//===- AsmParser.cpp - Parser for Assembly Files --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class implements the parser for assembly files. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/CodeView/SymbolRecord.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeView.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCParser/AsmCond.h" #include "llvm/MC/MCParser/AsmLexer.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCAsmParserExtension.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; namespace { /// Helper types for tracking macro definitions. typedef std::vector MCAsmMacroArgument; typedef std::vector MCAsmMacroArguments; /// Helper class for storing information about an active macro instantiation. struct MacroInstantiation { /// The location of the instantiation. SMLoc InstantiationLoc; /// The buffer where parsing should resume upon instantiation completion. unsigned ExitBuffer; /// The location where parsing should resume upon instantiation completion. SMLoc ExitLoc; /// The depth of TheCondStack at the start of the instantiation. size_t CondStackDepth; }; struct ParseStatementInfo { /// The parsed operands from the last parsed statement. SmallVector, 8> ParsedOperands; /// The opcode from the last parsed instruction. unsigned Opcode = ~0U; /// Was there an error parsing the inline assembly? bool ParseError = false; /// The value associated with a macro exit. std::optional ExitValue; SmallVectorImpl *AsmRewrites = nullptr; ParseStatementInfo() = delete; ParseStatementInfo(SmallVectorImpl *rewrites) : AsmRewrites(rewrites) {} }; enum FieldType { FT_INTEGRAL, // Initializer: integer expression, stored as an MCExpr. FT_REAL, // Initializer: real number, stored as an APInt. FT_STRUCT // Initializer: struct initializer, stored recursively. }; struct FieldInfo; struct StructInfo { StringRef Name; bool IsUnion = false; bool Initializable = true; unsigned Alignment = 0; unsigned AlignmentSize = 0; unsigned NextOffset = 0; unsigned Size = 0; std::vector Fields; StringMap FieldsByName; FieldInfo &addField(StringRef FieldName, FieldType FT, unsigned FieldAlignmentSize); StructInfo() = default; StructInfo(StringRef StructName, bool Union, unsigned AlignmentValue); }; // FIXME: This should probably use a class hierarchy, raw pointers between the // objects, and dynamic type resolution instead of a union. On the other hand, // ownership then becomes much more complicated; the obvious thing would be to // use BumpPtrAllocator, but the lack of a destructor makes that messy. struct StructInitializer; struct IntFieldInfo { SmallVector Values; IntFieldInfo() = default; IntFieldInfo(const SmallVector &V) { Values = V; } IntFieldInfo(SmallVector &&V) { Values = V; } }; struct RealFieldInfo { SmallVector AsIntValues; RealFieldInfo() = default; RealFieldInfo(const SmallVector &V) { AsIntValues = V; } RealFieldInfo(SmallVector &&V) { AsIntValues = V; } }; struct StructFieldInfo { std::vector Initializers; StructInfo Structure; StructFieldInfo() = default; StructFieldInfo(std::vector V, StructInfo S); }; class FieldInitializer { public: FieldType FT; union { IntFieldInfo IntInfo; RealFieldInfo RealInfo; StructFieldInfo StructInfo; }; ~FieldInitializer(); FieldInitializer(FieldType FT); FieldInitializer(SmallVector &&Values); FieldInitializer(SmallVector &&AsIntValues); FieldInitializer(std::vector &&Initializers, struct StructInfo Structure); FieldInitializer(const FieldInitializer &Initializer); FieldInitializer(FieldInitializer &&Initializer); FieldInitializer &operator=(const FieldInitializer &Initializer); FieldInitializer &operator=(FieldInitializer &&Initializer); }; struct StructInitializer { std::vector FieldInitializers; }; struct FieldInfo { // Offset of the field within the containing STRUCT. unsigned Offset = 0; // Total size of the field (= LengthOf * Type). unsigned SizeOf = 0; // Number of elements in the field (1 if scalar, >1 if an array). unsigned LengthOf = 0; // Size of a single entry in this field, in bytes ("type" in MASM standards). unsigned Type = 0; FieldInitializer Contents; FieldInfo(FieldType FT) : Contents(FT) {} }; StructFieldInfo::StructFieldInfo(std::vector V, StructInfo S) { Initializers = std::move(V); Structure = S; } StructInfo::StructInfo(StringRef StructName, bool Union, unsigned AlignmentValue) : Name(StructName), IsUnion(Union), Alignment(AlignmentValue) {} FieldInfo &StructInfo::addField(StringRef FieldName, FieldType FT, unsigned FieldAlignmentSize) { if (!FieldName.empty()) FieldsByName[FieldName.lower()] = Fields.size(); Fields.emplace_back(FT); FieldInfo &Field = Fields.back(); Field.Offset = llvm::alignTo(NextOffset, std::min(Alignment, FieldAlignmentSize)); if (!IsUnion) { NextOffset = std::max(NextOffset, Field.Offset); } AlignmentSize = std::max(AlignmentSize, FieldAlignmentSize); return Field; } FieldInitializer::~FieldInitializer() { switch (FT) { case FT_INTEGRAL: IntInfo.~IntFieldInfo(); break; case FT_REAL: RealInfo.~RealFieldInfo(); break; case FT_STRUCT: StructInfo.~StructFieldInfo(); break; } } FieldInitializer::FieldInitializer(FieldType FT) : FT(FT) { switch (FT) { case FT_INTEGRAL: new (&IntInfo) IntFieldInfo(); break; case FT_REAL: new (&RealInfo) RealFieldInfo(); break; case FT_STRUCT: new (&StructInfo) StructFieldInfo(); break; } } FieldInitializer::FieldInitializer(SmallVector &&Values) : FT(FT_INTEGRAL) { new (&IntInfo) IntFieldInfo(Values); } FieldInitializer::FieldInitializer(SmallVector &&AsIntValues) : FT(FT_REAL) { new (&RealInfo) RealFieldInfo(AsIntValues); } FieldInitializer::FieldInitializer( std::vector &&Initializers, struct StructInfo Structure) : FT(FT_STRUCT) { new (&StructInfo) StructFieldInfo(std::move(Initializers), Structure); } FieldInitializer::FieldInitializer(const FieldInitializer &Initializer) : FT(Initializer.FT) { switch (FT) { case FT_INTEGRAL: new (&IntInfo) IntFieldInfo(Initializer.IntInfo); break; case FT_REAL: new (&RealInfo) RealFieldInfo(Initializer.RealInfo); break; case FT_STRUCT: new (&StructInfo) StructFieldInfo(Initializer.StructInfo); break; } } FieldInitializer::FieldInitializer(FieldInitializer &&Initializer) : FT(Initializer.FT) { switch (FT) { case FT_INTEGRAL: new (&IntInfo) IntFieldInfo(Initializer.IntInfo); break; case FT_REAL: new (&RealInfo) RealFieldInfo(Initializer.RealInfo); break; case FT_STRUCT: new (&StructInfo) StructFieldInfo(Initializer.StructInfo); break; } } FieldInitializer & FieldInitializer::operator=(const FieldInitializer &Initializer) { if (FT != Initializer.FT) { switch (FT) { case FT_INTEGRAL: IntInfo.~IntFieldInfo(); break; case FT_REAL: RealInfo.~RealFieldInfo(); break; case FT_STRUCT: StructInfo.~StructFieldInfo(); break; } } FT = Initializer.FT; switch (FT) { case FT_INTEGRAL: IntInfo = Initializer.IntInfo; break; case FT_REAL: RealInfo = Initializer.RealInfo; break; case FT_STRUCT: StructInfo = Initializer.StructInfo; break; } return *this; } FieldInitializer &FieldInitializer::operator=(FieldInitializer &&Initializer) { if (FT != Initializer.FT) { switch (FT) { case FT_INTEGRAL: IntInfo.~IntFieldInfo(); break; case FT_REAL: RealInfo.~RealFieldInfo(); break; case FT_STRUCT: StructInfo.~StructFieldInfo(); break; } } FT = Initializer.FT; switch (FT) { case FT_INTEGRAL: IntInfo = Initializer.IntInfo; break; case FT_REAL: RealInfo = Initializer.RealInfo; break; case FT_STRUCT: StructInfo = Initializer.StructInfo; break; } return *this; } /// The concrete assembly parser instance. // Note that this is a full MCAsmParser, not an MCAsmParserExtension! // It's a peer of AsmParser, not of COFFAsmParser, WasmAsmParser, etc. class MasmParser : public MCAsmParser { private: AsmLexer Lexer; MCContext &Ctx; MCStreamer &Out; const MCAsmInfo &MAI; SourceMgr &SrcMgr; SourceMgr::DiagHandlerTy SavedDiagHandler; void *SavedDiagContext; std::unique_ptr PlatformParser; /// This is the current buffer index we're lexing from as managed by the /// SourceMgr object. unsigned CurBuffer; /// time of assembly struct tm TM; BitVector EndStatementAtEOFStack; AsmCond TheCondState; std::vector TheCondStack; /// maps directive names to handler methods in parser /// extensions. Extensions register themselves in this map by calling /// addDirectiveHandler. StringMap ExtensionDirectiveMap; /// maps assembly-time variable names to variables. struct Variable { enum RedefinableKind { NOT_REDEFINABLE, WARN_ON_REDEFINITION, REDEFINABLE }; StringRef Name; RedefinableKind Redefinable = REDEFINABLE; bool IsText = false; std::string TextValue; }; StringMap Variables; /// Stack of active struct definitions. SmallVector StructInProgress; /// Maps struct tags to struct definitions. StringMap Structs; /// Maps data location names to types. StringMap KnownType; /// Stack of active macro instantiations. std::vector ActiveMacros; /// List of bodies of anonymous macros. std::deque MacroLikeBodies; /// Keeps track of how many .macro's have been instantiated. unsigned NumOfMacroInstantiations; /// The values from the last parsed cpp hash file line comment if any. struct CppHashInfoTy { StringRef Filename; int64_t LineNumber; SMLoc Loc; unsigned Buf; CppHashInfoTy() : LineNumber(0), Buf(0) {} }; CppHashInfoTy CppHashInfo; /// The filename from the first cpp hash file line comment, if any. StringRef FirstCppHashFilename; /// List of forward directional labels for diagnosis at the end. SmallVector, 4> DirLabels; /// AssemblerDialect. ~OU means unset value and use value provided by MAI. /// Defaults to 1U, meaning Intel. unsigned AssemblerDialect = 1U; /// is Darwin compatibility enabled? bool IsDarwin = false; /// Are we parsing ms-style inline assembly? bool ParsingMSInlineAsm = false; /// Did we already inform the user about inconsistent MD5 usage? bool ReportedInconsistentMD5 = false; // Current <...> expression depth. unsigned AngleBracketDepth = 0U; // Number of locals defined. uint16_t LocalCounter = 0; public: MasmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, const MCAsmInfo &MAI, struct tm TM, unsigned CB = 0); MasmParser(const MasmParser &) = delete; MasmParser &operator=(const MasmParser &) = delete; ~MasmParser() override; bool Run(bool NoInitialTextSection, bool NoFinalize = false) override; void addDirectiveHandler(StringRef Directive, ExtensionDirectiveHandler Handler) override { ExtensionDirectiveMap[Directive] = Handler; if (DirectiveKindMap.find(Directive) == DirectiveKindMap.end()) { DirectiveKindMap[Directive] = DK_HANDLER_DIRECTIVE; } } void addAliasForDirective(StringRef Directive, StringRef Alias) override { DirectiveKindMap[Directive] = DirectiveKindMap[Alias]; } /// @name MCAsmParser Interface /// { SourceMgr &getSourceManager() override { return SrcMgr; } MCAsmLexer &getLexer() override { return Lexer; } MCContext &getContext() override { return Ctx; } MCStreamer &getStreamer() override { return Out; } CodeViewContext &getCVContext() { return Ctx.getCVContext(); } unsigned getAssemblerDialect() override { if (AssemblerDialect == ~0U) return MAI.getAssemblerDialect(); else return AssemblerDialect; } void setAssemblerDialect(unsigned i) override { AssemblerDialect = i; } void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; bool Warning(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; bool printError(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; enum ExpandKind { ExpandMacros, DoNotExpandMacros }; const AsmToken &Lex(ExpandKind ExpandNextToken); const AsmToken &Lex() override { return Lex(ExpandMacros); } void setParsingMSInlineAsm(bool V) override { ParsingMSInlineAsm = V; // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and // hex integer literals. Lexer.setLexMasmIntegers(V); } bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; } bool isParsingMasm() const override { return true; } bool defineMacro(StringRef Name, StringRef Value) override; bool lookUpField(StringRef Name, AsmFieldInfo &Info) const override; bool lookUpField(StringRef Base, StringRef Member, AsmFieldInfo &Info) const override; bool lookUpType(StringRef Name, AsmTypeInfo &Info) const override; bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, SmallVectorImpl> &OpDecls, SmallVectorImpl &Constraints, SmallVectorImpl &Clobbers, const MCInstrInfo *MII, const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) override; bool parseExpression(const MCExpr *&Res); bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override; bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, AsmTypeInfo *TypeInfo) override; bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override; bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, SMLoc &EndLoc) override; bool parseAbsoluteExpression(int64_t &Res) override; /// Parse a floating point expression using the float \p Semantics /// and set \p Res to the value. bool parseRealValue(const fltSemantics &Semantics, APInt &Res); /// Parse an identifier or string (as a quoted identifier) /// and set \p Res to the identifier contents. enum IdentifierPositionKind { StandardPosition, StartOfStatement }; bool parseIdentifier(StringRef &Res, IdentifierPositionKind Position); bool parseIdentifier(StringRef &Res) override { return parseIdentifier(Res, StandardPosition); } void eatToEndOfStatement() override; bool checkForValidSection() override; /// } private: bool expandMacros(); const AsmToken peekTok(bool ShouldSkipSpace = true); bool parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI); bool parseCurlyBlockScope(SmallVectorImpl& AsmStrRewrites); bool parseCppHashLineFilenameComment(SMLoc L); bool expandMacro(raw_svector_ostream &OS, StringRef Body, ArrayRef Parameters, ArrayRef A, const std::vector &Locals, SMLoc L); /// Are we inside a macro instantiation? bool isInsideMacroInstantiation() {return !ActiveMacros.empty();} /// Handle entry to macro instantiation. /// /// \param M The macro. /// \param NameLoc Instantiation location. bool handleMacroEntry( const MCAsmMacro *M, SMLoc NameLoc, AsmToken::TokenKind ArgumentEndTok = AsmToken::EndOfStatement); /// Handle invocation of macro function. /// /// \param M The macro. /// \param NameLoc Invocation location. bool handleMacroInvocation(const MCAsmMacro *M, SMLoc NameLoc); /// Handle exit from macro instantiation. void handleMacroExit(); /// Extract AsmTokens for a macro argument. bool parseMacroArgument(const MCAsmMacroParameter *MP, MCAsmMacroArgument &MA, AsmToken::TokenKind EndTok = AsmToken::EndOfStatement); /// Parse all macro arguments for a given macro. bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A, AsmToken::TokenKind EndTok = AsmToken::EndOfStatement); void printMacroInstantiations(); bool expandStatement(SMLoc Loc); void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg, SMRange Range = std::nullopt) const { ArrayRef Ranges(Range); SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges); } static void DiagHandler(const SMDiagnostic &Diag, void *Context); bool lookUpField(const StructInfo &Structure, StringRef Member, AsmFieldInfo &Info) const; /// Should we emit DWARF describing this assembler source? (Returns false if /// the source has .file directives, which means we don't want to generate /// info describing the assembler source itself.) bool enabledGenDwarfForAssembly(); /// Enter the specified file. This returns true on failure. bool enterIncludeFile(const std::string &Filename); /// Reset the current lexer position to that given by \p Loc. The /// current token is not set; clients should ensure Lex() is called /// subsequently. /// /// \param InBuffer If not 0, should be the known buffer id that contains the /// location. void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0, bool EndStatementAtEOF = true); /// Parse up to a token of kind \p EndTok and return the contents from the /// current token up to (but not including) this token; the current token on /// exit will be either this kind or EOF. Reads through instantiated macro /// functions and text macros. SmallVector parseStringRefsTo(AsmToken::TokenKind EndTok); std::string parseStringTo(AsmToken::TokenKind EndTok); /// Parse up to the end of statement and return the contents from the current /// token until the end of the statement; the current token on exit will be /// either the EndOfStatement or EOF. StringRef parseStringToEndOfStatement() override; bool parseTextItem(std::string &Data); unsigned getBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind); bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc); bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc); bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc); bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc); bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName); bool parseCVFileId(int64_t &FileId, StringRef DirectiveName); // Generic (target and platform independent) directive parsing. enum DirectiveKind { DK_NO_DIRECTIVE, // Placeholder DK_HANDLER_DIRECTIVE, DK_ASSIGN, DK_EQU, DK_TEXTEQU, DK_ASCII, DK_ASCIZ, DK_STRING, DK_BYTE, DK_SBYTE, DK_WORD, DK_SWORD, DK_DWORD, DK_SDWORD, DK_FWORD, DK_QWORD, DK_SQWORD, DK_DB, DK_DD, DK_DF, DK_DQ, DK_DW, DK_REAL4, DK_REAL8, DK_REAL10, DK_ALIGN, DK_EVEN, DK_ORG, DK_ENDR, DK_EXTERN, DK_PUBLIC, DK_COMM, DK_COMMENT, DK_INCLUDE, DK_REPEAT, DK_WHILE, DK_FOR, DK_FORC, DK_IF, DK_IFE, DK_IFB, DK_IFNB, DK_IFDEF, DK_IFNDEF, DK_IFDIF, DK_IFDIFI, DK_IFIDN, DK_IFIDNI, DK_ELSEIF, DK_ELSEIFE, DK_ELSEIFB, DK_ELSEIFNB, DK_ELSEIFDEF, DK_ELSEIFNDEF, DK_ELSEIFDIF, DK_ELSEIFDIFI, DK_ELSEIFIDN, DK_ELSEIFIDNI, DK_ELSE, DK_ENDIF, DK_FILE, DK_LINE, DK_LOC, DK_STABS, DK_CV_FILE, DK_CV_FUNC_ID, DK_CV_INLINE_SITE_ID, DK_CV_LOC, DK_CV_LINETABLE, DK_CV_INLINE_LINETABLE, DK_CV_DEF_RANGE, DK_CV_STRINGTABLE, DK_CV_STRING, DK_CV_FILECHECKSUMS, DK_CV_FILECHECKSUM_OFFSET, DK_CV_FPO_DATA, DK_CFI_SECTIONS, DK_CFI_STARTPROC, DK_CFI_ENDPROC, DK_CFI_DEF_CFA, DK_CFI_DEF_CFA_OFFSET, DK_CFI_ADJUST_CFA_OFFSET, DK_CFI_DEF_CFA_REGISTER, DK_CFI_OFFSET, DK_CFI_REL_OFFSET, DK_CFI_PERSONALITY, DK_CFI_LSDA, DK_CFI_REMEMBER_STATE, DK_CFI_RESTORE_STATE, DK_CFI_SAME_VALUE, DK_CFI_RESTORE, DK_CFI_ESCAPE, DK_CFI_RETURN_COLUMN, DK_CFI_SIGNAL_FRAME, DK_CFI_UNDEFINED, DK_CFI_REGISTER, DK_CFI_WINDOW_SAVE, DK_CFI_B_KEY_FRAME, DK_MACRO, DK_EXITM, DK_ENDM, DK_PURGE, DK_ERR, DK_ERRB, DK_ERRNB, DK_ERRDEF, DK_ERRNDEF, DK_ERRDIF, DK_ERRDIFI, DK_ERRIDN, DK_ERRIDNI, DK_ERRE, DK_ERRNZ, DK_ECHO, DK_STRUCT, DK_UNION, DK_ENDS, DK_END, DK_PUSHFRAME, DK_PUSHREG, DK_SAVEREG, DK_SAVEXMM128, DK_SETFRAME, DK_RADIX, }; /// Maps directive name --> DirectiveKind enum, for directives parsed by this /// class. StringMap DirectiveKindMap; bool isMacroLikeDirective(); // Codeview def_range type parsing. enum CVDefRangeType { CVDR_DEFRANGE = 0, // Placeholder CVDR_DEFRANGE_REGISTER, CVDR_DEFRANGE_FRAMEPOINTER_REL, CVDR_DEFRANGE_SUBFIELD_REGISTER, CVDR_DEFRANGE_REGISTER_REL }; /// Maps Codeview def_range types --> CVDefRangeType enum, for Codeview /// def_range types parsed by this class. StringMap CVDefRangeTypeMap; // Generic (target and platform independent) directive parsing. enum BuiltinSymbol { BI_NO_SYMBOL, // Placeholder BI_DATE, BI_TIME, BI_VERSION, BI_FILECUR, BI_FILENAME, BI_LINE, BI_CURSEG, BI_CPU, BI_INTERFACE, BI_CODE, BI_DATA, BI_FARDATA, BI_WORDSIZE, BI_CODESIZE, BI_DATASIZE, BI_MODEL, BI_STACK, }; /// Maps builtin name --> BuiltinSymbol enum, for builtins handled by this /// class. StringMap BuiltinSymbolMap; const MCExpr *evaluateBuiltinValue(BuiltinSymbol Symbol, SMLoc StartLoc); std::optional evaluateBuiltinTextMacro(BuiltinSymbol Symbol, SMLoc StartLoc); // ".ascii", ".asciz", ".string" bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated); // "byte", "word", ... bool emitIntValue(const MCExpr *Value, unsigned Size); bool parseScalarInitializer(unsigned Size, SmallVectorImpl &Values, unsigned StringPadLength = 0); bool parseScalarInstList( unsigned Size, SmallVectorImpl &Values, const AsmToken::TokenKind EndToken = AsmToken::EndOfStatement); bool emitIntegralValues(unsigned Size, unsigned *Count = nullptr); bool addIntegralField(StringRef Name, unsigned Size); bool parseDirectiveValue(StringRef IDVal, unsigned Size); bool parseDirectiveNamedValue(StringRef TypeName, unsigned Size, StringRef Name, SMLoc NameLoc); // "real4", "real8", "real10" bool emitRealValues(const fltSemantics &Semantics, unsigned *Count = nullptr); bool addRealField(StringRef Name, const fltSemantics &Semantics, size_t Size); bool parseDirectiveRealValue(StringRef IDVal, const fltSemantics &Semantics, size_t Size); bool parseRealInstList( const fltSemantics &Semantics, SmallVectorImpl &Values, const AsmToken::TokenKind EndToken = AsmToken::EndOfStatement); bool parseDirectiveNamedRealValue(StringRef TypeName, const fltSemantics &Semantics, unsigned Size, StringRef Name, SMLoc NameLoc); bool parseOptionalAngleBracketOpen(); bool parseAngleBracketClose(const Twine &Msg = "expected '>'"); bool parseFieldInitializer(const FieldInfo &Field, FieldInitializer &Initializer); bool parseFieldInitializer(const FieldInfo &Field, const IntFieldInfo &Contents, FieldInitializer &Initializer); bool parseFieldInitializer(const FieldInfo &Field, const RealFieldInfo &Contents, FieldInitializer &Initializer); bool parseFieldInitializer(const FieldInfo &Field, const StructFieldInfo &Contents, FieldInitializer &Initializer); bool parseStructInitializer(const StructInfo &Structure, StructInitializer &Initializer); bool parseStructInstList( const StructInfo &Structure, std::vector &Initializers, const AsmToken::TokenKind EndToken = AsmToken::EndOfStatement); bool emitFieldValue(const FieldInfo &Field); bool emitFieldValue(const FieldInfo &Field, const IntFieldInfo &Contents); bool emitFieldValue(const FieldInfo &Field, const RealFieldInfo &Contents); bool emitFieldValue(const FieldInfo &Field, const StructFieldInfo &Contents); bool emitFieldInitializer(const FieldInfo &Field, const FieldInitializer &Initializer); bool emitFieldInitializer(const FieldInfo &Field, const IntFieldInfo &Contents, const IntFieldInfo &Initializer); bool emitFieldInitializer(const FieldInfo &Field, const RealFieldInfo &Contents, const RealFieldInfo &Initializer); bool emitFieldInitializer(const FieldInfo &Field, const StructFieldInfo &Contents, const StructFieldInfo &Initializer); bool emitStructInitializer(const StructInfo &Structure, const StructInitializer &Initializer); // User-defined types (structs, unions): bool emitStructValues(const StructInfo &Structure, unsigned *Count = nullptr); bool addStructField(StringRef Name, const StructInfo &Structure); bool parseDirectiveStructValue(const StructInfo &Structure, StringRef Directive, SMLoc DirLoc); bool parseDirectiveNamedStructValue(const StructInfo &Structure, StringRef Directive, SMLoc DirLoc, StringRef Name); // "=", "equ", "textequ" bool parseDirectiveEquate(StringRef IDVal, StringRef Name, DirectiveKind DirKind, SMLoc NameLoc); bool parseDirectiveOrg(); // "org" bool emitAlignTo(int64_t Alignment); bool parseDirectiveAlign(); // "align" bool parseDirectiveEven(); // "even" // ".file", ".line", ".loc", ".stabs" bool parseDirectiveFile(SMLoc DirectiveLoc); bool parseDirectiveLine(); bool parseDirectiveLoc(); bool parseDirectiveStabs(); // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable", // ".cv_inline_linetable", ".cv_def_range", ".cv_string" bool parseDirectiveCVFile(); bool parseDirectiveCVFuncId(); bool parseDirectiveCVInlineSiteId(); bool parseDirectiveCVLoc(); bool parseDirectiveCVLinetable(); bool parseDirectiveCVInlineLinetable(); bool parseDirectiveCVDefRange(); bool parseDirectiveCVString(); bool parseDirectiveCVStringTable(); bool parseDirectiveCVFileChecksums(); bool parseDirectiveCVFileChecksumOffset(); bool parseDirectiveCVFPOData(); // .cfi directives bool parseDirectiveCFIRegister(SMLoc DirectiveLoc); bool parseDirectiveCFIWindowSave(); bool parseDirectiveCFISections(); bool parseDirectiveCFIStartProc(); bool parseDirectiveCFIEndProc(); bool parseDirectiveCFIDefCfaOffset(); bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc); bool parseDirectiveCFIAdjustCfaOffset(); bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc); bool parseDirectiveCFIOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality); bool parseDirectiveCFIRememberState(); bool parseDirectiveCFIRestoreState(); bool parseDirectiveCFISameValue(SMLoc DirectiveLoc); bool parseDirectiveCFIRestore(SMLoc DirectiveLoc); bool parseDirectiveCFIEscape(); bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc); bool parseDirectiveCFISignalFrame(); bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc); // macro directives bool parseDirectivePurgeMacro(SMLoc DirectiveLoc); bool parseDirectiveExitMacro(SMLoc DirectiveLoc, StringRef Directive, std::string &Value); bool parseDirectiveEndMacro(StringRef Directive); bool parseDirectiveMacro(StringRef Name, SMLoc NameLoc); bool parseDirectiveStruct(StringRef Directive, DirectiveKind DirKind, StringRef Name, SMLoc NameLoc); bool parseDirectiveNestedStruct(StringRef Directive, DirectiveKind DirKind); bool parseDirectiveEnds(StringRef Name, SMLoc NameLoc); bool parseDirectiveNestedEnds(); bool parseDirectiveExtern(); /// Parse a directive like ".globl" which accepts a single symbol (which /// should be a label or an external). bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr); bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm" bool parseDirectiveComment(SMLoc DirectiveLoc); // "comment" bool parseDirectiveInclude(); // "include" // "if" or "ife" bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind); // "ifb" or "ifnb", depending on ExpectBlank. bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank); // "ifidn", "ifdif", "ifidni", or "ifdifi", depending on ExpectEqual and // CaseInsensitive. bool parseDirectiveIfidn(SMLoc DirectiveLoc, bool ExpectEqual, bool CaseInsensitive); // "ifdef" or "ifndef", depending on expect_defined bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined); // "elseif" or "elseife" bool parseDirectiveElseIf(SMLoc DirectiveLoc, DirectiveKind DirKind); // "elseifb" or "elseifnb", depending on ExpectBlank. bool parseDirectiveElseIfb(SMLoc DirectiveLoc, bool ExpectBlank); // ".elseifdef" or ".elseifndef", depending on expect_defined bool parseDirectiveElseIfdef(SMLoc DirectiveLoc, bool expect_defined); // "elseifidn", "elseifdif", "elseifidni", or "elseifdifi", depending on // ExpectEqual and CaseInsensitive. bool parseDirectiveElseIfidn(SMLoc DirectiveLoc, bool ExpectEqual, bool CaseInsensitive); bool parseDirectiveElse(SMLoc DirectiveLoc); // "else" bool parseDirectiveEndIf(SMLoc DirectiveLoc); // "endif" bool parseEscapedString(std::string &Data) override; bool parseAngleBracketString(std::string &Data) override; // Macro-like directives MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc); void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, raw_svector_ostream &OS); void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, SMLoc ExitLoc, raw_svector_ostream &OS); bool parseDirectiveRepeat(SMLoc DirectiveLoc, StringRef Directive); bool parseDirectiveFor(SMLoc DirectiveLoc, StringRef Directive); bool