//===- lib/MC/MCWin64EH.cpp - MCWin64EH implementation --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/MC/MCWin64EH.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Win64EH.h" namespace llvm { class MCSection; } using namespace llvm; // NOTE: All relocations generated here are 4-byte image-relative. static uint8_t CountOfUnwindCodes(std::vector &Insns) { uint8_t Count = 0; for (const auto &I : Insns) { switch (static_cast(I.Operation)) { default: llvm_unreachable("Unsupported unwind code"); case Win64EH::UOP_PushNonVol: case Win64EH::UOP_AllocSmall: case Win64EH::UOP_SetFPReg: case Win64EH::UOP_PushMachFrame: Count += 1; break; case Win64EH::UOP_SaveNonVol: case Win64EH::UOP_SaveXMM128: Count += 2; break; case Win64EH::UOP_SaveNonVolBig: case Win64EH::UOP_SaveXMM128Big: Count += 3; break; case Win64EH::UOP_AllocLarge: Count += (I.Offset > 512 * 1024 - 8) ? 3 : 2; break; } } return Count; } static void EmitAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS, const MCSymbol *RHS) { MCContext &Context = Streamer.getContext(); const MCExpr *Diff = MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context), MCSymbolRefExpr::create(RHS, Context), Context); Streamer.emitValue(Diff, 1); } static void EmitUnwindCode(MCStreamer &streamer, const MCSymbol *begin, WinEH::Instruction &inst) { uint8_t b2; uint16_t w; b2 = (inst.Operation & 0x0F); switch (static_cast(inst.Operation)) { default: llvm_unreachable("Unsupported unwind code"); case Win64EH::UOP_PushNonVol: EmitAbsDifference(streamer, inst.Label, begin); b2 |= (inst.Register & 0x0F) << 4; streamer.emitInt8(b2); break; case Win64EH::UOP_AllocLarge: EmitAbsDifference(streamer, inst.Label, begin); if (inst.Offset > 512 * 1024 - 8) { b2 |= 0x10; streamer.emitInt8(b2); w = inst.Offset & 0xFFF8; streamer.emitInt16(w); w = inst.Offset >> 16; } else { streamer.emitInt8(b2); w = inst.Offset >> 3; } streamer.emitInt16(w); break; case Win64EH::UOP_AllocSmall: b2 |= (((inst.Offset - 8) >> 3) & 0x0F) << 4; EmitAbsDifference(streamer, inst.Label, begin); streamer.emitInt8(b2); break; case Win64EH::UOP_SetFPReg: EmitAbsDifference(streamer, inst.Label, begin); streamer.emitInt8(b2); break; case Win64EH::UOP_SaveNonVol: case Win64EH::UOP_SaveXMM128: b2 |= (inst.Register & 0x0F) << 4; EmitAbsDifference(streamer, inst.Label, begin); streamer.emitInt8(b2); w = inst.Offset >> 3; if (inst.Operation == Win64EH::UOP_SaveXMM128) w >>= 1; streamer.emitInt16(w); break; case Win64EH::UOP_SaveNonVolBig: case Win64EH::UOP_SaveXMM128Big: b2 |= (inst.Register & 0x0F) << 4; EmitAbsDifference(streamer, inst.Label, begin); streamer.emitInt8(b2); if (inst.Operation == Win64EH::UOP_SaveXMM128Big) w = inst.Offset & 0xFFF0; else w = inst.Offset & 0xFFF8; streamer.emitInt16(w); w = inst.Offset >> 16; streamer.emitInt16(w); break; case Win64EH::UOP_PushMachFrame: if (inst.Offset == 1) b2 |= 0x10; EmitAbsDifference(streamer, inst.Label, begin); streamer.emitInt8(b2); break; } } static void EmitSymbolRefWithOfs(MCStreamer &streamer, const MCSymbol *Base, int64_t Offset) { MCContext &Context = streamer.getContext(); const MCConstantExpr *OffExpr = MCConstantExpr::create(Offset, Context); const MCSymbolRefExpr *BaseRefRel = MCSymbolRefExpr::create(Base, MCSymbolRefExpr::VK_COFF_IMGREL32, Context); streamer.emitValue(MCBinaryExpr::createAdd(BaseRefRel, OffExpr, Context), 4); } static void EmitSymbolRefWithOfs(MCStreamer &streamer, const MCSymbol *Base, const MCSymbol *Other) { MCContext &Context = streamer.getContext(); const MCSymbolRefExpr *BaseRef = MCSymbolRefExpr::create(Base, Context); const MCSymbolRefExpr *OtherRef = MCSymbolRefExpr::create(Other, Context); const MCExpr *Ofs = MCBinaryExpr::createSub(OtherRef, BaseRef, Context); const MCSymbolRefExpr *BaseRefRel = MCSymbolRefExpr::create(Base, MCSymbolRefExpr::VK_COFF_IMGREL32, Context); streamer.emitValue(MCBinaryExpr::createAdd(BaseRefRel, Ofs, Context), 4); } static void EmitRuntimeFunction(MCStreamer &streamer, const WinEH::FrameInfo *info) { MCContext &context = streamer.getContext(); streamer.emitValueToAlignment(Align(4)); EmitSymbolRefWithOfs(streamer, info->Begin, info->Begin); EmitSymbolRefWithOfs(streamer, info->Begin, info->End); streamer.emitValue(MCSymbolRefExpr::create(info->Symbol, MCSymbolRefExpr::VK_COFF_IMGREL32, context), 4); } static void EmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info) { // If this UNWIND_INFO already has a symbol, it's already been emitted. if (info->Symbol) return; MCContext &context = streamer.getContext(); MCSymbol *Label = context.createTempSymbol(); streamer.emitValueToAlignment(Align(4)); streamer.emitLabel(Label); info->Symbol = Label; // Upper 3 bits are the version number (currently 1). uint8_t flags = 0x01; if (info->ChainedParent) flags |= Win64EH::UNW_ChainInfo << 3; else { if (info->HandlesUnwind) flags |= Win64EH::UNW_TerminateHandler << 3; if (info->HandlesExceptions) flags |= Win64EH::UNW_ExceptionHandler << 3; } streamer.emitInt8(flags); if (info->PrologEnd) EmitAbsDifference(streamer, info->PrologEnd, info->Begin); else streamer.emitInt8(0); uint8_t numCodes = CountOfUnwindCodes(info->Instructions); streamer.emitInt8(numCodes); uint8_t frame = 0; if (info->LastFrameInst >= 0) { WinEH::Instruction &frameInst = info->Instructions[info->LastFrameInst]; assert(frameInst.Operation == Win64EH::UOP_SetFPReg); frame = (frameInst.Register & 0x0F) | (frameInst.Offset & 0xF0); } streamer.emitInt8(frame); // Emit unwind instructions (in reverse order). uint8_t numInst = info->Instructions.size(); for (uint8_t c = 0; c < numInst; ++c) { WinEH::Instruction inst = info->Instructions.back(); info->Instructions.pop_back(); EmitUnwindCode(streamer, info->Begin, inst); } // For alignment purposes, the instruction array will always have an even // number of entries, with the final entry potentially unused (in which case // the array will be one longer than indicated by the count of unwind codes // field). if (numCodes & 1) { streamer.emitInt16(0); } if (flags & (Win64EH::UNW_ChainInfo << 3)) EmitRuntimeFunction(streamer, info->ChainedParent); else if (flags & ((Win64EH::UNW_TerminateHandler|Win64EH::UNW_ExceptionHandler) << 3)) streamer.emitValue(MCSymbolRefExpr::create(info->ExceptionHandler, MCSymbolRefExpr::VK_COFF_IMGREL32, context), 4); else if (numCodes == 0) { // The minimum size of an UNWIND_INFO struct is 8 bytes. If we're not // a chained unwind info, if there is no handler, and if there are fewer // than 2 slots used in the unwind code array, we have to pad to 8 bytes. streamer.emitInt32(0); } } void llvm::Win64EH::UnwindEmitter::Emit(MCStreamer &Streamer) const { // Emit the unwind info structs first. for (const auto &CFI : Streamer.getWinFrameInfos()) { MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection); Streamer.switchSection(XData); ::EmitUnwindInfo(Streamer, CFI.get()); } // Now emit RUNTIME_FUNCTION entries. for (const auto &CFI : Streamer.getWinFrameInfos()) { MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection); Streamer.switchSection(PData); EmitRuntimeFunction(Streamer, CFI.get()); } } void llvm::Win64EH::UnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer, WinEH::FrameInfo *info, bool HandlerData) const { // Switch sections (the static function above is meant to be called from // here and from Emit(). MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection); Streamer.switchSection(XData); ::EmitUnwindInfo(Streamer, info); } static const MCExpr *GetSubDivExpr(MCStreamer &Streamer, const MCSymbol *LHS, const MCSymbol *RHS, int Div) { MCContext &Context = Streamer.getContext(); const MCExpr *Expr = MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context), MCSymbolRefExpr::create(RHS, Context), Context); if (Div != 1) Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(Div, Context), Context); return Expr; } static std::optional GetOptionalAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS, const MCSymbol *RHS) { MCContext &Context = Streamer.getContext(); const MCExpr *Diff = MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context), MCSymbolRefExpr::create(RHS, Context), Context); MCObjectStreamer *OS = (MCObjectStreamer *)(&Streamer); // It should normally be possible to calculate the length of a function // at this point, but it might not be possible in the presence of certain // unusual constructs, like an inline asm with an alignment directive. int64_t value; if (!Diff->evaluateAsAbsolute(value, OS->getAssembler())) return std::nullopt; return value; } static int64_t GetAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS, const MCSymbol *RHS) { std::optional MaybeDiff = GetOptionalAbsDifference(Streamer, LHS, RHS); if (!MaybeDiff) report_fatal_error("Failed to evaluate function length in SEH unwind info"); return *MaybeDiff; } static void checkARM64Instructions(MCStreamer &Streamer, ArrayRef Insns, const MCSymbol *Begin, const MCSymbol *End, StringRef Name, StringRef Type) { if (!End) return; std::optional MaybeDistance = GetOptionalAbsDifference(Streamer, End, Begin); if (!MaybeDistance) return; uint32_t Distance = (uint32_t)*MaybeDistance; for (const auto &I : Insns) { switch (static_cast(I.Operation)) { default: break; case Win64EH::UOP_TrapFrame: case Win64EH::UOP_PushMachFrame: case Win64EH::UOP_Context: case Win64EH::UOP_ClearUnwoundToCall: // Can't reason about these opcodes and how they map to actual // instructions. return; } } // Exclude the end opcode which doesn't map to an instruction. uint32_t InstructionBytes = 4 * (Insns.size() - 1); if (Distance != InstructionBytes) { Streamer.getContext().reportError( SMLoc(), "Incorrect size for " + Name + " " + Type + ": " + Twine(Distance) + " bytes of instructions in range, but .seh directives " "corresponding to " + Twine(InstructionBytes) + " bytes\n"); } } static uint32_t ARM64CountOfUnwindCodes(ArrayRef Insns) { uint32_t Count = 0; for (const auto &I : Insns) { switch (static_cast(I.Operation)) { default: llvm_unreachable("Unsupported ARM64 unwind code"); case Win64EH::UOP_AllocSmall: Count += 1; break; case Win64EH::UOP_AllocMedium: Count += 2; break; case Win64EH::UOP_AllocLarge: Count += 4; break; case Win64EH::UOP_SaveR19R20X: Count += 1; break; case Win64EH::UOP_SaveFPLRX: Count += 1; break; case Win64EH::UOP_SaveFPLR: Count += 1; break; case Win64EH::UOP_SaveReg: Count += 2; break; case Win64EH::UOP_SaveRegP: Count += 2; break; case Win64EH::UOP_SaveRegPX: Count += 2; break; case Win64EH::UOP_SaveRegX: Count += 2; break; case Win64EH::UOP_SaveLRPair: Count += 2; break; case Win64EH::UOP_SaveFReg: Count += 2; break; case Win64EH::UOP_SaveFRegP: Count += 2; break; case Win64EH::UOP_SaveFRegX: Count += 2; break; case Win64EH::UOP_SaveFRegPX: Count += 2; break; case Win64EH::UOP_SetFP: Count += 1; break; case Win64EH::UOP_AddFP: Count += 2; break; case Win64EH::UOP_Nop: Count += 1; break; case Win64EH::UOP_End: Count += 1; break; case Win64EH::UOP_SaveNext: Count += 1; break; case Win64EH::UOP_TrapFrame: Count += 1; break; case Win64EH::UOP_PushMachFrame: Count += 1; break; case Win64EH::UOP_Context: Count += 1; break; case Win64EH::UOP_ClearUnwoundToCall: Count += 1; break; case Win64EH::UOP_PACSignLR: Count += 1; break; case Win64EH::UOP_SaveAnyRegI: case Win64EH::UOP_SaveAnyRegIP: case Win64EH::UOP_SaveAnyRegD: case Win64EH::UOP_SaveAnyRegDP: case Win64EH::UOP_SaveAnyRegQ: case Win64EH::UOP_SaveAnyRegQP: case Win64EH::UOP_SaveAnyRegIX: case Win64EH::UOP_SaveAnyRegIPX: case Win64EH::UOP_SaveAnyRegDX: case Win64EH::UOP_SaveAnyRegDPX: case Win64EH::UOP_SaveAnyRegQX: case Win64EH::UOP_SaveAnyRegQPX: Count += 3; break; } } return Count; } // Unwind opcode encodings and restrictions are documented at // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling static void ARM64EmitUnwindCode(MCStreamer &streamer, const WinEH::Instruction &inst) { uint8_t b, reg; switch (static_cast(inst.Operation)) { default: llvm_unreachable("Unsupported ARM64 unwind code"); case Win64EH::UOP_AllocSmall: b = (inst.Offset >> 4) & 0x1F; streamer.emitInt8(b); break; case Win64EH::UOP_AllocMedium: { uint16_t hw = (inst.Offset >> 4) & 0x7FF; b = 0xC0; b |= (hw >> 8); streamer.emitInt8(b); b = hw & 0xFF; streamer.emitInt8(b); break; } case Win64EH::UOP_AllocLarge: { uint32_t w; b = 0xE0; streamer.emitInt8(b); w = inst.Offset >> 4; b = (w & 0x00FF0000) >> 16; streamer.emitInt8(b); b = (w & 0x0000FF00) >> 8; streamer.emitInt8(b); b = w & 0x000000FF; streamer.emitInt8(b); break; } case Win64EH::UOP_SetFP: b = 0xE1; streamer.emitInt8(b); break; case Win64EH::UOP_AddFP: b = 0xE2; streamer.emitInt8(b); b = (inst.Offset >> 3); streamer.emitInt8(b); break; case Win64EH::UOP_Nop: b = 0xE3; streamer.emitInt8(b); break; case Win64EH::UOP_SaveR19R20X: b = 0x20; b |= (inst.Offset >> 3) & 0x1F; streamer.emitInt8(b); break; case Win64EH::UOP_SaveFPLRX: b = 0x80; b |= ((inst.Offset - 1) >> 3) & 0x3F; streamer.emitInt8(b); break; case Win64EH::UOP_SaveFPLR: b = 0x40; b |= (inst.Offset >> 3) & 0x3F; streamer.emitInt8(b); break; case Win64EH::UOP_SaveReg: assert(inst.Register >= 19 && "Saved reg must be >= 19"); reg = inst.Register - 19; b = 0xD0 | ((reg & 0xC) >> 2); streamer.emitInt8(b); b = ((reg & 0x3) << 6) | (inst.Offset >> 3); streamer.emitInt8(b); break; case Win64EH::UOP_SaveRegX: assert(inst.Register >= 19 && "Saved reg must be >= 19"); reg = inst.Register - 19; b = 0xD4 | ((reg & 0x8) >> 3); streamer.emitInt8(b); b = ((reg & 0x7) << 5) | ((inst.Offset >> 3) - 1); streamer.emitInt8(b); break; case Win64EH::UOP_SaveRegP: assert(inst.Register >= 19 && "Saved registers must be >= 19"); reg = inst.Register - 19; b = 0xC8 | ((reg & 0xC) >> 2); streamer.emitInt8(b); b = ((reg & 0x3) << 6) | (inst.Offset >> 3); streamer.emitInt8(b); break; case Win64EH::UOP_SaveRegPX: assert(inst.Register >= 19 && "Saved registers must be >= 19"); reg = inst.Register - 19; b = 0xCC | ((reg & 0xC) >> 2); streamer.emitInt8(b); b = ((reg & 0x3) << 6) | ((inst.Offset >> 3) - 1); streamer.emitInt8(b); break; case Win64EH::UOP_SaveLRPair: assert(inst.Register >= 19 && "Saved reg must be >= 19"); reg = inst.Register - 19; assert((reg % 2) == 0 && "Saved reg must be 19+2*X"); reg /= 2; b = 0xD6 | ((reg & 0x7) >> 2); streamer.emitInt8(b); b = ((reg & 0x3) << 6) | (inst.Offset >> 3); streamer.emitInt8(b); break; case Win64EH::UOP_SaveFReg: assert(inst.Register >= 8 && "Saved dreg must be >= 8"); reg = inst.Register - 8; b = 0xDC | ((reg & 0x4) >> 2); streamer.emitInt8(b); b = ((reg & 0x3) << 6) | (inst.Offset >> 3); streamer.emitInt8(b); break; case Win64EH::UOP_SaveFRegX: assert(inst.Register >= 8 && "Saved dreg must be >= 8"); reg = inst.Register - 8; b = 0xDE; streamer.emitInt8(b); b = ((reg & 0x7) << 5) | ((inst.Offset >> 3) - 1); streamer.emitInt8(b); break; case Win64EH::UOP_SaveFRegP: assert(inst.Register >= 8 && "Saved dregs must be >= 8"); reg = inst.Register - 8; b = 0xD8 | ((reg & 0x4) >> 2); streamer.emitInt8(b); b = ((reg & 0x3) << 6) | (inst.Offset >> 3); streamer.emitInt8(b); break; case Win64EH::UOP_SaveFRegPX: assert(inst.Register >= 8 && "Saved dregs must be >= 8"); reg = inst.Register - 8; b = 0xDA | ((reg & 0x4) >> 2); streamer.emitInt8(b); b = ((reg & 0x3) << 6) | ((inst.Offset >> 3) - 1); streamer.emitInt8(b); break; case Win64EH::UOP_End: b = 0xE4; streamer.emitInt8(b); break; case Win64EH::UOP_SaveNext: b = 0xE6; streamer.emitInt8(b); break; case Win64EH::UOP_TrapFrame: b = 0xE8; streamer.emitInt8(b); break; case Win64EH::UOP_PushMachFrame: b = 0xE9; streamer.emitInt8(b); break; case Win64EH::UOP_Context: b = 0xEA; streamer.emitInt8(b); break; case Win64EH::UOP_ClearUnwoundToCall: b = 0xEC; streamer.emitInt8(b); break; case Win64EH::UOP_PACSignLR: b = 0xFC; streamer.emitInt8(b); break; case Win64EH::UOP_SaveAnyRegI: case Win64EH::UOP_SaveAnyRegIP: case Win64EH::UOP_SaveAnyRegD: case Win64EH::UOP_SaveAnyRegDP: case Win64EH::UOP_SaveAnyRegQ: case Win64EH::UOP_SaveAnyRegQP: case Win64EH::UOP_SaveAnyRegIX: case Win64EH::UOP_SaveAnyRegIPX: case Win64EH::UOP_SaveAnyRegDX: case Win64EH::UOP_SaveAnyRegDPX: case Win64EH::UOP_SaveAnyRegQX: case Win64EH::UOP_SaveAnyRegQPX: { // This assumes the opcodes are listed in the enum in a particular order. int Op = inst.Operation - Win64EH::UOP_SaveAnyRegI; int Writeback = Op / 6; int Paired = Op % 2; int Mode = (Op / 2) % 3; int Offset = inst.Offset >> 3; if (Writeback || Paired || Mode == 2) Offset >>= 1; if (Writeback) --Offset; b = 0xE7; streamer.emitInt8(b); assert(inst.Register < 32); b = inst.Register | (Writeback << 5) | (Paired << 6); streamer.emitInt8(b); b = Offset | (Mode << 6); streamer.emitInt8(b); break; } } } // Returns the epilog symbol of an epilog with the exact same unwind code // sequence, if it exists. Otherwise, returns nullptr. // EpilogInstrs - Unwind codes for the current epilog. // Epilogs - Epilogs that potentialy match the current epilog. static MCSymbol* FindMatchingEpilog(const std::vector& EpilogInstrs, const std::vector& Epilogs, const WinEH::FrameInfo *info) { for (auto *EpilogStart : Epilogs) { auto InstrsIter = info->EpilogMap.find(EpilogStart); assert(InstrsIter != info->EpilogMap.end() && "Epilog not found in EpilogMap"); const auto &Instrs = InstrsIter->second.Instructions; if (Instrs.size() != EpilogInstrs.size()) continue; bool Match = true; for (unsigned i = 0; i < Instrs.size(); ++i) if (Instrs[i] != EpilogInstrs[i]) { Match = false; break; } if (Match) return EpilogStart; } return nullptr; } static void simplifyARM64Opcodes(std::vector &Instructions, bool Reverse) { unsigned PrevOffset = -1; unsigned PrevRegister = -1; auto VisitInstruction = [&](WinEH::Instruction &Inst) { // Convert 2-byte opcodes into equivalent 1-byte ones. if (Inst.Operation == Win64EH::UOP_SaveRegP && Inst.Register == 29) { Inst.Operation = Win64EH::UOP_SaveFPLR; Inst.Register = -1; } else if (Inst.Operation == Win64EH::UOP_SaveRegPX && Inst.Register == 29) { Inst.Operation = Win64EH::UOP_SaveFPLRX; Inst.Register = -1; } else if (Inst.Operation == Win64EH::UOP_SaveRegPX && Inst.Register == 19 && Inst.Offset <= 248) { Inst.Operation = Win64EH::UOP_SaveR19R20X; Inst.Register = -1; } else if (Inst.Operation == Win64EH::UOP_AddFP && Inst.Offset == 0) { Inst.Operation = Win64EH::UOP_SetFP; } else if (Inst.Operation == Win64EH::UOP_SaveRegP && Inst.Register == PrevRegister + 2 && Inst.Offset == PrevOffset + 16) { Inst.Operation = Win64EH::UOP_SaveNext; Inst.Register = -1; Inst.Offset = 0; // Intentionally not creating UOP_SaveNext for float register pairs, // as current versions of Windows (up to at least 20.04) is buggy // regarding SaveNext for float pairs. } // Update info about the previous instruction, for detecting if // the next one can be made a UOP_SaveNext if (Inst.Operation == Win64EH::UOP_SaveR19R20X) { PrevOffset = 0; PrevRegister = 19; } else if (Inst.Operation == Win64EH::UOP_SaveRegPX) { PrevOffset = 0; PrevRegister = Inst.Register; } else if (Inst.Operation == Win64EH::UOP_SaveRegP) { PrevOffset = Inst.Offset; PrevRegister = Inst.Register; } else if (Inst.Operation == Win64EH::UOP_SaveNext) { PrevRegister += 2; PrevOffset += 16; } else { PrevRegister = -1; PrevOffset = -1; } }; // Iterate over instructions in a forward order (for prologues), // backwards for epilogues (i.e. always reverse compared to how the // opcodes are stored). if (Reverse) { for (auto It = Instructions.rbegin(); It != Instructions.rend(); It++) VisitInstruction(*It); } else { for (WinEH::Instruction &Inst : Instructions) VisitInstruction(Inst); } } // Check if an epilog exists as a subset of the end of a prolog (backwards). static int getARM64OffsetInProlog(const std::vector &Prolog, const std::vector &Epilog) { // Can't find an epilog as a subset if it is longer than the prolog. if (Epilog.size() > Prolog.size()) return -1; // Check that the epilog actually is a perfect match for the end (backwrds) // of the prolog. for (int I = Epilog.size() - 1; I >= 0; I--) { if (Prolog[I] != Epilog[Epilog.size() - 1 - I]) return -1; } if (Epilog.size() == Prolog.size()) return 0; // If the epilog was a subset of the prolog, find its offset. return ARM64CountOfUnwindCodes(ArrayRef( &Prolog[Epilog.size()], Prolog.size() - Epilog.size())); } static int checkARM64PackedEpilog(MCStreamer &streamer, WinEH::FrameInfo *info, WinEH::FrameInfo::Segment *Seg, int PrologCodeBytes) { // Can only pack if there's one single epilog if (Seg->Epilogs.size() != 1) return -1; MCSymbol *Sym = Seg->Epilogs.begin()->first; const std::vector &Epilog = info->EpilogMap[Sym].Instructions; // Check that the epilog actually is at the very end of the function, // otherwise it can't be packed. uint32_t DistanceFromEnd = (uint32_t)(Seg->Offset + Seg->Length - Seg->Epilogs.begin()->second); if (DistanceFromEnd / 4 != Epilog.size()) return -1; int RetVal = -1; // Even if we don't end up sharing opcodes with the prolog, we can still // write the offset as a packed offset, if the single epilog is located at // the end of the function and the offset (pointing after the prolog) fits // as a packed offset. if (PrologCodeBytes <= 31 && PrologCodeBytes + ARM64CountOfUnwindCodes(Epilog) <= 124) RetVal = PrologCodeBytes; int Offset = getARM64OffsetInProlog(info->Instructions, Epilog); if (Offset < 0) return RetVal; // Check that the offset and prolog size fits in the first word; it's // unclear whether the epilog count in the extension word can be taken // as packed epilog offset. if (Offset > 31 || PrologCodeBytes > 124) return RetVal; // As we choose to express the epilog as part of the prolog, remove the // epilog from the map, so we don't try to emit its opcodes. info->EpilogMap.erase(Sym); return Offset; } static bool tryARM64PackedUnwind(WinEH::FrameInfo *info, uint32_t FuncLength, int PackedEpilogOffset) { if (PackedEpilogOffset == 0) { // Fully symmetric prolog and epilog, should be ok for packed format. // For CR=3, the corresponding synthesized epilog actually lacks the // SetFP opcode, but unwinding should work just fine despite that // (if at the SetFP opcode, the unwinder considers it as part of the // function body and just unwinds the full prolog instead). } else if (PackedEpilogOffset == 1) { // One single case of differences between prolog and epilog is allowed: // The epilog can lack a single SetFP that is the last opcode in the // prolog, for the CR=3 case. if (info->Instructions.back().Operation != Win64EH::UOP_SetFP) return false; } else { // Too much difference between prolog and epilog. return false; } unsigned RegI = 0, RegF = 0; int Predecrement = 0; enum { Start, Start2, Start3, IntRegs, FloatRegs, InputArgs, StackAdjust, FrameRecord, End } Location = Start; bool StandaloneLR = false, FPLRPair = false; bool PAC = false; int StackOffset = 0; int Nops = 0; // Iterate over the prolog and check that all opcodes exactly match // the canonical order and form. A more lax check could verify that // all saved registers are in the expected locations, but not enforce // the order - that would work fine when unwinding from within // functions, but not be exactly right if unwinding happens within // prologs/epilogs. for (const WinEH::Instruction &Inst : info->Instructions) { switch (Inst.Operation) { case Win64EH::UOP_End: if (Location != Start) return false; Location = Start2; break; case Win64EH::UOP_PACSignLR: if (Location != Start2) return false; PAC = true; Location = Start3; break; case Win64EH::UOP_SaveR19R20X: if (Location != Start2 && Location != Start3) return false; Predecrement = Inst.Offset; RegI = 2; Location = IntRegs; break; case Win64EH::UOP_SaveRegX: if (Location != Start2 && Location != Start3) return false; Predecrement = Inst.Offset; if (Inst.Register == 19) RegI += 1; else if (Inst.Register == 30) StandaloneLR = true; else return false; // Odd register; can't be any further int registers. Location = FloatRegs; break; case Win64EH::UOP_SaveRegPX: // Can't have this in a canonical prologue. Either this has been // canonicalized into SaveR19R20X or SaveFPLRX, or it's an unsupported // register pair. // It can't be canonicalized into SaveR19R20X if the offset is // larger than 248 bytes, but even with the maximum case with // RegI=10/RegF=8/CR=1/H=1, we end up with SavSZ = 216, which should // fit into SaveR19R20X. // The unwinding opcodes can't describe the otherwise seemingly valid // case for RegI=1 CR=1, that would start with a // "stp x19, lr, [sp, #-...]!" as that fits neither SaveRegPX nor // SaveLRPair. return false; case Win64EH::UOP_SaveRegP: if (Location != IntRegs || Inst.Offset != 8 * RegI || Inst.Register != 19 + RegI) return false; RegI += 2; break; case Win64EH::UOP_SaveReg: if (Location != IntRegs || Inst.Offset != 8 * RegI) return false; if (Inst.Register == 19 + RegI) RegI += 1; else if (Inst.Register == 30) StandaloneLR = true; else return false; // Odd register; can't be any further int registers. Location = FloatRegs; break; case Win64EH::UOP_SaveLRPair: if (Location != IntRegs || Inst.Offset != 8 * RegI || Inst.Register != 19 + RegI) return false; RegI += 1; StandaloneLR = true; Location = FloatRegs; break; case Win64EH::UOP_SaveFRegX: // Packed unwind can't handle prologs that only save one single // float register. return false; case Win64EH::UOP_SaveFReg: if (Location != FloatRegs || RegF == 0 || Inst.Register != 8 + RegF || Inst.Offset != 8 * (RegI + (StandaloneLR ? 1 : 0) + RegF)) return false; RegF += 1; Location = InputArgs; break; case Win64EH::UOP_SaveFRegPX: if ((Location != Start2 && Location != Start3) || Inst.Register != 8) return false; Predecrement = Inst.Offset; RegF = 2; Location = FloatRegs; break; case Win64EH::UOP_SaveFRegP: if ((Location != IntRegs && Location != FloatRegs) || Inst.Register != 8 + RegF || Inst.Offset != 8 * (RegI + (StandaloneLR ? 1 : 0) + RegF)) return false; RegF += 2; Location = FloatRegs; break; case Win64EH::UOP_SaveNext: if (Location == IntRegs) RegI += 2; else if (Location == FloatRegs) RegF += 2; else return false; break; case Win64EH::UOP_Nop: if (Location != IntRegs && Location != FloatRegs && Location != InputArgs) return false; Location = InputArgs; Nops++; break; case Win64EH::UOP_AllocSmall: case Win64EH::UOP_AllocMedium: if (Location != Start2 && Location != Start3 && Location != IntRegs && Location != FloatRegs && Location != InputArgs && Location != StackAdjust) return false; // Can have either a single decrement, or a pair of decrements with // 4080 and another decrement. if (StackOffset == 0) StackOffset = Inst.Offset; else if (StackOffset != 4080) return false; else StackOffset += Inst.Offset; Location = StackAdjust; break; case Win64EH::UOP_SaveFPLRX: // Not allowing FPLRX after StackAdjust; if a StackAdjust is used, it // should be followed by a FPLR instead. if (Location != Start2 && Location != Start3 && Location != IntRegs && Location != FloatRegs && Location != InputArgs) return false; StackOffset = Inst.Offset; Location = FrameRecord; FPLRPair = true; break; case Win64EH::UOP_SaveFPLR: // This can only follow after a StackAdjust if (Location != StackAdjust || Inst.Offset != 0) return false; Location = FrameRecord; FPLRPair = true; break; case Win64EH::UOP_SetFP: if (Location != FrameRecord) return false; Location = End; break; case Win64EH::UOP_SaveAnyRegI: case Win64EH::UOP_SaveAnyRegIP: case Win64EH::UOP_SaveAnyRegD: case Win64EH::UOP_SaveAnyRegDP: case Win64EH::UOP_SaveAnyRegQ: case Win64EH::UOP_SaveAnyRegQP: case Win64EH::UOP_SaveAnyRegIX: case Win64EH::UOP_SaveAnyRegIPX: case Win64EH::UOP_SaveAnyRegDX: case Win64EH::UOP_SaveAnyRegDPX: case Win64EH::UOP_SaveAnyRegQX: case Win64EH::UOP_SaveAnyRegQPX: // These are never canonical; they don't show up with the usual Arm64 // calling convention. return false; case Win64EH::UOP_AllocLarge: // Allocations this large can't be represented in packed unwind (and // usually don't fit the canonical form anyway because we need to use // __chkstk to allocate the stack space). return false; case Win64EH::UOP_AddFP: // "add x29, sp, #N" doesn't show up in the canonical pattern (except for // N=0, which is UOP_SetFP). return false; case Win64EH::UOP_TrapFrame: case Win64EH::UOP_Context: case Win64EH::UOP_ClearUnwoundToCall: case Win64EH::UOP_PushMachFrame: // These are special opcodes that aren't normally generated. return false; default: report_fatal_error("Unknown Arm64 unwind opcode"); } } if (RegI > 10 || RegF > 8) return false; if (StandaloneLR && FPLRPair) return false; if (FPLRPair && Location != End) return false; if (Nops != 0 && Nops != 4) return false; if (PAC && !FPLRPair) return false; int H = Nops == 4; // There's an inconsistency regarding packed unwind info with homed // parameters; according to the documentation, the epilog shouldn't have // the same corresponding nops (and thus, to set the H bit, we should // require an epilog which isn't exactly symmetrical - we shouldn't accept // an exact mirrored epilog for those cases), but in practice, // RtlVirtualUnwind behaves as if it does expect the epilogue to contain // the same nops. See https://github.com/llvm/llvm-project/issues/54879. // To play it safe, don't produce packed unwind info with homed parameters. if (H) return false; int IntSZ = 8 * RegI; if (StandaloneLR) IntSZ += 8; int FpSZ = 8 * RegF; // RegF not yet decremented int SavSZ = (IntSZ + FpSZ + 8 * 8 * H + 0xF) & ~0xF; if (Predecrement != SavSZ) return false; if (FPLRPair && StackOffset < 16) return false; if (StackOffset % 16) return false; uint32_t FrameSize = (StackOffset + SavSZ) / 16; if (FrameSize > 0x1FF) return false; assert(RegF != 1 && "One single float reg not allowed"); if (RegF > 0) RegF--; // Convert from actual number of registers, to value stored assert(FuncLength <= 0x7FF && "FuncLength should have been checked earlier"); int Flag = 0x01; // Function segments not supported yet int CR = PAC ? 