//===- DebugInfo.cpp - Debug Information Helper Classes -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the helper classes used to build and interpret debug // information in LLVM IR form. // //===----------------------------------------------------------------------===// #include "llvm-c/DebugInfo.h" #include "LLVMContextImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/GVMaterializer.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/Casting.h" #include #include #include #include using namespace llvm; using namespace llvm::at; using namespace llvm::dwarf; TinyPtrVector llvm::FindDbgDeclareUses(Value *V) { // This function is hot. Check whether the value has any metadata to avoid a // DenseMap lookup. if (!V->isUsedByMetadata()) return {}; auto *L = LocalAsMetadata::getIfExists(V); if (!L) return {}; auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); if (!MDV) return {}; TinyPtrVector Declares; for (User *U : MDV->users()) { if (auto *DDI = dyn_cast(U)) Declares.push_back(DDI); } return Declares; } template static void findDbgIntrinsics(SmallVectorImpl &Result, Value *V) { // This function is hot. Check whether the value has any metadata to avoid a // DenseMap lookup. if (!V->isUsedByMetadata()) return; LLVMContext &Ctx = V->getContext(); // TODO: If this value appears multiple times in a DIArgList, we should still // only add the owning DbgValueInst once; use this set to track ArgListUsers. // This behaviour can be removed when we can automatically remove duplicates. // V will also appear twice in a dbg.assign if its used in the both the value // and address components. SmallPtrSet EncounteredIntrinsics; /// Append IntrinsicT users of MetadataAsValue(MD). auto AppendUsers = [&Ctx, &EncounteredIntrinsics, &Result](Metadata *MD) { if (auto *MDV = MetadataAsValue::getIfExists(Ctx, MD)) { for (User *U : MDV->users()) if (IntrinsicT *DVI = dyn_cast(U)) if (EncounteredIntrinsics.insert(DVI).second) Result.push_back(DVI); } }; if (auto *L = LocalAsMetadata::getIfExists(V)) { AppendUsers(L); for (Metadata *AL : L->getAllArgListUsers()) AppendUsers(AL); } } void llvm::findDbgValues(SmallVectorImpl &DbgValues, Value *V) { findDbgIntrinsics(DbgValues, V); } void llvm::findDbgUsers(SmallVectorImpl &DbgUsers, Value *V) { findDbgIntrinsics(DbgUsers, V); } DISubprogram *llvm::getDISubprogram(const MDNode *Scope) { if (auto *LocalScope = dyn_cast_or_null(Scope)) return LocalScope->getSubprogram(); return nullptr; } DebugLoc llvm::getDebugValueLoc(DbgVariableIntrinsic *DII) { // Original dbg.declare must have a location. const DebugLoc &DeclareLoc = DII->getDebugLoc(); MDNode *Scope = DeclareLoc.getScope(); DILocation *InlinedAt = DeclareLoc.getInlinedAt(); // Because no machine insts can come from debug intrinsics, only the scope // and inlinedAt is significant. Zero line numbers are used in case this // DebugLoc leaks into any adjacent instructions. Produce an unknown location // with the correct scope / inlinedAt fields. return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); } //===----------------------------------------------------------------------===// // DebugInfoFinder implementations. //===----------------------------------------------------------------------===// void DebugInfoFinder::reset() { CUs.clear(); SPs.clear(); GVs.clear(); TYs.clear(); Scopes.clear(); NodesSeen.clear(); } void DebugInfoFinder::processModule(const Module &M) { for (auto *CU : M.debug_compile_units()) processCompileUnit(CU); for (auto &F : M.functions()) { if (auto *SP = cast_or_null(F.getSubprogram())) processSubprogram(SP); // There could be subprograms from inlined functions referenced from // instructions only. Walk the function to find them. for (const BasicBlock &BB : F) for (const Instruction &I : BB) processInstruction(M, I); } } void DebugInfoFinder::processCompileUnit(DICompileUnit *CU) { if (!addCompileUnit(CU)) return; for (auto *DIG : CU->getGlobalVariables()) { if (!addGlobalVariable(DIG)) continue; auto *GV = DIG->getVariable(); processScope(GV->getScope()); processType(GV->getType()); } for (auto *ET : CU->getEnumTypes()) processType(ET); for (auto *RT : CU->getRetainedTypes()) if (auto *T = dyn_cast(RT)) processType(T); else processSubprogram(cast(RT)); for (auto *Import : CU->getImportedEntities()) { auto *Entity = Import->getEntity(); if (auto *T = dyn_cast(Entity)) processType(T); else if (auto *SP = dyn_cast(Entity)) processSubprogram(SP); else if (auto *NS = dyn_cast(Entity)) processScope(NS->getScope()); else if (auto *M = dyn_cast(Entity)) processScope(M->getScope()); } } void DebugInfoFinder::processInstruction(const