parseDirectiveForc(SMLoc DirectiveLoc, StringRef Directive); bool parseDirectiveWhile(SMLoc DirectiveLoc); // "_emit" or "__emit" bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info, size_t Len); // "align" bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info); // "end" bool parseDirectiveEnd(SMLoc DirectiveLoc); // ".err" bool parseDirectiveError(SMLoc DirectiveLoc); // ".errb" or ".errnb", depending on ExpectBlank. bool parseDirectiveErrorIfb(SMLoc DirectiveLoc, bool ExpectBlank); // ".errdef" or ".errndef", depending on ExpectBlank. bool parseDirectiveErrorIfdef(SMLoc DirectiveLoc, bool ExpectDefined); // ".erridn", ".errdif", ".erridni", or ".errdifi", depending on ExpectEqual // and CaseInsensitive. bool parseDirectiveErrorIfidn(SMLoc DirectiveLoc, bool ExpectEqual, bool CaseInsensitive); // ".erre" or ".errnz", depending on ExpectZero. bool parseDirectiveErrorIfe(SMLoc DirectiveLoc, bool ExpectZero); // ".radix" bool parseDirectiveRadix(SMLoc DirectiveLoc); // "echo" bool parseDirectiveEcho(SMLoc DirectiveLoc); void initializeDirectiveKindMap(); void initializeCVDefRangeTypeMap(); void initializeBuiltinSymbolMap(); }; } // end anonymous namespace namespace llvm { extern cl::opt AsmMacroMaxNestingDepth; extern MCAsmParserExtension *createCOFFMasmParser(); } // end namespace llvm enum { DEFAULT_ADDRSPACE = 0 }; MasmParser::MasmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, const MCAsmInfo &MAI, struct tm TM, unsigned CB) : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM), CurBuffer(CB ? CB : SM.getMainFileID()), TM(TM) { HadError = false; // Save the old handler. SavedDiagHandler = SrcMgr.getDiagHandler(); SavedDiagContext = SrcMgr.getDiagContext(); // Set our own handler which calls the saved handler. SrcMgr.setDiagHandler(DiagHandler, this); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); EndStatementAtEOFStack.push_back(true); // Initialize the platform / file format parser. switch (Ctx.getObjectFileType()) { case MCContext::IsCOFF: PlatformParser.reset(createCOFFMasmParser()); break; default: report_fatal_error("llvm-ml currently supports only COFF output."); break; } initializeDirectiveKindMap(); PlatformParser->Initialize(*this); initializeCVDefRangeTypeMap(); initializeBuiltinSymbolMap(); NumOfMacroInstantiations = 0; } MasmParser::~MasmParser() { assert((HadError || ActiveMacros.empty()) && "Unexpected active macro instantiation!"); // Restore the saved diagnostics handler and context for use during // finalization. SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext); } void MasmParser::printMacroInstantiations() { // Print the active macro instantiation stack. for (std::vector::const_reverse_iterator it = ActiveMacros.rbegin(), ie = ActiveMacros.rend(); it != ie; ++it) printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note, "while in macro instantiation"); } void MasmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) { printPendingErrors(); printMessage(L, SourceMgr::DK_Note, Msg, Range); printMacroInstantiations(); } bool MasmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) { if (getTargetParser().getTargetOptions().MCNoWarn) return false; if (getTargetParser().getTargetOptions().MCFatalWarnings) return Error(L, Msg, Range); printMessage(L, SourceMgr::DK_Warning, Msg, Range); printMacroInstantiations(); return false; } bool MasmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) { HadError = true; printMessage(L, SourceMgr::DK_Error, Msg, Range); printMacroInstantiations(); return true; } bool MasmParser::enterIncludeFile(const std::string &Filename) { std::string IncludedFile; unsigned NewBuf = SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); if (!NewBuf) return true; CurBuffer = NewBuf; Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); EndStatementAtEOFStack.push_back(true); return false; } void MasmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer, bool EndStatementAtEOF) { CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), Loc.getPointer(), EndStatementAtEOF); } bool MasmParser::expandMacros() { const AsmToken &Tok = getTok(); const std::string IDLower = Tok.getIdentifier().lower(); const llvm::MCAsmMacro *M = getContext().lookupMacro(IDLower); if (M && M->IsFunction && peekTok().is(AsmToken::LParen)) { // This is a macro function invocation; expand it in place. const SMLoc MacroLoc = Tok.getLoc(); const StringRef MacroId = Tok.getIdentifier(); Lexer.Lex(); if (handleMacroInvocation(M, MacroLoc)) { Lexer.UnLex(AsmToken(AsmToken::Error, MacroId)); Lexer.Lex(); } return false; } std::optional ExpandedValue; auto BuiltinIt = BuiltinSymbolMap.find(IDLower); if (BuiltinIt != BuiltinSymbolMap.end()) { ExpandedValue = evaluateBuiltinTextMacro(BuiltinIt->getValue(), Tok.getLoc()); } else { auto VarIt = Variables.find(IDLower); if (VarIt != Variables.end() && VarIt->getValue().IsText) { ExpandedValue = VarIt->getValue().TextValue; } } if (!ExpandedValue) return true; std::unique_ptr Instantiation = MemoryBuffer::getMemBufferCopy(*ExpandedValue, ""); // Jump to the macro instantiation and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), Tok.getEndLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), nullptr, /*EndStatementAtEOF=*/false); EndStatementAtEOFStack.push_back(false); Lexer.Lex(); return false; } const AsmToken &MasmParser::Lex(ExpandKind ExpandNextToken) { if (Lexer.getTok().is(AsmToken::Error)) Error(Lexer.getErrLoc(), Lexer.getErr()); // if it's a end of statement with a comment in it if (getTok().is(AsmToken::EndOfStatement)) { // if this is a line comment output it. if (!getTok().getString().empty() && getTok().getString().front() != '\n' && getTok().getString().front() != '\r' && MAI.preserveAsmComments()) Out.addExplicitComment(Twine(getTok().getString())); } const AsmToken *tok = &Lexer.Lex(); bool StartOfStatement = Lexer.isAtStartOfStatement(); while (ExpandNextToken == ExpandMacros && tok->is(AsmToken::Identifier)) { if (StartOfStatement) { AsmToken NextTok; MutableArrayRef Buf(NextTok); size_t ReadCount = Lexer.peekTokens(Buf); if (ReadCount && NextTok.is(AsmToken::Identifier) && (NextTok.getString().equals_insensitive("equ") || NextTok.getString().equals_insensitive("textequ"))) { // This looks like an EQU or TEXTEQU directive; don't expand the // identifier, allowing for redefinitions. break; } } if (expandMacros()) break; } // Parse comments here to be deferred until end of next statement. while (tok->is(AsmToken::Comment)) { if (MAI.preserveAsmComments()) Out.addExplicitComment(Twine(tok->getString())); tok = &Lexer.Lex(); } // Recognize and bypass line continuations. while (tok->is(AsmToken::BackSlash) && peekTok().is(AsmToken::EndOfStatement)) { // Eat both the backslash and the end of statement. Lexer.Lex(); tok = &Lexer.Lex(); } if (tok->is(AsmToken::Eof)) { // If this is the end of an included file, pop the parent file off the // include stack. SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); if (ParentIncludeLoc != SMLoc()) { EndStatementAtEOFStack.pop_back(); jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back()); return Lex(); } EndStatementAtEOFStack.pop_back(); assert(EndStatementAtEOFStack.empty()); } return *tok; } const AsmToken MasmParser::peekTok(bool ShouldSkipSpace) { AsmToken Tok; MutableArrayRef Buf(Tok); size_t ReadCount = Lexer.peekTokens(Buf, ShouldSkipSpace); if (ReadCount == 0) { // If this is the end of an included file, pop the parent file off the // include stack. SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); if (ParentIncludeLoc != SMLoc()) { EndStatementAtEOFStack.pop_back(); jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back()); return peekTok(ShouldSkipSpace); } EndStatementAtEOFStack.pop_back(); assert(EndStatementAtEOFStack.empty()); } assert(ReadCount == 1); return Tok; } bool MasmParser::enabledGenDwarfForAssembly() { // Check whether the user specified -g. if (!getContext().getGenDwarfForAssembly()) return false; // If we haven't encountered any .file directives (which would imply that // the assembler source was produced with debug info already) then emit one // describing the assembler source file itself. if (getContext().getGenDwarfFileNumber() == 0) { // Use the first #line directive for this, if any. It's preprocessed, so // there is no checksum, and of course no source directive. if (!FirstCppHashFilename.empty()) getContext().setMCLineTableRootFile( /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename, /*Cksum=*/std::nullopt, /*Source=*/std::nullopt); const MCDwarfFile &RootFile = getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile(); getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective( /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name, RootFile.Checksum, RootFile.Source)); } return true; } bool MasmParser::Run(bool NoInitialTextSection, bool NoFinalize) { // Create the initial section, if requested. if (!NoInitialTextSection) Out.initSections(false, getTargetParser().getSTI()); // Prime the lexer. Lex(); HadError = false; AsmCond StartingCondState = TheCondState; SmallVector AsmStrRewrites; // If we are generating dwarf for assembly source files save the initial text // section. (Don't use enabledGenDwarfForAssembly() here, as we aren't // emitting any actual debug info yet and haven't had a chance to parse any // embedded .file directives.) if (getContext().getGenDwarfForAssembly()) { MCSection *Sec = getStreamer().getCurrentSectionOnly(); if (!Sec->getBeginSymbol()) { MCSymbol *SectionStartSym = getContext().createTempSymbol(); getStreamer().emitLabel(SectionStartSym); Sec->setBeginSymbol(SectionStartSym); } bool InsertResult = getContext().addGenDwarfSection(Sec); assert(InsertResult && ".text section should not have debug info yet"); (void)InsertResult; } getTargetParser().onBeginOfFile(); // While we have input, parse each statement. while (Lexer.isNot(AsmToken::Eof) || SrcMgr.getParentIncludeLoc(CurBuffer) != SMLoc()) { // Skip through the EOF at the end of an inclusion. if (Lexer.is(AsmToken::Eof)) Lex(); ParseStatementInfo Info(&AsmStrRewrites); bool Parsed = parseStatement(Info, nullptr); // If we have a Lexer Error we are on an Error Token. Load in Lexer Error // for printing ErrMsg via Lex() only if no (presumably better) parser error // exists. if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) { Lex(); } // parseStatement returned true so may need to emit an error. printPendingErrors(); // Skipping to the next line if needed. if (Parsed && !getLexer().isAtStartOfStatement()) eatToEndOfStatement(); } getTargetParser().onEndOfFile(); printPendingErrors(); // All errors should have been emitted. assert(!hasPendingError() && "unexpected error from parseStatement"); getTargetParser().flushPendingInstructions(getStreamer()); if (TheCondState.TheCond != StartingCondState.TheCond || TheCondState.Ignore != StartingCondState.Ignore) printError(getTok().getLoc(), "unmatched .ifs or .elses"); // Check to see there are no empty DwarfFile slots. const auto &LineTables = getContext().getMCDwarfLineTables(); if (!LineTables.empty()) { unsigned Index = 0; for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) { if (File.Name.empty() && Index != 0) printError(getTok().getLoc(), "unassigned file number: " + Twine(Index) + " for .file directives"); ++Index; } } // Check to see that all assembler local symbols were actually defined. // Targets that don't do subsections via symbols may not want this, though, // so conservatively exclude them. Only do this if we're finalizing, though, // as otherwise we won't necessarilly have seen everything yet. if (!NoFinalize) { if (MAI.hasSubsectionsViaSymbols()) { for (const auto &TableEntry : getContext().getSymbols()) { MCSymbol *Sym = TableEntry.getValue(); // Variable symbols may not be marked as defined, so check those // explicitly. If we know it's a variable, we have a definition for // the purposes of this check. if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined()) // FIXME: We would really like to refer back to where the symbol was // first referenced for a source location. We need to add something // to track that. Currently, we just point to the end of the file. printError(getTok().getLoc(), "assembler local symbol '" + Sym->getName() + "' not defined"); } } // Temporary symbols like the ones for directional jumps don't go in the // symbol table. They also need to be diagnosed in all (final) cases. for (std::tuple &LocSym : DirLabels) { if (std::get<2>(LocSym)->isUndefined()) { // Reset the state of any "# line file" directives we've seen to the // context as it was at the diagnostic site. CppHashInfo = std::get<1>(LocSym); printError(std::get<0>(LocSym), "directional label undefined"); } } } // Finalize the output stream if there are no errors and if the client wants // us to. if (!HadError && !NoFinalize) Out.finish(Lexer.getLoc()); return HadError || getContext().hadError(); } bool MasmParser::checkForValidSection() { if (!ParsingMSInlineAsm && !getStreamer().getCurrentSectionOnly()) { Out.initSections(false, getTargetParser().getSTI()); return Error(getTok().getLoc(), "expected section directive before assembly directive"); } return false; } /// Throw away the rest of the line for testing purposes. void MasmParser::eatToEndOfStatement() { while (Lexer.isNot(AsmToken::EndOfStatement)) { if (Lexer.is(AsmToken::Eof)) { SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); if (ParentIncludeLoc == SMLoc()) { break; } EndStatementAtEOFStack.pop_back(); jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back()); } Lexer.Lex(); } // Eat EOL. if (Lexer.is(AsmToken::EndOfStatement)) Lexer.Lex(); } SmallVector MasmParser::parseStringRefsTo(AsmToken::TokenKind EndTok) { SmallVector Refs; const char *Start = getTok().getLoc().getPointer(); while (Lexer.isNot(EndTok)) { if (Lexer.is(AsmToken::Eof)) { SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); if (ParentIncludeLoc == SMLoc()) { break; } Refs.emplace_back(Start, getTok().getLoc().getPointer() - Start); EndStatementAtEOFStack.pop_back(); jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back()); Lexer.Lex(); Start = getTok().getLoc().getPointer(); } else { Lexer.Lex(); } } Refs.emplace_back(Start, getTok().getLoc().getPointer() - Start); return Refs; } std::string MasmParser::parseStringTo(AsmToken::TokenKind EndTok) { SmallVector Refs = parseStringRefsTo(EndTok); std::string Str; for (StringRef S : Refs) { Str.append(S.str()); } return Str; } StringRef MasmParser::parseStringToEndOfStatement() { const char *Start = getTok().getLoc().getPointer(); while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) Lexer.Lex(); const char *End = getTok().getLoc().getPointer(); return StringRef(Start, End - Start); } /// Parse a paren expression and return it. /// NOTE: This assumes the leading '(' has already been consumed. /// /// parenexpr ::= expr) /// bool MasmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) { if (parseExpression(Res)) return true; EndLoc = Lexer.getTok().getEndLoc(); return parseRParen(); } /// Parse a bracket expression and return it. /// NOTE: This assumes the leading '[' has already been consumed. /// /// bracketexpr ::= expr] /// bool MasmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) { if (parseExpression(Res)) return true; EndLoc = getTok().getEndLoc(); if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression")) return true; return false; } /// Parse a primary expression and return it. /// primaryexpr ::= (parenexpr /// primaryexpr ::= symbol /// primaryexpr ::= number /// primaryexpr ::= '.' /// primaryexpr ::= ~,+,-,'not' primaryexpr /// primaryexpr ::= string /// (a string is interpreted as a 64-bit number in big-endian base-256) bool MasmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, AsmTypeInfo *TypeInfo) { SMLoc FirstTokenLoc = getLexer().getLoc(); AsmToken::TokenKind FirstTokenKind = Lexer.getKind(); switch (FirstTokenKind) { default: return TokError("unknown token in expression"); // If we have an error assume that we've already handled it. case AsmToken::Error: return true; case AsmToken::Exclaim: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, nullptr)) return true; Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc); return false; case AsmToken::Dollar: case AsmToken::At: case AsmToken::Identifier: { StringRef Identifier; if (parseIdentifier(Identifier)) { // We may have failed but $ may be a valid token. if (getTok().is(AsmToken::Dollar)) { if (Lexer.getMAI().getDollarIsPC()) { Lex(); // This is a '$' reference, which references the current PC. Emit a // temporary label to the streamer and refer to it. MCSymbol *Sym = Ctx.createTempSymbol(); Out.emitLabel(Sym); Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); EndLoc = FirstTokenLoc; return false; } return Error(FirstTokenLoc, "invalid token in expression"); } } // Parse named bitwise negation. if (Identifier.equals_insensitive("not")) { if (parsePrimaryExpr(Res, EndLoc, nullptr)) return true; Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc); return false; } // Parse directional local label references. if (Identifier.equals_insensitive("@b") || Identifier.equals_insensitive("@f")) { bool Before = Identifier.equals_insensitive("@b"); MCSymbol *Sym = getContext().getDirectionalLocalSymbol(0, Before); if (Before && Sym->isUndefined()) return Error(FirstTokenLoc, "Expected @@ label before @B reference"); Res = MCSymbolRefExpr::create(Sym, getContext()); return false; } // Parse symbol variant. std::pair Split; if (!MAI.useParensForSymbolVariant()) { if (FirstTokenKind == AsmToken::String) { if (Lexer.is(AsmToken::At)) { Lex(); // eat @ SMLoc AtLoc = getLexer().getLoc(); StringRef VName; if (parseIdentifier(VName)) return Error(AtLoc, "expected symbol variant after '@'"); Split = std::make_pair(Identifier, VName); } } else { Split = Identifier.split('@'); } } else if (Lexer.is(AsmToken::LParen)) { Lex(); // eat '('. StringRef VName; parseIdentifier(VName); // eat ')'. if (parseToken(AsmToken::RParen, "unexpected token in variant, expected ')'")) return true; Split = std::make_pair(Identifier, VName); } EndLoc = SMLoc::getFromPointer(Identifier.end()); // This is a symbol reference. StringRef SymbolName = Identifier; if (SymbolName.empty()) return Error(getLexer().getLoc(), "expected a symbol reference"); MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; // Look up the symbol variant if used. if (!Split.second.empty()) { Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); if (Variant != MCSymbolRefExpr::VK_Invalid) { SymbolName = Split.first; } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) { Variant = MCSymbolRefExpr::VK_None; } else { return Error(SMLoc::getFromPointer(Split.second.begin()), "invalid variant '" + Split.second + "'"); } } // Find the field offset if used. AsmFieldInfo Info; Split = SymbolName.split('.'); if (Split.second.empty()) { } else { SymbolName = Split.first; if (lookUpField(SymbolName, Split.second, Info)) { std::pair BaseMember = Split.second.split('.'); StringRef Base = BaseMember.first, Member = BaseMember.second; lookUpField(Base, Member, Info); } else if (Structs.count(SymbolName.lower())) { // This is actually a reference to a field offset. Res = MCConstantExpr::create(Info.Offset, getContext()); return false; } } MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName); if (!Sym) { // If this is a built-in numeric value, treat it as a constant. auto BuiltinIt = BuiltinSymbolMap.find(SymbolName.lower()); const BuiltinSymbol Symbol = (BuiltinIt == BuiltinSymbolMap.end()) ? BI_NO_SYMBOL : BuiltinIt->getValue(); if (Symbol != BI_NO_SYMBOL) { const MCExpr *Value = evaluateBuiltinValue(Symbol, FirstTokenLoc); if (Value) { Res = Value; return false; } } // Variables use case-insensitive symbol names; if this is a variable, we // find the symbol using its canonical name. auto VarIt = Variables.find(SymbolName.lower()); if (VarIt != Variables.end()) SymbolName = VarIt->second.Name; Sym = getContext().getOrCreateSymbol(SymbolName); } // If this is an absolute variable reference, substitute it now to preserve // semantics in the face of reassignment. if (Sym->isVariable()) { auto V = Sym->getVariableValue(/*SetUsed=*/false); bool DoInline = isa(V) && !Variant; if (auto TV = dyn_cast(V)) DoInline = TV->inlineAssignedExpr(); if (DoInline) { if (Variant) return Error(EndLoc, "unexpected modifier on variable reference"); Res = Sym->getVariableValue(/*SetUsed=*/false); return false; } } // Otherwise create a symbol ref. const MCExpr *SymRef = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc); if (Info.Offset) { Res = MCBinaryExpr::create( MCBinaryExpr::Add, SymRef, MCConstantExpr::create(Info.Offset, getContext()), getContext()); } else { Res = SymRef; } if (TypeInfo) { if (Info.Type.Name.empty()) { auto TypeIt = KnownType.find(Identifier.lower()); if (TypeIt != KnownType.end()) { Info.Type = TypeIt->second; } } *TypeInfo = Info.Type; } return false; } case AsmToken::BigNum: return TokError("literal value out of range for directive"); case AsmToken::Integer: { int64_t IntVal = getTok().getIntVal(); Res = MCConstantExpr::create(IntVal, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat token. return false; } case AsmToken::String: { // MASM strings (used as constants) are interpreted as big-endian base-256. SMLoc ValueLoc = getTok().getLoc(); std::string Value; if (parseEscapedString(Value)) return true; if (Value.size() > 8) return Error(ValueLoc, "literal value out of range"); uint64_t IntValue = 0; for (const unsigned char CharVal : Value) IntValue = (IntValue << 8) | CharVal; Res = MCConstantExpr::create(IntValue, getContext()); return false; } case AsmToken::Real: { APFloat RealVal(APFloat::IEEEdouble(), getTok().getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); Res = MCConstantExpr::create(IntVal, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat token. return false; } case AsmToken::Dot: { // This is a '.' reference, which references the current PC. Emit a // temporary label to the streamer and refer to it. MCSymbol *Sym = Ctx.createTempSymbol(); Out.emitLabel(Sym); Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat identifier. return false; } case AsmToken::LParen: Lex(); // Eat the '('. return parseParenExpr(Res, EndLoc); case AsmToken::LBrac: if (!PlatformParser->HasBracketExpressions()) return TokError("brackets expression not supported on this target"); Lex(); // Eat the '['. return parseBracketExpr(Res, EndLoc); case AsmToken::Minus: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, nullptr)) return true; Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc); return false; case AsmToken::Plus: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, nullptr)) return true; Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc); return false; case AsmToken::Tilde: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, nullptr)) return true; Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc); return false; // MIPS unary expression operators. The lexer won't generate these tokens if // MCAsmInfo::HasMipsExpressions is false for the target. case AsmToken::PercentCall16: case AsmToken::PercentCall_Hi: case AsmToken::PercentCall_Lo: case AsmToken::PercentDtprel_Hi: case AsmToken::PercentDtprel_Lo: case AsmToken::PercentGot: case AsmToken::PercentGot_Disp: case AsmToken::PercentGot_Hi: case AsmToken::PercentGot_Lo: case AsmToken::PercentGot_Ofst: case AsmToken::PercentGot_Page: case AsmToken::PercentGottprel: case AsmToken::PercentGp_Rel: case AsmToken::PercentHi: case AsmToken::PercentHigher: case AsmToken::PercentHighest: case AsmToken::PercentLo: case AsmToken::PercentNeg: case AsmToken::PercentPcrel_Hi: case AsmToken::PercentPcrel_Lo: case AsmToken::PercentTlsgd: case AsmToken::PercentTlsldm: case AsmToken::PercentTprel_Hi: case AsmToken::PercentTprel_Lo: Lex(); // Eat the operator. if (Lexer.isNot(AsmToken::LParen)) return TokError("expected '(' after operator"); Lex(); // Eat the operator. if (parseExpression(Res, EndLoc)) return true; if (parseRParen()) return true; Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx); return !Res; } } bool MasmParser::parseExpression(const MCExpr *&Res) { SMLoc EndLoc; return parseExpression(Res, EndLoc); } /// This function checks if the next token is type or arithmetic. /// string that begin with character '<' must end with character '>'. /// otherwise it is arithmetics. /// If the function returns a 'true' value, /// the End argument will be filled with the last location pointed to the '>' /// character. static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) { assert((StrLoc.getPointer() != nullptr) && "Argument to the function cannot be a NULL value"); const char *CharPtr = StrLoc.getPointer(); while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') && (*CharPtr != '\0')) { if (*CharPtr == '!') CharPtr++; CharPtr++; } if (*CharPtr == '>') { EndLoc = StrLoc.getFromPointer(CharPtr + 1); return true; } return false; } /// creating a string without the escape characters '!'. static std::string angleBracketString(StringRef BracketContents) { std::string Res; for (size_t Pos = 0; Pos < BracketContents.size(); Pos++) { if (BracketContents[Pos] == '!') Pos++; Res += BracketContents[Pos]; } return Res; } /// Parse an expression and return it. /// /// expr ::= expr &&,|| expr -> lowest. /// expr ::= expr |,^,&,! expr /// expr ::= expr ==,!=,<>,<,<=,>,>= expr /// expr ::= expr <<,>> expr /// expr ::= expr +,- expr /// expr ::= expr *,/,% expr -> highest. /// expr ::= primaryexpr /// bool MasmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) { // Parse the expression. Res = nullptr; if (getTargetParser().parsePrimaryExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc)) return true; // Try to constant fold it up front, if possible. Do not exploit // assembler here. int64_t Value; if (Res->evaluateAsAbsolute(Value)) Res = MCConstantExpr::create(Value, getContext()); return false; } bool MasmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) { Res = nullptr; return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc); } bool MasmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, SMLoc &EndLoc) { if (parseParenExpr(Res, EndLoc)) return true; for (; ParenDepth > 0; --ParenDepth) { if (parseBinOpRHS(1, Res, EndLoc)) return true; // We don't Lex() the last RParen. // This is the same behavior as parseParenExpression(). if (ParenDepth - 1 > 0) { EndLoc = getTok().getEndLoc(); if (parseRParen()) return true; } } return false; } bool MasmParser::parseAbsoluteExpression(int64_t &Res) { const MCExpr *Expr; SMLoc StartLoc = Lexer.getLoc(); if (parseExpression(Expr)) return true; if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) return Error(StartLoc, "expected absolute expression"); return false; } static unsigned getGNUBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind, bool ShouldUseLogicalShr, bool EndExpressionAtGreater) { switch (K) { default: return 0; // not a binop. // Lowest Precedence: &&, || case AsmToken::AmpAmp: Kind = MCBinaryExpr::LAnd; return 2; case AsmToken::PipePipe: Kind = MCBinaryExpr::LOr; return 1; // Low Precedence: ==, !