//===-- Instruction.cpp - Implement the Instruction class -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Instruction class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Instruction.h" #include "llvm/ADT/DenseSet.h" #include "llvm/IR/AttributeMask.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/ProfDataUtils.h" #include "llvm/IR/Type.h" using namespace llvm; Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, Instruction *InsertBefore) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { // If requested, insert this instruction into a basic block... if (InsertBefore) { BasicBlock *BB = InsertBefore->getParent(); assert(BB && "Instruction to insert before is not in a basic block!"); insertInto(BB, InsertBefore->getIterator()); } } Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { // append this instruction into the basic block assert(InsertAtEnd && "Basic block to append to may not be NULL!"); insertInto(InsertAtEnd, InsertAtEnd->end()); } Instruction::~Instruction() { assert(!Parent && "Instruction still linked in the program!"); // Replace any extant metadata uses of this instruction with undef to // preserve debug info accuracy. Some alternatives include: // - Treat Instruction like any other Value, and point its extant metadata // uses to an empty ValueAsMetadata node. This makes extant dbg.value uses // trivially dead (i.e. fair game for deletion in many passes), leading to // stale dbg.values being in effect for too long. // - Call salvageDebugInfoOrMarkUndef. Not needed to make instruction removal // correct. OTOH results in wasted work in some common cases (e.g. when all // instructions in a BasicBlock are deleted). if (isUsedByMetadata()) ValueAsMetadata::handleRAUW(this, UndefValue::get(getType())); // Explicitly remove DIAssignID metadata to clear up ID -> Instruction(s) // mapping in LLVMContext. setMetadata(LLVMContext::MD_DIAssignID, nullptr); } void Instruction::setParent(BasicBlock *P) { Parent = P; } const Module *Instruction::getModule() const { return getParent()->getModule(); } const Function *Instruction::getFunction() const { return getParent()->getParent(); } void Instruction::removeFromParent() { // Perform any debug-info maintenence required. handleMarkerRemoval(); getParent()->getInstList().remove(getIterator()); } void Instruction::handleMarkerRemoval() { if (!Parent->IsNewDbgInfoFormat || !DbgMarker) return; DbgMarker->removeMarker(); } BasicBlock::iterator Instruction::eraseFromParent() { handleMarkerRemoval(); return getParent()->getInstList().erase(getIterator()); } void Instruction::insertBefore(Instruction *InsertPos) { insertBefore(InsertPos->getIterator()); } /// Insert an unlinked instruction into a basic block immediately before the /// specified instruction. void Instruction::insertBefore(BasicBlock::iterator InsertPos) { insertBefore(*InsertPos->getParent(), InsertPos); } /// Insert an unlinked instruction into a basic block immediately after the /// specified instruction. void Instruction::insertAfter(Instruction *InsertPos) { BasicBlock *DestParent = InsertPos->getParent(); DestParent->getInstList().insertAfter(InsertPos->getIterator(), this); // No need to manually update DPValues: if we insert after an instruction // position, then we can never have any DPValues on "this". if (DestParent->IsNewDbgInfoFormat) DestParent->createMarker(this); } BasicBlock::iterator Instruction::insertInto(BasicBlock *ParentBB, BasicBlock::iterator It) { assert(getParent() == nullptr && "Expected detached instruction"); assert((It == ParentBB->end() || It->getParent() == ParentBB) && "It not in ParentBB"); insertBefore(*ParentBB, It); return getIterator(); } extern cl::opt UseNewDbgInfoFormat; void Instruction::insertBefore(BasicBlock &BB, InstListType::iterator InsertPos) { assert(!DbgMarker); BB.getInstList().insert(InsertPos, this); if (!BB.IsNewDbgInfoFormat) return; BB.createMarker(this); // We've inserted "this": if InsertAtHead is set then it comes before any // DPValues attached to InsertPos. But if it's not set, then any DPValues // should now come before "this". bool InsertAtHead = InsertPos.getHeadBit(); if (!InsertAtHead) { DPMarker *SrcMarker = BB.getMarker(InsertPos); // If there's no source marker, InsertPos is very likely end(). if (SrcMarker) DbgMarker->absorbDebugValues(*SrcMarker, false); } // If we're inserting a terminator, check if we need to flush out // TrailingDPValues. if (isTerminator()) getParent()->flushTerminatorDbgValues(); } /// Unlink this instruction from its current basic block and insert it into the /// basic block that MovePos lives in, right before MovePos. void Instruction::moveBefore(Instruction *MovePos) { moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), false); } void Instruction::moveBeforePreserving(Instruction *MovePos) { moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), true); } void Instruction::moveAfter(Instruction *MovePos) { auto NextIt = std::next(MovePos->getIterator()); // We want this instruction to be moved to before NextIt in the instruction // list, but before NextIt's debug value range. NextIt.setHeadBit(true); moveBeforeImpl(*MovePos->getParent(), NextIt, false); } void Instruction::moveAfterPreserving(Instruction *MovePos) { auto NextIt = std::next(MovePos->getIterator()); // We want this instruction and its debug range to be moved to before NextIt // in the instruction list, but before NextIt's debug value range. NextIt.setHeadBit(true); moveBeforeImpl(*MovePos->getParent(), NextIt, true); } void Instruction::moveBefore(BasicBlock &BB, InstListType::iterator I) { moveBeforeImpl(BB, I, false); } void Instruction::moveBeforePreserving(BasicBlock &BB, InstListType::iterator I) { moveBeforeImpl(BB, I, true); } void Instruction::moveBeforeImpl(BasicBlock &BB, InstListType::iterator I, bool Preserve) { assert(I == BB.end() || I->getParent() == &BB); bool InsertAtHead = I.getHeadBit(); // If we've been given the "Preserve" flag, then just move the DPValues with // the instruction, no more special handling needed. if (BB.IsNewDbgInfoFormat && DbgMarker && !Preserve) { if (I != this->getIterator() || InsertAtHead) { // "this" is definitely moving in the list, or it's moving ahead of its // attached DPValues. Detach any existing DPValues. handleMarkerRemoval(); } } // Move this single instruction. Use the list splice method directly, not // the block splicer, which will do more debug-info things. BB.getInstList().splice(I, getParent()->getInstList(), getIterator()); if (BB.IsNewDbgInfoFormat && !Preserve) { if (!DbgMarker) BB.createMarker(this); DPMarker *NextMarker = getParent()->getNextMarker(this); // If we're inserting at point I, and not in front of the DPValues attached // there, then we should absorb the DPValues attached to I. if (NextMarker && !InsertAtHead) DbgMarker->absorbDebugValues(*NextMarker, false); } if (isTerminator()) getParent()->flushTerminatorDbgValues(); } iterator_range Instruction::cloneDebugInfoFrom(const Instruction *From, std::optional FromHere, bool InsertAtHead) { if (!From->DbgMarker) return DPMarker::getEmptyDPValueRange(); assert(getParent()->IsNewDbgInfoFormat); assert(getParent()->IsNewDbgInfoFormat == From->getParent()->IsNewDbgInfoFormat); if (!DbgMarker) getParent()->createMarker(this); return DbgMarker->cloneDebugInfoFrom(From->DbgMarker, FromHere, InsertAtHead); } iterator_range Instruction::getDbgValueRange() const { BasicBlock *Parent = const_cast(getParent()); assert(Parent && "Instruction must be inserted to have DPValues"); (void)Parent; if (!DbgMarker) return DPMarker::getEmptyDPValueRange(); return DbgMarker->getDbgValueRange(); } std::optional Instruction::getDbgReinsertionPosition() { // Is there a marker on the next instruction? DPMarker *NextMarker = getParent()->getNextMarker(this); if (!NextMarker) return std::nullopt; // Are there any DPValues in the next marker? if (NextMarker->StoredDPValues.empty()) return std::nullopt; return NextMarker->StoredDPValues.begin(); } bool Instruction::hasDbgValues() const { return !getDbgValueRange().empty(); } void Instruction::dropDbgValues() { if (DbgMarker) DbgMarker->dropDPValues(); } void Instruction::dropOneDbgValue(DPValue *DPV) { DbgMarker->dropOneDPValue(DPV); } bool Instruction::comesBefore(const Instruction *Other) const { assert(Parent && Other->Parent && "instructions without BB parents have no order"); assert(Parent == Other->Parent && "cross-BB instruction order comparison"); if (!Parent->isInstrOrderValid()) Parent->renumberInstructions(); return Order < Other->Order; } std::optional Instruction::getInsertionPointAfterDef() { assert(!getType()->isVoidTy() && "Instruction must define result"); BasicBlock *InsertBB; BasicBlock::iterator InsertPt; if (auto *PN = dyn_cast(this)) { InsertBB = PN->getParent(); InsertPt = InsertBB->getFirstInsertionPt(); } else if (auto *II = dyn_cast(this)) { InsertBB = II->getNormalDest(); InsertPt = InsertBB->getFirstInsertionPt(); } else if (isa(this)) { // Def is available in multiple successors, there's no single dominating // insertion point. return std::nullopt; } else { assert(!isTerminator() && "Only invoke/callbr terminators return value"); InsertBB = getParent(); InsertPt = std::next(getIterator()); // Any instruction inserted immediately after "this" will come before any // debug-info records take effect -- thus, set the head bit indicating that // to debug-info-transfer code. InsertPt.setHeadBit(true); } // catchswitch blocks don't have any legal insertion point (because they // are both an exception pad and a terminator). if (InsertPt == InsertBB->end()) return std::nullopt; return InsertPt; } bool Instruction::isOnlyUserOfAnyOperand() { return any_of(operands(), [](Value *V) { return V->hasOneUser(); }); } void Instruction::setHasNoUnsignedWrap(bool b) { cast(this)->setHasNoUnsignedWrap(b); } void Instruction::setHasNoSignedWrap(bool b) { cast(this)->setHasNoSignedWrap(b); } void Instruction::setIsExact(bool b) { cast(this)->setIsExact(b); } void Instruction::setNonNeg(bool b) { assert(isa(this) && "Must be zext"); SubclassOptionalData = (SubclassOptionalData & ~PossiblyNonNegInst::NonNeg) | (b * PossiblyNonNegInst::NonNeg); } bool Instruction::hasNoUnsignedWrap() const { return cast(this)->hasNoUnsignedWrap(); } bool Instruction::hasNoSignedWrap() const { return cast(this)->hasNoSignedWrap(); } bool Instruction::hasNonNeg() const { assert(isa(this) && "Must be zext"); return (SubclassOptionalData & PossiblyNonNegInst::NonNeg) != 0; } bool Instruction::hasPoisonGeneratingFlags() const { return cast(this)->hasPoisonGeneratingFlags(); } void Instruction::dropPoisonGeneratingFlags() { switch (getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Shl: cast(this)->setHasNoUnsignedWrap(false); cast(this)->setHasNoSignedWrap(false); break; case Instruction::UDiv: case Instruction::SDiv: case Instruction::AShr: case Instruction::LShr: cast(this)->setIsExact(false); break; case Instruction::Or: cast(this)->setIsDisjoint(false); break; case Instruction::GetElementPtr: cast(this)->setIsInBounds(false); break; case Instruction::ZExt: setNonNeg(false); break; } if (isa(this)) { setHasNoNaNs(false); setHasNoInfs(false); } assert(!hasPoisonGeneratingFlags() && "must be kept in sync"); } bool Instruction::hasPoisonGeneratingMetadata() const { return hasMetadata(LLVMContext::MD_range) || hasMetadata(LLVMContext::MD_nonnull) || hasMetadata(LLVMContext::MD_align); } void Instruction::dropPoisonGeneratingMetadata() { eraseMetadata(LLVMContext::MD_range); eraseMetadata(LLVMContext::MD_nonnull); eraseMetadata(LLVMContext::MD_align); } void Instruction::dropUBImplyingAttrsAndUnknownMetadata( ArrayRef KnownIDs) { dropUnknownNonDebugMetadata(KnownIDs); auto *CB = dyn_cast(this); if (!CB) return; // For call instructions, we also need to drop parameter and return attributes // that are can cause UB if the call is moved to a location where the // attribute is not valid. AttributeList AL = CB->getAttributes(); if (AL.isEmpty()) return; AttributeMask UBImplyingAttributes = AttributeFuncs::getUBImplyingAttributes(); for (unsigned ArgNo = 0; ArgNo < CB->arg_size(); ArgNo++) CB->removeParamAttrs(ArgNo, UBImplyingAttributes); CB->removeRetAttrs(UBImplyingAttributes); } void Instruction::dropUBImplyingAttrsAndMetadata() { // !annotation metadata does not impact semantics. // !range, !nonnull and !align produce poison, so they are safe to speculate. // !noundef and various AA metadata must be dropped, as it generally produces // immediate undefined behavior. unsigned KnownIDs[] = {LLVMContext::MD_annotation, LLVMContext::MD_range, LLVMContext::MD_nonnull, LLVMContext::MD_align}; dropUBImplyingAttrsAndUnknownMetadata(KnownIDs); } bool Instruction::isExact() const { return cast(this)->isExact(); } void Instruction::setFast(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setFast(B); } void Instruction::setHasAllowReassoc(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasAllowReassoc(B); } void Instruction::setHasNoNaNs(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasNoNaNs(B); } void Instruction::setHasNoInfs(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasNoInfs(B); } void Instruction::setHasNoSignedZeros(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasNoSignedZeros(B); } void Instruction::setHasAllowReciprocal(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasAllowReciprocal(B); } void Instruction::setHasAllowContract(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasAllowContract(B); } void Instruction::setHasApproxFunc(bool B) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setHasApproxFunc(B); } void Instruction::setFastMathFlags(FastMathFlags FMF) { assert(isa(this) && "setting fast-math flag on invalid op"); cast(this)->setFastMathFlags(FMF); } void Instruction::copyFastMathFlags(FastMathFlags FMF) { assert(isa(this) && "copying fast-math flag on invalid op"); cast(this)->copyFastMathFlags(FMF); } bool Instruction::isFast() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->isFast(); } bool Instruction::hasAllowReassoc() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasAllowReassoc(); } bool Instruction::hasNoNaNs() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasNoNaNs(); } bool Instruction::hasNoInfs() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasNoInfs(); } bool Instruction::hasNoSignedZeros() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasNoSignedZeros(); } bool Instruction::hasAllowReciprocal() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasAllowReciprocal(); } bool Instruction::hasAllowContract() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasAllowContract(); } bool Instruction::hasApproxFunc() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->hasApproxFunc(); } FastMathFlags Instruction::getFastMathFlags() const { assert(isa(this) && "getting fast-math flag on invalid op"); return cast(this)->getFastMathFlags(); } void Instruction::copyFastMathFlags(const Instruction *I) { copyFastMathFlags(I->getFastMathFlags()); } void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) { // Copy the wrapping flags. if (IncludeWrapFlags && isa(this)) { if (auto *OB = dyn_cast(V)) { setHasNoSignedWrap(OB->hasNoSignedWrap()); setHasNoUnsignedWrap(OB->hasNoUnsignedWrap()); } } // Copy the exact flag. if (auto *PE = dyn_cast(V)) if (isa(this)) setIsExact(PE->isExact()); if (auto *SrcPD = dyn_cast(V)) if (auto *DestPD = dyn_cast(this)) DestPD->setIsDisjoint(SrcPD->isDisjoint()); // Copy the fast-math flags. if (auto *FP = dyn_cast(V)) if (isa(this)) copyFastMathFlags(FP->getFastMathFlags()); if (auto *SrcGEP = dyn_cast(V)) if (auto *DestGEP = dyn_cast(this)) DestGEP->setIsInBounds(SrcGEP->isInBounds() || DestGEP->isInBounds()); if (auto *NNI = dyn_cast(V)) if (isa(this)) setNonNeg(NNI->hasNonNeg()); } void Instruction::andIRFlags(const Value *V) { if (auto *OB = dyn_cast(V)) { if (isa(this)) { setHasNoSignedWrap(hasNoSignedWrap() && OB->hasNoSignedWrap()); setHasNoUnsignedWrap(hasNoUnsignedWrap() && OB->hasNoUnsignedWrap()); } } if (auto *PE = dyn_cast(V)) if (isa(this)) setIsExact(isExact() && PE->isExact()); if (auto *SrcPD = dyn_cast(V)) if (auto *DestPD = dyn_cast(this)) DestPD->setIsDisjoint(DestPD->isDisjoint() && SrcPD->isDisjoint()); if (auto *FP = dyn_cast(V)) { if (isa(this)) { FastMathFlags FM = getFastMathFlags(); FM &= FP->getFastMathFlags(); copyFastMathFlags(FM); } } if (auto *SrcGEP = dyn_cast(V)) if (auto *DestGEP = dyn_cast(this)) DestGEP->setIsInBounds(SrcGEP->isInBounds() && DestGEP->isInBounds()); if (auto *NNI = dyn_cast(V)) if (isa(this)) setNonNeg(hasNonNeg() && NNI->hasNonNeg()); } const char *Instruction::getOpcodeName(unsigned OpCode) { switch (OpCode) { // Terminators case Ret: return "ret"; case Br: return "br"; case Switch: return "switch"; case IndirectBr: return "indirectbr"; case Invoke: return "invoke"; case Resume: return "resume"; case Unreachable: return "unreachable"; case CleanupRet: return "cleanupret"; case CatchRet: return "catchret"; case CatchPad: return "catchpad"; case CatchSwitch: return "catchswitch"; case CallBr: return "callbr"; // Standard unary operators... case FNeg: return "fneg"; // Standard binary operators... case Add: return "add"; case FAdd: return "fadd"; case Sub: return "sub"; case FSub: return "fsub"; case Mul: return "mul"; case FMul: return "fmul"; case UDiv: return "udiv"; case SDiv: return "sdiv"; case FDiv: return "fdiv"; case URem: return "urem"; case SRem: return "srem"; case FRem: return "frem"; // Logical operators... case And: return "and"; case Or : return "or"; case Xor: return "xor"; // Memory instructions... case Alloca: return "alloca"; case Load: return "load"; case Store: return "store"; case AtomicCmpXchg: return "cmpxchg"; case AtomicRMW: return "atomicrmw"; case Fence: return "fence"; case GetElementPtr: return "getelementptr"; // Convert instructions... case Trunc: return "trunc"; case ZExt: return "zext"; case SExt: return "sext"; case FPTrunc: return "fptrunc"; case FPExt: return "fpext"; case FPToUI: return "fptoui"; case FPToSI: return "fptosi"; case UIToFP: return "uitofp"; case SIToFP: return "sitofp"; case IntToPtr: return "inttoptr"; case PtrToInt: return "ptrtoint"; case BitCast: return "bitcast"; case AddrSpaceCast: return "addrspacecast"; // Other instructions... case ICmp: return "icmp"; case FCmp: return "fcmp"; case PHI: return "phi"; case Select: return "select"; case Call: return "call"; case Shl: return "shl"; case LShr: return "lshr"; case AShr: return "ashr"; case VAArg: return "va_arg"; case ExtractElement: return "extractelement"; case InsertElement: return "insertelement"; case ShuffleVector: return "shufflevector"; case ExtractValue: return "extractvalue"; case InsertValue: return "insertvalue"; case LandingPad: return "landingpad"; case CleanupPad: return "cleanuppad"; case Freeze: return "freeze"; default: return " "; } } /// This must be kept in sync with FunctionComparator::cmpOperations in /// lib/Transforms/IPO/MergeFunctions.cpp. bool Instruction::hasSameSpecialState(const Instruction *I2, bool IgnoreAlignment) const { auto I1 = this; assert(I1->getOpcode() == I2->getOpcode() && "Can not compare special state of different instructions"); if (const AllocaInst *AI = dyn_cast(I1)) return AI->getAllocatedType() == cast(I2)->getAllocatedType() && (AI->getAlign() == cast(I2)->getAlign() || IgnoreAlignment); if (const LoadInst *LI = dyn_cast(I1)) return LI->isVolatile() == cast(I2)->isVolatile() && (LI->getAlign() == cast(I2)->getAlign() || IgnoreAlignment) && LI->getOrdering() == cast(I2)->getOrdering() && LI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const StoreInst *SI = dyn_cast(I1)) return SI->isVolatile() == cast(I2)->isVolatile() && (SI->getAlign() == cast(I2)->getAlign() || IgnoreAlignment) && SI->getOrdering() == cast(I2)->getOrdering() && SI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const CmpInst *CI = dyn_cast(I1)) return CI->getPredicate() == cast(I2)->getPredicate(); if (const CallInst *CI = dyn_cast(I1)) return CI->isTailCall() == cast(I2)->isTailCall() && CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes() == cast(I2)->getAttributes() && CI->hasIdenticalOperandBundleSchema(*cast(I2)); if (const InvokeInst *CI = dyn_cast(I1)) return CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes() == cast(I2)->getAttributes() && CI->hasIdenticalOperandBundleSchema(*cast(I2)); if (const CallBrInst *CI = dyn_cast(I1)) return CI->getCallingConv() == cast(I2)->getCallingConv() && CI->getAttributes() == cast(I2)->getAttributes() && CI->hasIdenticalOperandBundleSchema(*cast(I2)); if (const InsertValueInst *IVI = dyn_cast(I1)) return IVI->getIndices() == cast(I2)->getIndices(); if (const ExtractValueInst *EVI = dyn_cast(I1)) return EVI->getIndices() == cast(I2)->getIndices(); if (const FenceInst *FI = dyn_cast(I1)) return FI->getOrdering() == cast(I2)->getOrdering() && FI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const AtomicCmpXchgInst *CXI = dyn_cast(I1)) return CXI->isVolatile() == cast(I2)->isVolatile() && CXI->isWeak() == cast(I2)->isWeak() && CXI->getSuccessOrdering() == cast(I2)->getSuccessOrdering() && CXI->getFailureOrdering() == cast(I2)->getFailureOrdering() && CXI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const AtomicRMWInst *RMWI = dyn_cast(I1)) return RMWI->getOperation() == cast(I2)->getOperation() && RMWI->isVolatile() == cast(I2)->isVolatile() && RMWI->getOrdering() == cast(I2)->getOrdering() && RMWI->getSyncScopeID() == cast(I2)->getSyncScopeID(); if (const ShuffleVectorInst *SVI = dyn_cast(I1)) return SVI->getShuffleMask() == cast(I2)->getShuffleMask(); if (const GetElementPtrInst *GEP = dyn_cast(I1)) return GEP->getSourceElementType() == cast(I2)->getSourceElementType(); return true; } bool Instruction::isIdenticalTo(const Instruction *I) const { return isIdenticalToWhenDefined(I) && SubclassOptionalData == I->SubclassOptionalData; } bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const { if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || getType() != I->getType()) return false; // If both instructions have no operands, they are identical. if (getNumOperands() == 0 && I->getNumOperands() == 0) return this->hasSameSpecialState(I); // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same. if (!std::equal(op_begin(), op_end(), I->op_begin())) return false; // WARNING: this logic must be kept in sync with EliminateDuplicatePHINodes()! if (const PHINode *thisPHI = dyn_cast(this)) { const PHINode *otherPHI = cast(I); return std::equal(thisPHI->block_begin(), thisPHI->block_end(), otherPHI->block_begin()); } return this->hasSameSpecialState(I); } // Keep this in sync with FunctionComparator::cmpOperations in // lib/Transforms/IPO/MergeFunctions.cpp. bool Instruction::isSameOperationAs(const Instruction *I, unsigned flags) const { bool IgnoreAlignment = flags & CompareIgnoringAlignment; bool UseScalarTypes = flags & CompareUsingScalarTypes; if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || (UseScalarTypes ? getType()->getScalarType() != I->getType()->getScalarType() : getType() != I->getType())) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (UseScalarTypes ? getOperand(i)->getType()->getScalarType() != I->getOperand(i)->getType()->getScalarType() : getOperand(i)->getType() != I->getOperand(i)->getType()) return false; return this->hasSameSpecialState(I, IgnoreAlignment); } bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const { for (const Use &U : uses()) { // PHI nodes uses values in the corresponding predecessor block. For other // instructions, just check to see whether the parent of the use matches up. const Instruction *I = cast(U.getUser()); const PHINode *PN = dyn_cast(I); if (!PN) { if (I->getParent() != BB) return true; continue; } if (PN->getIncomingBlock(U) != BB) return true; } return false; } bool Instruction::mayReadFromMemory() const { switch (getOpcode()) { default: return false; case Instruction::VAArg: case Instruction::Load: case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::CatchPad: case Instruction::CatchRet: return true; case Instruction::Call: case Instruction::Invoke: case Instruction::CallBr: return !cast(this)->onlyWritesMemory(); case Instruction::Store: return !cast(this)->isUnordered(); } } bool Instruction::mayWriteToMemory() const { switch (getOpcode()) { default: return false; case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory case Instruction::Store: case Instruction::VAArg: case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::CatchPad: case Instruction::CatchRet: return true; case Instruction::Call: case Instruction::Invoke: case Instruction::CallBr: return !cast(this)->onlyReadsMemory(); case Instruction::Load: return !cast(this)->isUnordered(); } } bool Instruction::isAtomic() const { switch (getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::Fence: return true; case Instruction::Load: return