Module &M, const Instruction &I) { if (auto *DVI = dyn_cast(&I)) processVariable(M, *DVI); if (auto DbgLoc = I.getDebugLoc()) processLocation(M, DbgLoc.get()); } void DebugInfoFinder::processLocation(const Module &M, const DILocation *Loc) { if (!Loc) return; processScope(Loc->getScope()); processLocation(M, Loc->getInlinedAt()); } void DebugInfoFinder::processType(DIType *DT) { if (!addType(DT)) return; processScope(DT->getScope()); if (auto *ST = dyn_cast(DT)) { for (DIType *Ref : ST->getTypeArray()) processType(Ref); return; } if (auto *DCT = dyn_cast(DT)) { processType(DCT->getBaseType()); for (Metadata *D : DCT->getElements()) { if (auto *T = dyn_cast(D)) processType(T); else if (auto *SP = dyn_cast(D)) processSubprogram(SP); } return; } if (auto *DDT = dyn_cast(DT)) { processType(DDT->getBaseType()); } } void DebugInfoFinder::processScope(DIScope *Scope) { if (!Scope) return; if (auto *Ty = dyn_cast(Scope)) { processType(Ty); return; } if (auto *CU = dyn_cast(Scope)) { addCompileUnit(CU); return; } if (auto *SP = dyn_cast(Scope)) { processSubprogram(SP); return; } if (!addScope(Scope)) return; if (auto *LB = dyn_cast(Scope)) { processScope(LB->getScope()); } else if (auto *NS = dyn_cast(Scope)) { processScope(NS->getScope()); } else if (auto *M = dyn_cast(Scope)) { processScope(M->getScope()); } } void DebugInfoFinder::processSubprogram(DISubprogram *SP) { if (!addSubprogram(SP)) return; processScope(SP->getScope()); // Some of the users, e.g. CloneFunctionInto / CloneModule, need to set up a // ValueMap containing identity mappings for all of the DICompileUnit's, not // just DISubprogram's, referenced from anywhere within the Function being // cloned prior to calling MapMetadata / RemapInstruction to avoid their // duplication later as DICompileUnit's are also directly referenced by // llvm.dbg.cu list. Thefore we need to collect DICompileUnit's here as well. // Also, DICompileUnit's may reference DISubprogram's too and therefore need // to be at least looked through. processCompileUnit(SP->getUnit()); processType(SP->getType()); for (auto *Element : SP->getTemplateParams()) { if (auto *TType = dyn_cast(Element)) { processType(TType->getType()); } else if (auto *TVal = dyn_cast(Element)) { processType(TVal->getType()); } } } void DebugInfoFinder::processVariable(const Module &M, const DbgVariableIntrinsic &DVI) { auto *N = dyn_cast(DVI.getVariable()); if (!N) return; auto *DV = dyn_cast(N); if (!DV) return; if (!NodesSeen.insert(DV).second) return; processScope(DV->getScope()); processType(DV->getType()); } bool DebugInfoFinder::addType(DIType *DT) { if (!DT) return false; if (!NodesSeen.insert(DT).second) return false; TYs.push_back(const_cast(DT)); return true; } bool DebugInfoFinder::addCompileUnit(DICompileUnit *CU) { if (!CU) return false; if (!NodesSeen.insert(CU).second) return false; CUs.push_back(CU); return true; } bool DebugInfoFinder::addGlobalVariable(DIGlobalVariableExpression *DIG) { if (!NodesSeen.insert(DIG).second) return false; GVs.push_back(DIG); return true; } bool DebugInfoFinder::addSubprogram(DISubprogram *SP) { if (!SP) return false; if (!NodesSeen.insert(SP).second) return false; SPs.push_back(SP); return true; } bool DebugInfoFinder::addScope(DIScope *Scope) { if (!Scope) return false; // FIXME: Ocaml binding generates a scope with no content, we treat it // as null for now. if (Scope->getNumOperands() == 0) return false; if (!NodesSeen.insert(Scope).second) return false; Scopes.push_back(Scope); return true; } static MDNode *updateLoopMetadataDebugLocationsImpl( MDNode *OrigLoopID, function_ref Updater) { assert(OrigLoopID && OrigLoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); assert(OrigLoopID && OrigLoopID->getOperand(0).get() == OrigLoopID && "Loop ID should refer to itself"); // Save space for the self-referential LoopID. SmallVector MDs = {nullptr}; for (unsigned i = 1; i < OrigLoopID->getNumOperands(); ++i) { Metadata *MD = OrigLoopID->getOperand(i); if (!MD) MDs.push_back(nullptr); else if (Metadata *NewMD = Updater(MD)) MDs.push_back(NewMD); } MDNode *NewLoopID = MDNode::getDistinct(OrigLoopID->getContext(), MDs); // Insert the self-referential LoopID. NewLoopID->replaceOperandWith(0, NewLoopID); return NewLoopID; } void llvm::updateLoopMetadataDebugLocations( Instruction &I, function_ref Updater) { MDNode *OrigLoopID = I.getMetadata(LLVMContext::MD_loop); if (!OrigLoopID) return; MDNode *NewLoopID = updateLoopMetadataDebugLocationsImpl(OrigLoopID, Updater); I.setMetadata(LLVMContext::MD_loop, NewLoopID); } /// Return true if a node is a DILocation or if