=, <>, <, <=, >, >= case AsmToken::EqualEqual: Kind = MCBinaryExpr::EQ; return 3; case AsmToken::ExclaimEqual: case AsmToken::LessGreater: Kind = MCBinaryExpr::NE; return 3; case AsmToken::Less: Kind = MCBinaryExpr::LT; return 3; case AsmToken::LessEqual: Kind = MCBinaryExpr::LTE; return 3; case AsmToken::Greater: if (EndExpressionAtGreater) return 0; Kind = MCBinaryExpr::GT; return 3; case AsmToken::GreaterEqual: Kind = MCBinaryExpr::GTE; return 3; // Low Intermediate Precedence: +, - case AsmToken::Plus: Kind = MCBinaryExpr::Add; return 4; case AsmToken::Minus: Kind = MCBinaryExpr::Sub; return 4; // High Intermediate Precedence: |, &, ^ case AsmToken::Pipe: Kind = MCBinaryExpr::Or; return 5; case AsmToken::Caret: Kind = MCBinaryExpr::Xor; return 5; case AsmToken::Amp: Kind = MCBinaryExpr::And; return 5; // Highest Precedence: *, /, %, <<, >> case AsmToken::Star: Kind = MCBinaryExpr::Mul; return 6; case AsmToken::Slash: Kind = MCBinaryExpr::Div; return 6; case AsmToken::Percent: Kind = MCBinaryExpr::Mod; return 6; case AsmToken::LessLess: Kind = MCBinaryExpr::Shl; return 6; case AsmToken::GreaterGreater: if (EndExpressionAtGreater) return 0; Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; return 6; } } unsigned MasmParser::getBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind) { bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr(); return getGNUBinOpPrecedence(K, Kind, ShouldUseLogicalShr, AngleBracketDepth > 0); } /// Parse all binary operators with precedence >= 'Precedence'. /// Res contains the LHS of the expression on input. bool MasmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc) { SMLoc StartLoc = Lexer.getLoc(); while (true) { AsmToken::TokenKind TokKind = Lexer.getKind(); if (Lexer.getKind() == AsmToken::Identifier) { TokKind = StringSwitch(Lexer.getTok().getString()) .CaseLower("and", AsmToken::Amp) .CaseLower("not", AsmToken::Exclaim) .CaseLower("or", AsmToken::Pipe) .CaseLower("xor", AsmToken::Caret) .CaseLower("shl", AsmToken::LessLess) .CaseLower("shr", AsmToken::GreaterGreater) .CaseLower("eq", AsmToken::EqualEqual) .CaseLower("ne", AsmToken::ExclaimEqual) .CaseLower("lt", AsmToken::Less) .CaseLower("le", AsmToken::LessEqual) .CaseLower("gt", AsmToken::Greater) .CaseLower("ge", AsmToken::GreaterEqual) .Default(TokKind); } MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add; unsigned TokPrec = getBinOpPrecedence(TokKind, Kind); // If the next token is lower precedence than we are allowed to eat, return // successfully with what we ate already. if (TokPrec < Precedence) return false; Lex(); // Eat the next primary expression. const MCExpr *RHS; if (getTargetParser().parsePrimaryExpr(RHS, EndLoc)) return true; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. MCBinaryExpr::Opcode Dummy; unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy); if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc)) return true; // Merge LHS and RHS according to operator. Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc); } } /// ParseStatement: /// ::= % statement /// ::= EndOfStatement /// ::= Label* Directive ...Operands... EndOfStatement /// ::= Label* Identifier OperandList* EndOfStatement bool MasmParser::parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI) { assert(!hasPendingError() && "parseStatement started with pending error"); // Eat initial spaces and comments. while (Lexer.is(AsmToken::Space)) Lex(); if (Lexer.is(AsmToken::EndOfStatement)) { // If this is a line comment we can drop it safely. if (getTok().getString().empty() || getTok().getString().front() == '\r' || getTok().getString().front() == '\n') Out.addBlankLine(); Lex(); return false; } // If preceded by an expansion operator, first expand all text macros and // macro functions. if (getTok().is(AsmToken::Percent)) { SMLoc ExpansionLoc = getTok().getLoc(); if (parseToken(AsmToken::Percent) || expandStatement(ExpansionLoc)) return true; } // Statements always start with an identifier, unless we're dealing with a // processor directive (.386, .686, etc.) that lexes as a real. AsmToken ID = getTok(); SMLoc IDLoc = ID.getLoc(); StringRef IDVal; if (Lexer.is(AsmToken::HashDirective)) return parseCppHashLineFilenameComment(IDLoc); if (Lexer.is(AsmToken::Dot)) { // Treat '.' as a valid identifier in this context. Lex(); IDVal = "."; } else if (Lexer.is(AsmToken::LCurly)) { // Treat '{' as a valid identifier in this context. Lex(); IDVal = "{"; } else if (Lexer.is(AsmToken::RCurly)) { // Treat '}' as a valid identifier in this context. Lex(); IDVal = "}"; } else if (Lexer.is(AsmToken::Star) && getTargetParser().starIsStartOfStatement()) { // Accept '*' as a valid start of statement. Lex(); IDVal = "*"; } else if (Lexer.is(AsmToken::Real)) { // Treat "." as a valid identifier in this context. IDVal = getTok().getString(); Lex(); // always eat a token if (!IDVal.startswith(".")) return Error(IDLoc, "unexpected token at start of statement"); } else if (parseIdentifier(IDVal, StartOfStatement)) { if (!TheCondState.Ignore) { Lex(); // always eat a token return Error(IDLoc, "unexpected token at start of statement"); } IDVal = ""; } // Handle conditional assembly here before checking for skipping. We // have to do this so that .endif isn't skipped in a ".if 0" block for // example. StringMap::const_iterator DirKindIt = DirectiveKindMap.find(IDVal.lower()); DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end()) ? DK_NO_DIRECTIVE : DirKindIt->getValue(); switch (DirKind) { default: break; case DK_IF: case DK_IFE: return parseDirectiveIf(IDLoc, DirKind); case DK_IFB: return parseDirectiveIfb(IDLoc, true); case DK_IFNB: return parseDirectiveIfb(IDLoc, false); case DK_IFDEF: return parseDirectiveIfdef(IDLoc, true); case DK_IFNDEF: return parseDirectiveIfdef(IDLoc, false); case DK_IFDIF: return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/false, /*CaseInsensitive=*/false); case DK_IFDIFI: return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/false, /*CaseInsensitive=*/true); case DK_IFIDN: return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/true, /*CaseInsensitive=*/false); case DK_IFIDNI: return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/true, /*CaseInsensitive=*/true); case DK_ELSEIF: case DK_ELSEIFE: return parseDirectiveElseIf(IDLoc, DirKind); case DK_ELSEIFB: return parseDirectiveElseIfb(IDLoc, true); case DK_ELSEIFNB: return parseDirectiveElseIfb(IDLoc, false); case DK_ELSEIFDEF: return parseDirectiveElseIfdef(IDLoc, true); case DK_ELSEIFNDEF: return parseDirectiveElseIfdef(IDLoc, false); case DK_ELSEIFDIF: return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/false, /*CaseInsensitive=*/false); case DK_ELSEIFDIFI: return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/false, /*CaseInsensitive=*/true); case DK_ELSEIFIDN: return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/true, /*CaseInsensitive=*/false); case DK_ELSEIFIDNI: return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/true, /*CaseInsensitive=*/true); case DK_ELSE: return parseDirectiveElse(IDLoc); case DK_ENDIF: return parseDirectiveEndIf(IDLoc); } // Ignore the statement if in the middle of inactive conditional // (e.g. ".if 0"). if (TheCondState.Ignore) { eatToEndOfStatement(); return false; } // FIXME: Recurse on local labels? // Check for a label. // ::= identifier ':' // ::= number ':' if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) { if (checkForValidSection()) return true; // identifier ':' -> Label. Lex(); // Diagnose attempt to use '.' as a label. if (IDVal == ".") return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label"); // Diagnose attempt to use a variable as a label. // // FIXME: Diagnostics. Note the location of the definition as a label. // FIXME: This doesn't diagnose assignment to a symbol which has been // implicitly marked as external. MCSymbol *Sym; if (ParsingMSInlineAsm && SI) { StringRef RewrittenLabel = SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true); assert(!RewrittenLabel.empty() && "We should have an internal name here."); Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(), RewrittenLabel); IDVal = RewrittenLabel; } // Handle directional local labels if (IDVal == "@@") { Sym = Ctx.createDirectionalLocalSymbol(0); } else { Sym = getContext().getOrCreateSymbol(IDVal); } // End of Labels should be treated as end of line for lexing // purposes but that information is not available to the Lexer who // does not understand Labels. This may cause us to see a Hash // here instead of a preprocessor line comment. if (getTok().is(AsmToken::Hash)) { std::string CommentStr = parseStringTo(AsmToken::EndOfStatement); Lexer.Lex(); Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr)); } // Consume any end of statement token, if present, to avoid spurious // addBlankLine calls(). if (getTok().is(AsmToken::EndOfStatement)) { Lex(); } getTargetParser().doBeforeLabelEmit(Sym, IDLoc); // Emit the label. if (!getTargetParser().isParsingMSInlineAsm()) Out.emitLabel(Sym, IDLoc); // If we are generating dwarf for assembly source files then gather the // info to make a dwarf label entry for this label if needed. if (enabledGenDwarfForAssembly()) MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), IDLoc); getTargetParser().onLabelParsed(Sym); return false; } // If macros are enabled, check to see if this is a macro instantiation. if (const MCAsmMacro *M = getContext().lookupMacro(IDVal.lower())) { return handleMacroEntry(M, IDLoc); } // Otherwise, we have a normal instruction or directive. if (DirKind != DK_NO_DIRECTIVE) { // There are several entities interested in parsing directives: // // 1. Asm parser extensions. For example, platform-specific parsers // (like the ELF parser) register themselves as extensions. // 2. The target-specific assembly parser. Some directives are target // specific or may potentially behave differently on certain targets. // 3. The generic directive parser implemented by this class. These are // all the directives that behave in a target and platform independent // manner, or at least have a default behavior that's shared between // all targets and platforms. getTargetParser().flushPendingInstructions(getStreamer()); // Special-case handling of structure-end directives at higher priority, // since ENDS is overloaded as a segment-end directive. if (IDVal.equals_insensitive("ends") && StructInProgress.size() > 1 && getTok().is(AsmToken::EndOfStatement)) { return parseDirectiveNestedEnds(); } // First, check the extension directive map to see if any extension has // registered itself to parse this directive. std::pair Handler = ExtensionDirectiveMap.lookup(IDVal.lower()); if (Handler.first) return (*Handler.second)(Handler.first, IDVal, IDLoc); // Next, let the target-specific assembly parser try. SMLoc StartTokLoc = getTok().getLoc(); bool TPDirectiveReturn = ID.is(AsmToken::Identifier) && getTargetParser().ParseDirective(ID); if (hasPendingError()) return true; // Currently the return value should be true if we are // uninterested but as this is at odds with the standard parsing // convention (return true = error) we have instances of a parsed // directive that fails returning true as an error. Catch these // cases as best as possible errors here. if (TPDirectiveReturn && StartTokLoc != getTok().getLoc()) return true; // Return if we did some parsing or believe we succeeded. if (!TPDirectiveReturn || StartTokLoc != getTok().getLoc()) return false; // Finally, if no one else is interested in this directive, it must be // generic and familiar to this class. switch (DirKind) { default: break; case DK_ASCII: return parseDirectiveAscii(IDVal, false); case DK_ASCIZ: case DK_STRING: return parseDirectiveAscii(IDVal, true); case DK_BYTE: case DK_SBYTE: case DK_DB: return parseDirectiveValue(IDVal, 1); case DK_WORD: case DK_SWORD: case DK_DW: return parseDirectiveValue(IDVal, 2); case DK_DWORD: case DK_SDWORD: case DK_DD: return parseDirectiveValue(IDVal, 4); case DK_FWORD: case DK_DF: return parseDirectiveValue(IDVal, 6); case DK_QWORD: case DK_SQWORD: case DK_DQ: return parseDirectiveValue(IDVal, 8); case DK_REAL4: return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle(), 4); case DK_REAL8: return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble(), 8); case DK_REAL10: return parseDirectiveRealValue(IDVal, APFloat::x87DoubleExtended(), 10); case DK_STRUCT: case DK_UNION: return parseDirectiveNestedStruct(IDVal, DirKind); case DK_ENDS: return parseDirectiveNestedEnds(); case DK_ALIGN: return parseDirectiveAlign(); case DK_EVEN: return parseDirectiveEven(); case DK_ORG: return parseDirectiveOrg(); case DK_EXTERN: return parseDirectiveExtern(); case DK_PUBLIC: return parseDirectiveSymbolAttribute(MCSA_Global); case DK_COMM: return parseDirectiveComm(/*IsLocal=*/false); case DK_COMMENT: return parseDirectiveComment(IDLoc); case DK_INCLUDE: return parseDirectiveInclude(); case DK_REPEAT: return parseDirectiveRepeat(IDLoc, IDVal); case DK_WHILE: return parseDirectiveWhile(IDLoc); case DK_FOR: return parseDirectiveFor(IDLoc, IDVal); case DK_FORC: return parseDirectiveForc(IDLoc, IDVal); case DK_FILE: return parseDirectiveFile(IDLoc); case DK_LINE: return parseDirectiveLine(); case DK_LOC: return parseDirectiveLoc(); case DK_STABS: return parseDirectiveStabs(); case DK_CV_FILE: return parseDirectiveCVFile(); case DK_CV_FUNC_ID: return parseDirectiveCVFuncId(); case DK_CV_INLINE_SITE_ID: return parseDirectiveCVInlineSiteId(); case DK_CV_LOC: return parseDirectiveCVLoc(); case DK_CV_LINETABLE: return parseDirectiveCVLinetable(); case DK_CV_INLINE_LINETABLE: return parseDirectiveCVInlineLinetable(); case DK_CV_DEF_RANGE: return parseDirectiveCVDefRange(); case DK_CV_STRING: return parseDirectiveCVString(); case DK_CV_STRINGTABLE: return parseDirectiveCVStringTable(); case DK_CV_FILECHECKSUMS: return parseDirectiveCVFileChecksums(); case DK_CV_FILECHECKSUM_OFFSET: return parseDirectiveCVFileChecksumOffset(); case DK_CV_FPO_DATA: return parseDirectiveCVFPOData(); case DK_CFI_SECTIONS: return parseDirectiveCFISections(); case DK_CFI_STARTPROC: return parseDirectiveCFIStartProc(); case DK_CFI_ENDPROC: return parseDirectiveCFIEndProc(); case DK_CFI_DEF_CFA: return parseDirectiveCFIDefCfa(IDLoc); case DK_CFI_DEF_CFA_OFFSET: return parseDirectiveCFIDefCfaOffset(); case DK_CFI_ADJUST_CFA_OFFSET: return parseDirectiveCFIAdjustCfaOffset(); case DK_CFI_DEF_CFA_REGISTER: return parseDirectiveCFIDefCfaRegister(IDLoc); case DK_CFI_OFFSET: return parseDirectiveCFIOffset(IDLoc); case DK_CFI_REL_OFFSET: return parseDirectiveCFIRelOffset(IDLoc); case DK_CFI_PERSONALITY: return parseDirectiveCFIPersonalityOrLsda(true); case DK_CFI_LSDA: return parseDirectiveCFIPersonalityOrLsda(false); case DK_CFI_REMEMBER_STATE: return parseDirectiveCFIRememberState(); case DK_CFI_RESTORE_STATE: return parseDirectiveCFIRestoreState(); case DK_CFI_SAME_VALUE: return parseDirectiveCFISameValue(IDLoc); case DK_CFI_RESTORE: return parseDirectiveCFIRestore(IDLoc); case DK_CFI_ESCAPE: return parseDirectiveCFIEscape(); case DK_CFI_RETURN_COLUMN: return parseDirectiveCFIReturnColumn(IDLoc); case DK_CFI_SIGNAL_FRAME: return parseDirectiveCFISignalFrame(); case DK_CFI_UNDEFINED: return parseDirectiveCFIUndefined(IDLoc); case DK_CFI_REGISTER: return parseDirectiveCFIRegister(IDLoc); case DK_CFI_WINDOW_SAVE: return parseDirectiveCFIWindowSave(); case DK_EXITM: Info.ExitValue = ""; return parseDirectiveExitMacro(IDLoc, IDVal, *Info.ExitValue); case DK_ENDM: Info.ExitValue = ""; return parseDirectiveEndMacro(IDVal); case DK_PURGE: return parseDirectivePurgeMacro(IDLoc); case DK_END: return parseDirectiveEnd(IDLoc); case DK_ERR: return parseDirectiveError(IDLoc); case DK_ERRB: return parseDirectiveErrorIfb(IDLoc, true); case DK_ERRNB: return parseDirectiveErrorIfb(IDLoc, false); case DK_ERRDEF: return parseDirectiveErrorIfdef(IDLoc, true); case DK_ERRNDEF: return parseDirectiveErrorIfdef(IDLoc, false); case DK_ERRDIF: return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/false, /*CaseInsensitive=*/false); case DK_ERRDIFI: return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/false, /*CaseInsensitive=*/true); case DK_ERRIDN: return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/true, /*CaseInsensitive=*/false); case DK_ERRIDNI: return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/true, /*CaseInsensitive=*/true); case DK_ERRE: return parseDirectiveErrorIfe(IDLoc, true); case DK_ERRNZ: return parseDirectiveErrorIfe(IDLoc, false); case DK_RADIX: return parseDirectiveRadix(IDLoc); case DK_ECHO: return parseDirectiveEcho(IDLoc); } return Error(IDLoc, "unknown directive"); } // We also check if this is allocating memory with user-defined type. auto IDIt = Structs.find(IDVal.lower()); if (IDIt != Structs.end()) return parseDirectiveStructValue(/*Structure=*/IDIt->getValue(), IDVal, IDLoc); // Non-conditional Microsoft directives sometimes follow their first argument. const AsmToken nextTok = getTok(); const StringRef nextVal = nextTok.getString(); const SMLoc nextLoc = nextTok.getLoc(); const AsmToken afterNextTok = peekTok(); // There are several entities interested in parsing infix directives: // // 1. Asm parser extensions. For example, platform-specific parsers // (like the ELF parser) register themselves as extensions. // 2. The generic directive parser implemented by this class. These are // all the directives that behave in a target and platform independent // manner, or at least have a default behavior that's shared between // all targets and platforms. getTargetParser().flushPendingInstructions(getStreamer()); // Special-case handling of structure-end directives at higher priority, since // ENDS is overloaded as a segment-end directive. if (nextVal.equals_insensitive("ends") && StructInProgress.size() == 1) { Lex(); return parseDirectiveEnds(IDVal, IDLoc); } // First, check the extension directive map to see if any extension has // registered itself to parse this directive. std::pair Handler = ExtensionDirectiveMap.lookup(nextVal.lower()); if (Handler.first) { Lex(); Lexer.UnLex(ID); return (*Handler.second)(Handler.first, nextVal, nextLoc); } // If no one else is interested in this directive, it must be // generic and familiar to this class. DirKindIt = DirectiveKindMap.find(nextVal.lower()); DirKind = (DirKindIt == DirectiveKindMap.end()) ? DK_NO_DIRECTIVE : DirKindIt->getValue(); switch (DirKind) { default: break; case DK_ASSIGN: case DK_EQU: case DK_TEXTEQU: Lex(); return parseDirectiveEquate(nextVal, IDVal, DirKind, IDLoc); case DK_BYTE: if (afterNextTok.is(AsmToken::Identifier) && afterNextTok.getString().equals_insensitive("ptr")) { // Size directive; part of an instruction. break; } [[fallthrough]]; case DK_SBYTE: case DK_DB: Lex(); return parseDirectiveNamedValue(nextVal, 1, IDVal, IDLoc); case DK_WORD: if (afterNextTok.is(AsmToken::Identifier) && afterNextTok.getString().equals_insensitive("ptr")) { // Size directive; part of an instruction. break; } [[fallthrough]]; case DK_SWORD: case DK_DW: Lex(); return parseDirectiveNamedValue(nextVal, 2, IDVal, IDLoc); case DK_DWORD: if (afterNextTok.is(AsmToken::Identifier) && afterNextTok.getString().equals_insensitive("ptr")) { // Size directive; part of an instruction. break; } [[fallthrough]]; case DK_SDWORD: case DK_DD: Lex(); return parseDirectiveNamedValue(nextVal, 4, IDVal, IDLoc); case DK_FWORD: if (afterNextTok.is(AsmToken::Identifier) && afterNextTok.getString().equals_insensitive("ptr")) { // Size directive; part of an instruction. break; } [[fallthrough]]; case DK_DF: Lex(); return parseDirectiveNamedValue(nextVal, 6, IDVal, IDLoc); case DK_QWORD: if (afterNextTok.is(AsmToken::Identifier) && afterNextTok.getString().equals_insensitive("ptr")) { // Size directive; part of an instruction. break; } [[fallthrough]]; case DK_SQWORD: case DK_DQ: Lex(); return parseDirectiveNamedValue(nextVal, 8, IDVal, IDLoc); case DK_REAL4: Lex(); return parseDirectiveNamedRealValue(nextVal, APFloat::IEEEsingle(), 4, IDVal, IDLoc); case DK_REAL8: Lex(); return parseDirectiveNamedRealValue(nextVal, APFloat::IEEEdouble(), 8, IDVal, IDLoc); case DK_REAL10: Lex(); return parseDirectiveNamedRealValue(nextVal, APFloat::x87DoubleExtended(), 10, IDVal, IDLoc); case DK_STRUCT: case DK_UNION: Lex(); return parseDirectiveStruct(nextVal, DirKind, IDVal, IDLoc); case DK_ENDS: Lex(); return parseDirectiveEnds(IDVal, IDLoc); case DK_MACRO: Lex(); return parseDirectiveMacro(IDVal, IDLoc); } // Finally, we check if this is allocating a variable with user-defined type. auto NextIt = Structs.find(nextVal.lower()); if (NextIt != Structs.end()) { Lex(); return parseDirectiveNamedStructValue(/*Structure=*/NextIt->getValue(), nextVal, nextLoc, IDVal); } // __asm _emit or __asm __emit if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" || IDVal == "_EMIT" || IDVal == "__EMIT")) return parseDirectiveMSEmit(IDLoc, Info, IDVal.size()); // __asm align if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN")) return parseDirectiveMSAlign(IDLoc, Info); if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN")) Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4); if (checkForValidSection()) return true; // Canonicalize the opcode to lower case. std::string OpcodeStr = IDVal.lower(); ParseInstructionInfo IInfo(Info.AsmRewrites); bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID, Info.ParsedOperands); Info.ParseError = ParseHadError; // Dump the parsed representation, if requested. if (getShowParsedOperands()) { SmallString<256> Str; raw_svector_ostream OS(Str); OS << "parsed instruction: ["; for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) { if (i != 0) OS << ", "; Info.ParsedOperands[i]->print(OS); } OS << "]"; printMessage(IDLoc, SourceMgr::DK_Note, OS.str()); } // Fail even if ParseInstruction erroneously returns false. if (hasPendingError() || ParseHadError) return true; // If we are generating dwarf for the current section then generate a .loc // directive for the instruction. if (!ParseHadError && enabledGenDwarfForAssembly() && getContext().getGenDwarfSectionSyms().count( getStreamer().getCurrentSectionOnly())) { unsigned Line; if (ActiveMacros.empty()) Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer); else Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc, ActiveMacros.front()->ExitBuffer); // If we previously parsed a cpp hash file line comment then make sure the // current Dwarf File is for the CppHashFilename if not then emit the // Dwarf File table for it and adjust the line number for the .loc. if (!CppHashInfo.Filename.empty()) { unsigned FileNumber = getStreamer().emitDwarfFileDirective( 0, StringRef(), CppHashInfo.Filename); getContext().setGenDwarfFileNumber(FileNumber); unsigned CppHashLocLineNo = SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf); Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo); } getStreamer().emitDwarfLocDirective( getContext().getGenDwarfFileNumber(), Line, 0, DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0, StringRef()); } // If parsing succeeded, match the instruction. if (!ParseHadError) { uint64_t ErrorInfo; if (getTargetParser().MatchAndEmitInstruction( IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo, getTargetParser().isParsingMSInlineAsm())) return true; } return false; } // Parse and erase curly braces marking block start/end. bool MasmParser::parseCurlyBlockScope( SmallVectorImpl &AsmStrRewrites) { // Identify curly brace marking block start/end. if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly)) return false; SMLoc StartLoc = Lexer.getLoc(); Lex(); // Eat the brace. if (Lexer.is(AsmToken::EndOfStatement)) Lex(); // Eat EndOfStatement following the brace. // Erase the block start/end brace from the output asm string. AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() - StartLoc.getPointer()); return true; } /// parseCppHashLineFilenameComment as this: /// ::= # number "filename" bool MasmParser::parseCppHashLineFilenameComment(SMLoc L) { Lex(); // Eat the hash token. // Lexer only ever emits HashDirective if it fully formed if it's // done the checking already so this is an internal error. assert(getTok().is(AsmToken::Integer) && "Lexing Cpp line comment: Expected Integer"); int64_t LineNumber = getTok().getIntVal(); Lex(); assert(getTok().is(AsmToken::String) && "Lexing Cpp line comment: Expected String"); StringRef Filename = getTok().getString(); Lex(); // Get rid of the enclosing quotes. Filename = Filename.substr(1, Filename.size() - 2); // Save the SMLoc, Filename and LineNumber for later use by diagnostics // and possibly DWARF file info. CppHashInfo.Loc = L; CppHashInfo.Filename = Filename; CppHashInfo.LineNumber = LineNumber; CppHashInfo.Buf = CurBuffer; if (FirstCppHashFilename.empty()) FirstCppHashFilename = Filename; return false; } /// will use the last parsed cpp hash line filename comment /// for the Filename and LineNo if any in the diagnostic. void MasmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) { const MasmParser *Parser = static_cast(Context); raw_ostream &OS = errs(); const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr(); SMLoc DiagLoc = Diag.getLoc(); unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); unsigned CppHashBuf = Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc); // Like SourceMgr::printMessage() we need to print the include stack if any // before printing the message. unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); if (!Parser->SavedDiagHandler && DiagCurBuffer && DiagCurBuffer != DiagSrcMgr.getMainFileID()) { SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer); DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS); } // If we have not parsed a cpp hash line filename comment or the source // manager changed or buffer changed (like in a nested include) then just // print the normal diagnostic using its Filename and LineNo. if (!Parser->CppHashInfo.LineNumber || &DiagSrcMgr != &Parser->SrcMgr || DiagBuf != CppHashBuf) { if (Parser->SavedDiagHandler) Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); else Diag.print(nullptr, OS); return; } // Use the CppHashFilename and calculate a line number based on the // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc // for the diagnostic. const std::string &Filename = std::string(Parser->CppHashInfo.Filename); int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf); int CppHashLocLineNo = Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf); int LineNo = Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo); SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo, Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(), Diag.getLineContents(), Diag.getRanges()); if (Parser->SavedDiagHandler) Parser->SavedDiagHandler(NewDiag, Parser->SavedDiagContext); else NewDiag.print(nullptr, OS); } // This is similar to the IsIdentifierChar function in AsmLexer.cpp, but does // not accept '.'