was replaced. if (SectionBase *To = FromTo.lookup(SecToApplyRel)) SecToApplyRel = To; } Error SectionWriter::visit(const DynamicRelocationSection &Sec) { llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset); return Error::success(); } Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } Error DynamicRelocationSection::removeSectionReferences( bool AllowBrokenLinks, function_ref ToRemove) { if (ToRemove(Symbols)) { if (!AllowBrokenLinks) return createStringError( llvm::errc::invalid_argument, "symbol table '%s' cannot be removed because it is " "referenced by the relocation section '%s'", Symbols->Name.data(), this->Name.data()); Symbols = nullptr; } // SecToApplyRel contains a section referenced by sh_info field. It keeps // a section to which the relocation section applies. When we remove any // sections we also remove their relocation sections. Since we do that much // earlier, this assert should never be triggered. assert(!SecToApplyRel || !ToRemove(SecToApplyRel)); return Error::success(); } Error Section::removeSectionReferences( bool AllowBrokenDependency, function_ref ToRemove) { if (ToRemove(LinkSection)) { if (!AllowBrokenDependency) return createStringError(llvm::errc::invalid_argument, "section '%s' cannot be removed because it is " "referenced by the section '%s'", LinkSection->Name.data(), this->Name.data()); LinkSection = nullptr; } return Error::success(); } void GroupSection::finalize() { this->Info = Sym ? Sym->Index : 0; this->Link = SymTab ? SymTab->Index : 0; // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global // status is not part of the equation. If Sym is localized, the intention is // likely to make the group fully localized. Drop GRP_COMDAT to suppress // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL) this->FlagWord &= ~GRP_COMDAT; } Error GroupSection::removeSectionReferences( bool AllowBrokenLinks, function_ref ToRemove) { if (ToRemove(SymTab)) { if (!AllowBrokenLinks) return createStringError( llvm::errc::invalid_argument, "section '.symtab' cannot be removed because it is " "referenced by the group section '%s'", this->Name.data()); SymTab = nullptr; Sym = nullptr; } llvm::erase_if(GroupMembers, ToRemove); return Error::success(); } Error GroupSection::removeSymbols(function_ref ToRemove) { if (ToRemove(*Sym)) return createStringError(llvm::errc::invalid_argument, "symbol '%s' cannot be removed because it is " "referenced by the section '%s[%d]'", Sym->Name.data(), this->Name.data(), this->Index); return Error::success(); } void GroupSection::markSymbols() { if (Sym) Sym->Referenced = true; } void GroupSection::replaceSectionReferences( const DenseMap &FromTo) { for (SectionBase *&Sec : GroupMembers) if (SectionBase *To = FromTo.lookup(Sec)) Sec = To; } void GroupSection::onRemove() { // As the header section of the group is removed, drop the Group flag in its // former members. for (SectionBase *Sec : GroupMembers) Sec->Flags &= ~SHF_GROUP; } Error Section::initialize(SectionTableRef SecTable) { if (Link == ELF::SHN_UNDEF) return Error::success(); Expected Sec = SecTable.getSection(Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid"); if (!Sec) return Sec.takeError(); LinkSection = *Sec; if (LinkSection->Type == ELF::SHT_SYMTAB) { HasSymTabLink = true; LinkSection = nullptr; } return Error::success(); } void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } void GnuDebugLinkSection::init(StringRef File) { FileName = sys::path::filename(File); // The format for the .gnu_debuglink starts with the file name and is // followed by a null terminator and then the CRC32 of the file. The CRC32 // should be 4 byte aligned. So we add the FileName size, a 1 for the null // byte, and then finally push the size to alignment and add 4. Size = alignTo(FileName.size() + 1, 4) + 4; // The CRC32 will only be aligned if we align the whole section. Align = 4; Type = OriginalType = ELF::SHT_PROGBITS; Name = ".gnu_debuglink"; // For sections not found in segments, OriginalOffset is only used to // establish the order that sections should go in. By using the maximum // possible offset we cause this section to wind up at the end. OriginalOffset = std::numeric_limits::max(); } GnuDebugLinkSection::GnuDebugLinkSection(StringRef File, uint32_t PrecomputedCRC) : FileName(File), CRC32(PrecomputedCRC) { init(File); } template Error ELFSectionWriter::visit(const GnuDebugLinkSection &Sec) { unsigned char *Buf = reinterpret_cast(Out.getBufferStart()) + Sec.Offset; Elf_Word *CRC = reinterpret_cast(Buf + Sec.Size - sizeof(Elf_Word)); *CRC = Sec.CRC32; llvm::copy(Sec.FileName, Buf); return Error::success(); } Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } template Error ELFSectionWriter::visit(const GroupSection &Sec) { ELF::Elf32_Word *Buf = reinterpret_cast(Out.getBufferStart() + Sec.Offset); support::endian::write32(Buf++, Sec.FlagWord); for (SectionBase *S : Sec.GroupMembers) support::endian::write32(Buf++, S->Index); return Error::success(); } Error GroupSection::accept(SectionVisitor &Visitor) const { return Visitor.visit(*this); } Error GroupSection::accept(MutableSectionVisitor &Visitor) { return Visitor.visit(*this); } // Returns true IFF a section is wholly inside the range of a segment static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) { // If a section is empty it should be treated like it has a size of 1. This is // to clarify the case when an empty section lies on a boundary between two // segments and ensures that the section "belongs" to the second segment and // not the first. uint64_t SecSize = Sec.Size ? Sec.Size : 1; // Ignore just added sections. if (Sec.OriginalOffset == std::numeric_limits::max()) return false; if (Sec.Type == SHT_NOBITS) { if (!(Sec.Flags & SHF_ALLOC)) return false; bool SectionIsTLS = Sec.Flags & SHF_TLS; bool SegmentIsTLS = Seg.Type == PT_TLS; if (SectionIsTLS != SegmentIsTLS) return false; return Seg.VAddr <= Sec.Addr && Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize; } return Seg.Offset <= Sec.OriginalOffset && Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize; } // Returns true IFF a segment's original offset is inside of another segment's // range. static bool segmentOverlapsSegment(const Segment &Child, const Segment &Parent) { return Parent.OriginalOffset <= Child.OriginalOffset && Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; } static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { // Any segment without a parent segment should come before a segment // that has a parent segment. if (A->OriginalOffset < B->OriginalOffset) return true; if (A->OriginalOffset > B->OriginalOffset) return false; return A->Index < B->Index; } void BasicELFBuilder::initFileHeader() { Obj->Flags = 0x0; Obj->Type = ET_REL; Obj->OSABI = ELFOSABI_NONE; Obj->ABIVersion = 0; Obj->Entry = 0x0; Obj->Machine = EM_NONE; Obj->Version = 1; } void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; } StringTableSection *BasicELFBuilder::addStrTab() { auto &StrTab = Obj->addSection(); StrTab.Name = ".strtab"; Obj->SectionNames = &StrTab; return &StrTab; } SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) { auto &SymTab = Obj->addSection(); SymTab.Name = ".symtab"; SymTab.Link = StrTab->Index; // The symbol table always needs a null symbol SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); Obj->SymbolTable = &SymTab; return &SymTab; } Error BasicELFBuilder::initSections() { for (SectionBase &Sec : Obj->sections()) if (Error Err = Sec.initialize(Obj->sections())) return Err; return Error::success(); } void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { auto Data = ArrayRef( reinterpret_cast(MemBuf->getBufferStart()), MemBuf->getBufferSize()); auto &DataSection = Obj->addSection
