//===- Module.cpp - Implement the Module class ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Module class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Module.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GVMaterializer.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalIFunc.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/IR/SymbolTableListTraits.h" #include "llvm/IR/Type.h" #include "llvm/IR/TypeFinder.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Error.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/RandomNumberGenerator.h" #include "llvm/Support/VersionTuple.h" #include #include #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Methods to implement the globals and functions lists. // // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file. template class llvm::SymbolTableListTraits; template class llvm::SymbolTableListTraits; template class llvm::SymbolTableListTraits; template class llvm::SymbolTableListTraits; //===----------------------------------------------------------------------===// // Primitive Module methods. // Module::Module(StringRef MID, LLVMContext &C) : Context(C), ValSymTab(std::make_unique(-1)), ModuleID(std::string(MID)), SourceFileName(std::string(MID)), DL("") { Context.addModule(this); } Module::~Module() { Context.removeModule(this); dropAllReferences(); GlobalList.clear(); FunctionList.clear(); AliasList.clear(); IFuncList.clear(); } std::unique_ptr Module::createRNG(const StringRef Name) const { SmallString<32> Salt(Name); // This RNG is guaranteed to produce the same random stream only // when the Module ID and thus the input filename is the same. This // might be problematic if the input filename extension changes // (e.g. from .c to .bc or .ll). // // We could store this salt in NamedMetadata, but this would make // the parameter non-const. This would unfortunately make this // interface unusable by any Machine passes, since they only have a // const reference to their IR Module. Alternatively we can always // store salt metadata from the Module constructor. Salt += sys::path::filename(getModuleIdentifier()); return std::unique_ptr( new RandomNumberGenerator(Salt)); } /// getNamedValue - Return the first global value in the module with /// the specified name, of arbitrary type. This method returns null /// if a global with the specified name is not found. GlobalValue *Module::getNamedValue(StringRef Name) const { return cast_or_null(getValueSymbolTable().lookup(Name)); } unsigned Module::getNumNamedValues() const { return getValueSymbolTable().size(); } /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. /// This ID is uniqued across modules in the current LLVMContext. unsigned Module::getMDKindID(StringRef Name) const { return Context.getMDKindID(Name); } /// getMDKindNames - Populate client supplied SmallVector with the name for /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, /// so it is filled in as an empty string. void Module::getMDKindNames(SmallVectorImpl &Result) const { return Context.getMDKindNames(Result); } void Module::getOperandBundleTags(SmallVectorImpl &Result) const { return Context.getOperandBundleTags(Result); } //===----------------------------------------------------------------------===// // Methods for easy access to the functions in the module. // // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return // it. This is nice because it allows most passes to get away with not handling // the symbol table directly for this common task. // FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, AttributeList AttributeList) { // See if we have a definition for the specified function already. GlobalValue *F = getNamedValue(Name); if (!F) { // Nope, add it Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, DL.getProgramAddressSpace(), Name); if (!New->isIntrinsic()) // Intrinsics get attrs set on construction New->setAttributes(AttributeList); FunctionList.push_back(New); return {Ty, New}; // Return the new prototype. } // If the function exists but has the wrong type, return a bitcast to the // right type. auto *PTy = PointerType::get(Ty, F->getAddressSpace()); if (F->getType() != PTy) return {Ty, ConstantExpr::getBitCast(F, PTy)}; // Otherwise, we just found the existing function or a prototype. return {Ty, F}; } FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) { return getOrInsertFunction(Name, Ty, AttributeList()); } // getFunction - Look up the specified function in the module symbol table. // If it does not exist, return null. // Function *Module::getFunction(StringRef Name) const { return dyn_cast_or_null(getNamedValue(Name)); } //===----------------------------------------------------------------------===// // Methods for easy access to the global variables in the module. // /// getGlobalVariable - Look up the specified global variable in the module /// symbol table. If it does not exist, return null. The type argument /// should be the underlying type of the global, i.e., it should not have /// the top-level PointerType, which represents the address of the global. /// If AllowLocal is set to true, this function will return types that /// have an local. By default, these types are not returned. /// GlobalVariable *Module::getGlobalVariable(StringRef Name, bool AllowLocal) const { if (GlobalVariable *Result = dyn_cast_or_null(getNamedValue(Name))) if (AllowLocal || !Result->hasLocalLinkage()) return Result; return nullptr; } /// getOrInsertGlobal - Look up the specified global in the module symbol table. /// 1. If it does not exist, add a declaration of the global and return it. /// 2. Else, the global exists but has the wrong type: return the function /// with a constantexpr cast to the right type. /// 3. Finally, if the existing global is the correct declaration, return the /// existing global. Constant *Module::getOrInsertGlobal( StringRef Name, Type *Ty, function_ref CreateGlobalCallback) { // See if we have a definition for the specified global already. GlobalVariable *GV = dyn_cast_or_null(getNamedValue(Name)); if (!GV) GV = CreateGlobalCallback(); assert(GV && "The CreateGlobalCallback is expected to create a global"); // If the variable exists but has the wrong type, return a bitcast to the // right type. Type *GVTy = GV->getType(); PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); if (GVTy != PTy) return ConstantExpr::getBitCast(GV, PTy); // Otherwise, we just found the existing function or a prototype. return GV; } // Overload to construct a global variable using its constructor's defaults. Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { return getOrInsertGlobal(Name, Ty, [&] { return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, nullptr, Name); }); } //===----------------------------------------------------------------------===// // Methods for easy access to the global variables in the module. // // getNamedAlias - Look up the specified global in the module symbol table. // If it does not exist, return null. // GlobalAlias *Module::getNamedAlias(StringRef Name) const { return dyn_cast_or_null(getNamedValue(Name)); } GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { return dyn_cast_or_null(getNamedValue(Name)); } /// getNamedMetadata - Return the first NamedMDNode in the module with the /// specified name. This method returns null if a NamedMDNode with the /// specified name is not found. NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { SmallString<256> NameData; StringRef NameRef = Name.toStringRef(NameData); return NamedMDSymTab.lookup(NameRef); } /// getOrInsertNamedMetadata - Return the first named MDNode in the module /// with the specified name. This method returns a new NamedMDNode if a /// NamedMDNode with the specified name is not found. NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { NamedMDNode *&NMD = NamedMDSymTab[Name]; if (!NMD) { NMD = new NamedMDNode(Name); NMD->setParent(this); NamedMDList.push_back(NMD); } return NMD; } /// eraseNamedMetadata - Remove the given NamedMDNode from this module and /// delete it. void Module::eraseNamedMetadata(NamedMDNode *NMD) { NamedMDSymTab.erase(NMD->getName()); NamedMDList.erase(NMD->getIterator()); } bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { if (ConstantInt *Behavior = mdconst::dyn_extract_or_null(MD)) { uint64_t