. static bool isMacroParameterChar(char C) { return isAlnum(C) || C == '_' || C == '$' || C == '@' || C == '?'; } bool MasmParser::expandMacro(raw_svector_ostream &OS, StringRef Body, ArrayRef Parameters, ArrayRef A, const std::vector &Locals, SMLoc L) { unsigned NParameters = Parameters.size(); if (NParameters != A.size()) return Error(L, "Wrong number of arguments"); StringMap LocalSymbols; std::string Name; Name.reserve(6); for (StringRef Local : Locals) { raw_string_ostream LocalName(Name); LocalName << "??" << format_hex_no_prefix(LocalCounter++, 4, /*Upper=*/true); LocalSymbols.insert({Local, LocalName.str()}); Name.clear(); } std::optional CurrentQuote; while (!Body.empty()) { // Scan for the next substitution. std::size_t End = Body.size(), Pos = 0; std::size_t IdentifierPos = End; for (; Pos != End; ++Pos) { // Find the next possible macro parameter, including preceding a '&' // inside quotes. if (Body[Pos] == '&') break; if (isMacroParameterChar(Body[Pos])) { if (!CurrentQuote) break; if (IdentifierPos == End) IdentifierPos = Pos; } else { IdentifierPos = End; } // Track quotation status if (!CurrentQuote) { if (Body[Pos] == '\'' || Body[Pos] == '"') CurrentQuote = Body[Pos]; } else if (Body[Pos] == CurrentQuote) { if (Pos + 1 != End && Body[Pos + 1] == CurrentQuote) { // Escaped quote, and quotes aren't identifier chars; skip ++Pos; continue; } else { CurrentQuote.reset(); } } } if (IdentifierPos != End) { // We've recognized an identifier before an apostrophe inside quotes; // check once to see if we can expand it. Pos = IdentifierPos; IdentifierPos = End; } // Add the prefix. OS << Body.slice(0, Pos); // Check if we reached the end. if (Pos == End) break; unsigned I = Pos; bool InitialAmpersand = (Body[I] == '&'); if (InitialAmpersand) { ++I; ++Pos; } while (I < End && isMacroParameterChar(Body[I])) ++I; const char *Begin = Body.data() + Pos; StringRef Argument(Begin, I - Pos); const std::string ArgumentLower = Argument.lower(); unsigned Index = 0; for (; Index < NParameters; ++Index) if (Parameters[Index].Name.equals_insensitive(ArgumentLower)) break; if (Index == NParameters) { if (InitialAmpersand) OS << '&'; auto it = LocalSymbols.find(ArgumentLower); if (it != LocalSymbols.end()) OS << it->second; else OS << Argument; Pos = I; } else { for (const AsmToken &Token : A[Index]) { // In MASM, you can write '%expr'. // The prefix '%' evaluates the expression 'expr' // and uses the result as a string (e.g. replace %(1+2) with the // string "3"). // Here, we identify the integer token which is the result of the // absolute expression evaluation and replace it with its string // representation. if (Token.getString().front() == '%' && Token.is(AsmToken::Integer)) // Emit an integer value to the buffer. OS << Token.getIntVal(); else OS << Token.getString(); } Pos += Argument.size(); if (Pos < End && Body[Pos] == '&') { ++Pos; } } // Update the scan point. Body = Body.substr(Pos); } return false; } static bool isOperator(AsmToken::TokenKind kind) { switch (kind) { default: return false; case AsmToken::Plus: case AsmToken::Minus: case AsmToken::Tilde: case AsmToken::Slash: case AsmToken::Star: case AsmToken::Dot: case AsmToken::Equal: case AsmToken::EqualEqual: case AsmToken::Pipe: case AsmToken::PipePipe: case AsmToken::Caret: case AsmToken::Amp: case AsmToken::AmpAmp: case AsmToken::Exclaim: case AsmToken::ExclaimEqual: case AsmToken::Less: case AsmToken::LessEqual: case AsmToken::LessLess: case AsmToken::LessGreater: case AsmToken::Greater: case AsmToken::GreaterEqual: case AsmToken::GreaterGreater: return true; } } namespace { class AsmLexerSkipSpaceRAII { public: AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) { Lexer.setSkipSpace(SkipSpace); } ~AsmLexerSkipSpaceRAII() { Lexer.setSkipSpace(true); } private: AsmLexer &Lexer; }; } // end anonymous namespace bool MasmParser::parseMacroArgument(const MCAsmMacroParameter *MP, MCAsmMacroArgument &MA, AsmToken::TokenKind EndTok) { if (MP && MP->Vararg) { if (Lexer.isNot(EndTok)) { SmallVector Str = parseStringRefsTo(EndTok); for (StringRef S : Str) { MA.emplace_back(AsmToken::String, S); } } return false; } SMLoc StrLoc = Lexer.getLoc(), EndLoc; if (Lexer.is(AsmToken::Less) && isAngleBracketString(StrLoc, EndLoc)) { const char *StrChar = StrLoc.getPointer() + 1; const char *EndChar = EndLoc.getPointer() - 1; jumpToLoc(EndLoc, CurBuffer, EndStatementAtEOFStack.back()); /// Eat from '<' to '>'. Lex(); MA.emplace_back(AsmToken::String, StringRef(StrChar, EndChar - StrChar)); return false; } unsigned ParenLevel = 0; // Darwin doesn't use spaces to delmit arguments. AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin); bool SpaceEaten; while (true) { SpaceEaten = false; if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal)) return TokError("unexpected token"); if (ParenLevel == 0) { if (Lexer.is(AsmToken::Comma)) break; if (Lexer.is(AsmToken::Space)) { SpaceEaten = true; Lex(); // Eat spaces. } // Spaces can delimit parameters, but could also be part an expression. // If the token after a space is an operator, add the token and the next // one into this argument if (!IsDarwin) { if (isOperator(Lexer.getKind()) && Lexer.isNot(EndTok)) { MA.push_back(getTok()); Lex(); // Whitespace after an operator can be ignored. if (Lexer.is(AsmToken::Space)) Lex(); continue; } } if (SpaceEaten) break; } // handleMacroEntry relies on not advancing the lexer here // to be able to fill in the remaining default parameter values if (Lexer.is(EndTok) && (EndTok != AsmToken::RParen || ParenLevel == 0)) break; // Adjust the current parentheses level. if (Lexer.is(AsmToken::LParen)) ++ParenLevel; else if (Lexer.is(AsmToken::RParen) && ParenLevel) --ParenLevel; // Append the token to the current argument list. MA.push_back(getTok()); Lex(); } if (ParenLevel != 0) return TokError("unbalanced parentheses in argument"); if (MA.empty() && MP) { if (MP->Required) { return TokError("missing value for required parameter '" + MP->Name + "'"); } else { MA = MP->Value; } } return false; } // Parse the macro instantiation arguments. bool MasmParser::parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A, AsmToken::TokenKind EndTok) { const unsigned NParameters = M ? M->Parameters.size() : 0; bool NamedParametersFound = false; SmallVector FALocs; A.resize(NParameters); FALocs.resize(NParameters); // Parse two kinds of macro invocations: // - macros defined without any parameters accept an arbitrary number of them // - macros defined with parameters accept at most that many of them for (unsigned Parameter = 0; !NParameters || Parameter < NParameters; ++Parameter) { SMLoc IDLoc = Lexer.getLoc(); MCAsmMacroParameter FA; if (Lexer.is(AsmToken::Identifier) && peekTok().is(AsmToken::Equal)) { if (parseIdentifier(FA.Name)) return Error(IDLoc, "invalid argument identifier for formal argument"); if (Lexer.isNot(AsmToken::Equal)) return TokError("expected '=' after formal parameter identifier"); Lex(); NamedParametersFound = true; } if (NamedParametersFound && FA.Name.empty()) return Error(IDLoc, "cannot mix positional and keyword arguments"); unsigned PI = Parameter; if (!FA.Name.empty()) { assert(M && "expected macro to be defined"); unsigned FAI = 0; for (FAI = 0; FAI < NParameters; ++FAI) if (M->Parameters[FAI].Name == FA.Name) break; if (FAI >= NParameters) { return Error(IDLoc, "parameter named '" + FA.Name + "' does not exist for macro '" + M->Name + "'"); } PI = FAI; } const MCAsmMacroParameter *MP = nullptr; if (M && PI < NParameters) MP = &M->Parameters[PI]; SMLoc StrLoc = Lexer.getLoc(); SMLoc EndLoc; if (Lexer.is(AsmToken::Percent)) { const MCExpr *AbsoluteExp; int64_t Value; /// Eat '%'. Lex(); if (parseExpression(AbsoluteExp, EndLoc)) return false; if (!AbsoluteExp->evaluateAsAbsolute(Value, getStreamer().getAssemblerPtr())) return Error(StrLoc, "expected absolute expression"); const char *StrChar = StrLoc.getPointer(); const char *EndChar = EndLoc.getPointer(); AsmToken newToken(AsmToken::Integer, StringRef(StrChar, EndChar - StrChar), Value); FA.Value.push_back(newToken); } else if (parseMacroArgument(MP, FA.Value, EndTok)) { if (M) return addErrorSuffix(" in '" + M->Name + "' macro"); else return true; } if (!FA.Value.empty()) { if (A.size() <= PI) A.resize(PI + 1); A[PI] = FA.Value; if (FALocs.size() <= PI) FALocs.resize(PI + 1); FALocs[PI] = Lexer.getLoc(); } // At the end of the statement, fill in remaining arguments that have // default values. If there aren't any, then the next argument is // required but missing if (Lexer.is(EndTok)) { bool Failure = false; for (unsigned FAI = 0; FAI < NParameters; ++FAI) { if (A[FAI].empty()) { if (M->Parameters[FAI].Required) { Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(), "missing value for required parameter " "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'"); Failure = true; } if (!M->Parameters[FAI].Value.empty()) A[FAI] = M->Parameters[FAI].Value; } } return Failure; } if (Lexer.is(AsmToken::Comma)) Lex(); } return TokError("too many positional arguments"); } bool MasmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc, AsmToken::TokenKind ArgumentEndTok) { // Arbitrarily limit macro nesting depth (default matches 'as'). We can // eliminate this, although we should protect against infinite loops. unsigned MaxNestingDepth = AsmMacroMaxNestingDepth; if (ActiveMacros.size() == MaxNestingDepth) { std::ostringstream MaxNestingDepthError; MaxNestingDepthError << "macros cannot be nested more than " << MaxNestingDepth << " levels deep." << " Use -asm-macro-max-nesting-depth to increase " "this limit."; return TokError(MaxNestingDepthError.str()); } MCAsmMacroArguments A; if (parseMacroArguments(M, A, ArgumentEndTok)) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; StringRef Body = M->Body; raw_svector_ostream OS(Buf); if (expandMacro(OS, Body, M->Parameters, A, M->Locals, getTok().getLoc())) return true; // We include the endm in the buffer as our cue to exit the macro // instantiation. OS << "endm\n"; std::unique_ptr Instantiation = MemoryBuffer::getMemBufferCopy(OS.str(), ""); // Create the macro instantiation object and add to the current macro // instantiation stack. MacroInstantiation *MI = new MacroInstantiation{ NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; ActiveMacros.push_back(MI); ++NumOfMacroInstantiations; // Jump to the macro instantiation and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); EndStatementAtEOFStack.push_back(true); Lex(); return false; } void MasmParser::handleMacroExit() { // Jump to the token we should return to, and consume it. EndStatementAtEOFStack.pop_back(); jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer, EndStatementAtEOFStack.back()); Lex(); // Pop the instantiation entry. delete ActiveMacros.back(); ActiveMacros.pop_back(); } bool MasmParser::handleMacroInvocation(const MCAsmMacro *M, SMLoc NameLoc) { if (!M->IsFunction) return Error(NameLoc, "cannot invoke macro procedure as function"); if (parseToken(AsmToken::LParen, "invoking macro function '" + M->Name + "' requires arguments in parentheses") || handleMacroEntry(M, NameLoc, AsmToken::RParen)) return true; // Parse all statements in the macro, retrieving the exit value when it ends. std::string ExitValue; SmallVector AsmStrRewrites; while (Lexer.isNot(AsmToken::Eof)) { ParseStatementInfo Info(&AsmStrRewrites); bool Parsed = parseStatement(Info, nullptr); if (!Parsed && Info.ExitValue) { ExitValue = std::move(*Info.ExitValue); break; } // If we have a Lexer Error we are on an Error Token. Load in Lexer Error // for printing ErrMsg via Lex() only if no (presumably better) parser error // exists. if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) { Lex(); } // parseStatement returned true so may need to emit an error. printPendingErrors(); // Skipping to the next line if needed. if (Parsed && !getLexer().isAtStartOfStatement()) eatToEndOfStatement(); } // Consume the right-parenthesis on the other side of the arguments. if (parseRParen()) return true; // Exit values may require lexing, unfortunately. We construct a new buffer to // hold the exit value. std::unique_ptr MacroValue = MemoryBuffer::getMemBufferCopy(ExitValue, ""); // Jump from this location to the instantiated exit value, and prime the // lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(MacroValue), Lexer.getLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), nullptr, /*EndStatementAtEOF=*/false); EndStatementAtEOFStack.push_back(false); Lex(); return false; } /// parseIdentifier: /// ::= identifier /// ::= string bool MasmParser::parseIdentifier(StringRef &Res, IdentifierPositionKind Position) { // The assembler has relaxed rules for accepting identifiers, in particular we // allow things like '.globl $foo' and '.def @feat.00', which would normally // be separate tokens. At this level, we have already lexed so we cannot // (currently) handle this as a context dependent token, instead we detect // adjacent tokens and return the combined identifier. if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) { SMLoc PrefixLoc = getLexer().getLoc(); // Consume the prefix character, and check for a following identifier. AsmToken nextTok = peekTok(false); if (nextTok.isNot(AsmToken::Identifier)) return true; // We have a '$' or '@' followed by an identifier, make sure they are adjacent. if (PrefixLoc.getPointer() + 1 != nextTok.getLoc().getPointer()) return true; // eat $ or @ Lexer.Lex(); // Lexer's Lex guarantees consecutive token. // Construct the joined identifier and consume the token. Res = StringRef(PrefixLoc.getPointer(), getTok().getIdentifier().size() + 1); Lex(); // Parser Lex to maintain invariants. return false; } if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String)) return true; Res = getTok().getIdentifier(); // Consume the identifier token - but if parsing certain directives, avoid // lexical expansion of the next token. ExpandKind ExpandNextToken = ExpandMacros; if (Position == StartOfStatement && StringSwitch(Res) .CaseLower("echo", true) .CasesLower("ifdef", "ifndef", "elseifdef", "elseifndef", true) .Default(false)) { ExpandNextToken = DoNotExpandMacros; } Lex(ExpandNextToken); return false; } /// parseDirectiveEquate: /// ::= name "=" expression /// | name "equ" expression (not redefinable) /// | name "equ" text-list /// | name "textequ" text-list (redefinability unspecified) bool MasmParser::parseDirectiveEquate(StringRef IDVal, StringRef Name, DirectiveKind DirKind, SMLoc NameLoc) { auto BuiltinIt = BuiltinSymbolMap.find(Name.lower()); if (BuiltinIt != BuiltinSymbolMap.end()) return Error(NameLoc, "cannot redefine a built-in symbol"); Variable &Var = Variables[Name.lower()]; if (Var.Name.empty()) { Var.Name = Name; } SMLoc StartLoc = Lexer.getLoc(); if (DirKind == DK_EQU || DirKind == DK_TEXTEQU) { // "equ" and "textequ" both allow text expressions. std::string Value; std::string TextItem; if (!parseTextItem(TextItem)) { Value += TextItem; // Accept a text-list, not just one text-item. auto parseItem = [&]() -> bool { if (parseTextItem(TextItem)) return TokError("expected text item"); Value += TextItem; return false; }; if (parseOptionalToken(AsmToken::Comma) && parseMany(parseItem)) return addErrorSuffix(" in '" + Twine(IDVal) + "' directive"); if (!Var.IsText || Var.TextValue != Value) { switch (Var.Redefinable) { case Variable::NOT_REDEFINABLE: return Error(getTok().getLoc(), "invalid variable redefinition"); case Variable::WARN_ON_REDEFINITION: if (Warning(NameLoc, "redefining '" + Name + "', already defined on the command line")) { return true; } break; default: break; } } Var.IsText = true; Var.TextValue = Value; Var.Redefinable = Variable::REDEFINABLE; return false; } } if (DirKind == DK_TEXTEQU) return TokError("expected in '" + Twine(IDVal) + "' directive"); // Parse as expression assignment. const MCExpr *Expr; SMLoc EndLoc; if (parseExpression(Expr, EndLoc)) return addErrorSuffix(" in '" + Twine(IDVal) + "' directive"); StringRef ExprAsString = StringRef( StartLoc.getPointer(), EndLoc.getPointer() - StartLoc.getPointer()); int64_t Value; if (!Expr->evaluateAsAbsolute(Value, getStreamer().getAssemblerPtr())) { if (DirKind == DK_ASSIGN) return Error( StartLoc, "expected absolute expression; not all symbols have known values", {StartLoc, EndLoc}); // Not an absolute expression; define as a text replacement. if (!Var.IsText || Var.TextValue != ExprAsString) { switch (Var.Redefinable) { case Variable::NOT_REDEFINABLE: return Error(getTok().getLoc(), "invalid variable redefinition"); case Variable::WARN_ON_REDEFINITION: if (Warning(NameLoc, "redefining '" + Name + "', already defined on the command line")) { return true; } break; default: break; } } Var.IsText = true; Var.TextValue = ExprAsString.str(); Var.Redefinable = Variable::REDEFINABLE; return false; } MCSymbol *Sym = getContext().getOrCreateSymbol(Var.Name); const MCConstantExpr *PrevValue = Sym->isVariable() ? dyn_cast_or_null( Sym->getVariableValue(/*SetUsed=*/false)) : nullptr; if (Var.IsText || !PrevValue || PrevValue->getValue() != Value) { switch (Var.Redefinable) { case Variable::NOT_REDEFINABLE: return Error(getTok().getLoc(), "invalid variable redefinition"); case Variable::WARN_ON_REDEFINITION: if (Warning(NameLoc, "redefining '" + Name + "', already defined on the command line")) { return true; } break; default: break; } } Var.IsText = false; Var.TextValue.clear(); Var.Redefinable = (DirKind == DK_ASSIGN) ? Variable::REDEFINABLE : Variable::NOT_REDEFINABLE; Sym->setRedefinable(Var.Redefinable != Variable::NOT_REDEFINABLE); Sym->setVariableValue(Expr); Sym->setExternal(false); return false; } bool MasmParser::parseEscapedString(std::string &Data) { if (check(getTok().isNot(AsmToken::String), "expected string")) return true; Data = ""; char Quote = getTok().getString().front(); StringRef Str = getTok().getStringContents(); Data.reserve(Str.size()); for (size_t i = 0, e = Str.size(); i != e; ++i) { Data.push_back(Str[i]); if (Str[i] == Quote) { // MASM treats doubled delimiting quotes as an escaped delimiting quote. // If we're escaping the string's trailing delimiter, we're definitely // missing a quotation mark. if (i + 1 == Str.size()) return Error(getTok().getLoc(), "missing quotation mark in string"); if (Str[i + 1] == Quote) ++i; } } Lex(); return false; } bool MasmParser::parseAngleBracketString(std::string &Data) { SMLoc EndLoc, StartLoc = getTok().getLoc(); if (isAngleBracketString(StartLoc, EndLoc)) { const char *StartChar = StartLoc.getPointer() + 1; const char *EndChar = EndLoc.getPointer() - 1; jumpToLoc(EndLoc, CurBuffer, EndStatementAtEOFStack.back()); // Eat from '<' to '>'. Lex(); Data = angleBracketString(StringRef(StartChar, EndChar - StartChar)); return false; } return true; } /// textItem ::= textLiteral | textMacroID | % constExpr bool MasmParser::parseTextItem(std::string &Data) { switch (getTok().getKind()) { default: return true; case AsmToken::Percent: { int64_t Res; if (parseToken(AsmToken::Percent) || parseAbsoluteExpression(Res)) return true; Data = std::to_string(Res); return false; } case AsmToken::Less: case AsmToken::LessEqual: case AsmToken::LessLess: case AsmToken::LessGreater: return parseAngleBracketString(Data); case AsmToken::Identifier: { // This must be a text macro; we need to expand it accordingly. StringRef ID; SMLoc StartLoc = getTok().getLoc(); if (parseIdentifier(ID)) return true; Data = ID.str(); bool Expanded = false; while (true) { // Try to resolve as a built-in text macro auto BuiltinIt = BuiltinSymbolMap.find(ID.lower()); if (BuiltinIt != BuiltinSymbolMap.end()) { std::optional BuiltinText = evaluateBuiltinTextMacro(BuiltinIt->getValue(), StartLoc); if (!BuiltinText) { // Not a text macro; break without substituting break; } Data = std::move(*BuiltinText); ID = StringRef(Data); Expanded = true; continue; } // Try to resolve as a variable text macro auto VarIt = Variables.find(ID.lower()); if (VarIt != Variables.end()) { const Variable &Var = VarIt->getValue(); if (!Var.IsText) { // Not a text macro; break without substituting break; } Data = Var.TextValue; ID = StringRef(Data); Expanded = true; continue; } break; } if (!Expanded) { // Not a text macro; not usable in TextItem context. Since we haven't used // the token, put it back for better error recovery. getLexer().UnLex(AsmToken(AsmToken::Identifier, ID)); return true; } return false; } } llvm_unreachable("unhandled token kind"); } /// parseDirectiveAscii: /// ::= ( .ascii | .asciz | .string ) [ "string" ( , "string" )* ] bool MasmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) { auto parseOp = [&]() -> bool { std::string Data; if (checkForValidSection() || parseEscapedString(Data)) return true; getStreamer().emitBytes(Data); if (ZeroTerminated) getStreamer().emitBytes(StringRef("\0", 1)); return false; }; if (parseMany(parseOp)) return addErrorSuffix(" in '" + Twine(IDVal) + "' directive"); return false; } bool MasmParser::emitIntValue(const MCExpr *Value, unsigned Size) { // Special case constant expressions to match code generator. if (const MCConstantExpr *MCE = dyn_cast(Value)) { assert(Size <= 8 && "Invalid size"); int64_t IntValue = MCE->getValue(); if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) return Error(MCE->getLoc(), "out of range literal value"); getStreamer().emitIntValue(IntValue, Size); } else { const MCSymbolRefExpr *MSE = dyn_cast(Value); if (MSE && MSE->getSymbol().getName() == "?") { // ? initializer; treat as 0. getStreamer().emitIntValue(0, Size); } else { getStreamer().emitValue(Value, Size, Value->getLoc()); } } return false; } bool MasmParser::parseScalarInitializer(unsigned Size, SmallVectorImpl &Values, unsigned StringPadLength) { if (Size == 1 && getTok().is(AsmToken::String)) { std::string Value; if (parseEscapedString(Value)) return true; // Treat each character as an initializer. for (const unsigned char CharVal : Value) Values.push_back(MCConstantExpr::create(CharVal, getContext())); // Pad the string with spaces to the specified length. for (size_t i = Value.size(); i < StringPadLength; ++i) Values.push_back(MCConstantExpr::create(' ', getContext())); } else { const MCExpr *Value; if (parseExpression(Value)) return true; if (getTok().is(AsmToken::Identifier) && getTok().getString().equals_insensitive("dup")) { Lex(); // Eat 'dup'. const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) return Error(Value->getLoc(), "cannot repeat value a non-constant number of times"); const int64_t Repetitions = MCE->getValue(); if (Repetitions < 0) return Error(Value->getLoc(), "cannot repeat value a negative number of times"); SmallVector DuplicatedValues; if (parseToken(AsmToken::LParen, "parentheses required for 'dup' contents") || parseScalarInstList(Size, DuplicatedValues) || parseRParen()) return true; for (int i = 0; i < Repetitions; ++i) Values.append(DuplicatedValues.begin(), DuplicatedValues.end()); } else { Values.push_back(Value); } } return false; } bool MasmParser::parseScalarInstList(unsigned Size, SmallVectorImpl &Values, const AsmToken::TokenKind EndToken) { while (getTok().isNot(EndToken) && (EndToken != AsmToken::Greater || getTok().isNot(AsmToken::GreaterGreater))) { parseScalarInitializer(Size, Values); // If we see a comma, continue, and allow line continuation. if (!parseOptionalToken(AsmToken::Comma)) break; parseOptionalToken(AsmToken::EndOfStatement); } return false; } bool MasmParser::emitIntegralValues(unsigned Size, unsigned *Count) { SmallVector Values; if (checkForValidSection() || parseScalarInstList(Size, Values)) return true; for (const auto *Value : Values) { emitIntValue(Value, Size); } if (Count) *Count = Values.size(); return false; } // Add a field to the current structure. bool MasmParser::addIntegralField(StringRef Name, unsigned Size) { StructInfo &Struct = StructInProgress.back(); FieldInfo &Field = Struct.addField(Name, FT_INTEGRAL, Size); IntFieldInfo &IntInfo = Field.Contents.IntInfo; Field.Type = Size; if (parseScalarInstList(Size, IntInfo.Values)) return true; Field.SizeOf = Field.Type * IntInfo.Values.size(); Field.LengthOf = IntInfo.Values.size(); const unsigned FieldEnd = Field.Offset + Field.SizeOf; if (!Struct.IsUnion) { Struct.NextOffset = FieldEnd; } Struct.Size = std::max(Struct.Size, FieldEnd); return false; } /// parseDirectiveValue /// ::= (byte | word | ... ) [ expression (, expression)* ] bool MasmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) { if (StructInProgress.empty()) { // Initialize data value. if (emitIntegralValues(Size)) return addErrorSuffix(" in '" + Twine(IDVal) + "' directive"); } else if (addIntegralField("", Size)) { return addErrorSuffix(" in '" + Twine(IDVal) + "' directive"); } return false; } /// parseDirectiveNamedValue /// ::= name (byte | word | ... ) [ expression (, expression)* ] bool MasmParser::parseDirectiveNamedValue(StringRef TypeName, unsigned Size, StringRef Name, SMLoc NameLoc) { if (StructInProgress.empty()) { // Initialize named data value. MCSymbol *Sym = getContext().getOrCreateSymbol(Name); getStreamer().emitLabel(Sym); unsigned Count; if (emitIntegralValues(Size, &Count)) return addErrorSuffix(" in '" + Twine(TypeName) + "' directive"); AsmTypeInfo Type; Type.Name = TypeName; Type.Size = Size * Count; Type.ElementSize = Size; Type.Length = Count; KnownType[Name.lower()] = Type; } else if (addIntegralField(Name, Size)) { return addErrorSuffix(" in '" + Twine(TypeName) + "' directive"); } return false; } static bool parseHexOcta(MasmParser &Asm, uint64_t &hi, uint64_t &lo) { if (Asm.getTok().isNot(AsmToken::Integer) && Asm.getTok().isNot(AsmToken::BigNum)) return Asm.TokError("unknown token in expression"); SMLoc ExprLoc = Asm.getTok().getLoc(); APInt IntValue = Asm.getTok().getAPIntVal(); Asm.Lex(); if (!IntValue.isIntN(128)) return Asm.Error(ExprLoc, "out of range literal value"); if (!IntValue.isIntN(64)) { hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue(); lo = IntValue.getLoBits(64).getZExtValue(); } else { hi = 0; lo = IntValue.getZExtValue(); } return false; } bool MasmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) { // We don't truly support arithmetic on floating point expressions, so we // have to manually parse unary prefixes. bool IsNeg = false; SMLoc SignLoc; if (getLexer().is(AsmToken::Minus)) { SignLoc = getLexer().getLoc(); Lexer.Lex(); IsNeg = true; } else if (getLexer().is(AsmToken::Plus)) { SignLoc = getLexer().getLoc(); Lexer.Lex(); } if (Lexer.is(AsmToken::Error)) return TokError(Lexer.getErr()); if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) && Lexer.isNot(AsmToken::Identifier)) return TokError("unexpected token in directive"); // Convert to an APFloat. APFloat Value(Semantics); StringRef IDVal = getTok().getString(); if (getLexer().is(AsmToken::Identifier)) { if (IDVal.equals_insensitive("infinity") || IDVal.equals_insensitive("inf")) Value = APFloat::getInf(Semantics); else if (IDVal.equals_insensitive("nan")) Value = APFloat::getNaN(Semantics, false, ~0); else if (IDVal.equals_insensitive("?")) Value = APFloat::getZero(Semantics); else return TokError("invalid floating point literal"); } else if (IDVal.consume_back("r") || IDVal.consume_back("R")) { // MASM hexadecimal floating-point literal; no APFloat conversion needed. // To match ML64.exe, ignore the initial sign. unsigned SizeInBits = Value.getSizeInBits(Semantics); if (SizeInBits != (IDVal.size() << 2)) return TokError("invalid floating point literal"); // Consume the numeric token. Lex(); Res = APInt(SizeInBits, IDVal, 16); if (SignLoc.isValid()) return Warning(SignLoc, "MASM-style hex floats ignore explicit sign"); return false; } else if (errorToBool( Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven) .takeError())) { return TokError("invalid floating point literal"); } if (IsNeg) Value.changeSign(); // Consume the numeric token. Lex(); Res = Value.bitcastToAPInt(); return false; } bool MasmParser::parseRealInstList(const fltSemantics &Semantics, SmallVectorImpl &ValuesAsInt, const AsmToken::TokenKind EndToken) { while (getTok().isNot(EndToken) || (EndToken == AsmToken::Greater && getTok().isNot(AsmToken::GreaterGreater))) { const AsmToken NextTok = peekTok(); if (NextTok.is(AsmToken::Identifier) && NextTok.getString().equals_insensitive("dup")) { const MCExpr *Value; if (parseExpression(Value) || parseToken(AsmToken::Identifier)) return true; const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) return Error(Value->getLoc(), "cannot repeat value a non-constant number of times"); const int64_t Repetitions = MCE->getValue(); if (Repetitions < 0) return Error(Value->getLoc(), "cannot repeat value a negative number of times"); SmallVector DuplicatedValues; if (parseToken(AsmToken::LParen, "parentheses required for 'dup' contents") || parseRealInstList(Semantics, DuplicatedValues) || parseRParen()) return true; for (int i = 0; i < Repetitions; ++i) ValuesAsInt.append(DuplicatedValues.begin(), DuplicatedValues.end()); } else { APInt AsInt; if (parseRealValue(Semantics, AsInt)) return true; ValuesAsInt.push_back(AsInt); } // Continue if we see a comma. (Also, allow line continuation.) if (!parseOptionalToken(AsmToken::Comma)) break; parseOptionalToken(AsmToken::EndOfStatement); } return false; } // Initialize real data values. bool MasmParser::emitRealValues(const fltSemantics &Semantics, unsigned *Count) { if (checkForValidSection()) return true; SmallVector ValuesAsInt; if (parseRealInstList(Semantics, ValuesAsInt)) return true; for (const APInt &AsInt : ValuesAsInt) { getStreamer().emitIntValue(AsInt); } if (Count) *Count = ValuesAsInt.size(); return false; } // Add a real field to the current struct. bool MasmParser::addRealField(StringRef Name, const fltSemantics &Semantics, size_t Size) { StructInfo &Struct = StructInProgress.back(); FieldInfo &Field = Struct.addField(Name, FT_REAL, Size); RealFieldInfo &RealInfo = Field.Contents.RealInfo; Field.SizeOf = 0; if (parseRealInstList(Semantics, RealInfo.AsIntValues)) return true; Field.Type = RealInfo.AsIntValues.back().getBitWidth() / 8; Field.LengthOf = RealInfo.AsIntValues.size(); Field.SizeOf = Field.Type * Field.LengthOf; const unsigned FieldEnd = Field.Offset + Field.SizeOf; if (!Struct.IsUnion) { Struct.NextOffset = FieldEnd; } Struct.Size = std::max(Struct.Size, FieldEnd); return false; } /// parseDirectiveRealValue /// ::= (real4 | real8 | real10) [ expression (, expression)* ] bool MasmParser::parseDirectiveRealValue(StringRef IDVal, const fltSemantics &Semantics, size_t Size) { if (StructInProgress.empty()) { // Initialize data value. if (emitRealValues(Semantics)) return addErrorSuffix(" in '" + Twine(IDVal) + "' directive"); } else if (addRealField("", Semantics, Size)) { return addErrorSuffix(" in '" + Twine(IDVal) + "' directive"); } return false; } /// parseDirectiveNamedRealValue /// ::= name (real4 | real8 | real10) [ expression (, expression)* ] bool MasmParser::parseDirectiveNamedRealValue(StringRef TypeName, const fltSemantics &Semantics, unsigned Size, StringRef Name, SMLoc NameLoc) { if (StructInProgress.empty()) { // Initialize named data value. MCSymbol *Sym = getContext().getOrCreateSymbol(Name); getStreamer().emitLabel(Sym); unsigned Count; if (emitRealValues(Semantics, &Count)) return addErrorSuffix(" in '" + TypeName + "' directive"); AsmTypeInfo Type; Type.Name = TypeName; Type.Size = Size * Count; Type.ElementSize = Size; Type.Length = Count; KnownType[Name.lower()] = Type; } else if (addRealField(Name, Semantics, Size)) { return addErrorSuffix(" in '" + TypeName + "' directive"); } return false; } bool MasmParser::parseOptionalAngleBracketOpen() { const AsmToken Tok = getTok(); if (parseOptionalToken(AsmToken::LessLess)) { AngleBracketDepth++; Lexer.UnLex(AsmToken(AsmToken::Less, Tok.getString().substr(1))); return true; } else if (parseOptionalToken(AsmToken::LessGreater)) { AngleBracketDepth++; Lexer.UnLex(AsmToken(AsmToken::Greater, Tok.getString().substr(1))); return true; } else if (parseOptionalToken(AsmToken::Less)) { AngleBracketDepth++; return true; } return false; } bool MasmParser::parseAngleBracketClose(const Twine &Msg) { const AsmToken Tok = getTok(); if (parseOptionalToken(AsmToken::GreaterGreater)) { Lexer.UnLex(AsmToken(AsmToken::Greater, Tok.getString().substr(1))); } else if (parseToken(AsmToken::Greater, Msg)) { return true; } AngleBracketDepth--; return false; } bool MasmParser::parseFieldInitializer(const FieldInfo &Field, const IntFieldInfo &Contents, FieldInitializer &Initializer) { SMLoc Loc = getTok().getLoc(); SmallVector Values; if (parseOptionalToken(AsmToken::LCurly)) { if (Field.LengthOf == 1 && Field.Type > 1) return Error(Loc, "Cannot initialize scalar field with array value"); if (parseScalarInstList(Field.Type, Values, AsmToken::RCurly) || parseToken(AsmToken::RCurly)) return true; } else if (parseOptionalAngleBracketOpen()) { if (Field.LengthOf == 1 && Field.Type > 1) return Error(Loc, "Cannot initialize scalar field with array value"); if (parseScalarInstList(Field.Type, Values, AsmToken::Greater) || parseAngleBracketClose()) return true; } else if (Field.LengthOf > 1 && Field.Type > 1) { return Error(Loc, "Cannot initialize array field with scalar value"); } else if (parseScalarInitializer(Field.Type, Values, /*StringPadLength=*/Field.LengthOf)) { return true; } if (Values.size() > Field.LengthOf) { return Error(Loc, "Initializer too long for field; expected at most " + std::to_string(Field.LengthOf) + " elements, got " + std::to_string(Values.size())); } // Default-initialize all remaining values. Values.append(Contents.Values.begin() + Values.size(), Contents.Values.end()); Initializer = FieldInitializer(std::move(Values)); return false; } bool MasmParser::parseFieldInitializer(const FieldInfo &Field, const RealFieldInfo &Contents, FieldInitializer &Initializer) { const fltSemantics *Semantics; switch (Field.Type) { case 4: Semantics = &APFloat::IEEEsingle(); break; case 8: Semantics = &APFloat::IEEEdouble(); break; case 10: Semantics = &APFloat::x87DoubleExtended(); break; default: llvm_unreachable("unknown real field type"); } SMLoc Loc = getTok().getLoc(); SmallVector AsIntValues; if (parseOptionalToken(AsmToken::LCurly)) { if (Field.LengthOf == 1) return Error(Loc, "Cannot initialize scalar field with array value"); if (parseRealInstList(*Semantics, AsIntValues, AsmToken::RCurly) || parseToken(AsmToken::RCurly)) return true; } else if (parseOptionalAngleBracketOpen()) { if (Field.LengthOf == 1) return Error(Loc, "Cannot initialize scalar field with array value"); if (parseRealInstList(*Semantics, AsIntValues, AsmToken::Greater) || parseAngleBracketClose()) return true; } else if (Field.LengthOf > 1) { return Error(Loc, "Cannot initialize array field with scalar value"); } else { AsIntValues.emplace_back(); if (parseRealValue(*Semantics, AsIntValues.back())) return true; } if (AsIntValues.size() > Field.LengthOf) { return Error(Loc, "Initializer too long for field; expected at most " + std::to_string(Field.LengthOf) + " elements, got " + std::to_string(AsIntValues.size())); } // Default-initialize all remaining values. AsIntValues.append(Contents.AsIntValues.begin() + AsIntValues.size(), Contents.AsIntValues.end()); Initializer = FieldInitializer(std::move(AsIntValues)); return false; } bool MasmParser::parseFieldInitializer(const FieldInfo &Field, const StructFieldInfo &Contents, FieldInitializer &Initializer) { SMLoc Loc = getTok().getLoc(); std::vector Initializers; if (Field.LengthOf > 1) { if (parseOptionalToken(AsmToken::LCurly)) { if (parseStructInstList(Contents.Structure, Initializers, AsmToken::RCurly) || parseToken(AsmToken::RCurly)) return true; } else if (parseOptionalAngleBracketOpen()) { if (parseStructInstList(Contents.Structure, Initializers, AsmToken::Greater) || parseAngleBracketClose()) return true; } else { return Error(Loc, "Cannot initialize array field with scalar value"); } } else { Initializers.emplace_back(); if (parseStructInitializer(Contents.Structure, Initializers.back())) return true; } if (Initializers.size() > Field.LengthOf) { return Error(Loc, "Initializer too long for field; expected at most " + std::to_string(Field.LengthOf) + " elements, got " + std::to_string(Initializers.size())); } // Default-initialize all remaining values. Initializers.insert(Initializers.end(), Contents.Initializers.begin() + Initializers.size(), Contents.Initializers.end()); Initializer = FieldInitializer(std::move(Initializers), Contents.Structure); return false; } bool MasmParser::parseFieldInitializer(const FieldInfo &Field, FieldInitializer &Initializer) { switch (Field.Contents.FT) { case FT_INTEGRAL: return parseFieldInitializer(Field, Field.Contents.IntInfo, Initializer); case FT_REAL: return parseFieldInitializer(Field, Field.Contents.RealInfo, Initializer); case FT_STRUCT: return parseFieldInitializer(Field, Field.Contents.StructInfo, Initializer); } llvm_unreachable("Unhandled FieldType enum"); } bool MasmParser::parseStructInitializer(const StructInfo &Structure, StructInitializer &Initializer) { const AsmToken FirstToken = getTok(); std::optional EndToken; if (parseOptionalToken(AsmToken::LCurly)) { EndToken = AsmToken::RCurly; } else if (parseOptionalAngleBracketOpen()) { EndToken = AsmToken::Greater; AngleBracketDepth++; } else if (FirstToken.is(AsmToken::Identifier) && FirstToken.getString() == "?") { // ? initializer; leave EndToken uninitialized to treat as empty. if (parseToken(AsmToken::Identifier)) return true; } else { return Error(FirstToken.getLoc(), "Expected struct initializer"); } auto &FieldInitializers = Initializer.FieldInitializers; size_t FieldIndex = 0; if (EndToken) { // Initialize all fields with given initializers. while (getTok().isNot(*EndToken) && FieldIndex < Structure.Fields.size()) { const FieldInfo &Field = Structure.Fields[FieldIndex++]; if (parseOptionalToken(AsmToken::Comma)) { // Empty initializer; use the default and continue. (Also, allow line // continuation.) FieldInitializers.push_back(Field.Contents); parseOptionalToken(AsmToken::EndOfStatement); continue; } FieldInitializers.emplace_back(Field.Contents.FT); if (parseFieldInitializer(Field, FieldInitializers.back())) return true; // Continue if we see a comma. (Also, allow line continuation.) SMLoc CommaLoc = getTok().getLoc(); if (!parseOptionalToken(AsmToken::Comma)) break; if (FieldIndex == Structure.Fields.size()) return Error(CommaLoc, "'" + Structure.Name + "' initializer initializes too many fields"); parseOptionalToken(AsmToken::EndOfStatement); } } // Default-initialize all remaining fields. for (const FieldInfo &Field : llvm::drop_begin(Structure.Fields, FieldIndex)) FieldInitializers.push_back(Field.Contents); if (EndToken) { if (*EndToken == AsmToken::Greater) return parseAngleBracketClose(); return parseToken(*EndToken); } return false; } bool MasmParser::parseStructInstList( const StructInfo &Structure, std::vector &Initializers, const AsmToken::TokenKind EndToken) { while (getTok().isNot(EndToken) || (EndToken == AsmToken::Greater && getTok().isNot(AsmToken::GreaterGreater))) { const AsmToken NextTok = peekTok(); if (NextTok.is(AsmToken::Identifier) && NextTok.getString().equals_insensitive("dup")) { const MCExpr *Value; if (parseExpression(Value) || parseToken(AsmToken::Identifier)) return true; const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) return Error(Value->getLoc(), "cannot repeat value a non-constant number of times"); const int64_t Repetitions = MCE->getValue(); if (Repetitions < 0) return Error(Value->getLoc(), "cannot repeat value a negative number of times"); std::vector DuplicatedValues; if (parseToken(AsmToken::LParen, "parentheses required for 'dup' contents") || parseStructInstList(Structure, DuplicatedValues) || parseRParen()) return true; for (int i = 0; i < Repetitions; ++i) llvm::append_range(Initializers, DuplicatedValues); } else { Initializers.emplace_back(); if (parseStructInitializer(Structure, Initializers.back())) return true; } // Continue if we see a comma. (Also, allow line continuation.) if (!parseOptionalToken(AsmToken::Comma)) break; parseOptionalToken(AsmToken::EndOfStatement); } return false; } bool MasmParser::emitFieldValue(const FieldInfo &Field, const IntFieldInfo &Contents) { // Default-initialize all values. for (const MCExpr *Value : Contents.Values) { if (emitIntValue(Value, Field.Type)) return true; } return false; } bool MasmParser::emitFieldValue(const FieldInfo &Field, const RealFieldInfo &Contents) { for (const APInt &AsInt : Contents.AsIntValues) { getStreamer().emitIntValue(AsInt.getLimitedValue(), AsInt.getBitWidth() / 8); } return false; } bool MasmParser::emitFieldValue(const FieldInfo &Field, const StructFieldInfo &Contents) { for (const auto &Initializer : Contents.Initializers) { size_t Index = 0, Offset = 0; for (const auto &SubField : Contents.Structure.Fields) { getStreamer().emitZeros(SubField.Offset - Offset); Offset = SubField.Offset + SubField.SizeOf; emitFieldInitializer(SubField, Initializer.FieldInitializers[Index++]); } } return false; } bool MasmParser::emitFieldValue(const FieldInfo &Field) { switch (Field.Contents.FT) { case FT_INTEGRAL: return emitFieldValue(Field, Field.Contents.IntInfo); case FT_REAL: return emitFieldValue(Field, Field.Contents.RealInfo); case FT_STRUCT: return emitFieldValue(Field, Field.Contents.StructInfo); } llvm_unreachable("Unhandled FieldType enum"); } bool MasmParser::emitFieldInitializer(const FieldInfo &Field, const IntFieldInfo &Contents, const IntFieldInfo &Initializer) { for (const auto &Value : Initializer.Values) { if (emitIntValue(Value, Field.Type)) return true; } // Default-initialize all remaining values. for (const auto &Value : llvm::drop_begin(Contents.Values, Initializer.Values.size())) { if (emitIntValue(Value, Field.Type)) return true; } return false; } bool MasmParser::emitFieldInitializer(const FieldInfo &Field, const RealFieldInfo &Contents, const RealFieldInfo &Initializer) { for (const auto &AsInt : Initializer.AsIntValues) { getStreamer().emitIntValue(AsInt.getLimitedValue(), AsInt.getBitWidth() / 8); } // Default-initialize all remaining values. for (const auto &AsInt : llvm::drop_begin(Contents.AsIntValues, Initializer.AsIntValues.size())) { getStreamer().emitIntValue(AsInt.getLimitedValue(), AsInt.getBitWidth() / 8); } return false; } bool MasmParser::emitFieldInitializer(const FieldInfo &Field, const StructFieldInfo &Contents, const StructFieldInfo &Initializer) { for (const auto &Init : Initializer.Initializers) { if (emitStructInitializer(Contents.Structure, Init)) return true; } // Default-initialize all remaining values. for (const auto &Init : llvm::drop_begin(Contents.Initializers, Initializer.Initializers.size())) { if (emitStructInitializer(Contents.Structure, Init)) return true; } return false; } bool MasmParser::emitFieldInitializer(const FieldInfo &Field, const FieldInitializer &Initializer) { switch (Field.Contents.FT) { case FT_INTEGRAL: return emitFieldInitializer(Field, Field.Contents.IntInfo, Initializer.IntInfo); case FT_REAL: return emitFieldInitializer(Field, Field.Contents.RealInfo, Initializer.RealInfo); case FT_STRUCT: return emitFieldInitializer(Field, Field.Contents.StructInfo, Initializer.StructInfo); } llvm_unreachable("Unhandled FieldType enum"); } bool MasmParser::emitStructInitializer(const StructInfo &Structure, const StructInitializer &Initializer) { if (!Structure.Initializable) return Error(getLexer().getLoc(), "cannot initialize a value of type '" + Structure.Name + "'; 'org' was used in the type's declaration"); size_t Index = 0, Offset = 0; for (const auto &Init : Initializer.FieldInitializers) { const auto &Field = Structure.Fields[Index++]; getStreamer().emitZeros(Field.Offset - Offset); Offset = Field.Offset + Field.SizeOf; if (emitFieldInitializer(Field, Init)) return true; } // Default-initialize all remaining fields. for (const auto &Field : llvm::drop_begin( Structure.Fields, Initializer.FieldInitializers.size())) { getStreamer().emitZeros(Field.Offset - Offset); Offset = Field.Offset + Field.SizeOf; if (emitFieldValue(Field)) return true; } // Add final padding. if (Offset != Structure.Size) getStreamer().emitZeros(Structure.Size - Offset); return false; } // Set data values from initializers. bool MasmParser::emitStructValues(const StructInfo &Structure, unsigned *Count) { std::vector Initializers; if (parseStructInstList(Structure, Initializers)) return true; for (const auto &Initializer : Initializers) { if (emitStructInitializer(Structure, Initializer)) return true; } if (Count) *Count = Initializers.size(); return false; } // Declare a field in the current struct. bool MasmParser::addStructField(StringRef Name, const StructInfo &Structure) { StructInfo &OwningStruct = StructInProgress.back(); FieldInfo &Field = OwningStruct.addField(Name, FT_STRUCT, Structure.AlignmentSize); StructFieldInfo &StructInfo = Field.Contents.StructInfo; StructInfo.Structure = Structure; Field.Type = Structure.Size; if (parseStructInstList(Structure, StructInfo.Initializers)) return true; Field.LengthOf = StructInfo.Initializers.size(); Field.SizeOf = Field.Type * Field.LengthOf; const unsigned FieldEnd = Field.Offset + Field.SizeOf; if (!OwningStruct.IsUnion) { OwningStruct.NextOffset = FieldEnd; } OwningStruct.Size = std::max(OwningStruct.Size, FieldEnd); return false; } /// parseDirectiveStructValue /// ::= struct-id ( | {struct-initializer}) /// [, ( | {struct-initializer})]* bool MasmParser::parseDirectiveStructValue(const StructInfo &Structure, StringRef Directive, SMLoc DirLoc) { if (StructInProgress.empty()) { if (emitStructValues(Structure)) return true; } else if (addStructField("", Structure)) { return addErrorSuffix(" in '" + Twine(Directive) + "' directive"); } return false; } /// parseDirectiveNamedValue /// ::= name (byte | word | ... ) [ expression (, expression)* ] bool MasmParser::parseDirectiveNamedStructValue(const StructInfo &Structure, StringRef Directive, SMLoc DirLoc, StringRef Name) { if (StructInProgress.empty()) { // Initialize named data value. MCSymbol *Sym = getContext().getOrCreateSymbol(Name); getStreamer().emitLabel(Sym); unsigned Count; if (emitStructValues(Structure, &Count)) return true; AsmTypeInfo Type; Type.Name = Structure.Name; Type.Size = Structure.Size * Count; Type.ElementSize = Structure.Size; Type.Length = Count; KnownType[Name.lower()] = Type; } else if (addStructField(Name, Structure)) { return addErrorSuffix(" in '" + Twine(Directive) + "' directive"); } return false; } /// parseDirectiveStruct /// ::= (STRUC | STRUCT | UNION) [fieldAlign] [, NONUNIQUE] /// (dataDir | generalDir | offsetDir | nestedStruct)+ /// ENDS ////// dataDir = data declaration ////// offsetDir = EVEN, ORG, ALIGN bool MasmParser::parseDirectiveStruct(StringRef Directive, DirectiveKind DirKind, StringRef Name, SMLoc NameLoc) { // We ignore NONUNIQUE; we do not support OPTION M510 or OPTION OLDSTRUCTS // anyway, so all field accesses must be qualified. AsmToken NextTok = getTok(); int64_t AlignmentValue = 1; if (NextTok.isNot(AsmToken::Comma) && NextTok.isNot(AsmToken::EndOfStatement) && parseAbsoluteExpression(AlignmentValue)) { return addErrorSuffix(" in alignment value for '" + Twine(Directive) + "' directive"); } if (!isPowerOf2_64(AlignmentValue)) { return Error(NextTok.getLoc(), "alignment must be a power of two; was " + std::to_string(AlignmentValue)); } StringRef Qualifier; SMLoc QualifierLoc; if (parseOptionalToken(AsmToken::Comma)) { QualifierLoc = getTok().getLoc(); if (parseIdentifier(Qualifier)) return addErrorSuffix(" in '" + Twine(Directive) + "' directive"); if (!Qualifier.equals_insensitive("nonunique")) return Error(QualifierLoc, "Unrecognized qualifier for '" + Twine(Directive) + "' directive; expected none or NONUNIQUE"); } if (parseToken(AsmToken::EndOfStatement)) return addErrorSuffix(" in '" + Twine(Directive) + "' directive"); StructInProgress.emplace_back(Name, DirKind == DK_UNION, AlignmentValue); return false; } /// parseDirectiveNestedStruct /// ::= (STRUC | STRUCT | UNION) [name] /// (dataDir | generalDir | offsetDir | nestedStruct)+ /// ENDS bool MasmParser::parseDirectiveNestedStruct(StringRef Directive, DirectiveKind DirKind) { if (StructInProgress.empty()) return TokError("missing name in top-level '" + Twine(Directive) + "' directive"); StringRef Name; if (getTok().is(AsmToken::Identifier)) { Name = getTok().getIdentifier(); parseToken(AsmToken::Identifier); } if (parseToken(AsmToken::EndOfStatement)) return addErrorSuffix(" in '" + Twine(Directive) + "' directive"); // Reserve space to ensure Alignment doesn't get invalidated when // StructInProgress grows. StructInProgress.reserve(StructInProgress.size() + 1); StructInProgress.emplace_back(Name, DirKind == DK_UNION, StructInProgress.back().Alignment); return false; } bool MasmParser::parseDirectiveEnds(StringRef Name, SMLoc NameLoc) { if (StructInProgress.empty()) return Error(NameLoc, "ENDS directive without matching STRUC/STRUCT/UNION"); if (StructInProgress.size() > 1) return Error(NameLoc, "unexpected name in nested ENDS directive"); if (StructInProgress.back().Name.compare_insensitive(Name)) return Error(NameLoc, "mismatched name in ENDS directive; expected '" + StructInProgress.back().Name + "'"); StructInfo Structure = StructInProgress.pop_back_val(); // Pad to make the structure's size divisible by the smaller of its alignment // and the size of its largest field. Structure.Size = llvm::alignTo( Structure.Size, std::min(Structure.Alignment, Structure.AlignmentSize)); Structs[Name.lower()] = Structure; if (parseToken(AsmToken::EndOfStatement)) return addErrorSuffix(" in ENDS directive"); return false; } bool MasmParser::parseDirectiveNestedEnds() { if (StructInProgress.empty()) return TokError("ENDS directive without matching STRUC/STRUCT/UNION"); if (StructInProgress.size() == 1) return TokError("missing name in top-level ENDS directive"); if (parseToken(AsmToken::EndOfStatement)) return addErrorSuffix(" in nested ENDS directive"); StructInfo Structure = StructInProgress.pop_back_val(); // Pad to make the structure's size divisible by its alignment. Structure.Size = llvm::alignTo(Structure.Size, Structure.Alignment); StructInfo &ParentStruct = StructInProgress.back(); if (Structure.Name.empty()) { // Anonymous substructures' fields are addressed as if they belong to the // parent structure - so we transfer them to the parent here. const size_t OldFields = ParentStruct.Fields.size(); ParentStruct.Fields.insert( ParentStruct.Fields.end(), std::make_move_iterator(Structure.Fields.begin()), std::make_move_iterator(Structure.Fields.end())); for (const auto &FieldByName : Structure.FieldsByName) { ParentStruct.FieldsByName[FieldByName.getKey()] = FieldByName.getValue() + OldFields; } unsigned FirstFieldOffset = 0; if (!Structure.Fields.empty() && !ParentStruct.IsUnion) { FirstFieldOffset = llvm::alignTo( ParentStruct.NextOffset, std::min(ParentStruct.Alignment, Structure.AlignmentSize)); } if (ParentStruct.IsUnion) { ParentStruct.Size = std::max(ParentStruct.Size, Structure.Size); } else { for (auto &Field : llvm::drop_begin(ParentStruct.Fields, OldFields)) Field.Offset += FirstFieldOffset; const unsigned StructureEnd = FirstFieldOffset + Structure.Size; if (!ParentStruct.IsUnion) { ParentStruct.NextOffset = StructureEnd; } ParentStruct.Size = std::max(ParentStruct.Size, StructureEnd); } } else { FieldInfo &Field = ParentStruct.addField(Structure.Name, FT_STRUCT, Structure.AlignmentSize); StructFieldInfo &StructInfo = Field.Contents.StructInfo; Field.Type = Structure.Size; Field.LengthOf = 1; Field.SizeOf = Structure.Size; const unsigned StructureEnd = Field.Offset + Field.SizeOf; if (!ParentStruct.IsUnion) { ParentStruct.NextOffset = StructureEnd; } ParentStruct.Size = std::max(ParentStruct.Size, StructureEnd); StructInfo.Structure = Structure; StructInfo.Initializers.emplace_back(); auto &FieldInitializers = StructInfo.Initializers.back().FieldInitializers; for (const auto &SubField : Structure.Fields) { FieldInitializers.push_back(SubField.Contents); } } return false; } /// parseDirectiveOrg /// ::= org expression bool MasmParser::parseDirectiveOrg() { const MCExpr *Offset; SMLoc OffsetLoc = Lexer.getLoc(); if (checkForValidSection() || parseExpression(Offset)) return true; if (parseToken(AsmToken::EndOfStatement)) return addErrorSuffix(" in 'org' directive"); if (StructInProgress.empty()) { // Not in a struct; change the offset for the next instruction or data if (checkForValidSection()) return addErrorSuffix(" in 'org' directive"); getStreamer().emitValueToOffset(Offset, 0, OffsetLoc); } else { // Offset the next field of this struct StructInfo &Structure = StructInProgress.back(); int64_t OffsetRes; if (!Offset->evaluateAsAbsolute(OffsetRes, getStreamer().getAssemblerPtr())) return Error(OffsetLoc, "expected absolute expression in 'org' directive"); if (OffsetRes < 0) return Error( OffsetLoc, "expected non-negative value in struct's 'org' directive; was " + std::to_string(OffsetRes)); Structure.NextOffset = static_cast(OffsetRes); // ORG-affected structures cannot be initialized Structure.Initializable = false; } return false; } bool MasmParser::emitAlignTo(int64_t Alignment) { if (StructInProgress.empty()) { // Not in a struct; align the next instruction or data if (checkForValidSection()) return true; // Check whether we should use optimal code alignment for this align // directive. const MCSection *Section = getStreamer().getCurrentSectionOnly(); assert(Section && "must have section to emit alignment"); if (Section->useCodeAlign()) { getStreamer().emitCodeAlignment(Align(Alignment), &getTargetParser().getSTI(), /*MaxBytesToEmit=*/0); } else { // FIXME: Target specific behavior about how the "extra" bytes are filled. getStreamer().emitValueToAlignment(Align(Alignment), /*Value=*/0, /*ValueSize=*/1, /*MaxBytesToEmit=*/0); } } else { // Align the next field of this struct StructInfo &Structure = StructInProgress.back(); Structure.NextOffset = llvm::alignTo(Structure.NextOffset, Alignment); } return false; } /// parseDirectiveAlign /// ::= align expression