//===- lib/MC/MCFragment.cpp - Assembler Fragment Implementation ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/MC/MCFragment.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Config/llvm-config.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; MCAsmLayout::MCAsmLayout(MCAssembler &Asm) : Assembler(Asm) { // Compute the section layout order. Virtual sections must go last. for (MCSection &Sec : Asm) if (!Sec.isVirtualSection()) SectionOrder.push_back(&Sec); for (MCSection &Sec : Asm) if (Sec.isVirtualSection()) SectionOrder.push_back(&Sec); } bool MCAsmLayout::isFragmentValid(const MCFragment *F) const { const MCSection *Sec = F->getParent(); const MCFragment *LastValid = LastValidFragment.lookup(Sec); if (!LastValid) return false; assert(LastValid->getParent() == Sec); return F->getLayoutOrder() <= LastValid->getLayoutOrder(); } bool MCAsmLayout::canGetFragmentOffset(const MCFragment *F) const { MCSection *Sec = F->getParent(); MCSection::iterator I; if (MCFragment *LastValid = LastValidFragment[Sec]) { // Fragment already valid, offset is available. if (F->getLayoutOrder() <= LastValid->getLayoutOrder()) return true; I = ++MCSection::iterator(LastValid); } else I = Sec->begin(); // A fragment ordered before F is currently being laid out. const MCFragment *FirstInvalidFragment = &*I; if (FirstInvalidFragment->IsBeingLaidOut) return false; return true; } void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) { // If this fragment wasn't already valid, we don't need to do anything. if (!isFragmentValid(F)) return; // Otherwise, reset the last valid fragment to the previous fragment // (if this is the first fragment, it will be NULL). LastValidFragment[F->getParent()] = F->getPrevNode(); } void MCAsmLayout::ensureValid(const MCFragment *F) const { MCSection *Sec = F->getParent(); MCSection::iterator I; if (MCFragment *Cur = LastValidFragment[Sec]) I = ++MCSection::iterator(Cur); else I = Sec->begin(); // Advance the layout position until the fragment is valid. while (!isFragmentValid(F)) { assert(I != Sec->end() && "Layout bookkeeping error"); const_cast(this)->layoutFragment(&*I); ++I; } } uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const { ensureValid(F); assert(F->Offset != ~UINT64_C(0) && "Address not set!"); return F->Offset; } // Simple getSymbolOffset helper for the non-variable case. static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbol &S, bool ReportError, uint64_t &Val) { if (!S.getFragment()) { if (ReportError) report_fatal_error("unable to evaluate offset to undefined symbol '" + S.getName() + "'"); return false; } Val = Layout.getFragmentOffset(S.getFragment()) + S.getOffset(); return true; } static bool getSymbolOffsetImpl(const MCAsmLayout &Layout, const MCSymbol &S, bool ReportError, uint64_t &Val) { if (!S.isVariable()) return getLabelOffset(Layout, S, ReportError, Val); // If SD is a variable, evaluate it. MCValue Target; if (!S.getVariableValue()->evaluateAsValue(Target, Layout)) report_fatal_error("unable to evaluate offset for variable '" + S.getName() + "'"); uint64_t Offset = Target.getConstant(); const MCSymbolRefExpr *A = Target.getSymA(); if (A) { uint64_t ValA; // FIXME: On most platforms, `Target`'s component symbols are labels from // having been simplified during evaluation, but on Mach-O they can be // variables due to PR19203. This, and the line below for `B` can be // restored to call `getLabelOffset` when PR19203 is fixed. if (!getSymbolOffsetImpl(Layout, A->getSymbol(), ReportError, ValA)) return false; Offset += ValA; } const MCSymbolRefExpr *B = Target.getSymB(); if (B) { uint64_t ValB; if (!getSymbolOffsetImpl(Layout, B->getSymbol(), ReportError, ValB)) return false; Offset -= ValB; } Val = Offset; return true; } bool MCAsmLayout::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const { return getSymbolOffsetImpl(*this, S, false, Val); } uint64_t MCAsmLayout::getSymbolOffset(const MCSymbol &S) const { uint64_t Val; getSymbolOffsetImpl(*this, S, true, Val); return Val; } const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const { if (!Symbol.isVariable()) return &Symbol; const MCExpr *Expr = Symbol.getVariableValue(); MCValue Value; if (!Expr->evaluateAsValue(Value, *this)) { Assembler.getContext().reportError( Expr->getLoc(), "expression