Val = Behavior->getLimitedValue(); if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { MFB = static_cast(Val); return true; } } return false; } bool Module::isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB, MDString *&Key, Metadata *&Val) { if (ModFlag.getNumOperands() < 3) return false; if (!isValidModFlagBehavior(ModFlag.getOperand(0), MFB)) return false; MDString *K = dyn_cast_or_null(ModFlag.getOperand(1)); if (!K) return false; Key = K; Val = ModFlag.getOperand(2); return true; } /// getModuleFlagsMetadata - Returns the module flags in the provided vector. void Module:: getModuleFlagsMetadata(SmallVectorImpl &Flags) const { const NamedMDNode *ModFlags = getModuleFlagsMetadata(); if (!ModFlags) return; for (const MDNode *Flag : ModFlags->operands()) { ModFlagBehavior MFB; MDString *Key = nullptr; Metadata *Val = nullptr; if (isValidModuleFlag(*Flag, MFB, Key, Val)) { // Check the operands of the MDNode before accessing the operands. // The verifier will actually catch these failures. Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); } } } /// Return the corresponding value if Key appears in module flags, otherwise /// return null. Metadata *Module::getModuleFlag(StringRef Key) const { SmallVector ModuleFlags; getModuleFlagsMetadata(ModuleFlags); for (const ModuleFlagEntry &MFE : ModuleFlags) { if (Key == MFE.Key->getString()) return MFE.Val; } return nullptr; } /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that /// represents module-level flags. This method returns null if there are no /// module-level flags. NamedMDNode *Module::getModuleFlagsMetadata() const { return getNamedMetadata("llvm.module.flags"); } /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that /// represents module-level flags. If module-level flags aren't found, it /// creates the named metadata that contains them. NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { return getOrInsertNamedMetadata("llvm.module.flags"); } /// addModuleFlag - Add a module-level flag to the module-level flags /// metadata. It will create the module-level flags named metadata if it doesn't /// already exist. void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val) { Type *Int32Ty = Type::getInt32Ty(Context); Metadata *Ops[3] = { ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), MDString::get(Context, Key), Val}; getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); } void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Constant *Val) { addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); } void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val) { Type *Int32Ty = Type::getInt32Ty(Context); addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); } void Module::addModuleFlag(MDNode *Node) { assert(Node->getNumOperands() == 3 && "Invalid number of operands for module flag!"); assert(mdconst::hasa(Node->getOperand(0)) && isa(Node->getOperand(1)) && "Invalid operand types for module flag!"); getOrInsertModuleFlagsMetadata()->addOperand(Node); } void Module::setModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val) { NamedMDNode *ModFlags = getOrInsertModuleFlagsMetadata(); // Replace the flag if it already exists. for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) { MDNode *Flag = ModFlags->getOperand(I); ModFlagBehavior MFB; MDString *K = nullptr; Metadata *V = nullptr; if (isValidModuleFlag(*Flag, MFB, K, V) && K->getString() == Key) { Flag->replaceOperandWith(2, Val); return; } } addModuleFlag(Behavior, Key, Val); } void Module::setDataLayout(StringRef Desc) { DL.reset(Desc); } void Module::setDataLayout(const DataLayout &Other) { DL = Other; } const DataLayout &Module::getDataLayout() const { return DL; } DICompileUnit *Module::debug_compile_units_iterator::operator*() const { return cast(CUs->getOperand(Idx)); } DICompileUnit *Module::debug_compile_units_iterator::operator->() const { return cast(CUs->getOperand(Idx)); } void Module::debug_compile_units_iterator::SkipNoDebugCUs() { while (CUs && (Idx < CUs->getNumOperands()) && ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) ++Idx; } iterator_range Module::global_objects() { return