bool MasmParser::parseDirectiveAlign() { SMLoc AlignmentLoc = getLexer().getLoc(); int64_t Alignment; // Ignore empty 'align' directives. if (getTok().is(AsmToken::EndOfStatement)) { return Warning(AlignmentLoc, "align directive with no operand is ignored") && parseToken(AsmToken::EndOfStatement); } if (parseAbsoluteExpression(Alignment) || parseToken(AsmToken::EndOfStatement)) return addErrorSuffix(" in align directive"); // Always emit an alignment here even if we throw an error. bool ReturnVal = false; // Reject alignments that aren't either a power of two or zero, for ML.exe // compatibility. Alignment of zero is silently rounded up to one. if (Alignment == 0) Alignment = 1; if (!isPowerOf2_64(Alignment)) ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2; was " + std::to_string(Alignment)); if (emitAlignTo(Alignment)) ReturnVal |= addErrorSuffix(" in align directive"); return ReturnVal; } /// parseDirectiveEven /// ::= even bool MasmParser::parseDirectiveEven() { if (parseToken(AsmToken::EndOfStatement) || emitAlignTo(2)) return addErrorSuffix(" in even directive"); return false; } /// parseDirectiveFile /// ::= .file filename /// ::= .file number [directory] filename [md5 checksum] [source source-text] bool MasmParser::parseDirectiveFile(SMLoc DirectiveLoc) { // FIXME: I'm not sure what this is. int64_t FileNumber = -1; if (getLexer().is(AsmToken::Integer)) { FileNumber = getTok().getIntVal(); Lex(); if (FileNumber < 0) return TokError("negative file number"); } std::string Path; // Usually the directory and filename together, otherwise just the directory. // Allow the strings to have escaped octal character sequence. if (check(getTok().isNot(AsmToken::String), "unexpected token in '.file' directive") || parseEscapedString(Path)) return true; StringRef Directory; StringRef Filename; std::string FilenameData; if (getLexer().is(AsmToken::String)) { if (check(FileNumber == -1, "explicit path specified, but no file number") || parseEscapedString(FilenameData)) return true; Filename = FilenameData; Directory = Path; } else { Filename = Path; } uint64_t MD5Hi, MD5Lo; bool HasMD5 = false; std::optional Source; bool HasSource = false; std::string SourceString; while (!parseOptionalToken(AsmToken::EndOfStatement)) { StringRef Keyword; if (check(getTok().isNot(AsmToken::Identifier), "unexpected token in '.file' directive") || parseIdentifier(Keyword)) return true; if (Keyword == "md5") { HasMD5 = true; if (check(FileNumber == -1, "MD5 checksum specified, but no file number") || parseHexOcta(*this, MD5Hi, MD5Lo)) return true; } else if (Keyword == "source") { HasSource = true; if (check(FileNumber == -1, "source specified, but no file number") || check(getTok().isNot(AsmToken::String), "unexpected token in '.file' directive") || parseEscapedString(SourceString)) return true; } else { return TokError("unexpected token in '.file' directive"); } } if (FileNumber == -1) { // Ignore the directive if there is no number and the target doesn't support // numberless .file directives. This allows some portability of assembler // between different object file formats. if (getContext().getAsmInfo()->hasSingleParameterDotFile()) getStreamer().emitFileDirective(Filename); } else { // In case there is a -g option as well as debug info from directive .file, // we turn off the -g option, directly use the existing debug info instead. // Throw away any implicit file table for the assembler source. if (Ctx.getGenDwarfForAssembly()) { Ctx.getMCDwarfLineTable(0).resetFileTable(); Ctx.setGenDwarfForAssembly(false); } std::optional CKMem; if (HasMD5) { MD5::MD5Result Sum; for (unsigned i = 0; i != 8; ++i) { Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8)); Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8)); } CKMem = Sum; } if (HasSource) { char *SourceBuf = static_cast(Ctx.allocate(SourceString.size())); memcpy(SourceBuf, SourceString.data(), SourceString.size()); Source = StringRef(SourceBuf, SourceString.size()); } if (FileNumber == 0) { if (Ctx.getDwarfVersion() < 5) return Warning(DirectiveLoc, "file 0 not supported prior to DWARF-5"); getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source); } else { Expected FileNumOrErr = getStreamer().tryEmitDwarfFileDirective( FileNumber, Directory, Filename, CKMem, Source); if (!FileNumOrErr) return Error(DirectiveLoc, toString(FileNumOrErr.takeError())); } // Alert the user if there are some .file directives with MD5 and some not. // But only do that once. if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) { ReportedInconsistentMD5 = true; return Warning(DirectiveLoc, "inconsistent use of MD5 checksums"); } } return false; } /// parseDirectiveLine /// ::= .line [number] bool MasmParser::parseDirectiveLine() { int64_t LineNumber; if (getLexer().is(AsmToken::Integer)) { if (parseIntToken(LineNumber, "unexpected token in '.line' directive")) return true; (void)LineNumber; // FIXME: Do something with the .line. } if (parseEOL()) return true; return false; } /// parseDirectiveLoc /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end] /// [epilogue_begin] [is_stmt VALUE] [isa VALUE] /// The first number is a file number, must have been previously assigned with /// a .file directive, the second number is the line number and optionally the /// third number is a column position (zero if not specified). The remaining /// optional items are .loc sub-directives. bool MasmParser::parseDirectiveLoc() { int64_t FileNumber = 0, LineNumber = 0; SMLoc Loc = getTok().getLoc(); if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") || check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc, "file number less than one in '.loc' directive") || check(!getContext().isValidDwarfFileNumber(FileNumber), Loc, "unassigned file number in '.loc' directive")) return true; // optional if (getLexer().is(AsmToken::Integer)) { LineNumber = getTok().getIntVal(); if (LineNumber < 0) return TokError("line number less than zero in '.loc' directive"); Lex(); } int64_t ColumnPos = 0; if (getLexer().is(AsmToken::Integer)) { ColumnPos = getTok().getIntVal(); if (ColumnPos < 0) return TokError("column position less than zero in '.loc' directive"); Lex(); } auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags(); unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT; unsigned Isa = 0; int64_t Discriminator = 0; auto parseLocOp = [&]() -> bool { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) return TokError("unexpected token in '.loc' directive"); if (Name == "basic_block") Flags |= DWARF2_FLAG_BASIC_BLOCK; else if (Name == "prologue_end") Flags |= DWARF2_FLAG_PROLOGUE_END; else if (Name == "epilogue_begin") Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; else if (Name == "is_stmt") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) return true; // The expression must be the constant 0 or 1. if (const MCConstantExpr *MCE = dyn_cast(Value)) { int Value = MCE->getValue(); if (Value == 0) Flags &= ~DWARF2_FLAG_IS_STMT; else if (Value == 1) Flags |= DWARF2_FLAG_IS_STMT; else return Error(Loc, "is_stmt value not 0 or 1"); } else { return Error(Loc, "is_stmt value not the constant value of 0 or 1"); } } else if (Name == "isa") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) return true; // The expression must be a constant greater or equal to 0. if (const MCConstantExpr *MCE = dyn_cast(Value)) { int Value = MCE->getValue(); if (Value < 0) return Error(Loc, "isa number less than zero"); Isa = Value; } else { return Error(Loc, "isa number not a constant value"); } } else if (Name == "discriminator") { if (parseAbsoluteExpression(Discriminator)) return true; } else { return Error(Loc, "unknown sub-directive in '.loc' directive"); } return false; }; if (parseMany(parseLocOp, false /*hasComma*/)) return true; getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags, Isa, Discriminator, StringRef()); return false; } /// parseDirectiveStabs /// ::= .stabs string, number, number, number bool MasmParser::parseDirectiveStabs() { return TokError("unsupported directive '.stabs'"); } /// parseDirectiveCVFile /// ::= .cv_file number filename [checksum] [checksumkind] bool MasmParser::parseDirectiveCVFile() { SMLoc FileNumberLoc = getTok().getLoc(); int64_t FileNumber; std::string Filename; std::string Checksum; int64_t ChecksumKind = 0; if (parseIntToken(FileNumber, "expected file number in '.cv_file' directive") || check(FileNumber < 1, FileNumberLoc, "file number less than one") || check(getTok().isNot(AsmToken::String), "unexpected token in '.cv_file' directive") || parseEscapedString(Filename)) return true; if (!parseOptionalToken(AsmToken::EndOfStatement)) { if (check(getTok().isNot(AsmToken::String), "unexpected token in '.cv_file' directive") || parseEscapedString(Checksum) || parseIntToken(ChecksumKind, "expected checksum kind in '.cv_file' directive") || parseEOL()) return true; } Checksum = fromHex(Checksum); void *CKMem = Ctx.allocate(Checksum.size(), 1); memcpy(CKMem, Checksum.data(), Checksum.size()); ArrayRef ChecksumAsBytes(reinterpret_cast(CKMem), Checksum.size()); if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes, static_cast(ChecksumKind))) return Error(FileNumberLoc, "file number already allocated"); return false; } bool MasmParser::parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName) { SMLoc Loc; return parseTokenLoc(Loc) || parseIntToken(FunctionId, "expected function id in '" + DirectiveName + "' directive") || check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc, "expected function id within range [0, UINT_MAX)"); } bool MasmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) { SMLoc Loc; return parseTokenLoc(Loc) || parseIntToken(FileNumber, "expected integer in '" + DirectiveName + "' directive") || check(FileNumber < 1, Loc, "file number less than one in '" + DirectiveName + "' directive") || check(!getCVContext().isValidFileNumber(FileNumber), Loc, "unassigned file number in '" + DirectiveName + "' directive"); } /// parseDirectiveCVFuncId /// ::= .cv_func_id FunctionId /// /// Introduces a function ID that can be used with .cv_loc. bool MasmParser::parseDirectiveCVFuncId() { SMLoc FunctionIdLoc = getTok().getLoc(); int64_t FunctionId; if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL()) return true; if (!getStreamer().emitCVFuncIdDirective(FunctionId)) return Error(FunctionIdLoc, "function id already allocated"); return false; } /// parseDirectiveCVInlineSiteId /// ::= .cv_inline_site_id FunctionId /// "within" IAFunc /// "inlined_at" IAFile IALine [IACol] /// /// Introduces a function ID that can be used with .cv_loc. Includes "inlined /// at" source location information for use in the line table of the caller, /// whether the caller is a real function or another inlined call site. bool MasmParser::parseDirectiveCVInlineSiteId() { SMLoc FunctionIdLoc = getTok().getLoc(); int64_t FunctionId; int64_t IAFunc; int64_t IAFile; int64_t IALine; int64_t IACol = 0; // FunctionId if (parseCVFunctionId(FunctionId, ".cv_inline_site_id")) return true; // "within" if (check((getLexer().isNot(AsmToken::Identifier) || getTok().getIdentifier() != "within"), "expected 'within' identifier in '.cv_inline_site_id' directive")) return true; Lex(); // IAFunc if (parseCVFunctionId(IAFunc, ".cv_inline_site_id")) return true; // "inlined_at" if (check((getLexer().isNot(AsmToken::Identifier) || getTok().getIdentifier() != "inlined_at"), "expected 'inlined_at' identifier in '.cv_inline_site_id' " "directive") ) return true; Lex(); // IAFile IALine if (parseCVFileId(IAFile, ".cv_inline_site_id") || parseIntToken(IALine, "expected line number after 'inlined_at'")) return true; // [IACol] if (getLexer().is(AsmToken::Integer)) { IACol = getTok().getIntVal(); Lex(); } if (parseEOL()) return true; if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile, IALine, IACol, FunctionIdLoc)) return Error(FunctionIdLoc, "function id already allocated"); return false; } /// parseDirectiveCVLoc /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end] /// [is_stmt VALUE] /// The first number is a file number, must have been previously assigned with /// a .file directive, the second number is the line number and optionally the /// third number is a column position (zero if not specified). The remaining /// optional items are .loc sub-directives. bool MasmParser::parseDirectiveCVLoc() { SMLoc DirectiveLoc = getTok().getLoc(); int64_t FunctionId, FileNumber; if (parseCVFunctionId(FunctionId, ".cv_loc") || parseCVFileId(FileNumber, ".cv_loc")) return true; int64_t LineNumber = 0; if (getLexer().is(AsmToken::Integer)) { LineNumber = getTok().getIntVal(); if (LineNumber < 0) return TokError("line number less than zero in '.cv_loc' directive"); Lex(); } int64_t ColumnPos = 0; if (getLexer().is(AsmToken::Integer)) { ColumnPos = getTok().getIntVal(); if (ColumnPos < 0) return TokError("column position less than zero in '.cv_loc' directive"); Lex(); } bool PrologueEnd = false; uint64_t IsStmt = 0; auto parseOp = [&]() -> bool { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) return TokError("unexpected token in '.cv_loc' directive"); if (Name == "prologue_end") PrologueEnd = true; else if (Name == "is_stmt") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) return true; // The expression must be the constant 0 or 1. IsStmt = ~0ULL; if (const auto *MCE = dyn_cast(Value)) IsStmt = MCE->getValue(); if (IsStmt > 1) return Error(Loc, "is_stmt value not 0 or 1"); } else { return Error(Loc, "unknown sub-directive in '.cv_loc' directive"); } return false; }; if (parseMany(parseOp, false /*hasComma*/)) return true; getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber, ColumnPos, PrologueEnd, IsStmt, StringRef(), DirectiveLoc); return false; } /// parseDirectiveCVLinetable /// ::= .cv_linetable FunctionId, FnStart, FnEnd bool MasmParser::parseDirectiveCVLinetable() { int64_t FunctionId; StringRef FnStartName, FnEndName; SMLoc Loc = getTok().getLoc(); if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseToken(AsmToken::Comma, "unexpected token in '.cv_linetable' directive") || parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc, "expected identifier in directive") || parseToken(AsmToken::Comma, "unexpected token in '.cv_linetable' directive") || parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc, "expected identifier in directive")) return true; MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym); return false; } /// parseDirectiveCVInlineLinetable /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd bool MasmParser::parseDirectiveCVInlineLinetable() { int64_t PrimaryFunctionId, SourceFileId, SourceLineNum; StringRef FnStartName, FnEndName; SMLoc Loc = getTok().getLoc(); if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") || parseTokenLoc(Loc) || parseIntToken( SourceFileId, "expected SourceField in '.cv_inline_linetable' directive") || check(SourceFileId <= 0, Loc, "File id less than zero in '.cv_inline_linetable' directive") || parseTokenLoc(Loc) || parseIntToken( SourceLineNum, "expected SourceLineNum in '.cv_inline_linetable' directive") || check(SourceLineNum < 0, Loc, "Line number less than zero in '.cv_inline_linetable' directive") || parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc, "expected identifier in directive") || parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc, "expected identifier in directive")) return true; if (parseEOL()) return true; MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId, SourceLineNum, FnStartSym, FnEndSym); return false; } void MasmParser::initializeCVDefRangeTypeMap() { CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER; CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL; CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER; CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL; } /// parseDirectiveCVDefRange /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes* bool MasmParser::parseDirectiveCVDefRange() { SMLoc Loc; std::vector> Ranges; while (getLexer().is(AsmToken::Identifier)) { Loc = getLexer().getLoc(); StringRef GapStartName; if (parseIdentifier(GapStartName)) return Error(Loc, "expected identifier in directive"); MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName); Loc = getLexer().getLoc(); StringRef GapEndName; if (parseIdentifier(GapEndName)) return Error(Loc, "expected identifier in directive"); MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName); Ranges.push_back({GapStartSym, GapEndSym}); } StringRef CVDefRangeTypeStr; if (parseToken( AsmToken::Comma, "expected comma before def_range type in .cv_def_range directive") || parseIdentifier(CVDefRangeTypeStr)) return Error(Loc, "expected def_range type in directive"); StringMap::const_iterator CVTypeIt = CVDefRangeTypeMap.find(CVDefRangeTypeStr); CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end()) ? CVDR_DEFRANGE : CVTypeIt->getValue(); switch (CVDRType) { case CVDR_DEFRANGE_REGISTER: { int64_t DRRegister; if (parseToken(AsmToken::Comma, "expected comma before register number in " ".cv_def_range directive") || parseAbsoluteExpression(DRRegister)) return Error(Loc, "expected register number"); codeview::DefRangeRegisterHeader DRHdr; DRHdr.Register = DRRegister; DRHdr.MayHaveNoName = 0; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } case CVDR_DEFRANGE_FRAMEPOINTER_REL: { int64_t DROffset; if (parseToken(AsmToken::Comma, "expected comma before offset in .cv_def_range directive") || parseAbsoluteExpression(DROffset)) return Error(Loc, "expected offset value"); codeview::DefRangeFramePointerRelHeader DRHdr; DRHdr.Offset = DROffset; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } case CVDR_DEFRANGE_SUBFIELD_REGISTER: { int64_t DRRegister; int64_t DROffsetInParent; if (parseToken(AsmToken::Comma, "expected comma before register number in " ".cv_def_range directive") || parseAbsoluteExpression(DRRegister)) return Error(Loc, "expected register number"); if (parseToken(AsmToken::Comma, "expected comma before offset in .cv_def_range directive") || parseAbsoluteExpression(DROffsetInParent)) return Error(Loc, "expected offset value"); codeview::DefRangeSubfieldRegisterHeader DRHdr; DRHdr.Register = DRRegister; DRHdr.MayHaveNoName = 0; DRHdr.OffsetInParent = DROffsetInParent; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } case CVDR_DEFRANGE_REGISTER_REL: { int64_t DRRegister; int64_t DRFlags; int64_t DRBasePointerOffset; if (parseToken(AsmToken::Comma, "expected comma before register number in " ".cv_def_range directive") || parseAbsoluteExpression(DRRegister)) return Error(Loc, "expected register value"); if (parseToken( AsmToken::Comma, "expected comma before flag value in .cv_def_range directive") || parseAbsoluteExpression(DRFlags)) return Error(Loc, "expected flag value"); if (parseToken(AsmToken::Comma, "expected comma before base pointer offset " "in .cv_def_range directive") || parseAbsoluteExpression(DRBasePointerOffset)) return Error(Loc, "expected base pointer offset value"); codeview::DefRangeRegisterRelHeader DRHdr; DRHdr.Register = DRRegister; DRHdr.Flags = DRFlags; DRHdr.BasePointerOffset = DRBasePointerOffset; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } default: return Error(Loc, "unexpected def_range type in .cv_def_range directive"); } return true; } /// parseDirectiveCVString /// ::= .cv_stringtable "string" bool MasmParser::parseDirectiveCVString() { std::string Data; if (checkForValidSection() || parseEscapedString(Data)) return addErrorSuffix(" in '.cv_string' directive"); // Put the string in the table and emit the offset. std::pair Insertion = getCVContext().addToStringTable(Data); getStreamer().emitIntValue(Insertion.second, 4); return false; } /// parseDirectiveCVStringTable /// ::= .cv_stringtable bool MasmParser::parseDirectiveCVStringTable() { getStreamer().emitCVStringTableDirective(); return false; } /// parseDirectiveCVFileChecksums /// ::= .cv_filechecksums bool MasmParser::parseDirectiveCVFileChecksums() { getStreamer().emitCVFileChecksumsDirective(); return false; } /// parseDirectiveCVFileChecksumOffset /// ::= .cv_filechecksumoffset fileno bool MasmParser::parseDirectiveCVFileChecksumOffset() { int64_t FileNo; if (parseIntToken(FileNo, "expected identifier in directive")) return true; if (parseEOL()) return true; getStreamer().emitCVFileChecksumOffsetDirective(FileNo); return false; } /// parseDirectiveCVFPOData /// ::= .cv_fpo_data procsym bool MasmParser::parseDirectiveCVFPOData() { SMLoc DirLoc = getLexer().getLoc(); StringRef ProcName; if (parseIdentifier(ProcName)) return TokError("expected symbol name"); if (parseEOL("unexpected tokens")) return addErrorSuffix(" in '.cv_fpo_data' directive"); MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName); getStreamer().emitCVFPOData(ProcSym, DirLoc); return false; } /// parseDirectiveCFISections /// ::= .cfi_sections section [, section] bool MasmParser::parseDirectiveCFISections() { StringRef Name; bool EH = false; bool Debug = false; if (parseIdentifier(Name)) return TokError("Expected an identifier"); if (Name == ".eh_frame") EH = true; else if (Name == ".debug_frame") Debug = true; if (getLexer().is(AsmToken::Comma)) { Lex(); if (parseIdentifier(Name)) return TokError("Expected an identifier"); if (Name == ".eh_frame") EH = true; else if (Name == ".debug_frame") Debug = true; } getStreamer().emitCFISections(EH, Debug); return false; } /// parseDirectiveCFIStartProc /// ::= .cfi_startproc [simple] bool MasmParser::parseDirectiveCFIStartProc() { StringRef Simple; if (!parseOptionalToken(AsmToken::EndOfStatement)) { if (check(parseIdentifier(Simple) || Simple != "simple", "unexpected token") || parseToken(AsmToken::EndOfStatement)) return addErrorSuffix(" in '.cfi_startproc' directive"); } // TODO(kristina): Deal with a corner case of incorrect diagnostic context // being produced if this directive is emitted as part of preprocessor macro // expansion which can *ONLY* happen if Clang's cc1as is the API consumer. // Tools like llvm-mc on the other hand are not affected by it, and report // correct context information. getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc()); return false; } /// parseDirectiveCFIEndProc /// ::= .cfi_endproc bool MasmParser::parseDirectiveCFIEndProc() { getStreamer().emitCFIEndProc(); return false; } /// parse register name or number. bool MasmParser::parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc) { MCRegister RegNo; if (getLexer().isNot(AsmToken::Integer)) { if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc)) return true; Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true); } else return parseAbsoluteExpression(Register); return false; } /// parseDirectiveCFIDefCfa /// ::= .cfi_def_cfa register, offset bool MasmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) { int64_t Register = 0, Offset = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseToken(AsmToken::Comma, "unexpected token in directive") || parseAbsoluteExpression(Offset)) return true; getStreamer().emitCFIDefCfa(Register, Offset); return false; } /// parseDirectiveCFIDefCfaOffset /// ::= .cfi_def_cfa_offset offset bool MasmParser::parseDirectiveCFIDefCfaOffset() { int64_t Offset = 0; if (parseAbsoluteExpression(Offset)) return true; getStreamer().emitCFIDefCfaOffset(Offset); return false; } /// parseDirectiveCFIRegister /// ::= .cfi_register register, register bool MasmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) { int64_t Register1 = 0, Register2 = 0; if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseToken(AsmToken::Comma, "unexpected token in directive") || parseRegisterOrRegisterNumber(Register2, DirectiveLoc)) return true; getStreamer().emitCFIRegister(Register1, Register2); return false; } /// parseDirectiveCFIWindowSave /// ::= .cfi_window_save bool MasmParser::parseDirectiveCFIWindowSave() { getStreamer().emitCFIWindowSave(); return false; } /// parseDirectiveCFIAdjustCfaOffset /// ::= .cfi_adjust_cfa_offset adjustment bool MasmParser::parseDirectiveCFIAdjustCfaOffset() { int64_t Adjustment = 0; if (parseAbsoluteExpression(Adjustment)) return true; getStreamer().emitCFIAdjustCfaOffset(Adjustment); return false; } /// parseDirectiveCFIDefCfaRegister /// ::= .cfi_def_cfa_register register bool MasmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().emitCFIDefCfaRegister(Register); return false; } /// parseDirectiveCFIOffset /// ::= .cfi_offset register, offset bool MasmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) { int64_t Register = 0; int64_t Offset = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseToken(AsmToken::Comma, "unexpected token in directive") || parseAbsoluteExpression(Offset)) return true; getStreamer().emitCFIOffset(Register, Offset); return false; } /// parseDirectiveCFIRelOffset /// ::= .cfi_rel_offset register, offset bool MasmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) { int64_t Register = 0, Offset = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseToken(AsmToken::Comma, "unexpected token in directive") || parseAbsoluteExpression(Offset)) return true; getStreamer().emitCFIRelOffset(Register, Offset); return false; } static bool isValidEncoding(int64_t Encoding) { if (Encoding & ~0xff) return false; if (Encoding == dwarf::DW_EH_PE_omit) return true; const unsigned Format = Encoding & 0xf; if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 && Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 && Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 && Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed) return false; const unsigned Application = Encoding & 0x70; if (Application != dwarf::DW_EH_PE_absptr && Application != dwarf::DW_EH_PE_pcrel) return false; return true; } /// parseDirectiveCFIPersonalityOrLsda /// IsPersonality true for cfi_personality, false for cfi_lsda /// ::= .cfi_personality encoding, [symbol_name] /// ::= .cfi_lsda encoding, [symbol_name] bool MasmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) { int64_t Encoding = 0; if (parseAbsoluteExpression(Encoding)) return true; if (Encoding == dwarf::DW_EH_PE_omit) return false; StringRef Name; if (check(!isValidEncoding(Encoding), "unsupported encoding.") || parseToken(AsmToken::Comma, "unexpected token in directive") || check(parseIdentifier(Name), "expected identifier in directive")) return true; MCSymbol *Sym = getContext().getOrCreateSymbol(Name); if (IsPersonality) getStreamer().emitCFIPersonality(Sym, Encoding); else getStreamer().emitCFILsda(Sym, Encoding); return false; } /// parseDirectiveCFIRememberState /// ::= .cfi_remember_state bool MasmParser::parseDirectiveCFIRememberState() { getStreamer().emitCFIRememberState(); return false; } /// parseDirectiveCFIRestoreState /// ::= .cfi_remember_state bool MasmParser::parseDirectiveCFIRestoreState() { getStreamer().emitCFIRestoreState(); return false; } /// parseDirectiveCFISameValue /// ::= .cfi_same_value register bool MasmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().emitCFISameValue(Register); return false; } /// parseDirectiveCFIRestore /// ::= .cfi_restore register bool MasmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().emitCFIRestore(Register); return false; } /// parseDirectiveCFIEscape /// ::= .cfi_escape expression[,...] bool MasmParser::parseDirectiveCFIEscape() { std::string Values; int64_t CurrValue; if (parseAbsoluteExpression(CurrValue)) return true; Values.push_back((uint8_t)CurrValue); while (getLexer().is(AsmToken::Comma)) { Lex(); if (parseAbsoluteExpression(CurrValue)) return true; Values.push_back((uint8_t)CurrValue); } getStreamer().emitCFIEscape(Values); return false; } /// parseDirectiveCFIReturnColumn /// ::= .cfi_return_column register bool MasmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().emitCFIReturnColumn(Register); return false; } /// parseDirectiveCFISignalFrame /// ::= .cfi_signal_frame bool MasmParser::parseDirectiveCFISignalFrame() { if (parseEOL()) return true; getStreamer().emitCFISignalFrame(); return false; } /// parseDirectiveCFIUndefined /// ::= .cfi_undefined register bool MasmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().emitCFIUndefined(Register); return false; } /// parseDirectiveMacro /// ::= name macro [parameters] /// ["LOCAL" identifiers] /// parameters ::= parameter [, parameter]* /// parameter ::= name ":" qualifier /// qualifier ::= "req" | "vararg" | "=" macro_argument bool MasmParser::parseDirectiveMacro(StringRef Name, SMLoc NameLoc) { MCAsmMacroParameters Parameters; while (getLexer().isNot(AsmToken::EndOfStatement)) { if (!Parameters.empty() && Parameters.back().Vararg) return Error(Lexer.getLoc(), "Vararg parameter '" + Parameters.back().Name + "' should be last in the list of parameters"); MCAsmMacroParameter Parameter; if (parseIdentifier(Parameter.Name)) return TokError("expected identifier in 'macro' directive"); // Emit an error if two (or more) named parameters share the same name. for (const MCAsmMacroParameter& CurrParam : Parameters) if (CurrParam.Name.equals_insensitive(Parameter.Name)) return TokError("macro '" + Name + "' has multiple parameters" " named '" + Parameter.Name + "'"); if (Lexer.is(AsmToken::Colon)) { Lex(); // consume ':' if (parseOptionalToken(AsmToken::Equal)) { // Default value SMLoc ParamLoc; ParamLoc = Lexer.getLoc(); if (parseMacroArgument(nullptr, Parameter.Value)) return true; } else { SMLoc QualLoc; StringRef Qualifier; QualLoc = Lexer.getLoc(); if (parseIdentifier(Qualifier)) return Error(QualLoc, "missing parameter qualifier for " "'" + Parameter.Name + "' in macro '" + Name + "'"); if (Qualifier.equals_insensitive("req")) Parameter.Required = true; else if (Qualifier.equals_insensitive("vararg")) Parameter.Vararg = true; else return Error(QualLoc, Qualifier + " is not a valid parameter qualifier for '" + Parameter.Name + "' in macro '" + Name + "'"); } } Parameters.push_back(std::move(Parameter)); if (getLexer().is(AsmToken::Comma)) Lex(); } // Eat just the end of statement. Lexer.Lex(); std::vector Locals; if (getTok().is(AsmToken::Identifier) && getTok().getIdentifier().equals_insensitive("local")) { Lex(); // Eat the LOCAL directive. StringRef ID; while (true) { if (parseIdentifier(ID)) return true; Locals.push_back(ID.lower()); // If we see a comma, continue (and allow line continuation). if (!parseOptionalToken(AsmToken::Comma)) break; parseOptionalToken(AsmToken::EndOfStatement); } } // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors. AsmToken EndToken, StartToken = getTok(); unsigned MacroDepth = 0; bool IsMacroFunction = false; // Lex the macro definition. while (true) { // Ignore Lexing errors in macros. while (Lexer.is(AsmToken::Error)) { Lexer.Lex(); } // Check whether we have reached the end of the file. if (getLexer().is(AsmToken::Eof)) return Error(NameLoc, "no matching 'endm' in definition"); // Otherwise, check whether we have reached the 'endm'... and determine if // this is a macro function. if (getLexer().is(AsmToken::Identifier)) { if (getTok().getIdentifier().equals_insensitive("endm")) { if (MacroDepth == 0) { // Outermost macro. EndToken = getTok(); Lexer.