(Data); DataSection.Name = ".data"; DataSection.Type = ELF::SHT_PROGBITS; DataSection.Size = Data.size(); DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); std::replace_if( std::begin(SanitizedFilename), std::end(SanitizedFilename), [](char C) { return !isAlnum(C); }, '_'); Twine Prefix = Twine("_binary_") + SanitizedFilename; SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection, /*Value=*/0, NewSymbolVisibility, 0, 0); SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection, /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0); SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr, /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS, 0); } Expected> BinaryELFBuilder::build() { initFileHeader(); initHeaderSegment(); SymbolTableSection *SymTab = addSymTab(addStrTab()); if (Error Err = initSections()) return std::move(Err); addData(SymTab); return std::move(Obj); } // Adds sections from IHEX data file. Data should have been // fully validated by this time. void IHexELFBuilder::addDataSections() { OwnedDataSection *Section = nullptr; uint64_t SegmentAddr = 0, BaseAddr = 0; uint32_t SecNo = 1; for (const IHexRecord &R : Records) { uint64_t RecAddr; switch (R.Type) { case IHexRecord::Data: // Ignore empty data records if (R.HexData.empty()) continue; RecAddr = R.Addr + SegmentAddr + BaseAddr; if (!Section || Section->Addr + Section->Size != RecAddr) { // OriginalOffset field is only used to sort sections before layout, so // instead of keeping track of real offsets in IHEX file, and as // layoutSections() and layoutSectionsForOnlyKeepDebug() use // llvm::stable_sort(), we can just set it to a constant (zero). Section = &Obj->addSection( ".sec" + std::to_string(SecNo), RecAddr, ELF::SHF_ALLOC | ELF::SHF_WRITE, 0); SecNo++; } Section->appendHexData(R.HexData); break; case IHexRecord::EndOfFile: break; case IHexRecord::SegmentAddr: // 20-bit segment address. SegmentAddr = checkedGetHex(R.HexData) << 4; break; case IHexRecord::StartAddr80x86: case IHexRecord::StartAddr: Obj->Entry = checkedGetHex(R.HexData); assert(Obj->Entry <= 0xFFFFFU); break; case IHexRecord::ExtendedAddr: // 16-31 bits of linear base address BaseAddr = checkedGetHex(R.HexData) << 16; break; default: llvm_unreachable("unknown record type"); } } } Expected> IHexELFBuilder::build() { initFileHeader(); initHeaderSegment(); StringTableSection *StrTab = addStrTab(); addSymTab(StrTab); if (Error Err = initSections()) return std::move(Err); addDataSections(); return std::move(Obj); } template ELFBuilder::ELFBuilder(const ELFObjectFile &ElfObj, Object &Obj, std::optional ExtractPartition) : ElfFile(ElfObj.getELFFile()), Obj(Obj), ExtractPartition(ExtractPartition) { Obj.IsMips64EL = ElfFile.isMips64EL(); } template void ELFBuilder::setParentSegment(Segment &Child) { for (Segment &Parent : Obj.segments()) { // Every segment will overlap with itself but we don't want a segment to // be its own parent so we avoid that situation. if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { // We want a canonical "most parental" segment but this requires // inspecting the ParentSegment. if (compareSegmentsByOffset(&Parent, &Child)) if (Child.ParentSegment == nullptr || compareSegmentsByOffset(&Parent, Child.ParentSegment)) { Child.ParentSegment = &Parent; } } } } template Error ELFBuilder::findEhdrOffset() { if (!ExtractPartition) return Error::success(); for (const SectionBase &Sec : Obj.sections()) { if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) { EhdrOffset = Sec.Offset; return Error::success(); } } return createStringError(errc::invalid_argument, "could not find partition named '" + *ExtractPartition + "'"); } template Error ELFBuilder::readProgramHeaders(const ELFFile &HeadersFile) { uint32_t Index = 0; Expected::Elf_Phdr_Range> Headers = HeadersFile.program_headers(); if (!Headers) return Headers.takeError(); for (const typename ELFFile::Elf_Phdr &Phdr : *Headers) { if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize()) return createStringError( errc::invalid_argument, "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) + " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) + " goes past the end of the file"); ArrayRef Data{HeadersFile.base() + Phdr.p_offset, (size_t)Phdr.p_filesz}; Segment &Seg = Obj.addSegment(Data); Seg.Type = Phdr.p_type; Seg.Flags = Phdr.p_flags; Seg.OriginalOffset = Phdr.p_offset + EhdrOffset; Seg.Offset = Phdr.p_offset + EhdrOffset; Seg.VAddr = Phdr.p_vaddr; Seg.PAddr = Phdr.p_paddr; Seg.FileSize = Phdr.p_filesz; Seg.MemSize = Phdr.p_memsz; Seg.Align = Phdr.p_align; Seg.Index = Index++; for (SectionBase &Sec : Obj.sections()) if (sectionWithinSegment(Sec, Seg)) { Seg.addSection(&Sec); if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset) Sec.ParentSegment = &Seg; } } auto &ElfHdr = Obj.ElfHdrSegment; ElfHdr.Index = Index++; ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset; const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader(); auto &PrHdr = Obj.ProgramHdrSegment; PrHdr.Type = PT_PHDR; PrHdr.Flags = 0; // The spec requires us to have p_vaddr % p_align == p_offset % p_align. // Whereas this works automatically for ElfHdr, here OriginalOffset is // always non-zero and to ensure the equation we assign the same value to // VAddr as well. PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff; PrHdr.PAddr = 0; PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; // The spec requires us to naturally align all the fields. PrHdr.Align = sizeof(Elf_Addr); PrHdr.Index = Index++; // Now we do an O(n^2) loop through the segments in order to match up // segments. for (Segment &Child : Obj.segments()) setParentSegment(Child); setParentSegment(ElfHdr); setParentSegment(PrHdr); return Error::success(); } template Error ELFBuilder::initGroupSection(GroupSection *GroupSec) { if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0) return createStringError(errc::invalid_argument, "invalid alignment " + Twine(GroupSec->Align) + " of group section '" + GroupSec->Name + "'"); SectionTableRef SecTable = Obj.sections(); if (GroupSec->Link != SHN_UNDEF) { auto SymTab = SecTable.template