2 : FPLRPair ? 3 : StandaloneLR ? 1 : 0; info->PackedInfo |= Flag << 0; info->PackedInfo |= (FuncLength & 0x7FF) << 2; info->PackedInfo |= (RegF & 0x7) << 13; info->PackedInfo |= (RegI & 0xF) << 16; info->PackedInfo |= (H & 0x1) << 20; info->PackedInfo |= (CR & 0x3) << 21; info->PackedInfo |= (FrameSize & 0x1FF) << 23; return true; } static void ARM64ProcessEpilogs(WinEH::FrameInfo *info, WinEH::FrameInfo::Segment *Seg, uint32_t &TotalCodeBytes, MapVector &EpilogInfo) { std::vector EpilogStarts; for (auto &I : Seg->Epilogs) EpilogStarts.push_back(I.first); // Epilogs processed so far. std::vector AddedEpilogs; for (auto *S : EpilogStarts) { MCSymbol *EpilogStart = S; auto &EpilogInstrs = info->EpilogMap[S].Instructions; uint32_t CodeBytes = ARM64CountOfUnwindCodes(EpilogInstrs); MCSymbol* MatchingEpilog = FindMatchingEpilog(EpilogInstrs, AddedEpilogs, info); int PrologOffset; if (MatchingEpilog) { assert(EpilogInfo.find(MatchingEpilog) != EpilogInfo.end() && "Duplicate epilog not found"); EpilogInfo[EpilogStart] = EpilogInfo.lookup(MatchingEpilog); // Clear the unwind codes in the EpilogMap, so that they don't get output // in ARM64EmitUnwindInfoForSegment(). EpilogInstrs.clear(); } else if ((PrologOffset = getARM64OffsetInProlog(info->Instructions, EpilogInstrs)) >= 0) { EpilogInfo[EpilogStart] = PrologOffset; // If the segment doesn't have a prolog, an end_c will be emitted before // prolog opcodes. So epilog start index in opcodes array is moved by 1. if (!Seg->HasProlog) EpilogInfo[EpilogStart] += 1; // Clear the unwind codes in the EpilogMap, so that they don't get output // in ARM64EmitUnwindInfoForSegment(). EpilogInstrs.clear(); } else { EpilogInfo[EpilogStart] = TotalCodeBytes; TotalCodeBytes += CodeBytes; AddedEpilogs.push_back(EpilogStart); } } } static void ARM64FindSegmentsInFunction(MCStreamer &streamer, WinEH::FrameInfo *info, int64_t RawFuncLength) { if (info->PrologEnd) checkARM64Instructions(streamer, info->Instructions, info->Begin, info->PrologEnd, info->Function->getName(), "prologue"); struct EpilogStartEnd { MCSymbol *Start; int64_t Offset; int64_t End; }; // Record Start and End of each epilog. SmallVector Epilogs; for (auto &I : info->EpilogMap) { MCSymbol *Start = I.first; auto &Instrs = I.second.Instructions; int64_t Offset = GetAbsDifference(streamer, Start, info->Begin); checkARM64Instructions(streamer, Instrs, Start, I.second.End, info->Function->getName(), "epilogue"); assert((Epilogs.size() == 0 || Offset >= Epilogs.back().End) && "Epilogs should be monotonically ordered"); // Exclue the end opcode from Instrs.size() when calculating the end of the // epilog. Epilogs.push_back({Start, Offset, Offset + (int64_t)(Instrs.size() - 1) * 4}); } unsigned E = 0; int64_t SegLimit = 0xFFFFC; int64_t SegOffset = 0; if (RawFuncLength > SegLimit) { int64_t RemainingLength = RawFuncLength; while (RemainingLength > SegLimit) { // Try divide the function into segments, requirements: // 1. Segment length <= 0xFFFFC; // 2. Each Prologue or Epilogue must be fully within a segment. int64_t SegLength = SegLimit; int64_t SegEnd = SegOffset + SegLength; // Keep record on symbols and offsets of epilogs in this segment. MapVector EpilogsInSegment; while (E < Epilogs.size() && Epilogs[E].End < SegEnd) { // Epilogs within current segment. EpilogsInSegment[Epilogs[E].Start] = Epilogs[E].Offset; ++E; } // At this point, we have: // 1. Put all epilogs in segments already. No action needed here; or // 2. Found an epilog that will cross segments boundry. We need to // move back current segment's end boundry, so the epilog is entirely // in the next segment; or // 3. Left at least one epilog that is entirely after this segment. // It'll be handled by the next iteration, or the last segment. if (E < Epilogs.size() && Epilogs[E].Offset <= SegEnd) // Move back current Segment's end boundry. SegLength = Epilogs[E].Offset - SegOffset; auto Seg = WinEH::FrameInfo::Segment( SegOffset, SegLength, /* HasProlog */!SegOffset); Seg.Epilogs = std::move(EpilogsInSegment); info->Segments.push_back(Seg); SegOffset += SegLength; RemainingLength -= SegLength; } } // Add the last segment when RawFuncLength > 0xFFFFC, // or the only segment otherwise. auto LastSeg = WinEH::FrameInfo::Segment(SegOffset, RawFuncLength - SegOffset, /* HasProlog */!SegOffset); for (; E < Epilogs.size(); ++E) LastSeg.Epilogs[Epilogs[E].Start] = Epilogs[E].Offset; info->Segments.push_back(LastSeg); } static void ARM64EmitUnwindInfoForSegment(MCStreamer &streamer, WinEH::FrameInfo *info, WinEH::FrameInfo::Segment &Seg, bool TryPacked = true) { MCContext &context = streamer.getContext(); MCSymbol *Label = context.createTempSymbol(); streamer.emitValueToAlignment(Align(4)); streamer.emitLabel(Label); Seg.Symbol = Label; // Use the 1st segemnt's label as function's. if (Seg.Offset == 0) info->Symbol = Label; bool HasProlog = Seg.HasProlog; bool HasEpilogs = (Seg.Epilogs.size() != 0); uint32_t SegLength = (uint32_t)Seg.Length / 4; uint32_t PrologCodeBytes = info->PrologCodeBytes; int PackedEpilogOffset = HasEpilogs ? checkARM64PackedEpilog(streamer, info, &Seg, PrologCodeBytes) : -1; // TODO: // 1. Enable packed unwind info (.pdata only) for multi-segment functions. // 2. Emit packed unwind info (.pdata only) for segments that have neithor // prolog nor epilog. if (info->Segments.size() == 1 && PackedEpilogOffset >= 0 && uint32_t(PackedEpilogOffset) < PrologCodeBytes && !info->HandlesExceptions && SegLength <= 0x7ff && TryPacked) { // Matching prolog/epilog and no exception handlers; check if the // prolog matches the patterns that can be described by the packed // format. // info->Symbol was already set even if we didn't actually write any // unwind info there. Keep using that as indicator that this unwind // info has been generated already. if (tryARM64PackedUnwind(info, SegLength, PackedEpilogOffset)) return; } // If the prolog is not in this segment, we need to emit an end_c, which takes // 1 byte, before prolog unwind ops. if (!HasProlog) { PrologCodeBytes += 1; if (PackedEpilogOffset >= 0) PackedEpilogOffset += 1; // If a segment has neither prolog nor epilog, "With full .xdata record, // Epilog Count = 1. Epilog Start Index points to end_c." // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling#function-fragments // TODO: We can remove this if testing shows zero epilog scope is ok with // MS unwinder. if (!HasEpilogs) // Pack the fake epilog into phantom prolog. PackedEpilogOffset = 0; } uint32_t TotalCodeBytes = PrologCodeBytes; // Process epilogs. MapVector EpilogInfo; ARM64ProcessEpilogs(info, &Seg, TotalCodeBytes, EpilogInfo); // Code Words, Epilog count, E, X, Vers, Function Length uint32_t row1 = 0x0; uint32_t CodeWords = TotalCodeBytes / 4; uint32_t CodeWordsMod = TotalCodeBytes % 4; if (CodeWordsMod) CodeWords++; uint32_t EpilogCount = PackedEpilogOffset >= 0 ? PackedEpilogOffset : Seg.Epilogs.size(); bool ExtensionWord = EpilogCount > 31 || TotalCodeBytes > 124; if (!ExtensionWord) { row1 |= (EpilogCount & 0x1F) << 22; row1 |= (CodeWords & 0x1F) << 27; } if (info->HandlesExceptions) // X row1 |= 1 << 20; if (PackedEpilogOffset >= 0) // E row1 |= 1 << 21; row1 |= SegLength & 0x3FFFF; streamer.emitInt32(row1); // Extended Code Words, Extended Epilog Count if (ExtensionWord) { // FIXME: We should be able to split unwind info into multiple sections. if (CodeWords > 0xFF || EpilogCount > 0xFFFF) report_fatal_error( "SEH unwind data splitting is only implemented for large functions, " "cases of too many code words or too many epilogs will be done " "later"); uint32_t row2 = 0x0; row2 |= (CodeWords & 0xFF) << 16; row2 |= (EpilogCount & 0xFFFF); streamer.emitInt32(row2); } if (PackedEpilogOffset < 0) { // Epilog Start Index, Epilog Start Offset for (auto &I : EpilogInfo) { MCSymbol *EpilogStart = I.first; uint32_t EpilogIndex = I.second; // Epilog offset within the Segment. uint32_t EpilogOffset = (uint32_t)(Seg.Epilogs[EpilogStart] - Seg.Offset); if (EpilogOffset) EpilogOffset /= 4; uint32_t row3 = EpilogOffset; row3 |= (EpilogIndex & 0x3FF) << 22; streamer.emitInt32(row3); } } // Note that even for segments that have no prolog, we still need to emit // prolog unwinding opcodes so that the unwinder knows how