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in '" + EndToken.getIdentifier() + "' directive"); break; } else { // Otherwise we just found the end of an inner macro. --MacroDepth; } } else if (getTok().getIdentifier().equals_insensitive("exitm")) { if (MacroDepth == 0 && peekTok().isNot(AsmToken::EndOfStatement)) { IsMacroFunction = true; } } else if (isMacroLikeDirective()) { // We allow nested macros. Those aren't instantiated until the // outermost macro is expanded so just ignore them for now. ++MacroDepth; } } // Otherwise, scan til the end of the statement. eatToEndOfStatement(); } if (getContext().lookupMacro(Name.lower())) { return Error(NameLoc, "macro '" + Name + "' is already defined"); } const char *BodyStart = StartToken.getLoc().getPointer(); const char *BodyEnd = EndToken.getLoc().getPointer(); StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); MCAsmMacro Macro(Name, Body, std::move(Parameters), std::move(Locals), IsMacroFunction); DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n"; Macro.dump()); getContext().defineMacro(Name.lower(), std::move(Macro)); return false; } /// parseDirectiveExitMacro /// ::= "exitm" [textitem] bool MasmParser::parseDirectiveExitMacro(SMLoc DirectiveLoc, StringRef Directive, std::string &Value) { SMLoc EndLoc = getTok().getLoc(); if (getTok().isNot(AsmToken::EndOfStatement) && parseTextItem(Value)) return Error(EndLoc, "unable to parse text item in '" + Directive + "' directive"); eatToEndOfStatement(); if (!isInsideMacroInstantiation()) return TokError("unexpected '" + Directive + "' in file, " "no current macro definition"); // Exit all conditionals that are active in the current macro. while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) { TheCondState = TheCondStack.back(); TheCondStack.pop_back(); } handleMacroExit(); return false; } /// parseDirectiveEndMacro /// ::= endm bool MasmParser::parseDirectiveEndMacro(StringRef Directive) { if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in '" + Directive + "' directive"); // If we are inside a macro instantiation, terminate the current // instantiation. if (isInsideMacroInstantiation()) { handleMacroExit(); return false; } // Otherwise, this .endmacro is a stray entry in the file; well formed // .endmacro directives are handled during the macro definition parsing. return TokError("unexpected '" + Directive + "' in file, " "no current macro definition"); } /// parseDirectivePurgeMacro /// ::= purge identifier ( , identifier )* bool MasmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) { StringRef Name; while (true) { SMLoc NameLoc; if (parseTokenLoc(NameLoc) || check(parseIdentifier(Name), NameLoc, "expected identifier in 'purge' directive")) return true; DEBUG_WITH_TYPE("asm-macros", dbgs() << "Un-defining macro: " << Name << "\n"); if (!getContext().lookupMacro(Name.lower())) return Error(NameLoc, "macro '" + Name + "' is not defined"); getContext().undefineMacro(Name.lower()); if (!parseOptionalToken(AsmToken::Comma)) break; parseOptionalToken(AsmToken::EndOfStatement); } return false; } bool MasmParser::parseDirectiveExtern() { // .extern is the default - but we still need to take any provided type info. auto parseOp = [&]() -> bool { StringRef Name; SMLoc NameLoc = getTok().getLoc(); if (parseIdentifier(Name)) return Error(NameLoc, "expected name"); if (parseToken(AsmToken::Colon)) return true; StringRef TypeName; SMLoc TypeLoc = getTok().getLoc(); if (parseIdentifier(TypeName)) return Error(TypeLoc, "expected type"); if (!TypeName.equals_insensitive("proc")) { AsmTypeInfo Type; if (lookUpType(TypeName, Type)) return Error(TypeLoc, "unrecognized type"); KnownType[Name.lower()] = Type; } MCSymbol *Sym = getContext().getOrCreateSymbol(Name); Sym->setExternal(true); getStreamer().emitSymbolAttribute(Sym, MCSA_Extern); return false; }; if (parseMany(parseOp)) return addErrorSuffix(" in directive 'extern'"); return false; } /// parseDirectiveSymbolAttribute /// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ] bool MasmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) { auto parseOp = [&]() -> bool { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) return Error(Loc, "expected identifier"); MCSymbol *Sym = getContext().getOrCreateSymbol(Name); // Assembler local symbols don't make any sense here. Complain loudly. if (Sym->isTemporary()) return Error(Loc, "non-local symbol required"); if (!getStreamer().emitSymbolAttribute(Sym, Attr)) return Error(Loc, "unable to emit symbol attribute"); return false; }; if (parseMany(parseOp)) return addErrorSuffix(" in directive"); return false; } /// parseDirectiveComm /// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ] bool MasmParser::parseDirectiveComm(bool IsLocal) { if (checkForValidSection()) return true; SMLoc IDLoc = getLexer().getLoc(); StringRef Name; if (parseIdentifier(Name)) return TokError("expected identifier in directive"); // Handle the identifier as the key symbol. MCSymbol *Sym = getContext().getOrCreateSymbol(Name); if (getLexer().isNot(AsmToken::Comma)) return TokError("unexpected token in directive"); Lex(); int64_t Size; SMLoc SizeLoc = getLexer().getLoc(); if (parseAbsoluteExpression(Size)) return true; int64_t Pow2Alignment = 0; SMLoc Pow2AlignmentLoc; if (getLexer().is(AsmToken::Comma)) { Lex(); Pow2AlignmentLoc = getLexer().getLoc(); if (parseAbsoluteExpression(Pow2Alignment)) return true; LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType(); if (IsLocal && LCOMM == LCOMM::NoAlignment) return Error(Pow2AlignmentLoc, "alignment not supported on this target"); // If this target takes alignments in bytes (not log) validate and convert. if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) || (IsLocal && LCOMM == LCOMM::ByteAlignment)) { if (!isPowerOf2_64(Pow2Alignment)) return Error(Pow2AlignmentLoc, "alignment must be a power of 2"); Pow2Alignment = Log2_64(Pow2Alignment); } } if (parseEOL()) return true; // NOTE: a size of zero for a .comm should create a undefined symbol // but a size of .lcomm creates a bss symbol of size zero. if (Size < 0) return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't " "be less than zero"); // NOTE: The alignment in the directive is a power of 2 value, the assembler // may internally end up wanting an alignment in bytes. // FIXME: Diagnose overflow. if (Pow2Alignment < 0) return Error(Pow2AlignmentLoc, "invalid '.comm' or '.lcomm' directive " "alignment, can't be less than zero"); Sym->redefineIfPossible(); if (!Sym->isUndefined()) return Error(IDLoc, "invalid symbol redefinition"); // Create the Symbol as a common or local common with Size and Pow2Alignment. if (IsLocal) { getStreamer().emitLocalCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment)); return false; } getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment)); return false; } /// parseDirectiveComment /// ::= comment delimiter [[text]] /// [[text]] /// [[text]] delimiter [[text]] bool MasmParser::parseDirectiveComment(SMLoc DirectiveLoc) { std::string FirstLine = parseStringTo(AsmToken::EndOfStatement); size_t DelimiterEnd = FirstLine.find_first_of("\b\t\v\f\r\x1A "); StringRef Delimiter = StringRef(FirstLine).take_front(DelimiterEnd); if (Delimiter.empty()) return Error(DirectiveLoc, "no delimiter in 'comment' directive"); do { if (getTok().is(AsmToken::Eof)) return Error(DirectiveLoc, "unmatched delimiter in 'comment' directive"); Lex(); // eat end of statement } while ( !StringRef(parseStringTo(AsmToken::EndOfStatement)).contains(Delimiter)); return parseEOL(); } /// parseDirectiveInclude /// ::= include /// | include filename bool MasmParser::parseDirectiveInclude() { // Allow the strings to have escaped octal character sequence. std::string Filename; SMLoc IncludeLoc = getTok().getLoc(); if (parseAngleBracketString(Filename)) Filename = parseStringTo(AsmToken::EndOfStatement); if (check(Filename.empty(), "missing filename in 'include' directive") || check(getTok().isNot(AsmToken::EndOfStatement), "unexpected token in 'include' directive") || // Attempt to switch the lexer to the included file before consuming the // end of statement to avoid losing it when we switch. check(enterIncludeFile(Filename), IncludeLoc, "Could not find include file '" + Filename + "'")) return true; return false; } /// parseDirectiveIf /// ::= .if{,eq,ge,gt,le,lt,ne} expression bool MasmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { int64_t ExprValue; if (parseAbsoluteExpression(ExprValue) || parseEOL()) return true; switch (DirKind) { default: llvm_unreachable("unsupported directive"); case DK_IF: break; case DK_IFE: ExprValue = ExprValue == 0; break; } TheCondState.CondMet = ExprValue; TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfb /// ::= .ifb textitem bool MasmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { std::string Str; if (parseTextItem(Str)) return TokError("expected text item parameter for 'ifb' directive"); if (parseEOL()) return true; TheCondState.CondMet = ExpectBlank == Str.empty(); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfidn /// ::= ifidn textitem, textitem bool MasmParser::parseDirectiveIfidn(SMLoc DirectiveLoc, bool ExpectEqual, bool CaseInsensitive) { std::string String1, String2; if (parseTextItem(String1)) { if (ExpectEqual) return TokError("expected text item parameter for 'ifidn' directive"); return TokError("expected text item parameter for 'ifdif' directive"); } if (Lexer.isNot(AsmToken::Comma)) { if (ExpectEqual) return TokError( "expected comma after first string for 'ifidn' directive"); return TokError("expected comma after first string for 'ifdif' directive"); } Lex(); if (parseTextItem(String2)) { if (ExpectEqual) return TokError("expected text item parameter for 'ifidn' directive"); return TokError("expected text item parameter for 'ifdif' directive"); } TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (CaseInsensitive) TheCondState.CondMet = ExpectEqual == (StringRef(String1).equals_insensitive(String2)); else TheCondState.CondMet = ExpectEqual == (String1 == String2); TheCondState.Ignore = !TheCondState.CondMet; return false; } /// parseDirectiveIfdef /// ::= ifdef symbol /// | ifdef variable bool MasmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { bool is_defined = false; MCRegister Reg; SMLoc StartLoc, EndLoc; is_defined = (getTargetParser().tryParseRegister(Reg, StartLoc, EndLoc) == MatchOperand_Success); if (!is_defined) { StringRef Name; if (check(parseIdentifier(Name), "expected identifier after 'ifdef'") || parseEOL()) return true; if (BuiltinSymbolMap.find(Name.lower()) != BuiltinSymbolMap.end()) { is_defined = true; } else if (Variables.find(Name.lower()) != Variables.end()) { is_defined = true; } else { MCSymbol *Sym = getContext().lookupSymbol(Name.lower()); is_defined = (Sym && !Sym->isUndefined(false)); } } TheCondState.CondMet = (is_defined == expect_defined); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElseIf /// ::= elseif expression bool MasmParser::parseDirectiveElseIf(SMLoc DirectiveLoc, DirectiveKind DirKind) { if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an" " .if or an .elseif"); TheCondState.TheCond = AsmCond::ElseIfCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) { TheCondState.Ignore = true; eatToEndOfStatement(); } else { int64_t ExprValue; if (parseAbsoluteExpression(ExprValue)) return true; if (parseEOL()) return true; switch (DirKind) { default: llvm_unreachable("unsupported directive"); case DK_ELSEIF: break; case DK_ELSEIFE: ExprValue = ExprValue == 0; break; } TheCondState.CondMet = ExprValue; TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElseIfb /// ::= elseifb textitem bool MasmParser::parseDirectiveElseIfb(SMLoc DirectiveLoc, bool ExpectBlank) { if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) return Error(DirectiveLoc, "Encountered an elseif that doesn't follow an" " if or an elseif"); TheCondState.TheCond = AsmCond::ElseIfCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) { TheCondState.Ignore = true; eatToEndOfStatement(); } else { std::string Str; if (parseTextItem(Str)) { if (ExpectBlank) return TokError("expected text item parameter for 'elseifb' directive"); return TokError("expected text item parameter for 'elseifnb' directive"); } if (parseEOL()) return true; TheCondState.CondMet = ExpectBlank == Str.empty(); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElseIfdef /// ::= elseifdef symbol /// | elseifdef variable bool MasmParser::parseDirectiveElseIfdef(SMLoc DirectiveLoc, bool expect_defined) { if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) return Error(DirectiveLoc, "Encountered an elseif that doesn't follow an" " if or an elseif"); TheCondState.TheCond = AsmCond::ElseIfCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) { TheCondState.Ignore = true; eatToEndOfStatement(); } else { bool is_defined = false; MCRegister Reg; SMLoc StartLoc, EndLoc; is_defined = (getTargetParser().tryParseRegister(Reg, StartLoc, EndLoc) == MatchOperand_Success); if (!is_defined) { StringRef Name; if (check(parseIdentifier(Name), "expected identifier after 'elseifdef'") || parseEOL()) return true; if (BuiltinSymbolMap.find(Name.lower()) != BuiltinSymbolMap.end()) { is_defined = true; } else if (Variables.find(Name.lower()) != Variables.end()) { is_defined = true; } else { MCSymbol *Sym = getContext().lookupSymbol(Name); is_defined = (Sym && !Sym->isUndefined(false)); } } TheCondState.CondMet = (is_defined == expect_defined); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElseIfidn /// ::= elseifidn textitem, textitem bool MasmParser::parseDirectiveElseIfidn(SMLoc DirectiveLoc, bool ExpectEqual, bool CaseInsensitive) { if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) return Error(DirectiveLoc, "Encountered an elseif that doesn't follow an" " if or an elseif"); TheCondState.TheCond = AsmCond::ElseIfCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) { TheCondState.Ignore = true; eatToEndOfStatement(); } else { std::string String1, String2; if (parseTextItem(String1)) { if (ExpectEqual) return TokError( "expected text item parameter for 'elseifidn' directive"); return TokError("expected text item parameter for 'elseifdif' directive"); } if (Lexer.isNot(AsmToken::Comma)) { if (ExpectEqual) return TokError( "expected comma after first string for 'elseifidn' directive"); return TokError( "expected comma after first string for 'elseifdif' directive"); } Lex(); if (parseTextItem(String2)) { if (ExpectEqual) return TokError( "expected text item parameter for 'elseifidn' directive"); return TokError("expected text item parameter for 'elseifdif' directive"); } if (CaseInsensitive) TheCondState.CondMet = ExpectEqual == (StringRef(String1).equals_insensitive(String2)); else TheCondState.CondMet = ExpectEqual == (String1 == String2); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElse /// ::= else bool MasmParser::parseDirectiveElse(SMLoc DirectiveLoc) { if (parseEOL()) return true; if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) return Error(DirectiveLoc, "Encountered an else that doesn't follow an if" " or an elseif"); TheCondState.TheCond = AsmCond::ElseCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) TheCondState.Ignore = true; else TheCondState.Ignore = false; return false; } /// parseDirectiveEnd /// ::= end bool MasmParser::parseDirectiveEnd(SMLoc DirectiveLoc) { if (parseEOL()) return true; while (Lexer.isNot(AsmToken::Eof)) Lexer.Lex(); return false; } /// parseDirectiveError /// ::= .err [message] bool MasmParser::parseDirectiveError(SMLoc DirectiveLoc) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } std::string Message = ".err directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) Message = parseStringTo(AsmToken::EndOfStatement); Lex(); return Error(DirectiveLoc, Message); } /// parseDirectiveErrorIfb /// ::= .errb textitem[, message] bool MasmParser::parseDirectiveErrorIfb(SMLoc DirectiveLoc, bool ExpectBlank) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } std::string Text; if (parseTextItem(Text)) return Error(getTok().getLoc(), "missing text item in '.errb' directive"); std::string Message = ".errb directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) { if (parseToken(AsmToken::Comma)) return addErrorSuffix(" in '.errb' directive"); Message = parseStringTo(AsmToken::EndOfStatement); } Lex(); if (Text.empty() == ExpectBlank) return Error(DirectiveLoc, Message); return false; } /// parseDirectiveErrorIfdef /// ::= .errdef name[, message] bool MasmParser::parseDirectiveErrorIfdef(SMLoc DirectiveLoc, bool ExpectDefined) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } bool IsDefined = false; MCRegister Reg; SMLoc StartLoc, EndLoc; IsDefined = (getTargetParser().tryParseRegister(Reg, StartLoc, EndLoc) == MatchOperand_Success); if (!IsDefined) { StringRef Name; if (check(parseIdentifier(Name), "expected identifier after '.errdef'")) return true; if (BuiltinSymbolMap.find(Name.lower()) != BuiltinSymbolMap.end()) { IsDefined = true; } else if (Variables.find(Name.lower()) != Variables.end()) { IsDefined = true; } else { MCSymbol *Sym = getContext().lookupSymbol(Name); IsDefined = (Sym && !Sym->isUndefined(false)); } } std::string Message = ".errdef directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) { if (parseToken(AsmToken::Comma)) return addErrorSuffix(" in '.errdef' directive"); Message = parseStringTo(AsmToken::EndOfStatement); } Lex(); if (IsDefined == ExpectDefined) return Error(DirectiveLoc, Message); return false; } /// parseDirectiveErrorIfidn /// ::= .erridn textitem, textitem[, message] bool MasmParser::parseDirectiveErrorIfidn(SMLoc DirectiveLoc, bool ExpectEqual, bool CaseInsensitive) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } std::string String1, String2; if (parseTextItem(String1)) { if (ExpectEqual) return TokError("expected string parameter for '.erridn' directive"); return TokError("expected string parameter for '.errdif' directive"); } if (Lexer.isNot(AsmToken::Comma)) { if (ExpectEqual) return TokError( "expected comma after first string for '.erridn' directive"); return TokError( "expected comma after first string for '.errdif' directive"); } Lex(); if (parseTextItem(String2)) { if (ExpectEqual) return TokError("expected string parameter for '.erridn' directive"); return TokError("expected string parameter for '.errdif' directive"); } std::string Message; if (ExpectEqual) Message = ".erridn directive invoked in source file"; else Message = ".errdif directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) { if (parseToken(AsmToken::Comma)) return addErrorSuffix(" in '.erridn' directive"); Message = parseStringTo(AsmToken::EndOfStatement); } Lex(); if (CaseInsensitive) TheCondState.CondMet = ExpectEqual == (StringRef(String1).equals_insensitive(String2)); else TheCondState.CondMet = ExpectEqual == (String1 == String2); TheCondState.Ignore = !TheCondState.CondMet; if ((CaseInsensitive && ExpectEqual == StringRef(String1).equals_insensitive(String2)) || (ExpectEqual == (String1 == String2))) return Error(DirectiveLoc, Message); return false; } /// parseDirectiveErrorIfe /// ::= .erre expression[, message] bool MasmParser::parseDirectiveErrorIfe(SMLoc DirectiveLoc, bool ExpectZero) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } int64_t ExprValue; if (parseAbsoluteExpression(ExprValue)) return addErrorSuffix(" in '.erre' directive"); std::string Message = ".erre directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) { if (parseToken(AsmToken::Comma)) return addErrorSuffix(" in '.erre' directive"); Message = parseStringTo(AsmToken::EndOfStatement); } Lex(); if ((ExprValue == 0) == ExpectZero) return Error(DirectiveLoc, Message); return false; } /// parseDirectiveEndIf /// ::= .endif bool MasmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) { if (parseEOL()) return true; if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty()) return Error(DirectiveLoc, "Encountered a .endif that doesn't follow " "an .if or .else"); if (!TheCondStack.empty()) { TheCondState = TheCondStack.back(); TheCondStack.pop_back(); } return false; } void MasmParser::initializeDirectiveKindMap() { DirectiveKindMap["="] = DK_ASSIGN; DirectiveKindMap["equ"] = DK_EQU; DirectiveKindMap["textequ"] = DK_TEXTEQU; // DirectiveKindMap[".ascii"] = DK_ASCII; // DirectiveKindMap[".asciz"] = DK_ASCIZ; // DirectiveKindMap[".string"] = DK_STRING; DirectiveKindMap["byte"] = DK_BYTE; DirectiveKindMap["sbyte"] = DK_SBYTE; DirectiveKindMap["word"] = DK_WORD; DirectiveKindMap["sword"] = DK_SWORD; DirectiveKindMap["dword"] = DK_DWORD; DirectiveKindMap["sdword"] = DK_SDWORD; DirectiveKindMap["fword"] = DK_FWORD; DirectiveKindMap["qword"] = DK_QWORD; DirectiveKindMap["sqword"] = DK_SQWORD; DirectiveKindMap["real4"] = DK_REAL4; DirectiveKindMap["real8"] = DK_REAL8; DirectiveKindMap["real10"] = DK_REAL10; DirectiveKindMap["align"] = DK_ALIGN; DirectiveKindMap["even"] = DK_EVEN; DirectiveKindMap["org"] = DK_ORG; DirectiveKindMap["extern"] = DK_EXTERN; DirectiveKindMap["extrn"] = DK_EXTERN; DirectiveKindMap["public"] = DK_PUBLIC; // DirectiveKindMap[".comm"] = DK_COMM; DirectiveKindMap["comment"] = DK_COMMENT; DirectiveKindMap["include"] = DK_INCLUDE; DirectiveKindMap["repeat"] = DK_REPEAT; DirectiveKindMap["rept"] = DK_REPEAT; DirectiveKindMap["while"] = DK_WHILE; DirectiveKindMap["for"] = DK_FOR; DirectiveKindMap["irp"] = DK_FOR; DirectiveKindMap["forc"] = DK_FORC; DirectiveKindMap["irpc"] = DK_FORC; DirectiveKindMap["if"] = DK_IF; DirectiveKindMap["ife"] = DK_IFE; DirectiveKindMap["ifb"] = DK_IFB; DirectiveKindMap["ifnb"] = DK_IFNB; DirectiveKindMap["ifdef"] = DK_IFDEF; DirectiveKindMap["ifndef"] = DK_IFNDEF; DirectiveKindMap["ifdif"] = DK_IFDIF; DirectiveKindMap["ifdifi"] = DK_IFDIFI; DirectiveKindMap["ifidn"] = DK_IFIDN; DirectiveKindMap["ifidni"] = DK_IFIDNI; DirectiveKindMap["elseif"] = DK_ELSEIF; DirectiveKindMap["elseifdef"] = DK_ELSEIFDEF; DirectiveKindMap["elseifndef"] = DK_ELSEIFNDEF; DirectiveKindMap["elseifdif"] = DK_ELSEIFDIF; DirectiveKindMap["elseifidn"] = DK_ELSEIFIDN; DirectiveKindMap["else"] = DK_ELSE; DirectiveKindMap["end"] = DK_END; DirectiveKindMap["endif"] = DK_ENDIF; // DirectiveKindMap[".file"] = DK_FILE; // DirectiveKindMap[".line"] = DK_LINE; // DirectiveKindMap[".loc"] = DK_LOC; // DirectiveKindMap[".stabs"] = DK_STABS; // DirectiveKindMap[".cv_file"] = DK_CV_FILE; // DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID; // DirectiveKindMap[".cv_loc"] = DK_CV_LOC; // DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE; // DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE; // DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID; // DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE; // DirectiveKindMap[".cv_string"] = DK_CV_STRING; // DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE; // DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS; // DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET; // DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA; // DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS; // DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC; // DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC; // DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA; // DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET; // DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET; // DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER; // DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET; // DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET; // DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY; // DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA; // DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE; // DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE; // DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE; // DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE; // DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE; // DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN; // DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME; // DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED; // DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER; // DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE; // DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME; DirectiveKindMap["macro"] = DK_MACRO; DirectiveKindMap["exitm"] = DK_EXITM; DirectiveKindMap["endm"] = DK_ENDM; DirectiveKindMap["purge"] = DK_PURGE; DirectiveKindMap[".err"] = DK_ERR; DirectiveKindMap[".errb"] = DK_ERRB; DirectiveKindMap[".errnb"] = DK_ERRNB; DirectiveKindMap[".errdef"] = DK_ERRDEF; DirectiveKindMap[".errndef"] = DK_ERRNDEF; DirectiveKindMap[".errdif"] = DK_ERRDIF; DirectiveKindMap[".errdifi"] = DK_ERRDIFI; DirectiveKindMap[".erridn"] = DK_ERRIDN; DirectiveKindMap[".erridni"] = DK_ERRIDNI; DirectiveKindMap[".erre"] = DK_ERRE; DirectiveKindMap[".errnz"] = DK_ERRNZ; DirectiveKindMap[".pushframe"] = DK_PUSHFRAME; DirectiveKindMap[".pushreg"] = DK_PUSHREG; DirectiveKindMap[".savereg"] = DK_SAVEREG; DirectiveKindMap[".savexmm128"] = DK_SAVEXMM128; DirectiveKindMap[".setframe"] = DK_SETFRAME; DirectiveKindMap[".radix"] = DK_RADIX; DirectiveKindMap["db"] = DK_DB; DirectiveKindMap["dd"] = DK_DD; DirectiveKindMap["df"] = DK_DF; DirectiveKindMap["dq"] = DK_DQ; DirectiveKindMap["dw"] = DK_DW; DirectiveKindMap["echo"] = DK_ECHO; DirectiveKindMap["struc"] = DK_STRUCT; DirectiveKindMap["struct"] = DK_STRUCT; DirectiveKindMap["union"] = DK_UNION; DirectiveKindMap["ends"] = DK_ENDS; } bool