could not be evaluated"); return nullptr; } const MCSymbolRefExpr *RefB = Value.getSymB(); if (RefB) { Assembler.getContext().reportError( Expr->getLoc(), Twine("symbol '") + RefB->getSymbol().getName() + "' could not be evaluated in a subtraction expression"); return nullptr; } const MCSymbolRefExpr *A = Value.getSymA(); if (!A) return nullptr; const MCSymbol &ASym = A->getSymbol(); const MCAssembler &Asm = getAssembler(); if (ASym.isCommon()) { Asm.getContext().reportError(Expr->getLoc(), "Common symbol '" + ASym.getName() + "' cannot be used in assignment expr"); return nullptr; } return &ASym; } uint64_t MCAsmLayout::getSectionAddressSize(const MCSection *Sec) const { // The size is the last fragment's end offset. const MCFragment &F = Sec->getFragmentList().back(); return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F); } uint64_t MCAsmLayout::getSectionFileSize(const MCSection *Sec) const { // Virtual sections have no file size. if (Sec->isVirtualSection()) return 0; // Otherwise, the file size is the same as the address space size. return getSectionAddressSize(Sec); } uint64_t llvm::computeBundlePadding(const MCAssembler &Assembler, const MCEncodedFragment *F, uint64_t FOffset, uint64_t FSize) { uint64_t BundleSize = Assembler.getBundleAlignSize(); assert(BundleSize > 0 && "computeBundlePadding should only be called if bundling is enabled"); uint64_t BundleMask = BundleSize - 1; uint64_t OffsetInBundle = FOffset & BundleMask; uint64_t EndOfFragment = OffsetInBundle + FSize; // There are two kinds of bundling restrictions: // // 1) For alignToBundleEnd(), add padding to ensure that the fragment will // *end* on a bundle boundary. // 2) Otherwise, check if the fragment would cross a bundle boundary. If it // would, add padding until the end of the bundle so that the fragment // will start in a new one. if (F->alignToBundleEnd()) { // Three possibilities here: // // A) The fragment just happens to end at a bundle boundary, so we're good. // B) The fragment ends before the current bundle boundary: pad it just // enough to reach the boundary. // C) The fragment ends after the current bundle boundary: pad it until it // reaches the end of the next bundle boundary. // // Note: this code could be made shorter with some modulo trickery, but it's // intentionally kept in its more explicit form for simplicity. if (EndOfFragment == BundleSize) return 0; else if (EndOfFragment < BundleSize) return BundleSize - EndOfFragment; else { // EndOfFragment > BundleSize return 2 * BundleSize - EndOfFragment; } } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize) return BundleSize - OffsetInBundle; else return 0; } /* *** */ void ilist_alloc_traits::deleteNode(MCFragment *V) { V->destroy(); } MCFragment::MCFragment(FragmentType Kind, bool HasInstructions, MCSection *Parent) : Parent(Parent), Atom(nullptr), Offset(~UINT64_C(0)), LayoutOrder(0), Kind(Kind), IsBeingLaidOut(false), HasInstructions(HasInstructions) { if (Parent && !isa(*this)) Parent->getFragmentList().push_back(this); } void MCFragment::destroy() { // First check if we are the sentinal. if (Kind == FragmentType(~0)) { delete this; return; } switch (Kind) { case FT_Align: delete cast(this); return; case FT_Data: delete cast(this); return; case FT_CompactEncodedInst: delete cast(this); return; case FT_Fill: delete cast(this); return; case FT_Nops: delete cast(this); return; case FT_Relaxable: delete cast(this); return; case FT_Org: delete cast(this); return; case FT_Dwarf: delete cast(this); return; case FT_DwarfFrame: delete cast(this); return; case FT_LEB: delete cast(this); return; case FT_BoundaryAlign: delete cast(this); return; case FT_SymbolId: delete cast(this); return; case FT_CVInlineLines: delete cast(this); return; case FT_CVDefRange: delete cast(this); return; case FT_PseudoProbe: delete cast(this); return; case FT_Dummy: delete cast(this); return; } } // Debugging methods namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) { OS << ""; return OS; } } // end namespace llvm #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MCFragment::dump() const { raw_ostream &OS = errs(); OS << "<"; switch (getKind()) { case MCFragment::FT_Align: OS << "MCAlignFragment"; break; case MCFragment::FT_Data: OS << "MCDataFragment"; break; case MCFragment::FT_CompactEncodedInst: OS << "MCCompactEncodedInstFragment"; break; case MCFragment::FT_Fill: OS << "MCFillFragment"; break; case MCFragment::FT_Nops: OS << "MCFNopsFragment"; break; case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break; case MCFragment::FT_Org: OS << "MCOrgFragment"; break; case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break; case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break; case MCFragment::FT_LEB: OS << "MCLEBFragment"; break; case MCFragment::FT_BoundaryAlign: OS<<"MCBoundaryAlignFragment"; break; case MCFragment::FT_SymbolId: OS << "MCSymbolIdFragment"; break; case MCFragment::FT_CVInlineLines: OS << "MCCVInlineLineTableFragment"; break; case MCFragment::FT_CVDefRange: OS << "MCCVDefRangeTableFragment"; break; case MCFragment::FT_PseudoProbe: OS << "MCPseudoProbe"; break; case MCFragment::FT_Dummy: OS << "MCDummyFragment"; break; } OS << "(this)) OS << " BundlePadding:" << static_cast(EF->getBundlePadding()); OS << ">"; switch (getKind()) { case MCFragment::FT_Align: { const auto *AF = cast(this); if (AF->hasEmitNops()) OS << " (emit nops)"; OS << "\n "; OS << " Alignment:" << AF->getAlignment().value() << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize() << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">"; break; } case MCFragment::FT_Data: { const auto *DF = cast(this); OS << "\n "; OS << " Contents:["; const SmallVectorImpl &Contents = DF->getContents(); for (unsigned i = 0, e = Contents.size(); i != e; ++i) { if (i) OS << ","; OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); } OS << "] (" << Contents.size() << " bytes)"; if (DF->fixup_begin() != DF->fixup_end()) { OS << ",\n "; OS << " Fixups:["; for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(), ie = DF->fixup_end(); it != ie; ++it) { if (it != DF->fixup_begin()) OS << ",\n "; OS << *it; } OS << "]"; } break; } case MCFragment::FT_CompactEncodedInst: { const auto *CEIF = cast(this); OS << "\n "; OS << " Contents:["; const SmallVectorImpl &Contents = CEIF->getContents(); for (unsigned i = 0, e = Contents.size(); i != e; ++i) { if (i) OS << ","; OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); } OS << "] (" << Contents.size() << " bytes)"; break; } case MCFragment::FT_Fill: { const auto *FF = cast(this); OS << " Value:" << static_cast(FF->getValue()) << " ValueSize:" << static_cast(FF->getValueSize()) << " NumValues:" << FF->getNumValues(); break; } case MCFragment::FT_Nops: { const auto *NF = cast(this); OS << " NumBytes:" << NF->getNumBytes() << " ControlledNopLength:" << NF->getControlledNopLength(); break; } case MCFragment::FT_Relaxable: { const auto *F = cast(this); OS << "\n "; OS << " Inst:"; F->getInst().dump_pretty(OS); OS << " (" << F->getContents().size() << " bytes)"; break; } case MCFragment::FT_Org: { const auto *OF = cast(this); OS << "\n "; OS << " Offset:" << OF->getOffset() << " Value:" << static_cast(OF->getValue()); break; } case MCFragment::FT_Dwarf: { const auto *OF = cast(this); OS << "\n "; OS << " AddrDelta:" << OF->getAddrDelta() << " LineDelta:" << OF->getLineDelta(); break; } case MCFragment::FT_DwarfFrame: { const auto *CF = cast(this); OS << "\n "; OS << " AddrDelta:" << CF->getAddrDelta(); break; } case MCFragment::FT_LEB: { const auto *LF = cast(this); OS << "\n "; OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned(); break; } case MCFragment::FT_BoundaryAlign: { const auto *BF = cast(this); OS << "\n "; OS << " BoundarySize:" << BF->getAlignment().value() << " LastFragment:" << BF->getLastFragment() << " Size:" << BF->getSize(); break; } case MCFragment::FT_SymbolId: { const auto *F = cast(this); OS << "\n "; OS << " Sym:" << F->getSymbol(); break; } case MCFragment::FT_CVInlineLines: { const auto *F = cast(this); OS << "\n "; OS << " Sym:" << *F->getFnStartSym(); break; } case MCFragment::FT_CVDefRange: { const auto *F = cast(this); OS << "\n "; for (std::pair RangeStartEnd : F->getRanges()) { OS << " RangeStart:" << RangeStartEnd.first; OS << " RangeEnd:" << RangeStartEnd.second; } break; } case MCFragment::FT_PseudoProbe: { const auto *OF = cast(this); OS << "\n "; OS << " AddrDelta:" << OF->getAddrDelta(); break; } case MCFragment::FT_Dummy: break; } OS << ">"; } #endif