a DILocation is /// indirectly referenced by one of the node's children. static bool isDILocationReachable(SmallPtrSetImpl &Visited, SmallPtrSetImpl &Reachable, Metadata *MD) { MDNode *N = dyn_cast_or_null(MD); if (!N) return false; if (isa(N) || Reachable.count(N)) return true; if (!Visited.insert(N).second) return false; for (auto &OpIt : N->operands()) { Metadata *Op = OpIt.get(); if (isDILocationReachable(Visited, Reachable, Op)) { // Don't return just yet as we want to visit all MD's children to // initialize DILocationReachable in stripDebugLocFromLoopID Reachable.insert(N); } } return Reachable.count(N); } static bool isAllDILocation(SmallPtrSetImpl &Visited, SmallPtrSetImpl &AllDILocation, const SmallPtrSetImpl &DIReachable, Metadata *MD) { MDNode *N = dyn_cast_or_null(MD); if (!N) return false; if (isa(N) || AllDILocation.count(N)) return true; if (!DIReachable.count(N)) return false; if (!Visited.insert(N).second) return false; for (auto &OpIt : N->operands()) { Metadata *Op = OpIt.get(); if (Op == MD) continue; if (!isAllDILocation(Visited, AllDILocation, DIReachable, Op)) { return false; } } AllDILocation.insert(N); return true; } static Metadata * stripLoopMDLoc(const SmallPtrSetImpl &AllDILocation, const SmallPtrSetImpl &DIReachable, Metadata *MD) { if (isa(MD) || AllDILocation.count(MD)) return nullptr; if (!DIReachable.count(MD)) return MD; MDNode *N = dyn_cast_or_null(MD); if (!N) return MD; SmallVector Args; bool HasSelfRef = false; for (unsigned i = 0; i < N->getNumOperands(); ++i) { Metadata *A = N->getOperand(i); if (!A) { Args.push_back(nullptr); } else if (A == MD) { assert(i == 0 && "expected i==0 for self-reference"); HasSelfRef = true; Args.push_back(nullptr); } else if (Metadata *NewArg = stripLoopMDLoc(AllDILocation, DIReachable, A)) { Args.push_back(NewArg); } } if (Args.empty() || (HasSelfRef && Args.size() == 1)) return nullptr; MDNode *NewMD = N->isDistinct() ? MDNode::getDistinct(N->getContext(), Args) : MDNode::get(N->getContext(), Args); if (HasSelfRef) NewMD->replaceOperandWith(0, NewMD); return NewMD; } static MDNode *stripDebugLocFromLoopID(MDNode *N) { assert(!N->operands().empty() && "Missing self reference?"); SmallPtrSet Visited, DILocationReachable, AllDILocation; // If we already visited N, there is nothing to do. if (!Visited.insert(N).second) return N; // If there is no debug location, we do not have to rewrite this // MDNode. This loop also initializes DILocationReachable, later // needed by updateLoopMetadataDebugLocationsImpl; the use of // count_if avoids an early exit. if (!llvm::count_if(llvm::drop_begin(N->operands()), [&Visited, &DILocationReachable](const MDOperand &Op) { return isDILocationReachable( Visited, DILocationReachable, Op.get()); })) return N; Visited.clear(); // If there is only the debug location without any actual loop metadata, we // can remove the metadata. if (llvm::all_of(llvm::drop_begin(N->operands()), [&Visited, &AllDILocation, &DILocationReachable](const MDOperand &Op) { return isAllDILocation(Visited, AllDILocation, DILocationReachable, Op.get()); })) return nullptr; return updateLoopMetadataDebugLocationsImpl( N, [&AllDILocation, &DILocationReachable](Metadata *MD) -> Metadata * { return stripLoopMDLoc(AllDILocation, DILocationReachable, MD); }); } bool llvm::stripDebugInfo(Function &F) { bool Changed = false; if (F.hasMetadata(LLVMContext::MD_dbg)) { Changed = true; F.setSubprogram(nullptr); } DenseMap LoopIDsMap; for (BasicBlock &BB : F) { for (Instruction &I : llvm::make_early_inc_range(BB)) { if (isa(&I)) { I.eraseFromParent(); Changed = true; continue; } if (I.getDebugLoc()) { Changed = true; I.setDebugLoc(DebugLoc()); } if (auto *LoopID = I.getMetadata(LLVMContext::MD_loop)) { auto *NewLoopID = LoopIDsMap.lookup(LoopID); if (!NewLoopID) NewLoopID = LoopIDsMap[LoopID] = stripDebugLocFromLoopID(LoopID); if (NewLoopID != LoopID) I.setMetadata(LLVMContext::MD_loop, NewLoopID); } // Strip other attachments that are or use debug info. if (I.hasMetadataOtherThanDebugLoc()) { // Heapallocsites point into the DIType system. I.setMetadata("heapallocsite", nullptr); // DIAssignID are debug info metadata primitives. I.setMetadata(LLVMContext::MD_DIAssignID, nullptr); } } } return Changed; } bool llvm::StripDebugInfo(Module &M) { bool Changed = false; for (NamedMDNode &NMD : llvm::make_early_inc_range(M.named_metadata())) { // We're stripping debug info, and without them, coverage information // doesn't quite make sense. if (NMD.getName().startswith("llvm.dbg.") || NMD.getName() == "llvm.gcov") { NMD.eraseFromParent(); Changed = true; } } for (Function &F : M) Changed |= stripDebugInfo(F); for (auto &GV : M.globals()) { Changed |= GV.eraseMetadata(LLVMContext::MD_dbg); } if (GVMaterializer *Materializer = M.getMaterializer()) Materializer->setStripDebugInfo(); return Changed; } namespace { /// Helper class to downgrade -g metadata to -gline-tables-only metadata. class DebugTypeInfoRemoval { DenseMap Replacements; public: /// The (void)() type. MDNode *EmptySubroutineType; private: /// Remember what linkage name we originally had before stripping. If we end /// up making two subprograms identical who originally had different linkage /// names, then we need to make one of them distinct, to avoid them getting /// uniqued. Maps the new node to the old linkage name. DenseMap NewToLinkageName; // TODO: Remember the distinct subprogram we created for a given linkage name, // so that we can continue to unique whenever possible. Map to the first (possibly distinct) mdsubprogram // created for that combination. This is not strictly needed for correctness, // but can cut down on the number of MDNodes and let us diff cleanly with the // output of -gline-tables-only. public: DebugTypeInfoRemoval(LLVMContext &C) : EmptySubroutineType(DISubroutineType::get(C, DINode::FlagZero, 0, MDNode::get(C, {}))) {} Metadata *map(Metadata *M) { if (!M) return nullptr; auto Replacement = Replacements.find(M); if (Replacement != Replacements.end()) return Replacement->second; return M; } MDNode *mapNode(Metadata *N) { return dyn_cast_or_null(map(N)); } /// Recursively remap N and all its referenced children. Does a DF post-order /// traversal, so as to remap bottoms up. void traverseAndRemap(MDNode *N) { traverse(N); } private: // Create a new DISubprogram, to replace the one given. DISubprogram *getReplacementSubprogram(DISubprogram *MDS) { auto *FileAndScope = cast_or_null(map(MDS->getFile())); StringRef LinkageName = MDS->getName().empty() ? MDS->getLinkageName() : ""; DISubprogram *Declaration = nullptr; auto *Type = cast_or_null(map(MDS->getType())); DIType *ContainingType = cast_or_null(map(MDS->getContainingType())); auto *Unit = cast_or_null(map(MDS->getUnit())); auto Variables = nullptr; auto TemplateParams = nullptr; // Make a distinct DISubprogram, for situations that warrent it. auto distinctMDSubprogram = [&]() { return DISubprogram::getDistinct( MDS->getContext(), FileAndScope, MDS->getName(), LinkageName, FileAndScope, MDS->getLine(), Type, MDS->getScopeLine(), ContainingType, MDS->getVirtualIndex(), MDS->getThisAdjustment(), MDS->getFlags(), MDS->getSPFlags(), Unit, TemplateParams, Declaration, Variables); }; if (MDS->isDistinct()) return distinctMDSubprogram(); auto *NewMDS = DISubprogram::get( MDS->getContext(), FileAndScope, MDS->getName(), LinkageName, FileAndScope, MDS->getLine(), Type, MDS->getScopeLine(), ContainingType, MDS->getVirtualIndex(), MDS->getThisAdjustment(), MDS->getFlags(), MDS->getSPFlags(), Unit, TemplateParams, Declaration, Variables); StringRef OldLinkageName = MDS->getLinkageName(); // See if we need to make a distinct one. auto OrigLinkage = NewToLinkageName.find(NewMDS); if (OrigLinkage != NewToLinkageName.end()) { if (OrigLinkage->second == OldLinkageName) // We're good. return NewMDS; // Otherwise, need to make a distinct one. // TODO: Query the map to see if we already have one. return distinctMDSubprogram(); } NewToLinkageName.insert({NewMDS, MDS->getLinkageName()}); return NewMDS; } /// Create a new compile unit, to replace the one given DICompileUnit *getReplacementCU(DICompileUnit *CU) { // Drop skeleton CUs. if (CU->getDWOId()) return nullptr; auto *File = cast_or_null(map(CU->getFile())); MDTuple *EnumTypes = nullptr; MDTuple *RetainedTypes = nullptr; MDTuple *GlobalVariables = nullptr; MDTuple *ImportedEntities = nullptr; return DICompileUnit::getDistinct( CU->getContext(), CU->getSourceLanguage(), File, CU->getProducer(), CU->isOptimized(), CU->getFlags(), CU->getRuntimeVersion(), CU->getSplitDebugFilename(), DICompileUnit::LineTablesOnly, EnumTypes, RetainedTypes, GlobalVariables, ImportedEntities, CU->getMacros(), CU->getDWOId(), CU->getSplitDebugInlining(), CU->getDebugInfoForProfiling(), CU->getNameTableKind(), CU->getRangesBaseAddress(), CU->getSysRoot(), CU->getSDK()); } DILocation *getReplacementMDLocation(DILocation *MLD) { auto *Scope = map(MLD->getScope()); auto *InlinedAt = map(MLD->getInlinedAt()); if (MLD->isDistinct()) return DILocation::getDistinct(MLD->getContext(), MLD->getLine(), MLD->getColumn(), Scope, InlinedAt); return DILocation::get(MLD->getContext(), MLD->getLine(), MLD->getColumn(), Scope, InlinedAt); } /// Create a new