//===-- Operator.cpp - Implement the LLVM operators -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the non-inline methods for the LLVM Operator classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Operator.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/Instructions.h" #include "ConstantsContext.h" namespace llvm { bool Operator::hasPoisonGeneratingFlags() const { switch (getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Shl: { auto *OBO = cast(this); return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); } case Instruction::UDiv: case Instruction::SDiv: case Instruction::AShr: case Instruction::LShr: return cast(this)->isExact(); case Instruction::Or: return cast(this)->isDisjoint(); case Instruction::GetElementPtr: { auto *GEP = cast(this); // Note: inrange exists on constexpr only return GEP->isInBounds() || GEP->getInRangeIndex() != std::nullopt; } case Instruction::ZExt: if (auto *NNI = dyn_cast(this)) return NNI->hasNonNeg(); return false; default: if (const auto *FP = dyn_cast(this)) return FP->hasNoNaNs() || FP->hasNoInfs(); return false; } } bool Operator::hasPoisonGeneratingFlagsOrMetadata() const { if (hasPoisonGeneratingFlags()) return true; auto *I = dyn_cast(this); return I && I->hasPoisonGeneratingMetadata(); } Type *GEPOperator::getSourceElementType() const { if (auto *I = dyn_cast(this)) return I->getSourceElementType(); return cast(this)->getSourceElementType(); } Type *GEPOperator::getResultElementType() const { if (auto *I = dyn_cast(this)) return I->getResultElementType(); return cast(this)->getResultElementType(); } Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const { /// compute the worse possible offset for every level of the GEP et accumulate /// the minimum alignment into Result. Align Result = Align(llvm::Value::MaximumAlignment); for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); GTI != GTE; ++GTI) { uint64_t Offset; ConstantInt *OpC = dyn_cast(GTI.getOperand()); if (StructType *STy = GTI.getStructTypeOrNull()) { const StructLayout *SL = DL.getStructLayout(STy); Offset = SL->getElementOffset(OpC->getZExtValue()); } else { assert(GTI.isSequential() && "should be sequencial"); /// If the index isn't known, we take 1 because it is the index that will /// give the worse alignment of the offset. const uint64_t ElemCount = OpC ? OpC->getZExtValue() : 1; Offset = GTI.getSequentialElementStride(DL) * ElemCount; } Result = Align(MinAlign(Offset, Result.value())); } return Result; } bool GEPOperator::accumulateConstantOffset( const DataLayout &DL, APInt &Offset, function_ref ExternalAnalysis) const { assert(Offset.getBitWidth() == DL.getIndexSizeInBits(getPointerAddressSpace()) && "The offset bit width does not match DL specification."); SmallVector Index(llvm::drop_begin(operand_values())); return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index, DL, Offset, ExternalAnalysis); } bool GEPOperator::accumulateConstantOffset( Type *SourceType, ArrayRef Index, const DataLayout &DL, APInt &Offset, function_ref ExternalAnalysis) { bool UsedExternalAnalysis = false; auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool { Index = Index.sextOrTrunc(Offset.getBitWidth()); APInt IndexedSize = APInt(Offset.getBitWidth(), Size); // For array or vector indices, scale the index by the size of the type. if (!UsedExternalAnalysis) { Offset += Index * IndexedSize; } else { // External Analysis can return a result higher/lower than the value // represents. We need to detect overflow/underflow. bool Overflow = false; APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow); if (Overflow) return false; Offset = Offset.sadd_ov(OffsetPlus, Overflow); if (Overflow) return false; } return true; }; auto begin = generic_gep_type_iterator::begin( SourceType, Index.begin()); auto end = generic_gep_type_iterator::end(Index.end()); for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) { // Scalable vectors are multiplied by a runtime constant. bool ScalableType = GTI.getIndexedType()->isScalableTy(); Value *V = GTI.getOperand(); StructType *STy = GTI.getStructTypeOrNull(); // Handle ConstantInt if possible. if (auto ConstOffset = dyn_cast(V)) { if (ConstOffset->isZero()) continue; // if the type is scalable and the constant is not zero (vscale * n * 0 = // 0) bailout. if (ScalableType) return false; // Handle a struct index, which adds its field offset to the pointer. if (STy) { unsigned ElementIdx = ConstOffset->getZExtValue(); const StructLayout *SL = DL.getStructLayout(STy); // Element offset is in bytes. if (!AccumulateOffset( APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)), 1)) return false; continue; } if (!AccumulateOffset(ConstOffset->getValue(), GTI.getSequentialElementStride(DL))) return false; continue; } // The operand is not constant, check if an external analysis was provided. // External analsis is not applicable to a struct type. if (!ExternalAnalysis || STy || ScalableType) return false; APInt AnalysisIndex; if (!ExternalAnalysis(*V, AnalysisIndex)) return false; UsedExternalAnalysis = true; if (!AccumulateOffset(AnalysisIndex, GTI.getSequentialElementStride(DL))) return false; } return true; } bool GEPOperator::collectOffset( const DataLayout &DL, unsigned BitWidth, MapVector &VariableOffsets, APInt &ConstantOffset) const { assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) && "The offset bit width does not match DL specification."); auto CollectConstantOffset = [&](APInt Index, uint64_t Size) { Index = Index.sextOrTrunc(BitWidth); APInt IndexedSize = APInt(BitWidth, Size); ConstantOffset += Index * IndexedSize; }; for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); GTI != GTE; ++GTI) { // Scalable vectors are multiplied by a runtime constant. bool ScalableType = GTI.getIndexedType()->isScalableTy(); Value *V = GTI.getOperand(); StructType *STy = GTI.getStructTypeOrNull(); // Handle ConstantInt if possible. if (auto ConstOffset = dyn_cast(V)) { if (ConstOffset->isZero()) continue; // If the type is scalable and the constant is not zero (vscale * n * 0 = // 0) bailout. // TODO: If the runtime value is accessible at any point before DWARF // emission, then we could potentially keep a forward reference to it // in the debug value to be filled in later. if (ScalableType) return false; // Handle a struct index, which adds its field offset to the pointer. if (STy) { unsigned ElementIdx = ConstOffset->getZExtValue(); const StructLayout *SL = DL.getStructLayout(STy); // Element offset is in bytes. CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)), 1); continue; } CollectConstantOffset(ConstOffset->getValue(), GTI.getSequentialElementStride(DL)); continue; } if (STy || ScalableType) return false; APInt IndexedSize = APInt(BitWidth, GTI.getSequentialElementStride(DL)); // Insert an initial offset of 0 for V iff none exists already, then // increment the offset by IndexedSize. if (!IndexedSize.isZero()) { auto *It = VariableOffsets.insert({V, APInt(BitWidth, 0)}).first; It->second += IndexedSize; } } return true; } void FastMathFlags::print(raw_ostream &O) const { if (all()) O << " fast"; else { if (allowReassoc()) O << " reassoc"; if (noNaNs()) O << " nnan"; if (noInfs()) O << " ninf"; if (noSignedZeros()) O << " nsz"; if (allowReciprocal()) O << " arcp"; if (allowContract()) O << " contract"; if (approxFunc()) O << " afn"; } } } // namespace llvm