cast(this)->getOrdering() != AtomicOrdering::NotAtomic; case Instruction::Store: return cast(this)->getOrdering() != AtomicOrdering::NotAtomic; } } bool Instruction::hasAtomicLoad() const { assert(isAtomic()); switch (getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::Load: return true; } } bool Instruction::hasAtomicStore() const { assert(isAtomic()); switch (getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: case Instruction::Store: return true; } } bool Instruction::isVolatile() const { switch (getOpcode()) { default: return false; case Instruction::AtomicRMW: return cast(this)->isVolatile(); case Instruction::Store: return cast(this)->isVolatile(); case Instruction::Load: return cast(this)->isVolatile(); case Instruction::AtomicCmpXchg: return cast(this)->isVolatile(); case Instruction::Call: case Instruction::Invoke: // There are a very limited number of intrinsics with volatile flags. if (auto *II = dyn_cast(this)) { if (auto *MI = dyn_cast(II)) return MI->isVolatile(); switch (II->getIntrinsicID()) { default: break; case Intrinsic::matrix_column_major_load: return cast(II->getArgOperand(2))->isOne(); case Intrinsic::matrix_column_major_store: return cast(II->getArgOperand(3))->isOne(); } } return false; } } Type *Instruction::getAccessType() const { switch (getOpcode()) { case Instruction::Store: return cast(this)->getValueOperand()->getType(); case Instruction::Load: case Instruction::AtomicRMW: return getType(); case Instruction::AtomicCmpXchg: return cast(this)->getNewValOperand()->getType(); case Instruction::Call: case Instruction::Invoke: if (const IntrinsicInst *II = dyn_cast(this)) { switch (II->getIntrinsicID()) { case Intrinsic::masked_load: case Intrinsic::masked_gather: case Intrinsic::masked_expandload: case Intrinsic::vp_load: case Intrinsic::vp_gather: case Intrinsic::experimental_vp_strided_load: return II->getType(); case Intrinsic::masked_store: case Intrinsic::masked_scatter: case Intrinsic::masked_compressstore: case Intrinsic::vp_store: case Intrinsic::vp_scatter: case Intrinsic::experimental_vp_strided_store: return II->getOperand(0)->getType(); default: break; } } } return nullptr; } static bool canUnwindPastLandingPad(const LandingPadInst *LP, bool IncludePhaseOneUnwind) { // Because phase one unwinding skips cleanup landingpads, we effectively // unwind past this frame, and callers need to have valid unwind info. if (LP->isCleanup()) return IncludePhaseOneUnwind; for (unsigned I = 0; I < LP->getNumClauses(); ++I) { Constant *Clause = LP->getClause(I); // catch ptr null catches all exceptions. if (LP->isCatch(I) && isa(Clause)) return false; // filter [0 x ptr] catches all exceptions. if (LP->isFilter(I) && Clause->getType()->getArrayNumElements() == 0) return false; } // May catch only some subset of exceptions, in which case other exceptions // will continue unwinding. return true; } bool Instruction::mayThrow(bool IncludePhaseOneUnwind) const { switch (getOpcode()) { case Instruction::Call: return !cast(this)->doesNotThrow(); case Instruction::CleanupRet: return cast(this)->unwindsToCaller(); case Instruction::CatchSwitch: return cast(this)->unwindsToCaller(); case Instruction::Resume: return true; case Instruction::Invoke: { // Landingpads themselves don't unwind -- however, an invoke of a skipped // landingpad may continue unwinding. BasicBlock *UnwindDest = cast(this)->getUnwindDest(); Instruction *Pad = UnwindDest->getFirstNonPHI(); if (auto *LP = dyn_cast(Pad)) return canUnwindPastLandingPad(LP, IncludePhaseOneUnwind); return false; } case Instruction::CleanupPad: // Treat the same as cleanup landingpad. return IncludePhaseOneUnwind; default: return false; } } bool Instruction::mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow() || !willReturn(); } bool Instruction::isSafeToRemove() const { return (!isa(this) || !this->mayHaveSideEffects()) && !this->isTerminator() && !this->isEHPad(); } bool Instruction::willReturn() const { // Volatile store isn't guaranteed to return; see LangRef. if (auto *SI = dyn_cast(this)) return !SI->isVolatile(); if (const auto *CB = dyn_cast(this)) return CB->hasFnAttr(Attribute::WillReturn); return true; } bool