getSectionOfType( GroupSec->Link, "link field value '" + Twine(GroupSec->Link) + "' in section '" + GroupSec->Name + "' is invalid", "link field value '" + Twine(GroupSec->Link) + "' in section '" + GroupSec->Name + "' is not a symbol table"); if (!SymTab) return SymTab.takeError(); Expected Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info); if (!Sym) return createStringError(errc::invalid_argument, "info field value '" + Twine(GroupSec->Info) + "' in section '" + GroupSec->Name + "' is not a valid symbol index"); GroupSec->setSymTab(*SymTab); GroupSec->setSymbol(*Sym); } if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || GroupSec->Contents.empty()) return createStringError(errc::invalid_argument, "the content of the section " + GroupSec->Name + " is malformed"); const ELF::Elf32_Word *Word = reinterpret_cast(GroupSec->Contents.data()); const ELF::Elf32_Word *End = Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); GroupSec->setFlagWord( support::endian::read32(Word++)); for (; Word != End; ++Word) { uint32_t Index = support::endian::read32(Word); Expected Sec = SecTable.getSection( Index, "group member index " + Twine(Index) + " in section '" + GroupSec->Name + "' is invalid"); if (!Sec) return Sec.takeError(); GroupSec->addMember(*Sec); } return Error::success(); } template Error ELFBuilder::initSymbolTable(SymbolTableSection *SymTab) { Expected Shdr = ElfFile.getSection(SymTab->Index); if (!Shdr) return Shdr.takeError(); Expected StrTabData = ElfFile.getStringTableForSymtab(**Shdr); if (!StrTabData) return StrTabData.takeError(); ArrayRef ShndxData; Expected::Elf_Sym_Range> Symbols = ElfFile.symbols(*Shdr); if (!Symbols) return Symbols.takeError(); for (const typename ELFFile::Elf_Sym &Sym : *Symbols) { SectionBase *DefSection = nullptr; Expected Name = Sym.getName(*StrTabData); if (!Name) return Name.takeError(); if (Sym.st_shndx == SHN_XINDEX) { if (SymTab->getShndxTable() == nullptr) return createStringError(errc::invalid_argument, "symbol '" + *Name + "' has index SHN_XINDEX but no " "SHT_SYMTAB_SHNDX section exists"); if (ShndxData.data() == nullptr) { Expected ShndxSec = ElfFile.getSection(SymTab->getShndxTable()->Index); if (!ShndxSec) return ShndxSec.takeError(); Expected> Data = ElfFile.template getSectionContentsAsArray(**ShndxSec); if (!Data) return Data.takeError(); ShndxData = *Data; if (ShndxData.size() != Symbols->size()) return createStringError( errc::invalid_argument, "symbol section index table does not have the same number of " "entries as the symbol table"); } Elf_Word Index = ShndxData[&Sym - Symbols->begin()]; Expected Sec = Obj.sections().getSection( Index, "symbol '" + *Name + "' has invalid section index " + Twine(Index)); if (!Sec) return Sec.takeError(); DefSection = *Sec; } else if (Sym.st_shndx >= SHN_LORESERVE) { if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { return createStringError( errc::invalid_argument, "symbol '" + *Name + "' has unsupported value greater than or equal " "to SHN_LORESERVE: " + Twine(Sym.st_shndx)); } } else if (Sym.st_shndx != SHN_UNDEF) { Expected Sec = Obj.sections().getSection( Sym.st_shndx, "symbol '" + *Name + "' is defined has invalid section index " + Twine(Sym.st_shndx)); if (!Sec) return Sec.takeError(); DefSection = *Sec; } SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection, Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); } return Error::success(); } template static void getAddend(uint64_t &, const Elf_Rel_Impl &) {} template static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl &Rela) { ToSet = Rela.r_addend; } template static Error initRelocations(RelocationSection *Relocs, T RelRange) { for (const auto &Rel : RelRange) { Relocation ToAdd; ToAdd.Offset = Rel.r_offset; getAddend(ToAdd.Addend, Rel); ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL); if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) { if (!Relocs->getObject().SymbolTable) return createStringError( errc::invalid_argument, "'" + Relocs->Name + "': relocation references symbol with index " + Twine(Sym) + ", but there is no symbol table"); Expected SymByIndex = Relocs->getObject().SymbolTable->getSymbolByIndex(Sym); if (!SymByIndex) return SymByIndex.takeError(); ToAdd.RelocSymbol = *SymByIndex; } Relocs->addRelocation(ToAdd); } return Error::success(); } Expected SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) { if (Index == SHN_UNDEF || Index > Sections.size()) return createStringError(errc::invalid_argument, ErrMsg); return Sections[Index - 1].get(); } template Expected SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg, Twine TypeErrMsg) { Expected BaseSec = getSection(Index, IndexErrMsg); if (!BaseSec) return BaseSec.takeError(); if (T *Sec = dyn_cast(*BaseSec)) return Sec; return createStringError(errc::invalid_argument, TypeErrMsg); } template Expected ELFBuilder::makeSection(const Elf_Shdr &Shdr) { switch (Shdr.sh_type) { case SHT_REL: case SHT_RELA: if (Shdr.sh_flags & SHF_ALLOC) { if (Expected> Data = ElfFile.getSectionContents(Shdr)) return Obj.addSection(*Data); else return Data.takeError(); } return Obj.addSection(Obj); case SHT_STRTAB: // If a string table is allocated we don't want to mess with it. That would // mean altering the memory image. There are no special link types or // anything so we can just use a Section. if (Shdr.sh_flags & SHF_ALLOC) { if (Expected> Data = ElfFile.getSectionContents(Shdr)) return Obj.addSection
(*Data); else return Data.takeError(); } return Obj.addSection(); case SHT_HASH: case SHT_GNU_HASH: // Hash tables should refer to SHT_DYNSYM which we're not going to change. // Because of this we don't need to mess with the hash tables either. if (Expected> Data = ElfFile.getSectionContents(Shdr)) return Obj.addSection
(*Data); else return Data.takeError(); case SHT_GROUP: if (Expected> Data = ElfFile.getSectionContents(Shdr)) return Obj.addSection(*Data); else return Data.takeError(); case SHT_DYNSYM: if (Expected> Data = ElfFile.getSectionContents(Shdr)) return Obj.addSection(*Data); else return Data.takeError(); case SHT_DYNAMIC: if (Expected> Data = ElfFile.getSectionContents(Shdr)) return Obj.addSection(*Data); else return Data.takeError(); case SHT_SYMTAB: { // Multiple SHT_SYMTAB sections are forbidden by the ELF gABI. if (Obj.SymbolTable != nullptr) return createStringError(llvm::errc::invalid_argument, "found multiple SHT_SYMTAB sections"); auto &SymTab = Obj.addSection(); Obj.SymbolTable = &SymTab; return SymTab; } case SHT_SYMTAB_SHNDX: { auto &ShndxSection = Obj.addSection(); Obj.SectionIndexTable = &ShndxSection; return ShndxSection; } case SHT_NOBITS: return Obj.addSection
(ArrayRef()); default: { Expected> Data = ElfFile.getSectionContents(Shdr); if (!Data) return Data.takeError(); Expected Name = ElfFile.getSectionName(Shdr); if (!Name) return Name.takeError(); if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED)) return Obj.addSection