concat(functions(), globals()); } iterator_range Module::global_objects() const { return concat(functions(), globals()); } iterator_range Module::global_values() { return concat(functions(), globals(), aliases(), ifuncs()); } iterator_range Module::global_values() const { return concat(functions(), globals(), aliases(), ifuncs()); } //===----------------------------------------------------------------------===// // Methods to control the materialization of GlobalValues in the Module. // void Module::setMaterializer(GVMaterializer *GVM) { assert(!Materializer && "Module already has a GVMaterializer. Call materializeAll" " to clear it out before setting another one."); Materializer.reset(GVM); } Error Module::materialize(GlobalValue *GV) { if (!Materializer) return Error::success(); return Materializer->materialize(GV); } Error Module::materializeAll() { if (!Materializer) return Error::success(); std::unique_ptr M = std::move(Materializer); return M->materializeModule(); } Error Module::materializeMetadata() { if (!Materializer) return Error::success(); return Materializer->materializeMetadata(); } //===----------------------------------------------------------------------===// // Other module related stuff. // std::vector Module::getIdentifiedStructTypes() const { // If we have a materializer, it is possible that some unread function // uses a type that is currently not visible to a TypeFinder, so ask // the materializer which types it created. if (Materializer) return Materializer->getIdentifiedStructTypes(); std::vector Ret; TypeFinder SrcStructTypes; SrcStructTypes.run(*this, true); Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); return Ret; } std::string Module::getUniqueIntrinsicName(StringRef BaseName, Intrinsic::ID Id, const FunctionType *Proto) { auto Encode = [&BaseName](unsigned Suffix) { return (Twine(BaseName) + "." + Twine(Suffix)).str(); }; { // fast path - the prototype is already known auto UinItInserted = UniquedIntrinsicNames.insert({{Id, Proto}, 0}); if (!UinItInserted.second) return Encode(UinItInserted.first->second); } // Not known yet. A new entry was created with index 0. Check if there already // exists a matching declaration, or select a new entry. // Start looking for names with the current known maximum count (or 0). auto NiidItInserted = CurrentIntrinsicIds.insert({BaseName, 0}); unsigned Count = NiidItInserted.first->second; // This might be slow if a whole population of intrinsics already existed, but // we cache the values for later usage. std::string NewName; while (true) { NewName = Encode(Count); GlobalValue *F = getNamedValue(NewName); if (!F) { // Reserve this entry for the new proto UniquedIntrinsicNames[{Id, Proto}] = Count; break; } // A declaration with this name already exists. Remember it. FunctionType *FT = dyn_cast(F->getValueType()); auto UinItInserted = UniquedIntrinsicNames.insert({{Id, FT}, Count}); if (FT == Proto) { // It was a declaration for our prototype. This entry was allocated in the // beginning. Update the count to match the existing declaration. UinItInserted.first->second = Count; break; } ++Count; } NiidItInserted.first->second = Count + 1; return NewName; } // dropAllReferences() - This function causes all the subelements to "let go" // of all references that they are maintaining. This allows one to 'delete' a // whole module at a time, even though there may be circular references... first // all references are dropped, and all use counts go to zero. Then everything // is deleted for real. Note that no operations are valid on an object that // has "dropped all references", except operator delete. // void Module::dropAllReferences() { for (Function &F : *this) F.dropAllReferences(); for (GlobalVariable &GV : globals()) GV.dropAllReferences(); for (GlobalAlias &GA : aliases()) GA.dropAllReferences(); for (GlobalIFunc &GIF : ifuncs()) GIF.dropAllReferences(); } unsigned Module::getNumberRegisterParameters() const { auto *Val = cast_or_null(getModuleFlag("NumRegisterParameters")); if (!Val) return 0; return cast(Val->getValue())->getZExtValue(); } unsigned Module::getDwarfVersion() const { auto *Val = cast_or_null(getModuleFlag("Dwarf Version")); if (!Val) return 0; return cast(Val->getValue())->getZExtValue(); } bool Module::isDwarf64() const { auto *Val = cast_or_null(getModuleFlag("DWARF64")); return Val && cast(Val->getValue())->isOne(); } unsigned Module::getCodeViewFlag() const { auto *Val = cast_or_null(getModuleFlag("CodeView")); if (!Val) return 0; return cast(Val->getValue())->getZExtValue(); } unsigned Module::getInstructionCount() const { unsigned NumInstrs = 0; for (const Function &F : FunctionList) NumInstrs += F.getInstructionCount(); return NumInstrs; } Comdat *Module::getOrInsertComdat(StringRef Name) { auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; Entry.second.Name = &Entry; return &Entry.second; } PICLevel::Level Module::getPICLevel() const { auto *Val = cast_or_null(getModuleFlag("PIC Level")); if (!Val) return PICLevel::NotPIC; return static_cast( cast(Val->getValue())->getZExtValue()); } void Module::setPICLevel(PICLevel::Level PL) { addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); } PIELevel::Level Module::getPIELevel() const { auto *Val = cast_or_null(getModuleFlag("PIE Level")); if (!Val) return PIELevel::Default; return static_cast( cast(Val->getValue())->getZExtValue()); } void Module::setPIELevel(PIELevel::Level PL) { addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); } Optional Module::getCodeModel() const { auto *Val = cast_or_null(getModuleFlag("Code Model")); if (!Val) return None; return static_cast( cast(Val->getValue())->getZExtValue()); } void Module::setCodeModel(CodeModel::Model CL) { // Linking object files with different code models is undefined behavior // because the compiler would have to generate additional code (to span // longer jumps) if a larger code model is used with a smaller one. // Therefore we will treat attempts to mix code models as an error. addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); } void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) { if (Kind == ProfileSummary::PSK_CSInstr) setModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M); else setModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); } Metadata *Module::getProfileSummary(bool IsCS) const { return (IsCS ? getModuleFlag("CSProfileSummary") : getModuleFlag("ProfileSummary")); } bool Module::getSemanticInterposition() const { Metadata *MF = getModuleFlag("SemanticInterposition"); auto *Val = cast_or_null(MF); if (!Val) return false; return cast(Val->getValue())->getZExtValue(); } void Module::setSemanticInterposition(bool SI) { addModuleFlag(ModFlagBehavior::Error, "SemanticInterposition", SI); } void Module::setOwnedMemoryBuffer(std::unique_ptr MB) { OwnedMemoryBuffer = std::move(MB); } bool Module::getRtLibUseGOT() const { auto *Val = cast_or_null(getModuleFlag("RtLibUseGOT")); return Val && (cast(Val->getValue())->getZExtValue() > 0); } void Module::setRtLibUseGOT() { addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); } UWTableKind Module::getUwtable() const { if (auto *Val = cast_or_null(getModuleFlag("uwtable"))) return UWTableKind(cast(Val->getValue())->getZExtValue()); return UWTableKind::None; } void Module::setUwtable(UWTableKind Kind) { addModuleFlag(ModFlagBehavior::Max, "uwtable", uint32_t(Kind)); } FramePointerKind Module::getFramePointer() const { auto *Val = cast_or_null(getModuleFlag("frame-pointer")); return static_cast( Val ? cast(Val->getValue())->getZExtValue() : 0); } void Module::setFramePointer(FramePointerKind Kind) { addModuleFlag(ModFlagBehavior::Max, "frame-pointer", static_cast(Kind)); } StringRef Module::getStackProtectorGuard() const { Metadata *MD = getModuleFlag("stack-protector-guard"); if (auto *MDS = dyn_cast_or_null(MD)) return MDS->getString(); return {}; } void Module::setStackProtectorGuard(StringRef Kind) { MDString *ID = MDString::get(getContext(), Kind); addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard", ID); } StringRef Module::getStackProtectorGuardReg() const { Metadata *MD = getModuleFlag("stack-protector-guard-reg"); if (auto *MDS = dyn_cast_or_null(MD)) return MDS->getString(); return {}; } void Module::setStackProtectorGuardReg(StringRef