generic MDNode, to replace the one given MDNode *getReplacementMDNode(MDNode *N) { SmallVector Ops; Ops.reserve(N->getNumOperands()); for (auto &I : N->operands()) if (I) Ops.push_back(map(I)); auto *Ret = MDNode::get(N->getContext(), Ops); return Ret; } /// Attempt to re-map N to a newly created node. void remap(MDNode *N) { if (Replacements.count(N)) return; auto doRemap = [&](MDNode *N) -> MDNode * { if (!N) return nullptr; if (auto *MDSub = dyn_cast(N)) { remap(MDSub->getUnit()); return getReplacementSubprogram(MDSub); } if (isa(N)) return EmptySubroutineType; if (auto *CU = dyn_cast(N)) return getReplacementCU(CU); if (isa(N)) return N; if (auto *MDLB = dyn_cast(N)) // Remap to our referenced scope (recursively). return mapNode(MDLB->getScope()); if (auto *MLD = dyn_cast(N)) return getReplacementMDLocation(MLD); // Otherwise, if we see these, just drop them now. Not strictly necessary, // but this speeds things up a little. if (isa(N)) return nullptr; return getReplacementMDNode(N); }; Replacements[N] = doRemap(N); } /// Do the remapping traversal. void traverse(MDNode *); }; } // end anonymous namespace void DebugTypeInfoRemoval::traverse(MDNode *N) { if (!N || Replacements.count(N)) return; // To avoid cycles, as well as for efficiency sake, we will sometimes prune // parts of the graph. auto prune = [](MDNode *Parent, MDNode *Child) { if (auto *MDS = dyn_cast(Parent)) return Child == MDS->getRetainedNodes().get(); return false; }; SmallVector ToVisit; DenseSet Opened; // Visit each node starting at N in post order, and map them. ToVisit.push_back(N); while (!ToVisit.empty()) { auto *N = ToVisit.back(); if (!Opened.insert(N).second) { // Close it. remap(N); ToVisit.pop_back(); continue; } for (auto &I : N->operands()) if (auto *MDN = dyn_cast_or_null(I)) if (!Opened.count(MDN) && !Replacements.count(MDN) && !prune(N, MDN) && !isa(MDN)) ToVisit.push_back(MDN); } } bool llvm::stripNonLineTableDebugInfo(Module &M) { bool Changed = false; // First off, delete the debug intrinsics. auto RemoveUses = [&](StringRef Name) { if (auto *DbgVal = M.getFunction(Name)) { while (!DbgVal->use_empty()) cast(DbgVal->user_back())->eraseFromParent(); DbgVal->eraseFromParent(); Changed = true; } }; RemoveUses("llvm.dbg.declare"); RemoveUses("llvm.dbg.label"); RemoveUses("llvm.dbg.value"); // Delete non-CU debug info named metadata nodes. for (auto NMI = M.named_metadata_begin(), NME = M.named_metadata_end(); NMI != NME;) { NamedMDNode *NMD = &*NMI; ++NMI; // Specifically keep dbg.cu around. if (NMD->getName() == "llvm.dbg.cu") continue; } // Drop all dbg attachments from global variables. for (auto &GV : M.globals()) GV.eraseMetadata(LLVMContext::MD_dbg); DebugTypeInfoRemoval Mapper(M.getContext()); auto remap = [&](MDNode *Node) -> MDNode * { if (!Node) return nullptr; Mapper.traverseAndRemap(Node); auto *NewNode = Mapper.mapNode(Node); Changed |= Node != NewNode; Node = NewNode; return NewNode; }; // Rewrite the DebugLocs to be equivalent to what // -gline-tables-only would have created. for (auto &F : M) { if (auto *SP = F.getSubprogram()) { Mapper.traverseAndRemap(SP); auto *NewSP = cast(Mapper.mapNode(SP)); Changed |= SP != NewSP; F.setSubprogram(NewSP); } for (auto &BB : F) { for (auto &I : BB) { auto remapDebugLoc = [&](const DebugLoc &DL) -> DebugLoc { auto *Scope = DL.getScope(); MDNode *InlinedAt = DL.getInlinedAt(); Scope = remap(Scope); InlinedAt = remap(InlinedAt); return DILocation::get(M.getContext(), DL.getLine(), DL.getCol(), Scope, InlinedAt); }; if (I.getDebugLoc() != DebugLoc()) I.setDebugLoc(remapDebugLoc(I.getDebugLoc())); // Remap DILocations in llvm.loop attachments. updateLoopMetadataDebugLocations(I, [&](Metadata *MD) -> Metadata * { if (auto *Loc = dyn_cast_or_null(MD)) return remapDebugLoc(Loc).get(); return MD; }); // Strip heapallocsite attachments, they point into the DIType system. if (I.hasMetadataOtherThanDebugLoc()) I.setMetadata("heapallocsite", nullptr); } } } // Create a new llvm.dbg.cu, which is equivalent to the one // -gline-tables-only would have created. for (auto &NMD : M.named_metadata()) { SmallVector Ops; for (MDNode *Op : NMD.operands()) Ops.push_back(remap(Op)); if (!Changed) continue; NMD.clearOperands(); for (auto *Op : Ops) if (Op) NMD.addOperand(Op); } return Changed; } unsigned llvm::getDebugMetadataVersionFromModule(const Module &M) { if (auto *Val = mdconst::dyn_extract_or_null( M.getModuleFlag("Debug Info Version"))) return Val->getZExtValue(); return 0; } void Instruction::applyMergedLocation(DILocation *LocA, DILocation *LocB) { setDebugLoc(DILocation::getMergedLocation(LocA, LocB)); } void