(*Data); auto *Chdr = reinterpret_cast *>(Data->data()); return Obj.addSection(CompressedSection( *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign)); } } } template Error ELFBuilder::readSectionHeaders() { uint32_t Index = 0; Expected::Elf_Shdr_Range> Sections = ElfFile.sections(); if (!Sections) return Sections.takeError(); for (const typename ELFFile::Elf_Shdr &Shdr : *Sections) { if (Index == 0) { ++Index; continue; } Expected Sec = makeSection(Shdr); if (!Sec) return Sec.takeError(); Expected SecName = ElfFile.getSectionName(Shdr); if (!SecName) return SecName.takeError(); Sec->Name = SecName->str(); Sec->Type = Sec->OriginalType = Shdr.sh_type; Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags; Sec->Addr = Shdr.sh_addr; Sec->Offset = Shdr.sh_offset; Sec->OriginalOffset = Shdr.sh_offset; Sec->Size = Shdr.sh_size; Sec->Link = Shdr.sh_link; Sec->Info = Shdr.sh_info; Sec->Align = Shdr.sh_addralign; Sec->EntrySize = Shdr.sh_entsize; Sec->Index = Index++; Sec->OriginalIndex = Sec->Index; Sec->OriginalData = ArrayRef( ElfFile.base() + Shdr.sh_offset, (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size); } return Error::success(); } template Error ELFBuilder::readSections(bool EnsureSymtab) { uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx; if (ShstrIndex == SHN_XINDEX) { Expected Sec = ElfFile.getSection(0); if (!Sec) return Sec.takeError(); ShstrIndex = (*Sec)->sh_link; } if (ShstrIndex == SHN_UNDEF) Obj.HadShdrs = false; else { Expected Sec = Obj.sections().template getSectionOfType( ShstrIndex, "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + " is invalid", "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " + " does not reference a string table"); if (!Sec) return Sec.takeError(); Obj.SectionNames = *Sec; } // If a section index table exists we'll need to initialize it before we // initialize the symbol table because the symbol table might need to // reference it. if (Obj.SectionIndexTable) if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections())) return Err; // Now that all of the sections have been added we can fill out some extra // details about symbol tables. We need the symbol table filled out before // any relocations. if (Obj.SymbolTable) { if (Error Err = Obj.SymbolTable->initialize(Obj.sections())) return Err; if (Error Err = initSymbolTable(Obj.SymbolTable)) return Err; } else if (EnsureSymtab) { if (Error Err = Obj.addNewSymbolTable()) return Err; } // Now that all sections and symbols have been added we can add // relocations that reference symbols and set the link and info fields for // relocation sections. for (SectionBase &Sec : Obj.sections()) { if (&Sec == Obj.SymbolTable) continue; if (Error Err = Sec.initialize(Obj.sections())) return Err; if (auto RelSec = dyn_cast(&Sec)) { Expected::Elf_Shdr_Range> Sections = ElfFile.sections(); if (!Sections) return Sections.takeError(); const typename ELFFile::Elf_Shdr *Shdr = Sections->begin() + RelSec->Index; if (RelSec->Type == SHT_REL) { Expected::Elf_Rel_Range> Rels = ElfFile.rels(*Shdr); if (!Rels) return Rels.takeError(); if (Error Err = initRelocations(RelSec, *Rels)) return Err; } else { Expected::Elf_Rela_Range> Relas = ElfFile.relas(*Shdr); if (!Relas) return Relas.takeError(); if (Error Err = initRelocations(RelSec, *Relas)) return Err; } } else if (auto GroupSec = dyn_cast(&Sec)) { if (Error Err = initGroupSection(GroupSec)) return Err; } } return Error::success(); } template Error ELFBuilder::build(bool EnsureSymtab) { if (Error E = readSectionHeaders()) return E; if (Error E = findEhdrOffset()) return E; // The ELFFile whose ELF headers and program headers are copied into the // output file. Normally the same as ElfFile, but if we're extracting a // loadable partition it will point to the partition's headers. Expected> HeadersFile = ELFFile::create(toStringRef( {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})); if (!HeadersFile) return HeadersFile.takeError(); const typename ELFFile::Elf_Ehdr &Ehdr = HeadersFile->getHeader(); Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64; Obj.OSABI = Ehdr.e_ident[EI_OSABI]; Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; Obj.Type = Ehdr.e_type; Obj.Machine = Ehdr.e_machine; Obj.Version = Ehdr.e_version; Obj.Entry = Ehdr.e_entry; Obj.Flags = Ehdr.e_flags; if (Error E = readSections(EnsureSymtab)) return E; return readProgramHeaders(*HeadersFile); } Writer::~Writer() = default; Reader::~Reader() = default; Expected> BinaryReader::create(bool /*EnsureSymtab*/) const { return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build(); } Expected> IHexReader::parse() const { SmallVector Lines; std::vector Records; bool HasSections = false; MemBuf->getBuffer().split(Lines, '\n'); Records.reserve(Lines.size()); for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) { StringRef Line = Lines[LineNo - 1].trim(); if (Line.empty()) continue; Expected R = IHexRecord::parse(Line); if (!R) return parseError(LineNo, R.takeError()); if (R->Type == IHexRecord::EndOfFile) break; HasSections |= (R->Type == IHexRecord::Data); Records.push_back(*R); } if (!HasSections) return parseError(-1U, "no sections"); return std::move(Records); } Expected> IHexReader::create(bool /*EnsureSymtab*/) const { Expected> Records = parse(); if (!Records) return Records.takeError(); return IHexELFBuilder(*Records).build(); } Expected> ELFReader::create(bool EnsureSymtab) const { auto Obj = std::make_unique(); if (auto *O = dyn_cast>(Bin)) { ELFBuilder Builder(*O, *Obj, ExtractPartition); if (Error Err = Builder.build(EnsureSymtab)) return std::move(Err); return std::move(Obj); } else if (auto *O = dyn_cast>(Bin)) { ELFBuilder Builder(*O, *Obj, ExtractPartition); if (Error Err = Builder.build(EnsureSymtab)) return std::move(Err); return std::move(Obj); } else if (auto *O = dyn_cast>(Bin)) { ELFBuilder Builder(*O, *Obj, ExtractPartition); if (Error Err = Builder.build(EnsureSymtab)) return std::move(Err); return std::move(Obj); } else if (auto *O = dyn_cast>(Bin)) { ELFBuilder Builder(*O, *Obj, ExtractPartition); if (Error Err = Builder.build(EnsureSymtab)) return std::move(Err); return std::move(Obj); } return createStringError(errc::invalid_argument, "invalid file type"); } template void ELFWriter::writeEhdr() { Elf_Ehdr &Ehdr = *reinterpret_cast(Buf->getBufferStart()); std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); Ehdr.e_ident[EI_MAG0] = 0x7f; Ehdr.e_ident[EI_MAG1] = 'E'; Ehdr.e_ident[EI_MAG2] = 'L'; Ehdr.e_ident[EI_MAG3] = 'F'; Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; Ehdr.e_ident[EI_DATA] = ELFT::TargetEndianness == llvm::endianness::big ? ELFDATA2MSB : ELFDATA2LSB; Ehdr.e_ident[EI_VERSION] = EV_CURRENT; Ehdr.e_ident[EI_OSABI] = Obj.OSABI; Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; Ehdr.e_type = Obj.Type; Ehdr.e_machine = Obj.Machine; Ehdr.e_version = Obj.Version; Ehdr.e_entry = Obj.Entry; // We have to use