Reg) { MDString *ID = MDString::get(getContext(), Reg); addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-reg", ID); } StringRef Module::getStackProtectorGuardSymbol() const { Metadata *MD = getModuleFlag("stack-protector-guard-symbol"); if (auto *MDS = dyn_cast_or_null(MD)) return MDS->getString(); return {}; } void Module::setStackProtectorGuardSymbol(StringRef Symbol) { MDString *ID = MDString::get(getContext(), Symbol); addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-symbol", ID); } int Module::getStackProtectorGuardOffset() const { Metadata *MD = getModuleFlag("stack-protector-guard-offset"); if (auto *CI = mdconst::dyn_extract_or_null(MD)) return CI->getSExtValue(); return INT_MAX; } void Module::setStackProtectorGuardOffset(int Offset) { addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-offset", Offset); } unsigned Module::getOverrideStackAlignment() const { Metadata *MD = getModuleFlag("override-stack-alignment"); if (auto *CI = mdconst::dyn_extract_or_null(MD)) return CI->getZExtValue(); return 0; } void Module::setOverrideStackAlignment(unsigned Align) { addModuleFlag(ModFlagBehavior::Error, "override-stack-alignment", Align); } static void addSDKVersionMD(const VersionTuple &V, Module &M, StringRef Name) { SmallVector Entries; Entries.push_back(V.getMajor()); if (auto Minor = V.getMinor()) { Entries.push_back(*Minor); if (auto Subminor = V.getSubminor()) Entries.push_back(*Subminor); // Ignore the 'build' component as it can't be represented in the object // file. } M.addModuleFlag(Module::ModFlagBehavior::Warning, Name, ConstantDataArray::get(M.getContext(), Entries)); } void Module::setSDKVersion(const VersionTuple &V) { addSDKVersionMD(V, *this, "SDK Version"); } static VersionTuple getSDKVersionMD(Metadata *MD) { auto *CM = dyn_cast_or_null(MD); if (!CM) return {}; auto *Arr = dyn_cast_or_null(CM->getValue()); if (!Arr) return {}; auto getVersionComponent = [&](unsigned Index) -> Optional { if (Index >= Arr->getNumElements()) return None; return (unsigned)Arr->getElementAsInteger(Index); }; auto Major = getVersionComponent(0); if (!Major) return {}; VersionTuple Result = VersionTuple(*Major); if (auto Minor = getVersionComponent(1)) { Result = VersionTuple(*Major, *Minor); if (auto Subminor = getVersionComponent(2)) { Result = VersionTuple(*Major, *Minor, *Subminor); } } return Result; } VersionTuple Module::getSDKVersion() const { return getSDKVersionMD(getModuleFlag("SDK Version")); } GlobalVariable *llvm::collectUsedGlobalVariables( const Module &M, SmallVectorImpl &Vec, bool CompilerUsed) { const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; GlobalVariable *GV = M.getGlobalVariable(Name); if (!GV || !GV->hasInitializer()) return GV; const ConstantArray *Init = cast(GV->getInitializer()); for (Value *Op : Init->operands()) { GlobalValue *G = cast(Op->stripPointerCasts()); Vec.push_back(G); } return GV; } void Module::setPartialSampleProfileRatio(const ModuleSummaryIndex &Index) { if (auto *SummaryMD = getProfileSummary(/*IsCS*/ false)) { std::unique_ptr ProfileSummary( ProfileSummary::getFromMD(SummaryMD)); if (ProfileSummary) { if (ProfileSummary->getKind() != ProfileSummary::PSK_Sample || !ProfileSummary->isPartialProfile()) return; uint64_t BlockCount = Index.getBlockCount(); uint32_t NumCounts = ProfileSummary->getNumCounts(); if (!NumCounts) return; double Ratio = (double)BlockCount / NumCounts; ProfileSummary->setPartialProfileRatio(Ratio); setProfileSummary(ProfileSummary->getMD(getContext()), ProfileSummary::PSK_Sample); } } } StringRef Module::getDarwinTargetVariantTriple() const { if (const auto *MD = getModuleFlag("darwin.target_variant.triple")) return cast(MD)->getString(); return ""; } void Module::setDarwinTargetVariantTriple(StringRef T) { addModuleFlag(ModFlagBehavior::Override, "darwin.target_variant.triple", MDString::get(getContext(), T)); } VersionTuple Module::getDarwinTargetVariantSDKVersion() const { return getSDKVersionMD(getModuleFlag("darwin.target_variant.SDK Version")); } void Module::setDarwinTargetVariantSDKVersion(VersionTuple Version) { addSDKVersionMD(Version, *this, "darwin.target_variant.SDK Version"); }