Instruction::isLifetimeStartOrEnd() const { auto *II = dyn_cast(this); if (!II) return false; Intrinsic::ID ID = II->getIntrinsicID(); return ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end; } bool Instruction::isLaunderOrStripInvariantGroup() const { auto *II = dyn_cast(this); if (!II) return false; Intrinsic::ID ID = II->getIntrinsicID(); return ID == Intrinsic::launder_invariant_group || ID == Intrinsic::strip_invariant_group; } bool Instruction::isDebugOrPseudoInst() const { return isa(this) || isa(this); } const Instruction * Instruction::getNextNonDebugInstruction(bool SkipPseudoOp) const { for (const Instruction *I = getNextNode(); I; I = I->getNextNode()) if (!isa(I) && !(SkipPseudoOp && isa(I))) return I; return nullptr; } const Instruction * Instruction::getPrevNonDebugInstruction(bool SkipPseudoOp) const { for (const Instruction *I = getPrevNode(); I; I = I->getPrevNode()) if (!isa(I) && !(SkipPseudoOp && isa(I))) return I; return nullptr; } const DebugLoc &Instruction::getStableDebugLoc() const { if (isa(this)) if (const Instruction *Next = getNextNonDebugInstruction()) return Next->getDebugLoc(); return getDebugLoc(); } bool Instruction::isAssociative() const { if (auto *II = dyn_cast(this)) return II->isAssociative(); unsigned Opcode = getOpcode(); if (isAssociative(Opcode)) return true; switch (Opcode) { case FMul: case FAdd: return cast(this)->hasAllowReassoc() && cast(this)->hasNoSignedZeros(); default: return false; } } bool Instruction::isCommutative() const { if (auto *II = dyn_cast(this)) return II->isCommutative(); // TODO: Should allow icmp/fcmp? return isCommutative(getOpcode()); } unsigned Instruction::getNumSuccessors() const { switch (getOpcode()) { #define HANDLE_TERM_INST(N, OPC, CLASS) \ case Instruction::OPC: \ return static_cast(this)->getNumSuccessors(); #include "llvm/IR/Instruction.def" default: break; } llvm_unreachable("not a terminator"); } BasicBlock *Instruction::getSuccessor(unsigned idx) const { switch (getOpcode()) { #define HANDLE_TERM_INST(N, OPC, CLASS) \ case Instruction::OPC: \ return static_cast(this)->getSuccessor(idx); #include "llvm/IR/Instruction.def" default: break; } llvm_unreachable("not a terminator"); } void Instruction::setSuccessor(unsigned idx, BasicBlock *B) { switch (getOpcode()) { #define HANDLE_TERM_INST(N, OPC, CLASS) \ case Instruction::OPC: \ return static_cast(this)->setSuccessor(idx, B); #include "llvm/IR/Instruction.def" default: break; } llvm_unreachable("not a terminator"); } void Instruction::replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB) { for (unsigned Idx = 0, NumSuccessors = Instruction::getNumSuccessors(); Idx != NumSuccessors; ++Idx) if (getSuccessor(Idx) == OldBB) setSuccessor(Idx, NewBB); } Instruction *Instruction::cloneImpl() const { llvm_unreachable("Subclass of Instruction failed to implement cloneImpl"); } void Instruction::swapProfMetadata() { MDNode *ProfileData = getBranchWeightMDNode(*this); if (!ProfileData || ProfileData->getNumOperands() != 3) return; // The first operand is the name. Fetch them backwards and build a new one. Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2), ProfileData->getOperand(1)}; setMetadata(LLVMContext::MD_prof, MDNode::get(ProfileData->getContext(), Ops)); } void Instruction::copyMetadata(const Instruction &SrcInst, ArrayRef WL) { if (!SrcInst.hasMetadata()) return; DenseSet WLS; for (unsigned M : WL) WLS.insert(M); // Otherwise, enumerate and copy over metadata from the old instruction to the // new one. SmallVector, 4> TheMDs; SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs); for (const auto &MD : TheMDs) { if (WL.empty() || WLS.count(MD.first)) setMetadata(MD.first, MD.second); } if (WL.empty() || WLS.count(LLVMContext::MD_dbg)) setDebugLoc(SrcInst.getDebugLoc()); } Instruction *Instruction::clone() const { Instruction *New = nullptr; switch (getOpcode()) { default: llvm_unreachable("Unhandled Opcode."); #define HANDLE_INST(num, opc, clas) \ case Instruction::opc: \ New = cast(this)->cloneImpl(); \ break; #include "llvm/IR/Instruction.def" #undef HANDLE_INST } New->SubclassOptionalData = SubclassOptionalData; New->copyMetadata(*this); return New; }