the fully-qualified name llvm::size // since some compilers complain on ambiguous resolution. Ehdr.e_phnum = llvm::size(Obj.segments()); Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; Ehdr.e_flags = Obj.Flags; Ehdr.e_ehsize = sizeof(Elf_Ehdr); if (WriteSectionHeaders && Obj.sections().size() != 0) { Ehdr.e_shentsize = sizeof(Elf_Shdr); Ehdr.e_shoff = Obj.SHOff; // """ // If the number of sections is greater than or equal to // SHN_LORESERVE (0xff00), this member has the value zero and the actual // number of section header table entries is contained in the sh_size field // of the section header at index 0. // """ auto Shnum = Obj.sections().size() + 1; if (Shnum >= SHN_LORESERVE) Ehdr.e_shnum = 0; else Ehdr.e_shnum = Shnum; // """ // If the section name string table section index is greater than or equal // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) // and the actual index of the section name string table section is // contained in the sh_link field of the section header at index 0. // """ if (Obj.SectionNames->Index >= SHN_LORESERVE) Ehdr.e_shstrndx = SHN_XINDEX; else Ehdr.e_shstrndx = Obj.SectionNames->Index; } else { Ehdr.e_shentsize = 0; Ehdr.e_shoff = 0; Ehdr.e_shnum = 0; Ehdr.e_shstrndx = 0; } } template void ELFWriter::writePhdrs() { for (auto &Seg : Obj.segments()) writePhdr(Seg); } template void ELFWriter::writeShdrs() { // This reference serves to write the dummy section header at the begining // of the file. It is not used for anything else Elf_Shdr &Shdr = *reinterpret_cast(Buf->getBufferStart() + Obj.SHOff); Shdr.sh_name = 0; Shdr.sh_type = SHT_NULL; Shdr.sh_flags = 0; Shdr.sh_addr = 0; Shdr.sh_offset = 0; // See writeEhdr for why we do this. uint64_t Shnum = Obj.sections().size() + 1; if (Shnum >= SHN_LORESERVE) Shdr.sh_size = Shnum; else Shdr.sh_size = 0; // See writeEhdr for why we do this. if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) Shdr.sh_link = Obj.SectionNames->Index; else Shdr.sh_link = 0; Shdr.sh_info = 0; Shdr.sh_addralign = 0; Shdr.sh_entsize = 0; for (SectionBase &Sec : Obj.sections()) writeShdr(Sec); } template Error ELFWriter::writeSectionData() { for (SectionBase &Sec : Obj.sections()) // Segments are responsible for writing their contents, so only write the // section data if the section is not in a segment. Note that this renders // sections in segments effectively immutable. if (Sec.ParentSegment == nullptr) if (Error Err = Sec.accept(*SecWriter)) return Err; return Error::success(); } template void ELFWriter::writeSegmentData() { for (Segment &Seg : Obj.segments()) { size_t Size = std::min(Seg.FileSize, Seg.getContents().size()); std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(), Size); } for (const auto &it : Obj.getUpdatedSections()) { SectionBase *Sec = it.first; ArrayRef Data = it.second; auto *Parent = Sec->ParentSegment; assert(Parent && "This section should've been part of a segment."); uint64_t Offset = Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset; llvm::copy(Data, Buf->getBufferStart() + Offset); } // Iterate over removed sections and overwrite their old data with zeroes. for (auto &Sec : Obj.removedSections()) { Segment *Parent = Sec.ParentSegment; if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0) continue; uint64_t Offset = Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset; std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size); } } template ELFWriter::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH, bool OnlyKeepDebug) : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs), OnlyKeepDebug(OnlyKeepDebug) {} Error Object::updateSection(StringRef Name, ArrayRef Data) { auto It = llvm::find_if(Sections, [&](const SecPtr &Sec) { return Sec->Name == Name; }); if (It == Sections.end()) return createStringError(errc::invalid_argument, "section '%s' not found", Name.str().c_str()); auto *OldSec = It->get(); if (!OldSec->hasContents()) return createStringError( errc::invalid_argument, "section '%s' cannot be updated because it does not have contents", Name.str().c_str()); if (Data.size() > OldSec->Size && OldSec->ParentSegment) return createStringError(errc::invalid_argument, "cannot fit data of size %zu into section '%s' " "with size %" PRIu64 " that is part of a segment", Data.size(), Name.str().c_str(), OldSec->Size); if (!OldSec->ParentSegment) { *It = std::make_unique(*OldSec, Data); } else { // The segment writer will be in charge of updating these contents. OldSec->Size = Data.size(); UpdatedSections[OldSec] = Data; } return Error::success(); } Error Object::removeSections( bool AllowBrokenLinks, std::function ToRemove) { auto Iter = std::stable_partition( std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { if (ToRemove(*Sec)) return false; if (auto RelSec = dyn_cast(Sec.get())) { if (auto ToRelSec = RelSec->getSection()) return !ToRemove(*ToRelSec); } return true; }); if (SymbolTable != nullptr && ToRemove(*SymbolTable)) SymbolTable = nullptr; if (SectionNames != nullptr && ToRemove(*SectionNames)) SectionNames = nullptr; if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) SectionIndexTable = nullptr; // Now make sure there are no remaining references to the sections that will // be removed. Sometimes it is impossible to remove a reference so we emit // an error here instead. std::unordered_set RemoveSections; RemoveSections.reserve(std::distance(Iter, std::end(Sections))); for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { for (auto &Segment : Segments) Segment->removeSection(RemoveSec.get()); RemoveSec->onRemove(); RemoveSections.insert(RemoveSec.get()); } // For each section that remains alive, we want to remove the dead references. // This either might update the content of the section (e.g. remove symbols // from symbol table that belongs to removed section) or trigger an error if // a live section critically depends on a section being removed somehow // (e.g. the removed section is referenced by a relocation). for (auto &KeepSec : make_range(std::begin(Sections), Iter)) { if (Error E = KeepSec->removeSectionReferences( AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) { return RemoveSections.find(Sec) != RemoveSections.end(); })) return E; } // Transfer removed sections into the Object RemovedSections container for use // later. std::move(Iter, Sections.end(), std::back_inserter(RemovedSections)); // Now finally get rid of them all together. Sections.erase(Iter, std::end(Sections)); return Error::success(); } Error Object::replaceSections( const DenseMap &FromTo) { auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) { return Lhs->Index < Rhs->Index; }; assert(llvm::is_sorted(Sections, SectionIndexLess) && "Sections are expected to be sorted by Index"); // Set indices of new sections so that they can be later sorted into positions // of removed ones. for (auto &I : FromTo) I.second->Index = I.first->Index; // Notify all sections about the