Instruction::mergeDIAssignID( ArrayRef SourceInstructions) { // Replace all uses (and attachments) of all the DIAssignIDs // on SourceInstructions with a single merged value. assert(getFunction() && "Uninserted instruction merged"); // Collect up the DIAssignID tags. SmallVector IDs; for (const Instruction *I : SourceInstructions) { if (auto *MD = I->getMetadata(LLVMContext::MD_DIAssignID)) IDs.push_back(cast(MD)); assert(getFunction() == I->getFunction() && "Merging with instruction from another function not allowed"); } // Add this instruction's DIAssignID too, if it has one. if (auto *MD = getMetadata(LLVMContext::MD_DIAssignID)) IDs.push_back(cast(MD)); if (IDs.empty()) return; // No DIAssignID tags to process. DIAssignID *MergeID = IDs[0]; for (auto It = std::next(IDs.begin()), End = IDs.end(); It != End; ++It) { if (*It != MergeID) at::RAUW(*It, MergeID); } setMetadata(LLVMContext::MD_DIAssignID, MergeID); } void Instruction::updateLocationAfterHoist() { dropLocation(); } void Instruction::dropLocation() { const DebugLoc &DL = getDebugLoc(); if (!DL) return; // If this isn't a call, drop the location to allow a location from a // preceding instruction to propagate. bool MayLowerToCall = false; if (isa(this)) { auto *II = dyn_cast(this); MayLowerToCall = !II || IntrinsicInst::mayLowerToFunctionCall(II->getIntrinsicID()); } if (!MayLowerToCall) { setDebugLoc(DebugLoc()); return; } // Set a line 0 location for calls to preserve scope information in case // inlining occurs. DISubprogram *SP = getFunction()->getSubprogram(); if (SP) // If a function scope is available, set it on the line 0 location. When // hoisting a call to a predecessor block, using the function scope avoids // making it look like the callee was reached earlier than it should be. setDebugLoc(DILocation::get(getContext(), 0, 0, SP)); else // The parent function has no scope. Go ahead and drop the location. If // the parent function is inlined, and the callee has a subprogram, the // inliner will attach a location to the call. // // One alternative is to set a line 0 location with the existing scope and // inlinedAt info. The location might be sensitive to when inlining occurs. setDebugLoc(DebugLoc()); } //===----------------------------------------------------------------------===// // LLVM C API implementations. //===----------------------------------------------------------------------===// static unsigned map_from_llvmDWARFsourcelanguage(LLVMDWARFSourceLanguage lang) { switch (lang) { #define HANDLE_DW_LANG(ID, NAME, LOWER_BOUND, VERSION, VENDOR) \ case LLVMDWARFSourceLanguage##NAME: \ return ID; #include "llvm/BinaryFormat/Dwarf.def" #undef HANDLE_DW_LANG } llvm_unreachable("Unhandled Tag"); } template DIT *unwrapDI(LLVMMetadataRef Ref) { return (DIT *)(Ref ? unwrap(Ref) : nullptr); } static DINode::DIFlags map_from_llvmDIFlags(LLVMDIFlags Flags) { return static_cast(Flags); } static LLVMDIFlags map_to_llvmDIFlags(DINode::DIFlags Flags) { return static_cast(Flags); } static DISubprogram::DISPFlags pack_into_DISPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized) { return DISubprogram::toSPFlags(IsLocalToUnit, IsDefinition, IsOptimized); } unsigned LLVMDebugMetadataVersion() { return DEBUG_METADATA_VERSION; } LLVMDIBuilderRef LLVMCreateDIBuilderDisallowUnresolved(LLVMModuleRef M) { return wrap(new DIBuilder(*unwrap(M), false)); } LLVMDIBuilderRef LLVMCreateDIBuilder(LLVMModuleRef M) { return wrap(new DIBuilder(*unwrap(M))); } unsigned LLVMGetModuleDebugMetadataVersion(LLVMModuleRef M) { return getDebugMetadataVersionFromModule(*unwrap(M)); } LLVMBool LLVMStripModuleDebugInfo(LLVMModuleRef M) { return StripDebugInfo(*unwrap(M)); } void LLVMDisposeDIBuilder(LLVMDIBuilderRef Builder) { delete unwrap(Builder); } void LLVMDIBuilderFinalize(LLVMDIBuilderRef Builder) { unwrap(Builder)->finalize(); } void LLVMDIBuilderFinalizeSubprogram(LLVMDIBuilderRef Builder, LLVMMetadataRef subprogram) { unwrap(Builder)->finalizeSubprogram(unwrapDI(subprogram)); } LLVMMetadataRef LLVMDIBuilderCreateCompileUnit( LLVMDIBuilderRef Builder, LLVMDWARFSourceLanguage Lang, LLVMMetadataRef FileRef, const char *Producer, size_t ProducerLen, LLVMBool isOptimized, const char *Flags, size_t FlagsLen, unsigned RuntimeVer, const char *SplitName, size_t SplitNameLen, LLVMDWARFEmissionKind Kind, unsigned DWOId, LLVMBool SplitDebugInlining, LLVMBool DebugInfoForProfiling, const char *SysRoot, size_t SysRootLen, const char *SDK, size_t SDKLen) { auto File = unwrapDI(FileRef); return