to unwind from // such a segment. // The end_c opcode at the start indicates to the unwinder that the actual // prolog is outside of the current segment, and the unwinder shouldn't try // to check for unwinding from a partial prolog. if (!HasProlog) // Emit an end_c. streamer.emitInt8((uint8_t)0xE5); // Emit prolog unwind instructions (in reverse order). for (auto Inst : llvm::reverse(info->Instructions)) ARM64EmitUnwindCode(streamer, Inst); // Emit epilog unwind instructions for (auto &I : Seg.Epilogs) { auto &EpilogInstrs = info->EpilogMap[I.first].Instructions; for (const WinEH::Instruction &inst : EpilogInstrs) ARM64EmitUnwindCode(streamer, inst); } int32_t BytesMod = CodeWords * 4 - TotalCodeBytes; assert(BytesMod >= 0); for (int i = 0; i < BytesMod; i++) streamer.emitInt8(0xE3); if (info->HandlesExceptions) streamer.emitValue( MCSymbolRefExpr::create(info->ExceptionHandler, MCSymbolRefExpr::VK_COFF_IMGREL32, context), 4); } // Populate the .xdata section. The format of .xdata on ARM64 is documented at // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling static void ARM64EmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info, bool TryPacked = true) { // If this UNWIND_INFO already has a symbol, it's already been emitted. if (info->Symbol) return; // If there's no unwind info here (not even a terminating UOP_End), the // unwind info is considered bogus and skipped. If this was done in // response to an explicit .seh_handlerdata, the associated trailing // handler data is left orphaned in the xdata section. if (info->empty()) { info->EmitAttempted = true; return; } if (info->EmitAttempted) { // If we tried to emit unwind info before (due to an explicit // .seh_handlerdata directive), but skipped it (because there was no // valid information to emit at the time), and it later got valid unwind // opcodes, we can't emit it here, because the trailing handler data // was already emitted elsewhere in the xdata section. streamer.getContext().reportError( SMLoc(), "Earlier .seh_handlerdata for " + info->Function->getName() + " skipped due to no unwind info at the time " "(.seh_handlerdata too early?), but the function later " "did get unwind info that can't be emitted"); return; } simplifyARM64Opcodes(info->Instructions, false); for (auto &I : info->EpilogMap) simplifyARM64Opcodes(I.second.Instructions, true); int64_t RawFuncLength; if (!info->FuncletOrFuncEnd) { report_fatal_error("FuncletOrFuncEnd not set"); } else { // FIXME: GetAbsDifference tries to compute the length of the function // immediately, before the whole file is emitted, but in general // that's impossible: the size in bytes of certain assembler directives // like .align and .fill is not known until the whole file is parsed and // relaxations are applied. Currently, GetAbsDifference fails with a fatal // error in that case. (We mostly don't hit this because inline assembly // specifying those directives is rare, and we don't normally try to // align loops on AArch64.) // // There are two potential approaches to delaying the computation. One, // we could emit something like ".word (endfunc-beginfunc)/4+0x10800000", // as long as we have some conservative estimate we could use to prove // that we don't need to split the unwind data. Emitting the constant // is straightforward, but there's no existing code for estimating the // size of the function. // // The other approach would be to use a dedicated, relaxable fragment, // which could grow to accommodate splitting the unwind data if // necessary. This is more straightforward, since it automatically works // without any new infrastructure, and it's consistent with how we handle // relaxation in other contexts. But it would require some refactoring // to move parts of the pdata/xdata emission into the implementation of // a fragment. We could probably continue to encode the unwind codes // here, but we'd have to emit the pdata, the xdata header, and the // epilogue scopes later, since they depend on whether the we need to // split the unwind data. RawFuncLength = GetAbsDifference(streamer, info->FuncletOrFuncEnd, info->Begin); } ARM64FindSegmentsInFunction(streamer, info, RawFuncLength); info->PrologCodeBytes = ARM64CountOfUnwindCodes(info->Instructions); for (auto &S : info->Segments) ARM64EmitUnwindInfoForSegment(streamer, info, S, TryPacked); // Clear prolog instructions after unwind info is emitted for all segments. info->Instructions.clear(); } static uint32_t ARMCountOfUnwindCodes(ArrayRef Insns) { uint32_t Count = 0; for (const auto &I : Insns) { switch (static_cast(I.Operation)) { default: llvm_unreachable("Unsupported ARM unwind code"); case Win64EH::UOP_AllocSmall: Count += 1; break; case Win64EH::UOP_AllocLarge: Count += 3; break; case Win64EH::UOP_AllocHuge: Count += 4; break; case Win64EH::UOP_WideAllocMedium: Count += 2; break; case Win64EH::UOP_WideAllocLarge: Count += 3; break; case Win64EH::UOP_WideAllocHuge: Count += 4; break; case Win64EH::UOP_WideSaveRegMask: Count += 2; break; case Win64EH::UOP_SaveSP: Count += 1; break; case Win64EH::UOP_SaveRegsR4R7LR: Count += 1; break; case Win64EH::UOP_WideSaveRegsR4R11LR: Count += 1; break; case Win64EH::UOP_SaveFRegD8D15: Count += 1; break; case Win64EH::UOP_SaveRegMask: Count += 2; break; case Win64EH::UOP_SaveLR: Count += 2; break; case Win64EH::UOP_SaveFRegD0D15: Count += 2; break; case Win64EH::UOP_SaveFRegD16D31: Count += 2; break; case Win64EH::UOP_Nop: case Win64EH::UOP_WideNop: case Win64EH::UOP_End: case Win64EH::UOP_EndNop: case Win64EH::UOP_WideEndNop: Count += 1; break; case Win64EH::UOP_Custom: { int J; for (J = 3; J > 0; J--) if (I.Offset & (0xffu << (8 * J))) break; Count += J + 1; break; } } } return Count; } static uint32_t ARMCountOfInstructionBytes(ArrayRef Insns, bool *HasCustom = nullptr) { uint32_t Count = 0; for (const auto &I : Insns) { switch (static_cast(I.Operation)) { default: llvm_unreachable("Unsupported ARM unwind code"); case Win64EH::UOP_AllocSmall: case Win64EH::UOP_AllocLarge: case Win64EH::UOP_AllocHuge: Count += 2; break; case Win64EH::UOP_WideAllocMedium: case Win64EH::UOP_WideAllocLarge: case Win64EH::UOP_WideAllocHuge: Count += 4; break; case Win64EH::UOP_WideSaveRegMask: case Win64EH::UOP_WideSaveRegsR4R11LR: Count += 4; break; case Win64EH::UOP_SaveSP: Count += 2; break; case Win64EH::UOP_SaveRegMask: case Win64EH::UOP_SaveRegsR4R7LR: Count += 2; break; case Win64EH::UOP_SaveFRegD8D15: case Win64EH::UOP_SaveFRegD0D15: case Win64EH::UOP_SaveFRegD16D31: Count += 4; break; case Win64EH::UOP_SaveLR: Count += 4; break; case Win64EH::UOP_Nop: case Win64EH::UOP_EndNop: Count += 2; break; case Win64EH::UOP_WideNop: case Win64EH::UOP_WideEndNop: Count += 4; break; case Win64EH::UOP_End: // This doesn't map to any instruction break; case Win64EH::UOP_Custom: // We can't reason about what instructions this maps to; return a // phony number to make sure we don't accidentally do epilog packing. Count += 1000; if (HasCustom) *HasCustom = true; break; } } return Count; } static void checkARMInstructions(MCStreamer &Streamer, ArrayRef Insns, const MCSymbol *Begin, const MCSymbol *End, StringRef Name, StringRef Type) { if (!End) return; std::optional MaybeDistance = GetOptionalAbsDifference(Streamer, End, Begin); if (!MaybeDistance) return; uint32_t Distance = (uint32_t)*MaybeDistance; bool HasCustom = false; uint32_t InstructionBytes = ARMCountOfInstructionBytes(Insns, &HasCustom); if (HasCustom) return; if (Distance != InstructionBytes) { Streamer.getContext().reportError( SMLoc(), "Incorrect size for " + Name + " " + Type + ": " + Twine(Distance) + " bytes of instructions in range, but .seh directives " "corresponding to " + Twine(InstructionBytes) + " bytes\n"); } } static bool isARMTerminator(const WinEH::Instruction &inst) { switch (static_cast(inst.Operation)) { case Win64EH::UOP_End: case Win64EH::UOP_EndNop: case Win64EH::UOP_WideEndNop: return true; default: return false; } } // Unwind opcode encodings and restrictions are documented at // https://docs.microsoft.com/en-us/cpp/build/arm-exception-handling static void ARMEmitUnwindCode(MCStreamer &streamer, const WinEH::Instruction &inst) { uint32_t w, lr; int i; switch (static_cast(inst.Operation)) { default: llvm_unreachable("Unsupported ARM unwind code"); case Win64EH::UOP_AllocSmall: assert((inst.Offset & 3) == 0); assert(inst.Offset / 4 <= 0x7f); streamer.emitInt8(inst.Offset / 4); break; case Win64EH::UOP_WideSaveRegMask: assert((inst.Register & ~0x5fff) == 0); lr = (inst.Register >> 14) & 1; w = 0x8000 | (inst.Register & 0x1fff) | (lr << 13); streamer.emitInt8((w >> 8) & 0xff); streamer.emitInt8((w >> 0) & 0xff); break; case Win64EH::UOP_SaveSP: assert(inst.Register <= 0x0f); streamer.emitInt8(0xc0 | inst.Register); break; case Win64EH::UOP_SaveRegsR4R7LR: assert(inst.Register >= 4 && inst.Register <= 7); assert(inst.Offset <= 1); streamer.emitInt8(0xd0 | (inst.Register - 4) | (inst.Offset << 2)); break; case Win64EH::UOP_WideSaveRegsR4R11LR: assert(inst.Register >= 8 && inst.Register <= 11); assert(inst.Offset <= 1); streamer.emitInt8(0xd8 | (inst.Register - 8) | (inst.Offset << 2)); break; case Win64EH::UOP_SaveFRegD8D15: assert(inst.Register >= 8 && inst.Register <= 15); streamer.emitInt8(0xe0 | (inst.Register - 8)); break; case Win64EH::UOP_WideAllocMedium: assert((inst.Offset & 3) == 0); assert(inst.Offset / 4 <= 0x3ff); w = 0xe800 | (inst.Offset / 4); streamer.emitInt8((w >> 8) & 0xff); streamer.emitInt8((w >> 0) & 0xff); break; case