replacement. for (auto &Sec : Sections) Sec->replaceSectionReferences(FromTo); if (Error E = removeSections( /*AllowBrokenLinks=*/false, [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; })) return E; llvm::sort(Sections, SectionIndexLess); return Error::success(); } Error Object::removeSymbols(function_ref ToRemove) { if (SymbolTable) for (const SecPtr &Sec : Sections) if (Error E = Sec->removeSymbols(ToRemove)) return E; return Error::success(); } Error Object::addNewSymbolTable() { assert(!SymbolTable && "Object must not has a SymbolTable."); // Reuse an existing SHT_STRTAB section if it exists. StringTableSection *StrTab = nullptr; for (SectionBase &Sec : sections()) { if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) { StrTab = static_cast(&Sec); // Prefer a string table that is not the section header string table, if // such a table exists. if (SectionNames != &Sec) break; } } if (!StrTab) StrTab = &addSection(); SymbolTableSection &SymTab = addSection(); SymTab.Name = ".symtab"; SymTab.Link = StrTab->Index; if (Error Err = SymTab.initialize(sections())) return Err; SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); SymbolTable = &SymTab; return Error::success(); } // Orders segments such that if x = y->ParentSegment then y comes before x. static void orderSegments(std::vector &Segments) { llvm::stable_sort(Segments, compareSegmentsByOffset); } // This function finds a consistent layout for a list of segments starting from // an Offset. It assumes that Segments have been sorted by orderSegments and // returns an Offset one past the end of the last segment. static uint64_t layoutSegments(std::vector &Segments, uint64_t Offset) { assert(llvm::is_sorted(Segments, compareSegmentsByOffset)); // The only way a segment should move is if a section was between two // segments and that section was removed. If that section isn't in a segment // then it's acceptable, but not ideal, to simply move it to after the // segments. So we can simply layout segments one after the other accounting // for alignment. for (Segment *Seg : Segments) { // We assume that segments have been ordered by OriginalOffset and Index // such that a parent segment will always come before a child segment in // OrderedSegments. This means that the Offset of the ParentSegment should // already be set and we can set our offset relative to it. if (Seg->ParentSegment != nullptr) { Segment *Parent = Seg->ParentSegment; Seg->Offset = Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset; } else { Seg->Offset = alignTo(Offset, std::max(Seg->Align, 1), Seg->VAddr); } Offset = std::max(Offset, Seg->Offset + Seg->FileSize); } return Offset; } // This function finds a consistent layout for a list of sections. It assumes // that the ->ParentSegment of each section has already been laid out. The // supplied starting Offset is used for the starting offset of any section that // does not have a ParentSegment. It returns either the offset given if all // sections had a ParentSegment or an offset one past the last section if there // was a section that didn't have a ParentSegment. template static uint64_t layoutSections(Range Sections, uint64_t Offset) { // Now the offset of every segment has been set we can assign the offsets // of each section. For sections that are covered by a segment we should use // the segment's original offset and the section's original offset to compute // the offset from the start of the segment. Using the offset from the start // of the segment we can assign a new offset to the section. For sections not // covered by segments we can just bump Offset to the next valid location. // While it is not necessary, layout the sections in the order based on their // original offsets to resemble the input file as close as possible. std::vector OutOfSegmentSections; uint32_t Index = 1; for (auto &Sec : Sections) { Sec.Index = Index++; if (Sec.ParentSegment != nullptr) { const Segment &Segment = *Sec.ParentSegment; Sec.Offset = Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset); } else OutOfSegmentSections.push_back(&Sec); } llvm::stable_sort(OutOfSegmentSections, [](const SectionBase *Lhs, const SectionBase *Rhs) { return Lhs->OriginalOffset < Rhs->OriginalOffset; }); for (auto *Sec : OutOfSegmentSections) { Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align); Sec->Offset = Offset; if (Sec->Type != SHT_NOBITS) Offset += Sec->Size; } return Offset; } // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus // occupy no space in the file. static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) { // The layout algorithm requires the sections to be handled in the order of // their offsets in the input file, at least inside segments. std::vector Sections; Sections.reserve(Obj.sections().size()); uint32_t Index = 1; for (auto &Sec : Obj.sections()) { Sec.Index = Index++; Sections.push_back(&Sec); } llvm::stable_sort(Sections, [](const SectionBase *Lhs, const SectionBase *Rhs) { return Lhs->OriginalOffset < Rhs->OriginalOffset; }); for (auto *Sec : Sections) { auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD ? Sec->ParentSegment->firstSection() : nullptr; // The first section in a PT_LOAD has to have congruent offset and address // modulo the alignment, which usually equals the maximum page size. if (FirstSec && FirstSec == Sec) Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr); // sh_offset is not significant for SHT_NOBITS sections, but the congruence // rule must be followed if it is the first section in a PT_LOAD. Do not // advance Off. if (Sec->Type == SHT_NOBITS) { Sec->Offset = Off; continue; } if (!FirstSec) { // FirstSec being nullptr generally means that Sec does not have the // SHF_ALLOC flag. Off = Sec->Align ? alignTo(Off, Sec->Align) : Off; } else if (FirstSec != Sec) { // The offset is relative to the first section in the PT_LOAD segment. Use // sh_offset for non-SHF_ALLOC sections. Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset; } Sec->Offset = Off; Off += Sec->Size; } return Off; } // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values // have been updated. static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector &Segments, uint64_t HdrEnd) { uint64_t MaxOffset = 0; for (Segment *Seg : Segments) { if (Seg->Type == PT_PHDR) continue; // The segment offset is generally the offset of the first section. // // For a segment containing no section (see sectionWithinSegment), if it has // a parent segment, copy the parent segment's offset field. This works for // empty PT_TLS. If no parent segment, use 0: the segment is not useful for // debugging anyway. const SectionBase *FirstSec = Seg->firstSection(); uint64_t Offset = FirstSec ? FirstSec->Offset : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0); uint64_t FileSize = 0; for (const SectionBase *Sec : Seg->Sections) { uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size; if (Sec->Offset + Size > Offset) FileSize = std::max(FileSize, Sec->Offset + Size - Offset); } // If the segment includes EHDR and program headers, don't make it smaller // than the headers. if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) { FileSize += Offset - Seg->Offset; Offset = Seg->Offset; FileSize = std::max(FileSize, HdrEnd - Offset); } Seg->Offset = Offset; Seg->FileSize = FileSize; MaxOffset = std::max(MaxOffset, Offset + FileSize); } return MaxOffset; } template void ELFWriter::initEhdrSegment() { Segment &ElfHdr = Obj.ElfHdrSegment; ElfHdr.Type = PT_PHDR; ElfHdr.Flags = 0; ElfHdr.VAddr = 0; ElfHdr.PAddr = 0; ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); ElfHdr.Align = 0; } template void ELFWriter::assignOffsets() { // We need a temporary list of segments that has a special order to it // so that we know that anytime ->ParentSegment is set that segment has // already had its offset properly set. std::vector OrderedSegments; for (Segment &Segment : Obj.segments()) OrderedSegments.push_back(&Segment); OrderedSegments.push_back(&Obj.ElfHdrSegment); OrderedSegments.push_back(&Obj.ProgramHdrSegment); orderSegments(OrderedSegments); uint64_t Offset; if (OnlyKeepDebug) { // For --only-keep-debug, the sections that did not preserve contents were // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and // then rewrite p_offset/p_filesz of program headers. uint64_t HdrEnd = sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr); Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd); Offset = std::max(Offset, layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd)); } else { // Offset is used as the start offset of the first segment to be laid out. // Since the ELF Header (ElfHdrSegment) must be at the start of the file, // we start at offset 0. Offset = layoutSegments(OrderedSegments, 0); Offset = layoutSections(Obj.sections(), Offset); } // If we need to write the section header table out then we need to align the // Offset so that SHOffset is valid. if (WriteSectionHeaders) Offset = alignTo(Offset, sizeof(Elf_Addr)); Obj.SHOff = Offset; } template size_t ELFWriter::totalSize() const { // We already have the section header offset so we can calculate the total // size by just adding up the size of each section header. if (!WriteSectionHeaders) return Obj.SHOff; size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr. return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr); } template Error ELFWriter::write() { // Segment data must be written first, so that the ELF header and program // header tables can overwrite it, if covered by a segment. writeSegmentData(); writeEhdr(); writePhdrs(); if (Error E = writeSectionData()) return E; if (WriteSectionHeaders) writeShdrs(); // TODO: Implement direct writing to the output stream (without intermediate // memory buffer Buf). Out.write(Buf->getBufferStart(), Buf->getBufferSize()); return Error::success(); } static Error removeUnneededSections(Object &Obj) { // We can remove an empty symbol table from non-relocatable objects. // Relocatable objects typically have relocation sections whose // sh_link field points to .symtab, so we can't remove .symtab // even if it is empty. if (Obj.isRelocatable() || Obj.SymbolTable == nullptr || !Obj.SymbolTable->empty()) return Error::success(); // .strtab can be used for section names. In such a case we shouldn't // remove it. auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames ? nullptr : Obj.SymbolTable->getStrTab(); return Obj.removeSections(false, [&](const SectionBase &Sec) { return &Sec == Obj.SymbolTable || &Sec == StrTab; }); } template Error ELFWriter::finalize() { // It could happen that SectionNames has been removed and yet the user wants // a section header table output. We need to throw an error if a user tries // to do that. if (Obj.SectionNames == nullptr && WriteSectionHeaders) return createStringError(llvm::errc::invalid_argument, "cannot write section header table because " "section header string table was removed"); if (Error E = removeUnneededSections(Obj)) return E; // If the .symtab indices have not been changed, restore the sh_link to // .symtab for sections that were linked to .symtab. if (Obj.SymbolTable && !Obj.SymbolTable->indicesChanged()) for (SectionBase &Sec : Obj.sections()) Sec.restoreSymTabLink(*Obj.SymbolTable); // We need to assign indexes before we perform layout because we need to know // if we need large indexes or not. We can assign indexes first and check as // we go to see if we will actully need large indexes. bool NeedsLargeIndexes = false; if (Obj.sections().size() >= SHN_LORESERVE) { SectionTableRef Sections = Obj.sections(); // Sections doesn't include the null section header, so account for this // when skipping the first N sections. NeedsLargeIndexes = any_of(drop_begin(Sections, SHN_LORESERVE - 1), [](const SectionBase &Sec) { return Sec.HasSymbol; }); // TODO: handle case where only one section needs the large index table but // only needs it because the large index table hasn't been removed yet. } if (NeedsLargeIndexes) { // This means we definitely need to have a section index table but if we // already have one then we should use it instead of making a new one. if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { // Addition of a section to the end does not invalidate the indexes of // other sections and assigns the correct index to the new section. auto &Shndx = Obj.addSection(); Obj.SymbolTable->setShndxTable(&Shndx); Shndx.setSymTab(Obj.SymbolTable); } } else { // Since we don't need SectionIndexTable we should remove it and all // references to it. if (Obj.SectionIndexTable != nullptr) { // We do not support sections referring to the section index table. if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/, [this](const SectionBase &Sec) { return &Sec == Obj.SectionIndexTable; })) return E; } } // Make sure we add the names of all the sections. Importantly this must be // done after we decide to add or remove SectionIndexes. if (Obj.SectionNames != nullptr) for (const SectionBase &Sec : Obj.sections()) Obj.SectionNames->addString(Sec.Name); initEhdrSegment(); // Before we can prepare for layout the indexes need to be finalized. // Also, the output arch may not be the same as the input arch, so fix up // size-related fields before doing layout calculations. uint64_t Index = 0; auto SecSizer = std::make_unique>(); for (SectionBase &Sec : Obj.sections()) { Sec.Index = Index++; if (Error Err = Sec.accept(*SecSizer)) return Err; } // The symbol table does not update all other sections on update. For // instance, symbol names are not added as new symbols are added. This means // that some sections, like .strtab, don't yet have their final size. if (Obj.SymbolTable != nullptr) Obj.SymbolTable->prepareForLayout(); // Now that all strings are added we want to finalize string table builders, // because that affects section sizes which in turn affects