wrap(unwrap(Builder)->createCompileUnit( map_from_llvmDWARFsourcelanguage(Lang), File, StringRef(Producer, ProducerLen), isOptimized, StringRef(Flags, FlagsLen), RuntimeVer, StringRef(SplitName, SplitNameLen), static_cast(Kind), DWOId, SplitDebugInlining, DebugInfoForProfiling, DICompileUnit::DebugNameTableKind::Default, false, StringRef(SysRoot, SysRootLen), StringRef(SDK, SDKLen))); } LLVMMetadataRef LLVMDIBuilderCreateFile(LLVMDIBuilderRef Builder, const char *Filename, size_t FilenameLen, const char *Directory, size_t DirectoryLen) { return wrap(unwrap(Builder)->createFile(StringRef(Filename, FilenameLen), StringRef(Directory, DirectoryLen))); } LLVMMetadataRef LLVMDIBuilderCreateModule(LLVMDIBuilderRef Builder, LLVMMetadataRef ParentScope, const char *Name, size_t NameLen, const char *ConfigMacros, size_t ConfigMacrosLen, const char *IncludePath, size_t IncludePathLen, const char *APINotesFile, size_t APINotesFileLen) { return wrap(unwrap(Builder)->createModule( unwrapDI(ParentScope), StringRef(Name, NameLen), StringRef(ConfigMacros, ConfigMacrosLen), StringRef(IncludePath, IncludePathLen), StringRef(APINotesFile, APINotesFileLen))); } LLVMMetadataRef LLVMDIBuilderCreateNameSpace(LLVMDIBuilderRef Builder, LLVMMetadataRef ParentScope, const char *Name, size_t NameLen, LLVMBool ExportSymbols) { return wrap(unwrap(Builder)->createNameSpace( unwrapDI(ParentScope), StringRef(Name, NameLen), ExportSymbols)); } LLVMMetadataRef LLVMDIBuilderCreateFunction( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, const char *LinkageName, size_t LinkageNameLen, LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Ty, LLVMBool IsLocalToUnit, LLVMBool IsDefinition, unsigned ScopeLine, LLVMDIFlags Flags, LLVMBool IsOptimized) { return wrap(unwrap(Builder)->createFunction( unwrapDI(Scope), {Name, NameLen}, {LinkageName, LinkageNameLen}, unwrapDI(File), LineNo, unwrapDI(Ty), ScopeLine, map_from_llvmDIFlags(Flags), pack_into_DISPFlags(IsLocalToUnit, IsDefinition, IsOptimized), nullptr, nullptr, nullptr)); } LLVMMetadataRef LLVMDIBuilderCreateLexicalBlock( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef File, unsigned Line, unsigned Col) { return wrap(unwrap(Builder)->createLexicalBlock(unwrapDI(Scope), unwrapDI(File), Line, Col)); } LLVMMetadataRef LLVMDIBuilderCreateLexicalBlockFile(LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef File, unsigned Discriminator) { return wrap(unwrap(Builder)->createLexicalBlockFile(unwrapDI(Scope), unwrapDI(File), Discriminator)); } LLVMMetadataRef LLVMDIBuilderCreateImportedModuleFromNamespace(LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef NS, LLVMMetadataRef File, unsigned Line) { return wrap(unwrap(Builder)->createImportedModule(unwrapDI(Scope), unwrapDI(NS), unwrapDI(File), Line)); } LLVMMetadataRef LLVMDIBuilderCreateImportedModuleFromAlias( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef ImportedEntity, LLVMMetadataRef File, unsigned Line, LLVMMetadataRef *Elements, unsigned NumElements) { auto Elts = (NumElements > 0) ? unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements}) : nullptr; return wrap(unwrap(Builder)->createImportedModule( unwrapDI(Scope), unwrapDI(ImportedEntity), unwrapDI(File), Line, Elts)); } LLVMMetadataRef LLVMDIBuilderCreateImportedModuleFromModule( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef M, LLVMMetadataRef File, unsigned Line, LLVMMetadataRef *Elements, unsigned NumElements) { auto Elts = (NumElements > 0) ? unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements}) : nullptr; return wrap(unwrap(Builder)->createImportedModule( unwrapDI(Scope), unwrapDI(M), unwrapDI(File), Line, Elts)); } LLVMMetadataRef LLVMDIBuilderCreateImportedDeclaration( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef Decl, LLVMMetadataRef File, unsigned Line, const char *Name, size_t NameLen, LLVMMetadataRef *Elements, unsigned NumElements) { auto Elts = (NumElements > 0) ? unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements}) : nullptr; return wrap(unwrap(Builder)->createImportedDeclaration( unwrapDI(Scope), unwrapDI(Decl), unwrapDI(File), Line, {Name, NameLen}, Elts)); } LLVMMetadataRef LLVMDIBuilderCreateDebugLocation(LLVMContextRef Ctx, unsigned Line, unsigned Column, LLVMMetadataRef Scope, LLVMMetadataRef InlinedAt) { return wrap(DILocation::get(*unwrap(Ctx), Line, Column, unwrap(Scope), unwrap(InlinedAt))); } unsigned LLVMDILocationGetLine(LLVMMetadataRef Location) { return unwrapDI(Location)->getLine(); } unsigned LLVMDILocationGetColumn(LLVMMetadataRef Location) { return unwrapDI(Location)->getColumn(); } LLVMMetadataRef LLVMDILocationGetScope(LLVMMetadataRef Location) { return wrap(unwrapDI(Location)->getScope()); } LLVMMetadataRef