Win64EH::UOP_SaveRegMask: assert((inst.Register & ~0x40ff) == 0); lr = (inst.Register >> 14) & 1; w = 0xec00 | (inst.Register & 0x0ff) | (lr << 8); streamer.emitInt8((w >> 8) & 0xff); streamer.emitInt8((w >> 0) & 0xff); break; case Win64EH::UOP_SaveLR: assert((inst.Offset & 3) == 0); assert(inst.Offset / 4 <= 0x0f); streamer.emitInt8(0xef); streamer.emitInt8(inst.Offset / 4); break; case Win64EH::UOP_SaveFRegD0D15: assert(inst.Register <= 15); assert(inst.Offset <= 15); assert(inst.Register <= inst.Offset); streamer.emitInt8(0xf5); streamer.emitInt8((inst.Register << 4) | inst.Offset); break; case Win64EH::UOP_SaveFRegD16D31: assert(inst.Register >= 16 && inst.Register <= 31); assert(inst.Offset >= 16 && inst.Offset <= 31); assert(inst.Register <= inst.Offset); streamer.emitInt8(0xf6); streamer.emitInt8(((inst.Register - 16) << 4) | (inst.Offset - 16)); break; case Win64EH::UOP_AllocLarge: assert((inst.Offset & 3) == 0); assert(inst.Offset / 4 <= 0xffff); w = inst.Offset / 4; streamer.emitInt8(0xf7); streamer.emitInt8((w >> 8) & 0xff); streamer.emitInt8((w >> 0) & 0xff); break; case Win64EH::UOP_AllocHuge: assert((inst.Offset & 3) == 0); assert(inst.Offset / 4 <= 0xffffff); w = inst.Offset / 4; streamer.emitInt8(0xf8); streamer.emitInt8((w >> 16) & 0xff); streamer.emitInt8((w >> 8) & 0xff); streamer.emitInt8((w >> 0) & 0xff); break; case Win64EH::UOP_WideAllocLarge: assert((inst.Offset & 3) == 0); assert(inst.Offset / 4 <= 0xffff); w = inst.Offset / 4; streamer.emitInt8(0xf9); streamer.emitInt8((w >> 8) & 0xff); streamer.emitInt8((w >> 0) & 0xff); break; case Win64EH::UOP_WideAllocHuge: assert((inst.Offset & 3) == 0); assert(inst.Offset / 4 <= 0xffffff); w = inst.Offset / 4; streamer.emitInt8(0xfa); streamer.emitInt8((w >> 16) & 0xff); streamer.emitInt8((w >> 8) & 0xff); streamer.emitInt8((w >> 0) & 0xff); break; case Win64EH::UOP_Nop: streamer.emitInt8(0xfb); break; case Win64EH::UOP_WideNop: streamer.emitInt8(0xfc); break; case Win64EH::UOP_EndNop: streamer.emitInt8(0xfd); break; case Win64EH::UOP_WideEndNop: streamer.emitInt8(0xfe); break; case Win64EH::UOP_End: streamer.emitInt8(0xff); break; case Win64EH::UOP_Custom: for (i = 3; i > 0; i--) if (inst.Offset & (0xffu << (8 * i))) break; for (; i >= 0; i--) streamer.emitInt8((inst.Offset >> (8 * i)) & 0xff); break; } } // Check if an epilog exists as a subset of the end of a prolog (backwards). // An epilog may end with one out of three different end opcodes; if this // is the first epilog that shares opcodes with the prolog, we can tolerate // that this opcode differs (and the caller will update the prolog to use // the same end opcode as the epilog). If another epilog already shares // opcodes with the prolog, the ending opcode must be a strict match. static int getARMOffsetInProlog(const std::vector &Prolog, const std::vector &Epilog, bool CanTweakProlog) { // Can't find an epilog as a subset if it is longer than the prolog. if (Epilog.size() > Prolog.size()) return -1; // Check that the epilog actually is a perfect match for the end (backwrds) // of the prolog. // If we can adjust the prolog afterwards, don't check that the end opcodes // match. int EndIdx = CanTweakProlog ? 1 : 0; for (int I = Epilog.size() - 1; I >= EndIdx; I--) { // TODO: Could also allow minor mismatches, e.g. "add sp, #16" vs // "push {r0-r3}". if (Prolog[I] != Epilog[Epilog.size() - 1 - I]) return -1; } if (CanTweakProlog) { // Check that both prolog and epilog end with an expected end opcode. if (Prolog.front().Operation != Win64EH::UOP_End) return -1; if (Epilog.back().Operation != Win64EH::UOP_End && Epilog.back().Operation != Win64EH::UOP_EndNop && Epilog.back().Operation != Win64EH::UOP_WideEndNop) return -1; } // If the epilog was a subset of the prolog, find its offset. if (Epilog.size() == Prolog.size()) return 0; return ARMCountOfUnwindCodes(ArrayRef( &Prolog[Epilog.size()], Prolog.size() - Epilog.size())); } static int checkARMPackedEpilog(MCStreamer &streamer, WinEH::FrameInfo *info, int PrologCodeBytes) { // Can only pack if there's one single epilog if (info->EpilogMap.size() != 1) return -1; const WinEH::FrameInfo::Epilog &EpilogInfo = info->EpilogMap.begin()->second; // Can only pack if the epilog is unconditional if (EpilogInfo.Condition != 0xe) // ARMCC::AL return -1; const std::vector &Epilog = EpilogInfo.Instructions; // Make sure we have at least the trailing end opcode if (info->Instructions.empty() || Epilog.empty()) return -1; // Check that the epilog actually is at the very end of the function, // otherwise it can't be packed. std::optional MaybeDistance = GetOptionalAbsDifference( streamer, info->FuncletOrFuncEnd, info->EpilogMap.begin()->first); if (!MaybeDistance) return -1; uint32_t DistanceFromEnd = (uint32_t)*MaybeDistance; uint32_t InstructionBytes = ARMCountOfInstructionBytes(Epilog); if (DistanceFromEnd != InstructionBytes) return -1; int RetVal = -1; // Even if we don't end up sharing opcodes with the prolog, we can still // write the offset as a packed offset, if the single epilog is located at // the end of the function and the offset (pointing after the prolog) fits // as a packed offset. if (PrologCodeBytes <= 31 && PrologCodeBytes + ARMCountOfUnwindCodes(Epilog) <= 63) RetVal = PrologCodeBytes; int Offset = getARMOffsetInProlog(info->Instructions, Epilog, /*CanTweakProlog=*/true); if (Offset < 0) return RetVal; // Check that the offset and prolog size fits in the first word; it's // unclear whether the epilog count in the extension word can be taken // as packed epilog offset. if (Offset > 31 || PrologCodeBytes > 63) return RetVal; // Replace the regular end opcode of the prolog with the one from the // epilog. info->Instructions.front() = Epilog.back(); // As we choose to express the epilog as part of the prolog, remove the // epilog from the map, so we don't try to emit its opcodes. info->EpilogMap.clear(); return Offset; } static bool parseRegMask(unsigned Mask, bool &HasLR, bool &HasR11, unsigned &Folded, int &IntRegs) { if (Mask & (1 << 14)) { HasLR = true; Mask &= ~(1 << 14); } if (Mask & (1 << 11)) { HasR11 = true; Mask &= ~(1 << 11); } Folded = 0; IntRegs = -1; if (!Mask) return true; int First = 0; // Shift right until we have the bits at the bottom while ((Mask & 1) == 0) { First++; Mask >>= 1; } if ((Mask & (Mask + 1)) != 0) return false; // Not a consecutive series of bits? Can't be packed. // Count the bits int N = 0; while (Mask & (1 << N)) N++; if (First < 4) { if (First + N < 4) return false; Folded = 4 - First; N -= Folded; First = 4; } if (First > 4) return false; // Can't be packed if (N >= 1) IntRegs = N - 1; return true; } static bool tryARMPackedUnwind(MCStreamer &streamer, WinEH::FrameInfo *info, uint32_t FuncLength) { int Step = 0; bool Homing = false; bool HasR11 = false; bool HasChain = false; bool HasLR = false; int IntRegs = -1; // r4 - r(4+N) int FloatRegs = -1; // d8 - d(8+N) unsigned PF = 0; // Number of extra pushed registers unsigned StackAdjust = 0; // Iterate over the prolog and check that all opcodes exactly match // the canonical order and form. for (const WinEH::Instruction &Inst : info->Instructions) { switch (Inst.Operation) { default: llvm_unreachable("Unsupported ARM unwind code"); case Win64EH::UOP_Custom: case Win64EH::UOP_AllocLarge: case Win64EH::UOP_AllocHuge: case Win64EH::UOP_WideAllocLarge: case Win64EH::UOP_WideAllocHuge: case Win64EH::UOP_SaveFRegD0D15: case Win64EH::UOP_SaveFRegD16D31: // Can't be packed return false; case Win64EH::UOP_SaveSP: // Can't be packed; we can't rely on restoring sp from r11 when // unwinding a packed prologue. return false; case Win64EH::UOP_SaveLR: // Can't be present in a packed prologue return false; case Win64EH::UOP_End: case Win64EH::UOP_EndNop: case Win64EH::UOP_WideEndNop: if (Step != 0) return false; Step = 1; break; case Win64EH::UOP_SaveRegsR4R7LR: case Win64EH::UOP_WideSaveRegsR4R11LR: // push {r4-r11,lr} if (Step != 1 && Step != 2) return false; assert(Inst.Register >= 4 && Inst.Register <= 11); // r4-rX assert(Inst.Offset <= 1); // Lr IntRegs = Inst.Register - 4; if (Inst.Register == 11) { HasR11 = true; IntRegs--; } if (Inst.Offset) HasLR = true; Step = 3; break; case Win64EH::UOP_SaveRegMask: if (Step == 1 && Inst.Register == 0x0f) { // push {r0-r3} Homing = true; Step = 2; break; } [[fallthrough]]; case Win64EH::UOP_WideSaveRegMask: if (Step != 1 && Step != 2) return false; // push {r4-r9,r11,lr} // push {r11,lr} // push {r1-r5} if (!parseRegMask(Inst.Register, HasLR, HasR11, PF, IntRegs)) return false; Step = 3; break; case Win64EH::UOP_Nop: // mov r11, sp if (Step != 3 || !HasR11 || IntRegs >= 0 || PF > 0) return false; HasChain = true; Step = 4; break; case Win64EH::UOP_WideNop: // add.w r11, sp, #xx if (Step != 3 || !HasR11 || (IntRegs < 0 && PF == 0)) return false; HasChain = true; Step = 4; break; case Win64EH::UOP_SaveFRegD8D15: if (Step != 1 && Step != 2 && Step != 3 && Step != 4) return false; assert(Inst.Register >= 8 && Inst.Register <= 15); if (Inst.Register == 15) return false; // Can't pack this case, R==7 means no IntRegs if (IntRegs >= 0) return false; FloatRegs = Inst.Register - 8; Step = 5; break; case Win64EH::UOP_AllocSmall: case Win64EH::UOP_WideAllocMedium: if (Step != 1 && Step != 2 && Step != 3 && Step != 4 && Step != 5) return false; if (PF > 0) // Can't have both folded and explicit stack allocation return false; if (Inst.Offset / 4 >= 0x3f4) return false; StackAdjust = Inst.Offset / 4; Step = 6; break; } } if (HasR11 && !HasChain) { if (IntRegs + 4 == 10) { // r11 stored, but not chaining; can be packed if already saving r4-r10 // and we can fit r11 into this range. IntRegs++; HasR11 = false; } else return false; } if (HasChain && !HasLR) return false; // Packed uneind info can't express multiple epilogues. if (info->EpilogMap.size() > 1) return false; unsigned EF = 0; int Ret = 0; if (info->EpilogMap.size() == 0) { Ret = 3; // No epilogue } else { // As the prologue and epilogue aren't exact mirrors of each other, // we have to check the epilogue too and see if it matches what we've // concluded from the prologue. const WinEH::FrameInfo::Epilog &EpilogInfo = info->EpilogMap.begin()->second; if (EpilogInfo.Condition != 0xe) // ARMCC::AL return false; const std::vector &Epilog = EpilogInfo.Instructions; std::optional MaybeDistance = GetOptionalAbsDifference( streamer, info->FuncletOrFuncEnd, info->EpilogMap.begin()->first); if (!MaybeDistance) return false; uint32_t DistanceFromEnd = (uint32_t)*MaybeDistance; uint32_t InstructionBytes = ARMCountOfInstructionBytes(Epilog); if (DistanceFromEnd != InstructionBytes) return false; bool GotStackAdjust = false; bool GotFloatRegs = false; bool GotIntRegs = false; bool GotHomingRestore = false; bool GotLRRestore = false; bool NeedsReturn = false; bool GotReturn = false; Step = 6; for (const WinEH::Instruction &Inst : Epilog) { switch (Inst.Operation) { default: llvm_unreachable("Unsupported ARM unwind code"); case Win64EH::UOP_Custom: case Win64EH::UOP_AllocLarge: case Win64EH::UOP_AllocHuge: case Win64EH::UOP_WideAllocLarge: case Win64EH::UOP_WideAllocHuge: case Win64EH::UOP_SaveFRegD0D15: case Win64EH::UOP_SaveFRegD16D31: case Win64EH::UOP_SaveSP: case Win64EH::UOP_Nop: case Win64EH::UOP_WideNop: // Can't be packed in an epilogue return false; case Win64EH::UOP_AllocSmall: case Win64EH::UOP_WideAllocMedium: if (Inst.Offset / 4 >= 0x3f4) return false; if (Step == 6) { if (Homing && FloatRegs < 0 && IntRegs < 0 && StackAdjust == 0 && PF == 0 && Inst.Offset == 16) { GotHomingRestore = true; Step = 10; } else { if (StackAdjust > 0) { // Got stack adjust in prologue too; must match. if (StackAdjust != Inst.Offset / 4) return false; GotStackAdjust = true; } else if (PF == Inst.Offset / 4) { // Folded prologue, non-folded epilogue StackAdjust = Inst.Offset / 4; GotStackAdjust = true; } else { // StackAdjust == 0 in prologue, mismatch return false; } Step = 7; } } else if (Step == 7 || Step == 8 || Step == 9) { if (!Homing || Inst.Offset != 16) return false; GotHomingRestore = true; Step = 10; } else return false; break; case Win64EH::UOP_SaveFRegD8D15: if (Step != 6 && Step != 7) return false; assert(Inst.Register >= 8 && Inst.Register <= 15); if (FloatRegs != (int)(Inst.Register - 8)) return false; GotFloatRegs = true; Step = 8; break; case Win64EH::UOP_SaveRegsR4R7LR: case Win64EH::UOP_WideSaveRegsR4R11LR: { // push {r4-r11,lr} if (Step != 6 && Step != 7 && Step != 8) return false; assert(Inst.Register >= 4 && Inst.Register <= 11); // r4-rX assert(Inst.Offset <= 1); // Lr if (Homing && HasLR) { // If homing and LR is backed up, we can either restore LR here // and return with Ret == 1 or 2, or return with SaveLR below if (Inst.Offset) { GotLRRestore = true; NeedsReturn = true; } else { // Expecting a separate SaveLR below } } else { if (HasLR != (Inst.Offset == 1)) return false; } GotLRRestore = Inst.Offset == 1; if (IntRegs < 0) // This opcode must include r4 return false; int Expected = IntRegs; if (HasChain) { // Can't express r11 here unless IntRegs describe r4-r10 if (IntRegs != 6) return false; Expected++; } if (Expected != (int)(Inst.Register - 4)) return false; GotIntRegs = true; Step = 9; break; } case Win64EH::UOP_SaveRegMask: case Win64EH::UOP_WideSaveRegMask: { if (Step != 6 && Step != 7 && Step != 8) return false; // push {r4-r9,r11,lr} // push {r11,lr} // push {r1-r5} bool CurHasLR = false, CurHasR11 = false; int Regs; if (!parseRegMask(Inst.Register, CurHasLR, CurHasR11, EF, Regs)) return false; if (EF > 0) { if (EF != PF && EF != StackAdjust) return false; } if (Homing && HasLR) { // If homing and LR is backed up, we can either restore LR here // and return with Ret == 1 or 2, or return with SaveLR below if (CurHasLR) { GotLRRestore = true; NeedsReturn = true; } else { // Expecting a separate SaveLR below } } else { if (CurHasLR != HasLR) return false; GotLRRestore = CurHasLR; } int Expected = IntRegs; if (HasChain) { // If we have chaining, the mask must have included r11. if (!CurHasR11) return false; } else if (Expected == 7) { // If we don't have chaining, the mask could still include r11, // expressed as part of IntRegs Instead. Expected--; if (!CurHasR11) return false; } else { // Neither HasChain nor r11 included in IntRegs, must not have r11 // here either. if (CurHasR11) return false; } if (Expected != Regs) return false; GotIntRegs = true; Step = 9; break; } case Win64EH::UOP_SaveLR: if (Step != 6 && Step != 7 && Step != 8 && Step != 9) return false; if (!Homing || Inst.Offset != 20 || GotLRRestore) return false; GotLRRestore = true; GotHomingRestore = true; Step = 10; break; case Win64EH::UOP_EndNop: case Win64EH::UOP_WideEndNop: GotReturn = true; Ret = (Inst.Operation == Win64EH::UOP_EndNop) ? 1 : 2; [[fallthrough]]; case Win64EH::UOP_End: if (Step != 6 && Step != 7 && Step != 8 && Step != 9 && Step != 10) return false; Step = 11; break; } } if (Step != 11) return false; if (StackAdjust > 0 && !GotStackAdjust && EF == 0) return false; if (FloatRegs >= 0 && !GotFloatRegs) return false; if (IntRegs >= 0 && !GotIntRegs) return false; if (Homing && !GotHomingRestore) return false; if (HasLR && !GotLRRestore) return false; if (NeedsReturn && !GotReturn) return false; } assert(PF == 0 || EF == 0 || StackAdjust == 0); // Can't have adjust in all three if (PF > 0 || EF > 0) { StackAdjust = PF > 0 ? (PF - 1) : (EF - 1); assert(StackAdjust <= 3); StackAdjust |= 0x3f0; if (PF > 0) StackAdjust |= 1 << 2; if (EF > 0) StackAdjust |= 1 << 3; } assert(FuncLength <= 0x7FF && "FuncLength should have been checked earlier"); int Flag = info->Fragment ? 0x02 : 0x01; int H = Homing ? 1 : 0; int L = HasLR ? 1 : 0; int C = HasChain ? 1 : 0; assert(IntRegs < 0 || FloatRegs < 0); unsigned Reg, R; if (IntRegs >= 0) { Reg = IntRegs; assert(Reg <= 7); R = 0; } else if (FloatRegs >= 0) { Reg = FloatRegs; assert(Reg < 7); R = 1; } else { // No int or float regs stored (except possibly R11,LR) Reg = 7; R = 1; } info->PackedInfo |= Flag << 0; info->PackedInfo |= (FuncLength & 0x7FF) << 2; info->PackedInfo |= (Ret & 0x3) << 13; info->PackedInfo |= H << 15; info->PackedInfo |= Reg << 16; info->PackedInfo |= R << 19; info->PackedInfo |= L << 20; info->PackedInfo |= C << 21; assert(StackAdjust <= 0x3ff); info->PackedInfo |= StackAdjust << 22; return true; } // Populate the .xdata section. The format of .xdata on ARM is documented at // https://docs.microsoft.com/en-us/cpp/build/arm-exception-handling static void ARMEmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info, bool TryPacked = true) { // If this UNWIND_INFO already has a symbol, it's already been emitted. if (info->Symbol) return; // If there's no unwind info here (not even a terminating UOP_End), the // unwind info is considered bogus and skipped. If this was done in // response to an explicit .seh_handlerdata, the associated trailing // handler data is left orphaned in the xdata section. if (info->empty()) { info->EmitAttempted = true; return; } if (info->EmitAttempted) { // If we tried to emit unwind info before (due to an explicit // .seh_handlerdata directive), but skipped it (because there was no // valid information to emit at the time), and it later got valid unwind // opcodes, we can't emit it here, because the trailing handler data // was already emitted elsewhere in the xdata section. streamer.getContext().reportError( SMLoc(), "Earlier .seh_handlerdata for " + info->Function->getName() + " skipped due to no unwind info at the time " "(.seh_handlerdata too early?), but the function later " "did get unwind info that can't be emitted"); return; } MCContext &context = streamer.getContext(); MCSymbol *Label = context.createTempSymbol(); streamer.emitValueToAlignment(Align(4)); streamer.emitLabel(Label); info->Symbol = Label; if (!info->PrologEnd) streamer.getContext().reportError(SMLoc(), "Prologue in " + info->Function->getName() + " not correctly terminated"); if (info->PrologEnd && !info->Fragment) checkARMInstructions(streamer, info->Instructions, info->Begin, info->PrologEnd, info->Function->getName(), "prologue"); for (auto &I : info->EpilogMap) { MCSymbol *EpilogStart = I.first; auto &Epilog = I.second; checkARMInstructions(streamer, Epilog.Instructions, EpilogStart, Epilog.End, info->Function->getName(), "epilogue"); if (Epilog.Instructions.empty() || !isARMTerminator(Epilog.Instructions.back())) streamer.getContext().reportError( SMLoc(), "Epilogue in " + info->Function->getName() + " not correctly terminated"); } std::optional RawFuncLength; const MCExpr *FuncLengthExpr = nullptr; if (!info->FuncletOrFuncEnd) { report_fatal_error("FuncletOrFuncEnd not set"); } else { // As the size of many thumb2 instructions isn't known until later, // we can't always rely on being able to calculate the absolute // length of the function here. If we can't calculate it, defer it // to a relocation. // // In such a case, we won't know if the function is too long so that // the unwind info would need to be split (but this isn't implemented // anyway). RawFuncLength = GetOptionalAbsDifference(streamer, info->FuncletOrFuncEnd, info->Begin); if (!RawFuncLength) FuncLengthExpr = GetSubDivExpr(streamer, info->FuncletOrFuncEnd, info->Begin, 2); } uint32_t FuncLength = 0; if (RawFuncLength) FuncLength = (uint32_t)*RawFuncLength / 2; if (FuncLength > 0x3FFFF) report_fatal_error("SEH unwind data splitting not yet implemented"); uint32_t PrologCodeBytes = ARMCountOfUnwindCodes(info->Instructions); uint32_t TotalCodeBytes = PrologCodeBytes; if (!info->HandlesExceptions && RawFuncLength && FuncLength <= 0x7ff && TryPacked) { // No exception handlers; check if the prolog and epilog matches the // patterns that can be described by the packed format. If we don't // know the exact function length yet, we can't do this. // info->Symbol was already set even if we didn't actually write any // unwind info there. Keep using that as indicator that this unwind // info has been generated already. if (tryARMPackedUnwind(streamer, info, FuncLength)) return; } int PackedEpilogOffset = checkARMPackedEpilog(streamer, info, PrologCodeBytes); // Process epilogs. MapVector EpilogInfo; // Epilogs processed so far. std::vector AddedEpilogs; bool CanTweakProlog = true; for (auto &I : info->EpilogMap) { MCSymbol *EpilogStart = I.first; auto &EpilogInstrs = I.second.Instructions; uint32_t CodeBytes = ARMCountOfUnwindCodes(EpilogInstrs); MCSymbol *MatchingEpilog = FindMatchingEpilog(EpilogInstrs, AddedEpilogs, info); int PrologOffset; if (MatchingEpilog) { assert(EpilogInfo.find(MatchingEpilog) != EpilogInfo.end() && "Duplicate epilog not found"); EpilogInfo[EpilogStart] = EpilogInfo.lookup(MatchingEpilog); // Clear the unwind codes in the EpilogMap, so that they don't get output // in the logic below. EpilogInstrs.clear(); } else if ((PrologOffset = getARMOffsetInProlog( info->Instructions, EpilogInstrs, CanTweakProlog)) >= 0) { if (CanTweakProlog) { // Replace the regular end opcode of the prolog with the one from the // epilog. info->Instructions.front() = EpilogInstrs.back(); // Later epilogs need a strict match for the end opcode. CanTweakProlog = false; } EpilogInfo[EpilogStart] = PrologOffset; // Clear the unwind codes in the EpilogMap, so that they don't get output // in the logic below. EpilogInstrs.clear(); } else { EpilogInfo[EpilogStart] = TotalCodeBytes; TotalCodeBytes += CodeBytes; AddedEpilogs.push_back(EpilogStart); } } // Code Words, Epilog count, F, E, X, Vers, Function Length uint32_t row1 = 0x0; uint32_t CodeWords = TotalCodeBytes / 4; uint32_t CodeWordsMod = TotalCodeBytes % 4; if (CodeWordsMod) CodeWords++; uint32_t EpilogCount = PackedEpilogOffset >= 0 ? PackedEpilogOffset : info->EpilogMap.size(); bool ExtensionWord = EpilogCount > 31 || CodeWords > 15; if (!ExtensionWord) { row1 |= (EpilogCount & 0x1F) << 23; row1 |= (CodeWords & 0x0F) << 28; } if (info->HandlesExceptions) // X row1 |= 1 << 20; if (PackedEpilogOffset >= 0) // E row1 |= 1 << 21; if (info->Fragment) // F row1 |= 1 << 22; row1 |= FuncLength & 0x3FFFF; if (RawFuncLength) streamer.emitInt32(row1); else streamer.emitValue( MCBinaryExpr::createOr(FuncLengthExpr, MCConstantExpr::create(row1, context), context), 4); // Extended Code Words, Extended Epilog Count if (ExtensionWord) { // FIXME: We should be able to split unwind info into multiple sections. if (CodeWords > 0xFF || EpilogCount > 0xFFFF) report_fatal_error("SEH unwind data splitting not yet implemented"); uint32_t row2 = 0x0; row2 |= (CodeWords & 0xFF) << 16; row2 |= (EpilogCount & 0xFFFF); streamer.emitInt32(row2); } if (PackedEpilogOffset < 0) { // Epilog Start Index, Epilog Start Offset for (auto &I : EpilogInfo) { MCSymbol *EpilogStart = I.first; uint32_t EpilogIndex = I.second; std::optional MaybeEpilogOffset = GetOptionalAbsDifference(streamer, EpilogStart, info->Begin); const MCExpr *OffsetExpr = nullptr; uint32_t EpilogOffset = 0; if (MaybeEpilogOffset) EpilogOffset = *MaybeEpilogOffset / 2; else OffsetExpr = GetSubDivExpr(streamer, EpilogStart, info->Begin, 2); assert(info->EpilogMap.find(EpilogStart) != info->EpilogMap.end()); unsigned Condition = info->EpilogMap[EpilogStart].Condition; assert(Condition <= 0xf); uint32_t row3 = EpilogOffset; row3 |= Condition << 20; row3 |= (EpilogIndex & 0x3FF) << 24; if (MaybeEpilogOffset) streamer.emitInt32(row3); else streamer.emitValue( MCBinaryExpr::createOr( OffsetExpr, MCConstantExpr::create(row3, context), context), 4); } } // Emit prolog unwind instructions (in reverse order). uint8_t numInst = info->Instructions.size(); for (uint8_t c = 0; c < numInst; ++c) { WinEH::Instruction inst = info->Instructions.back(); info->Instructions.pop_back(); ARMEmitUnwindCode(streamer, inst); } // Emit epilog unwind instructions for (auto &I : info->EpilogMap) { auto &EpilogInstrs = I.second.Instructions; for (const WinEH::Instruction &inst : EpilogInstrs) ARMEmitUnwindCode(streamer, inst); } int32_t BytesMod = CodeWords * 4 - TotalCodeBytes; assert(BytesMod >= 0); for (int i = 0; i < BytesMod; i++) streamer.emitInt8(0xFB); if (info->HandlesExceptions) streamer.emitValue( MCSymbolRefExpr::create(info->ExceptionHandler, MCSymbolRefExpr::VK_COFF_IMGREL32, context), 4); } static void ARM64EmitRuntimeFunction(MCStreamer &streamer, const WinEH::FrameInfo *info) { MCContext &context = streamer.getContext(); streamer.emitValueToAlignment(Align(4)); for (const auto &S : info->Segments) { EmitSymbolRefWithOfs(streamer, info->Begin, S.Offset); if (info->PackedInfo) streamer.emitInt32(info->PackedInfo); else streamer.emitValue( MCSymbolRefExpr::create(S.Symbol, MCSymbolRefExpr::VK_COFF_IMGREL32, context), 4); } } static void ARMEmitRuntimeFunction(MCStreamer &streamer, const WinEH::FrameInfo *info) { MCContext &context = streamer.getContext(); streamer.emitValueToAlignment(Align(4)); EmitSymbolRefWithOfs(streamer, info->Begin, info->Begin); if (info->PackedInfo) streamer.emitInt32(info->PackedInfo); else streamer.emitValue( MCSymbolRefExpr::create(info->Symbol, MCSymbolRefExpr::VK_COFF_IMGREL32, context), 4); } void llvm::Win64EH::ARM64UnwindEmitter::Emit(MCStreamer &Streamer) const { // Emit the unwind info structs first. for (const auto &CFI : Streamer.getWinFrameInfos()) { WinEH::FrameInfo *Info = CFI.get(); if (Info->empty()) continue; MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection); Streamer.switchSection(XData); ARM64EmitUnwindInfo(Streamer, Info); } // Now emit RUNTIME_FUNCTION entries. for (const auto &CFI : Streamer.getWinFrameInfos()) { WinEH::FrameInfo *Info = CFI.get(); // ARM64EmitUnwindInfo above clears the info struct, so we can't check // empty here. But if a Symbol is set, we should create the corresponding // pdata entry. if (!Info->Symbol) continue; MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection); Streamer.switchSection(PData); ARM64EmitRuntimeFunction(Streamer, Info); } } void llvm::Win64EH::ARM64UnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer, WinEH::FrameInfo *info, bool HandlerData) const { // Called if there's an .seh_handlerdata directive before the end of the // function. This forces writing the xdata record already here - and // in this case, the function isn't actually ended already, but the xdata // record needs to know the function length. In these cases, if the funclet // end hasn't been marked yet, the xdata function length won't cover the // whole function, only up to this point. if (!info->FuncletOrFuncEnd) { Streamer.switchSection(info->TextSection); info->FuncletOrFuncEnd = Streamer.emitCFILabel(); } // Switch sections (the static function above is meant to be called from // here and from Emit(). MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection); Streamer.switchSection(XData); ARM64EmitUnwindInfo(Streamer, info, /* TryPacked = */ !HandlerData); } void llvm::Win64EH::ARMUnwindEmitter::Emit(MCStreamer &Streamer) const { // Emit the unwind info structs first. for (const auto &CFI : Streamer.getWinFrameInfos()) { WinEH::FrameInfo *Info = CFI.get(); if (Info->empty()) continue; MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection); Streamer.switchSection(XData); ARMEmitUnwindInfo(Streamer, Info); } // Now emit RUNTIME_FUNCTION entries. for (const auto &CFI : Streamer.getWinFrameInfos()) { WinEH::FrameInfo *Info = CFI.get(); // ARMEmitUnwindInfo above clears the info struct, so we can't check // empty here. But if a Symbol is set, we should create the corresponding // pdata entry. if (!Info->Symbol) continue; MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection); Streamer.switchSection(PData); ARMEmitRuntimeFunction(Streamer, Info); } } void llvm::Win64EH::ARMUnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer, WinEH::FrameInfo *info, bool HandlerData) const { // Called if there's an .seh_handlerdata directive before the end of the // function. This forces writing the xdata record already here - and // in this case, the function isn't actually ended already, but the xdata // record needs to know the function length. In these cases, if the funclet // end hasn't been marked yet, the xdata function length won't cover the // whole function, only up to this point. if (!info->FuncletOrFuncEnd) { Streamer.switchSection(info->TextSection); info->FuncletOrFuncEnd = Streamer.emitCFILabel(); } // Switch sections (the static function above is meant to be called from // here and from Emit(). MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection); Streamer.switchSection(XData); ARMEmitUnwindInfo(Streamer, info, /* TryPacked = */ !HandlerData); }