section offsets. for (SectionBase &Sec : Obj.sections()) if (auto StrTab = dyn_cast(&Sec)) StrTab->prepareForLayout(); assignOffsets(); // layoutSections could have modified section indexes, so we need // to fill the index table after assignOffsets. if (Obj.SymbolTable != nullptr) Obj.SymbolTable->fillShndxTable(); // Finally now that all offsets and indexes have been set we can finalize any // remaining issues. uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr); for (SectionBase &Sec : Obj.sections()) { Sec.HeaderOffset = Offset; Offset += sizeof(Elf_Shdr); if (WriteSectionHeaders) Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name); Sec.finalize(); } size_t TotalSize = totalSize(); Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); if (!Buf) return createStringError(errc::not_enough_memory, "failed to allocate memory buffer of " + Twine::utohexstr(TotalSize) + " bytes"); SecWriter = std::make_unique>(*Buf); return Error::success(); } Error BinaryWriter::write() { SmallVector SectionsToWrite; for (const SectionBase &Sec : Obj.allocSections()) { if (Sec.Type != SHT_NOBITS && Sec.Size > 0) SectionsToWrite.push_back(&Sec); } if (SectionsToWrite.empty()) return Error::success(); llvm::stable_sort(SectionsToWrite, [](const SectionBase *LHS, const SectionBase *RHS) { return LHS->Offset < RHS->Offset; }); assert(SectionsToWrite.front()->Offset == 0); for (size_t i = 0; i != SectionsToWrite.size(); ++i) { const SectionBase &Sec = *SectionsToWrite[i]; if (Error Err = Sec.accept(*SecWriter)) return Err; if (GapFill == 0) continue; uint64_t PadOffset = (i < SectionsToWrite.size() - 1) ? SectionsToWrite[i + 1]->Offset : Buf->getBufferSize(); assert(PadOffset <= Buf->getBufferSize()); assert(Sec.Offset + Sec.Size <= PadOffset); std::fill(Buf->getBufferStart() + Sec.Offset + Sec.Size, Buf->getBufferStart() + PadOffset, GapFill); } // TODO: Implement direct writing to the output stream (without intermediate // memory buffer Buf). Out.write(Buf->getBufferStart(), Buf->getBufferSize()); return Error::success(); } Error BinaryWriter::finalize() { // Compute the section LMA based on its sh_offset and the containing segment's // p_offset and p_paddr. Also compute the minimum LMA of all non-empty // sections as MinAddr. In the output, the contents between address 0 and // MinAddr will be skipped. uint64_t MinAddr = UINT64_MAX; for (SectionBase &Sec : Obj.allocSections()) { if (Sec.ParentSegment != nullptr) Sec.Addr = Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr; if (Sec.Type != SHT_NOBITS && Sec.Size > 0) MinAddr = std::min(MinAddr, Sec.Addr); } // Now that every section has been laid out we just need to compute the total // file size. This might not be the same as the offset returned by // layoutSections, because we want to truncate the last segment to the end of // its last non-empty section, to match GNU objcopy's behaviour. TotalSize = PadTo > MinAddr ? PadTo - MinAddr : 0; for (SectionBase &Sec : Obj.allocSections()) if (Sec.Type != SHT_NOBITS && Sec.Size > 0) { Sec.Offset = Sec.Addr - MinAddr; TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size); } Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); if (!Buf) return createStringError(errc::not_enough_memory, "failed to allocate memory buffer of " + Twine::utohexstr(TotalSize) + " bytes"); SecWriter = std::make_unique(*Buf); return Error::success(); } bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs, const SectionBase *Rhs) const { return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) < (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU); } uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) { IHexLineData HexData; uint8_t Data[4] = {}; // We don't write entry point record if entry is zero. if (Obj.Entry == 0) return 0; if (Obj.Entry <= 0xFFFFFU) { Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF; support::endian::write(&Data[2], static_cast(Obj.Entry), llvm::endianness::big); HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data); } else { support::endian::write(Data, static_cast(Obj.Entry), llvm::endianness::big); HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data); } memcpy(Buf, HexData.data(), HexData.size()); return HexData.size(); } uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) { IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {}); memcpy(Buf, HexData.data(), HexData.size()); return HexData.size(); } Error IHexWriter::write() { IHexSectionWriter Writer(*Buf); // Write sections. for (const SectionBase *Sec : Sections) if (Error Err = Sec->accept(Writer)) return Err; uint64_t Offset = Writer.getBufferOffset(); // Write entry point address. Offset += writeEntryPointRecord( reinterpret_cast(Buf->getBufferStart()) + Offset); // Write EOF. Offset += writeEndOfFileRecord( reinterpret_cast(Buf->getBufferStart()) + Offset); assert(Offset == TotalSize); // TODO: Implement direct writing to the output stream (without intermediate // memory buffer Buf). Out.write(Buf->getBufferStart(), Buf->getBufferSize()); return Error::success(); } Error IHexWriter::checkSection(const SectionBase &Sec) { uint64_t Addr = sectionPhysicalAddr(&Sec); if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1)) return createStringError( errc::invalid_argument, "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", Sec.Name.c_str(), Addr, Addr + Sec.Size - 1); return Error::success(); } Error IHexWriter::finalize() { // We can't write 64-bit addresses. if (addressOverflows32bit(Obj.Entry)) return createStringError(errc::invalid_argument, "Entry point address 0x%llx overflows 32 bits", Obj.Entry); for (const SectionBase &Sec : Obj.sections()) if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS && Sec.Size > 0) { if (Error E = checkSection(Sec)) return E; Sections.insert(&Sec); } std::unique_ptr EmptyBuffer = WritableMemoryBuffer::getNewMemBuffer(0); if (!EmptyBuffer) return createStringError(errc::not_enough_memory, "failed to allocate memory buffer of 0 bytes"); IHexSectionWriterBase LengthCalc(*EmptyBuffer); for (const SectionBase *Sec : Sections) if (Error Err = Sec->accept(LengthCalc)) return Err; // We need space to write section records + StartAddress record // (if start adress is not zero) + EndOfFile record. TotalSize = LengthCalc.getBufferOffset() + (Obj.Entry ? IHexRecord::getLineLength(4) : 0) + IHexRecord::getLineLength(0); Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize); if (!Buf) return createStringError(errc::not_enough_memory, "failed to allocate memory buffer of " + Twine::utohexstr(TotalSize) + " bytes"); return Error::success(); } namespace llvm { namespace objcopy { namespace elf { template class ELFBuilder; template class ELFBuilder; template class ELFBuilder; template class ELFBuilder; template class ELFWriter; template class ELFWriter; template class ELFWriter; template class ELFWriter; } // end namespace elf } // end namespace objcopy } // end namespace llvm