MasmParser::isMacroLikeDirective() { if (getLexer().is(AsmToken::Identifier)) { bool IsMacroLike = StringSwitch(getTok().getIdentifier()) .CasesLower("repeat", "rept", true) .CaseLower("while", true) .CasesLower("for", "irp", true) .CasesLower("forc", "irpc", true) .Default(false); if (IsMacroLike) return true; } if (peekTok().is(AsmToken::Identifier) && peekTok().getIdentifier().equals_insensitive("macro")) return true; return false; } MCAsmMacro *MasmParser::parseMacroLikeBody(SMLoc DirectiveLoc) { AsmToken EndToken, StartToken = getTok(); unsigned NestLevel = 0; while (true) { // Check whether we have reached the end of the file. if (getLexer().is(AsmToken::Eof)) { printError(DirectiveLoc, "no matching 'endm' in definition"); return nullptr; } if (isMacroLikeDirective()) ++NestLevel; // Otherwise, check whether we have reached the endm. if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier().equals_insensitive("endm")) { if (NestLevel == 0) { EndToken = getTok(); Lex(); if (Lexer.isNot(AsmToken::EndOfStatement)) { printError(getTok().getLoc(), "unexpected token in 'endm' directive"); return nullptr; } break; } --NestLevel; } // Otherwise, scan till the end of the statement. eatToEndOfStatement(); } const char *BodyStart = StartToken.getLoc().getPointer(); const char *BodyEnd = EndToken.getLoc().getPointer(); StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); // We Are Anonymous. MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters()); return &MacroLikeBodies.back(); } bool MasmParser::expandStatement(SMLoc Loc) { std::string Body = parseStringTo(AsmToken::EndOfStatement); SMLoc EndLoc = getTok().getLoc(); MCAsmMacroParameters Parameters; MCAsmMacroArguments Arguments; StringMap BuiltinValues; for (const auto &S : BuiltinSymbolMap) { const BuiltinSymbol &Sym = S.getValue(); if (std::optional Text = evaluateBuiltinTextMacro(Sym, Loc)) { BuiltinValues[S.getKey().lower()] = std::move(*Text); } } for (const auto &B : BuiltinValues) { MCAsmMacroParameter P; MCAsmMacroArgument A; P.Name = B.getKey(); P.Required = true; A.push_back(AsmToken(AsmToken::String, B.getValue())); Parameters.push_back(std::move(P)); Arguments.push_back(std::move(A)); } for (const auto &V : Variables) { const Variable &Var = V.getValue(); if (Var.IsText) { MCAsmMacroParameter P; MCAsmMacroArgument A; P.Name = Var.Name; P.Required = true; A.push_back(AsmToken(AsmToken::String, Var.TextValue)); Parameters.push_back(std::move(P)); Arguments.push_back(std::move(A)); } } MacroLikeBodies.emplace_back(StringRef(), Body, Parameters); MCAsmMacro M = MacroLikeBodies.back(); // Expand the statement in a new buffer. SmallString<80> Buf; raw_svector_ostream OS(Buf); if (expandMacro(OS, M.Body, M.Parameters, Arguments, M.Locals, EndLoc)) return true; std::unique_ptr Expansion = MemoryBuffer::getMemBufferCopy(OS.str(), ""); // Jump to the expanded statement and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Expansion), EndLoc); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); EndStatementAtEOFStack.push_back(false); Lex(); return false; } void MasmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, raw_svector_ostream &OS) { instantiateMacroLikeBody(M, DirectiveLoc, /*ExitLoc=*/getTok().getLoc(), OS); } void MasmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, SMLoc ExitLoc, raw_svector_ostream &OS) { OS << "endm\n"; std::unique_ptr Instantiation = MemoryBuffer::getMemBufferCopy(OS.str(), ""); // Create the macro instantiation object and add to the current macro // instantiation stack. MacroInstantiation *MI = new MacroInstantiation{DirectiveLoc, CurBuffer, ExitLoc, TheCondStack.size()}; ActiveMacros.push_back(MI); // Jump to the macro instantiation and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); EndStatementAtEOFStack.push_back(true); Lex(); } /// parseDirectiveRepeat /// ::= ("repeat" | "rept") count /// body /// endm bool MasmParser::parseDirectiveRepeat(SMLoc DirectiveLoc, StringRef Dir) { const MCExpr *CountExpr; SMLoc CountLoc = getTok().getLoc(); if (parseExpression(CountExpr)) return true; int64_t Count; if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) { return Error(CountLoc, "unexpected token in '" + Dir + "' directive"); } if (check(Count < 0, CountLoc, "Count is negative") || parseEOL()) return true; // Lex the repeat definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); while (Count--) { if (expandMacro(OS, M->Body, std::nullopt, std::nullopt, M->Locals, getTok().getLoc())) return true; } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } /// parseDirectiveWhile /// ::= "while" expression /// body /// endm bool MasmParser::parseDirectiveWhile(SMLoc DirectiveLoc) { const MCExpr *CondExpr; SMLoc CondLoc = getTok().getLoc(); if (parseExpression(CondExpr)) return true; // Lex the repeat definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); int64_t Condition; if (!CondExpr->evaluateAsAbsolute(Condition, getStreamer().getAssemblerPtr())) return Error(CondLoc, "expected absolute expression in 'while' directive"); if (Condition) { // Instantiate the macro, then resume at this directive to recheck the // condition. if (expandMacro(OS, M->Body, std::nullopt, std::nullopt, M->Locals, getTok().getLoc())) return true; instantiateMacroLikeBody(M, DirectiveLoc, /*ExitLoc=*/DirectiveLoc, OS); } return false; } /// parseDirectiveFor /// ::= ("for" | "irp") symbol [":" qualifier], /// body /// endm bool MasmParser::parseDirectiveFor(SMLoc DirectiveLoc, StringRef Dir) { MCAsmMacroParameter Parameter; MCAsmMacroArguments A; if (check(parseIdentifier(Parameter.Name), "expected identifier in '" + Dir + "' directive")) return true; // Parse optional qualifier (default value, or "req") if (parseOptionalToken(AsmToken::Colon)) { if (parseOptionalToken(AsmToken::Equal)) { // Default value SMLoc ParamLoc; ParamLoc = Lexer.getLoc(); if (parseMacroArgument(nullptr, Parameter.Value)) return true; } else { SMLoc QualLoc; StringRef Qualifier; QualLoc = Lexer.getLoc(); if (parseIdentifier(Qualifier)) return Error(QualLoc, "missing parameter qualifier for " "'" + Parameter.Name + "' in '" + Dir + "' directive"); if (Qualifier.equals_insensitive("req")) Parameter.Required = true; else return Error(QualLoc, Qualifier + " is not a valid parameter qualifier for '" + Parameter.Name + "' in '" + Dir + "' directive"); } } if (parseToken(AsmToken::Comma, "expected comma in '" + Dir + "' directive") || parseToken(AsmToken::Less, "values in '" + Dir + "' directive must be enclosed in angle brackets")) return true; while (true) { A.emplace_back(); if (parseMacroArgument(&Parameter, A.back(), /*EndTok=*/AsmToken::Greater)) return addErrorSuffix(" in arguments for '" + Dir + "' directive"); // If we see a comma, continue, and allow line continuation. if (!parseOptionalToken(AsmToken::Comma)) break; parseOptionalToken(AsmToken::EndOfStatement); } if (parseToken(AsmToken::Greater, "values in '" + Dir + "' directive must be enclosed in angle brackets") || parseEOL()) return true; // Lex the for definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); for (const MCAsmMacroArgument &Arg : A) { if (expandMacro(OS, M->Body, Parameter, Arg, M->Locals, getTok().getLoc())) return true; } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } /// parseDirectiveForc /// ::= ("forc" | "irpc") symbol, /// body /// endm bool MasmParser::parseDirectiveForc(SMLoc DirectiveLoc, StringRef Directive) { MCAsmMacroParameter Parameter; std::string Argument; if (check(parseIdentifier(Parameter.Name), "expected identifier in '" + Directive + "' directive") || parseToken(AsmToken::Comma, "expected comma in '" + Directive + "' directive")) return true; if (parseAngleBracketString(Argument)) { // Match ml64.exe; treat all characters to end of statement as a string, // ignoring comment markers, then discard anything following a space (using // the C locale). Argument = parseStringTo(AsmToken::EndOfStatement); if (getTok().is(AsmToken::EndOfStatement)) Argument += getTok().getString(); size_t End = 0; for (; End < Argument.size(); ++End) { if (isSpace(Argument[End])) break; } Argument.resize(End); } if (parseEOL()) return true; // Lex the irpc definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); StringRef Values(Argument); for (std::size_t I = 0, End = Values.size(); I != End; ++I) { MCAsmMacroArgument Arg; Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1)); if (expandMacro(OS, M->Body, Parameter, Arg, M->Locals, getTok().getLoc())) return true; } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } bool MasmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info, size_t Len) { const MCExpr *Value; SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) return true; const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) return Error(ExprLoc, "unexpected expression in _emit"); uint64_t IntValue = MCE->getValue(); if (!isUInt<8>(IntValue) && !isInt<8>(IntValue)) return Error(ExprLoc, "literal value out of range for directive"); Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len); return false; } bool MasmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) { const MCExpr *Value; SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) return true; const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) return Error(ExprLoc, "unexpected expression in align"); uint64_t IntValue = MCE->getValue(); if (!isPowerOf2_64(IntValue)) return Error(ExprLoc, "literal value not a power of two greater then zero"); Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue)); return false; } bool MasmParser::parseDirectiveRadix(SMLoc DirectiveLoc) { const SMLoc Loc = getLexer().getLoc(); std::string RadixStringRaw = parseStringTo(AsmToken::EndOfStatement); StringRef RadixString = StringRef(RadixStringRaw).trim(); unsigned Radix; if (RadixString.getAsInteger(10, Radix)) { return Error(Loc, "radix must be a decimal number in the range 2 to 16; was " + RadixString); } if (Radix < 2 || Radix > 16) return Error(Loc, "radix must be in the range 2 to 16; was " + std::to_string(Radix)); getLexer().setMasmDefaultRadix(Radix); return false; } /// parseDirectiveEcho /// ::= "echo" message bool MasmParser::parseDirectiveEcho(SMLoc DirectiveLoc) { std::string Message = parseStringTo(AsmToken::EndOfStatement); llvm::outs() << Message; if (!StringRef(Message).endswith("\n")) llvm::outs() << '\n'; return false; } // We are comparing pointers, but the pointers are relative to a single string. // Thus, this should always be deterministic. static int rewritesSort(const AsmRewrite *AsmRewriteA, const AsmRewrite *AsmRewriteB) { if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer()) return -1; if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer()) return 1; // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output // rewrite to the same location. Make sure the SizeDirective rewrite is // performed first, then the Imm/ImmPrefix and finally the Input/Output. This // ensures the sort algorithm is stable. if (AsmRewritePrecedence[AsmRewriteA->Kind] > AsmRewritePrecedence[AsmRewriteB->Kind]) return -1; if (AsmRewritePrecedence[AsmRewriteA->Kind] < AsmRewritePrecedence[AsmRewriteB->Kind]) return 1; llvm_unreachable("Unstable rewrite sort."); } bool MasmParser::defineMacro(StringRef Name, StringRef Value) { Variable &Var = Variables[Name.lower()]; if (Var.Name.empty()) { Var.Name = Name; } else if (Var.Redefinable == Variable::NOT_REDEFINABLE) { return Error(SMLoc(), "invalid variable redefinition"); } else if (Var.Redefinable == Variable::WARN_ON_REDEFINITION && Warning(SMLoc(), "redefining '" + Name + "', already defined on the command line")) { return true; } Var.Redefinable = Variable::WARN_ON_REDEFINITION; Var.IsText = true; Var.TextValue = Value.str(); return false; } bool MasmParser::lookUpField(StringRef Name, AsmFieldInfo &Info) const { const std::pair BaseMember = Name.split('.'); const StringRef Base = BaseMember.first, Member = BaseMember.second; return lookUpField(Base, Member, Info); } bool MasmParser::lookUpField(StringRef Base, StringRef Member, AsmFieldInfo &Info) const { if (Base.empty()) return true; AsmFieldInfo BaseInfo; if (Base.contains('.') && !lookUpField(Base, BaseInfo)) Base = BaseInfo.Type.Name; auto StructIt = Structs.find(Base.lower()); auto TypeIt = KnownType.find(Base.lower()); if (TypeIt != KnownType.end()) { StructIt = Structs.find(TypeIt->second.Name.lower()); } if (StructIt != Structs.end()) return lookUpField(StructIt->second, Member, Info); return true; } bool MasmParser::lookUpField(const StructInfo &Structure, StringRef Member, AsmFieldInfo &Info) const { if (Member.empty()) { Info.Type.Name = Structure.Name; Info.Type.Size = Structure.Size; Info.Type.ElementSize = Structure.Size; Info.Type.Length = 1; return false; } std::pair Split = Member.split('.'); const StringRef FieldName = Split.first, FieldMember = Split.second; auto StructIt = Structs.find(FieldName.lower()); if (StructIt != Structs.end()) return lookUpField(StructIt->second, FieldMember, Info); auto FieldIt = Structure.FieldsByName.find(FieldName.lower()); if (FieldIt == Structure.FieldsByName.end()) return true; const FieldInfo &Field = Structure.Fields[FieldIt->second]; if (FieldMember.empty()) { Info.Offset += Field.Offset; Info.Type.Size = Field.SizeOf; Info.Type.ElementSize = Field.Type; Info.Type.Length = Field.LengthOf; if (Field.Contents.FT == FT_STRUCT) Info.Type.Name = Field.Contents.StructInfo.Structure.Name; else Info.Type.Name = ""; return false; } if (Field.Contents.FT != FT_STRUCT) return true; const StructFieldInfo &StructInfo = Field.Contents.StructInfo; if (lookUpField(StructInfo.Structure, FieldMember, Info)) return true; Info.Offset += Field.Offset; return false; } bool MasmParser::lookUpType(StringRef Name, AsmTypeInfo &Info) const { unsigned Size = StringSwitch(Name) .CasesLower("byte", "db", "sbyte", 1) .CasesLower("word", "dw", "sword", 2) .CasesLower("dword", "dd", "sdword", 4) .CasesLower("fword", "df", 6) .CasesLower("qword", "dq", "sqword", 8) .CaseLower("real4", 4) .CaseLower("real8", 8) .CaseLower("real10", 10) .Default(0); if (Size) { Info.Name = Name; Info.ElementSize = Size; Info.Length = 1; Info.Size = Size; return false; } auto StructIt = Structs.find(Name.lower()); if (StructIt != Structs.end()) { const StructInfo &Structure = StructIt->second; Info.Name = Name; Info.ElementSize = Structure.Size; Info.Length = 1; Info.Size = Structure.Size; return false; } return true; } bool MasmParser::parseMSInlineAsm( std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, SmallVectorImpl> &OpDecls, SmallVectorImpl &Constraints, SmallVectorImpl &Clobbers, const MCInstrInfo *MII, const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) { SmallVector InputDecls; SmallVector OutputDecls; SmallVector InputDeclsAddressOf; SmallVector OutputDeclsAddressOf; SmallVector InputConstraints; SmallVector OutputConstraints; SmallVector ClobberRegs; SmallVector AsmStrRewrites; // Prime the lexer. Lex(); // While we have input, parse each statement. unsigned InputIdx = 0; unsigned OutputIdx = 0; while (getLexer().isNot(AsmToken::Eof)) { // Parse curly braces marking block start/end. if (parseCurlyBlockScope(AsmStrRewrites)) continue; ParseStatementInfo Info(&AsmStrRewrites); bool StatementErr = parseStatement(Info, &SI); if (StatementErr || Info.ParseError) { // Emit pending errors if any exist. printPendingErrors(); return true; } // No pending error should exist here. assert(!hasPendingError() && "unexpected error from parseStatement"); if (Info.Opcode == ~0U) continue; const MCInstrDesc &Desc = MII->get(Info.Opcode); // Build the list of clobbers, outputs and inputs. for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) { MCParsedAsmOperand &Operand = *Info.ParsedOperands[i]; // Register operand. if (Operand.isReg() && !Operand.needAddressOf() && !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) { unsigned NumDefs = Desc.getNumDefs(); // Clobber. if (NumDefs && Operand.getMCOperandNum() < NumDefs) ClobberRegs.push_back(Operand.getReg()); continue; } // Expr/Input or Output. StringRef SymName = Operand.getSymName(); if (SymName.empty()) continue; void *OpDecl = Operand.getOpDecl(); if (!OpDecl) continue; StringRef Constraint = Operand.getConstraint(); if (Operand.isImm()) { // Offset as immediate. if (Operand.isOffsetOfLocal()) Constraint = "r"; else Constraint = "i"; } bool isOutput = (i == 1) && Desc.mayStore(); SMLoc Start = SMLoc::getFromPointer(SymName.data()); if (isOutput) { ++InputIdx; OutputDecls.push_back(OpDecl); OutputDeclsAddressOf.push_back(Operand.needAddressOf()); OutputConstraints.push_back(("=" + Constraint).str()); AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size()); } else { InputDecls.push_back(OpDecl); InputDeclsAddressOf.push_back(Operand.needAddressOf()); InputConstraints.push_back(Constraint.str()); if (Desc.operands()[i - 1].isBranchTarget()) AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size()); else AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size()); } } // Consider implicit defs to be clobbers. Think of cpuid and push. llvm::append_range(ClobberRegs, Desc.implicit_defs()); } // Set the number of Outputs and Inputs. NumOutputs = OutputDecls.size(); NumInputs = InputDecls.size(); // Set the unique clobbers. array_pod_sort(ClobberRegs.begin(), ClobberRegs.end()); ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()), ClobberRegs.end()); Clobbers.assign(ClobberRegs.size(), std::string()); for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) { raw_string_ostream OS(Clobbers[I]); IP->printRegName(OS, ClobberRegs[I]); } // Merge the various outputs and inputs. Output are expected first. if (NumOutputs || NumInputs) { unsigned NumExprs = NumOutputs + NumInputs; OpDecls.resize(NumExprs); Constraints.resize(NumExprs); for (unsigned i = 0; i < NumOutputs; ++i) { OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]); Constraints[i] = OutputConstraints[i]; } for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) { OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]); Constraints[j] = InputConstraints[i]; } } // Build the IR assembly string. std::string AsmStringIR; raw_string_ostream OS(AsmStringIR); StringRef ASMString = SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer(); const char *AsmStart = ASMString.begin(); const char *AsmEnd = ASMString.end(); array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort); for (auto it = AsmStrRewrites.begin(); it != AsmStrRewrites.end(); ++it) { const AsmRewrite &AR = *it; // Check if this has already been covered by another rewrite... if (AR.Done) continue; AsmRewriteKind Kind = AR.Kind; const char *Loc = AR.Loc.getPointer(); assert(Loc >= AsmStart && "Expected Loc to be at or after Start!"); // Emit everything up to the immediate/expression. if (unsigned Len = Loc - AsmStart) OS << StringRef(AsmStart, Len); // Skip the original expression. if (Kind == AOK_Skip) { AsmStart = Loc + AR.Len; continue; } unsigned AdditionalSkip = 0; // Rewrite expressions in $N notation. switch (Kind) { default: break; case AOK_IntelExpr: assert(AR.IntelExp.isValid() && "cannot write invalid intel expression"); if (AR.IntelExp.NeedBracs) OS << "["; if (AR.IntelExp.hasBaseReg()) OS << AR.IntelExp.BaseReg; if (AR.IntelExp.hasIndexReg()) OS << (AR.IntelExp.hasBaseReg() ? " + " : "") << AR.IntelExp.IndexReg; if (AR.IntelExp.Scale > 1) OS << " * $$" << AR.IntelExp.Scale; if (AR.IntelExp.hasOffset()) { if (AR.IntelExp.hasRegs()) OS << " + "; // Fuse this rewrite with a rewrite of the offset name, if present. StringRef OffsetName = AR.IntelExp.OffsetName; SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data()); size_t OffsetLen = OffsetName.size(); auto rewrite_it = std::find_if( it, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) { return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen && (FusingAR.Kind == AOK_Input || FusingAR.Kind == AOK_CallInput); }); if (rewrite_it == AsmStrRewrites.end()) { OS << "offset " << OffsetName; } else if (rewrite_it->Kind == AOK_CallInput) { OS << "${" << InputIdx++ << ":P}"; rewrite_it->Done = true; } else { OS << '$' << InputIdx++; rewrite_it->Done = true; } } if (AR.IntelExp.Imm || AR.IntelExp.emitImm()) OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm; if (AR.IntelExp.NeedBracs) OS << "]"; break; case AOK_Label: OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label; break; case AOK_Input: OS << '$' << InputIdx++; break; case AOK_CallInput: OS << "${" << InputIdx++ << ":P}"; break; case AOK_Output: OS << '$' << OutputIdx++; break; case AOK_SizeDirective: switch (AR.Val) { default: break; case 8: OS << "byte ptr "; break; case 16: OS << "word ptr "; break; case 32: OS << "dword ptr "; break; case 64: OS << "qword ptr "; break; case 80: OS << "xword ptr "; break; case 128: OS << "xmmword ptr "; break; case 256: OS << "ymmword ptr "; break; } break; case AOK_Emit: OS << ".byte"; break; case AOK_Align: { // MS alignment directives are measured in bytes. If the native assembler // measures alignment in bytes, we can pass it straight through. OS << ".align"; if (getContext().getAsmInfo()->getAlignmentIsInBytes()) break; // Alignment is in log2 form, so print that instead and skip the original // immediate. unsigned Val = AR.Val; OS << ' ' << Val; assert(Val < 10 && "Expected alignment less then 2^10."); AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4; break; } case AOK_EVEN: OS << ".even"; break; case AOK_EndOfStatement: OS << "\n\t"; break; } // Skip the original expression. AsmStart = Loc + AR.Len + AdditionalSkip; } // Emit the remainder of the asm string. if (AsmStart != AsmEnd) OS << StringRef(AsmStart, AsmEnd - AsmStart); AsmString = OS.str(); return false; } void MasmParser::initializeBuiltinSymbolMap() { // Numeric built-ins (supported in all versions) BuiltinSymbolMap["@version"] = BI_VERSION; BuiltinSymbolMap["@line"] = BI_LINE; // Text built-ins (supported in all versions) BuiltinSymbolMap["@date"] = BI_DATE; BuiltinSymbolMap["@time"] = BI_TIME; BuiltinSymbolMap["@filecur"] = BI_FILECUR; BuiltinSymbolMap["@filename"] = BI_FILENAME; BuiltinSymbolMap["@curseg"] = BI_CURSEG; // Some built-ins exist only for MASM32 (32-bit x86) if (getContext().getSubtargetInfo()->getTargetTriple().getArch() == Triple::x86) { // Numeric built-ins // BuiltinSymbolMap["@cpu"] = BI_CPU; // BuiltinSymbolMap["@interface"] = BI_INTERFACE; // BuiltinSymbolMap["@wordsize"] = BI_WORDSIZE; // BuiltinSymbolMap["@codesize"] = BI_CODESIZE; // BuiltinSymbolMap["@datasize"] = BI_DATASIZE; // BuiltinSymbolMap["@model"] = BI_MODEL; // Text built-ins // BuiltinSymbolMap["@code"] = BI_CODE; // BuiltinSymbolMap["@data"] = BI_DATA; // BuiltinSymbolMap["@fardata?"] = BI_FARDATA; // BuiltinSymbolMap["@stack"] = BI_STACK; } } const MCExpr *MasmParser::evaluateBuiltinValue(BuiltinSymbol Symbol, SMLoc StartLoc) { switch (Symbol) { default: return nullptr; case BI_VERSION: // Match a recent version of ML.EXE. return MCConstantExpr::create(1427, getContext()); case BI_LINE: { int64_t Line; if (ActiveMacros.empty()) Line = SrcMgr.FindLineNumber(StartLoc, CurBuffer); else Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc, ActiveMacros.front()->ExitBuffer); return MCConstantExpr::create(Line, getContext()); } } llvm_unreachable("unhandled built-in symbol"); } std::optional MasmParser::evaluateBuiltinTextMacro(BuiltinSymbol Symbol, SMLoc StartLoc) { switch (Symbol) { default: return {}; case BI_DATE: { // Current local date, formatted MM/DD/YY char TmpBuffer[sizeof("mm/dd/yy")]; const size_t Len = strftime(TmpBuffer, sizeof(TmpBuffer), "%D", &TM); return std::string(TmpBuffer, Len); } case BI_TIME: { // Current local time, formatted HH:MM:SS (24-hour clock) char TmpBuffer[sizeof("hh:mm:ss")]; const size_t Len = strftime(TmpBuffer, sizeof(TmpBuffer), "%T", &TM); return std::string(TmpBuffer, Len); } case BI_FILECUR: return SrcMgr .getMemoryBuffer( ActiveMacros.empty() ? CurBuffer : ActiveMacros.front()->ExitBuffer) ->getBufferIdentifier() .str(); case BI_FILENAME: return sys::path::stem(SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID()) ->getBufferIdentifier()) .upper(); case BI_CURSEG: return getStreamer().getCurrentSectionOnly()->getName().str(); } llvm_unreachable("unhandled built-in symbol"); } /// Create an MCAsmParser instance. MCAsmParser *llvm::createMCMasmParser(SourceMgr &SM, MCContext &C, MCStreamer &Out, const MCAsmInfo &MAI, struct tm TM, unsigned CB) { return new MasmParser(SM, C, Out, MAI, TM, CB); }