LLVMDILocationGetInlinedAt(LLVMMetadataRef Location) { return wrap(unwrapDI(Location)->getInlinedAt()); } LLVMMetadataRef LLVMDIScopeGetFile(LLVMMetadataRef Scope) { return wrap(unwrapDI(Scope)->getFile()); } const char *LLVMDIFileGetDirectory(LLVMMetadataRef File, unsigned *Len) { auto Dir = unwrapDI(File)->getDirectory(); *Len = Dir.size(); return Dir.data(); } const char *LLVMDIFileGetFilename(LLVMMetadataRef File, unsigned *Len) { auto Name = unwrapDI(File)->getFilename(); *Len = Name.size(); return Name.data(); } const char *LLVMDIFileGetSource(LLVMMetadataRef File, unsigned *Len) { if (auto Src = unwrapDI(File)->getSource()) { *Len = Src->size(); return Src->data(); } *Len = 0; return ""; } LLVMMetadataRef LLVMDIBuilderCreateMacro(LLVMDIBuilderRef Builder, LLVMMetadataRef ParentMacroFile, unsigned Line, LLVMDWARFMacinfoRecordType RecordType, const char *Name, size_t NameLen, const char *Value, size_t ValueLen) { return wrap( unwrap(Builder)->createMacro(unwrapDI(ParentMacroFile), Line, static_cast(RecordType), {Name, NameLen}, {Value, ValueLen})); } LLVMMetadataRef LLVMDIBuilderCreateTempMacroFile(LLVMDIBuilderRef Builder, LLVMMetadataRef ParentMacroFile, unsigned Line, LLVMMetadataRef File) { return wrap(unwrap(Builder)->createTempMacroFile( unwrapDI(ParentMacroFile), Line, unwrapDI(File))); } LLVMMetadataRef LLVMDIBuilderCreateEnumerator(LLVMDIBuilderRef Builder, const char *Name, size_t NameLen, int64_t Value, LLVMBool IsUnsigned) { return wrap(unwrap(Builder)->createEnumerator({Name, NameLen}, Value, IsUnsigned != 0)); } LLVMMetadataRef LLVMDIBuilderCreateEnumerationType( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNumber, uint64_t SizeInBits, uint32_t AlignInBits, LLVMMetadataRef *Elements, unsigned NumElements, LLVMMetadataRef ClassTy) { auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements}); return wrap(unwrap(Builder)->createEnumerationType( unwrapDI(Scope), {Name, NameLen}, unwrapDI(File), LineNumber, SizeInBits, AlignInBits, Elts, unwrapDI(ClassTy))); } LLVMMetadataRef LLVMDIBuilderCreateUnionType( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNumber, uint64_t SizeInBits, uint32_t AlignInBits, LLVMDIFlags Flags, LLVMMetadataRef *Elements, unsigned NumElements, unsigned RunTimeLang, const char *UniqueId, size_t UniqueIdLen) { auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements}); return wrap(unwrap(Builder)->createUnionType( unwrapDI(Scope), {Name, NameLen}, unwrapDI(File), LineNumber, SizeInBits, AlignInBits, map_from_llvmDIFlags(Flags), Elts, RunTimeLang, {UniqueId, UniqueIdLen})); } LLVMMetadataRef LLVMDIBuilderCreateArrayType(LLVMDIBuilderRef Builder, uint64_t Size, uint32_t AlignInBits, LLVMMetadataRef Ty, LLVMMetadataRef *Subscripts, unsigned NumSubscripts) { auto Subs = unwrap(Builder)->getOrCreateArray({unwrap(Subscripts), NumSubscripts}); return wrap(unwrap(Builder)->createArrayType(Size, AlignInBits, unwrapDI(Ty), Subs)); } LLVMMetadataRef LLVMDIBuilderCreateVectorType(LLVMDIBuilderRef Builder, uint64_t Size, uint32_t AlignInBits, LLVMMetadataRef Ty, LLVMMetadataRef *Subscripts, unsigned NumSubscripts) { auto Subs = unwrap(Builder)->getOrCreateArray({unwrap(Subscripts), NumSubscripts}); return wrap(unwrap(Builder)->createVectorType(Size, AlignInBits, unwrapDI(Ty), Subs)); } LLVMMetadataRef LLVMDIBuilderCreateBasicType(LLVMDIBuilderRef Builder, const char *Name, size_t NameLen, uint64_t SizeInBits, LLVMDWARFTypeEncoding Encoding, LLVMDIFlags Flags) { return wrap(unwrap(Builder)->createBasicType({Name, NameLen}, SizeInBits, Encoding, map_from_llvmDIFlags(Flags))); } LLVMMetadataRef LLVMDIBuilderCreatePointerType( LLVMDIBuilderRef Builder, LLVMMetadataRef PointeeTy, uint64_t SizeInBits, uint32_t AlignInBits, unsigned AddressSpace, const char *Name, size_t NameLen) { return wrap(unwrap(Builder)->createPointerType(unwrapDI(PointeeTy), SizeInBits, AlignInBits, AddressSpace, {Name, NameLen})); } LLVMMetadataRef LLVMDIBuilderCreateStructType( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNumber, uint64_t SizeInBits, uint32_t AlignInBits, LLVMDIFlags Flags, LLVMMetadataRef DerivedFrom, LLVMMetadataRef *Elements, unsigned NumElements, unsigned RunTimeLang, LLVMMetadataRef VTableHolder, const char *UniqueId, size_t UniqueIdLen) { auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements}); return wrap(unwrap(Builder)->createStructType( unwrapDI(Scope), {Name, NameLen}, unwrapDI(File), LineNumber, SizeInBits, AlignInBits, map_from_llvmDIFlags(Flags), unwrapDI(DerivedFrom), Elts, RunTimeLang, unwrapDI(VTableHolder), {UniqueId, UniqueIdLen})); } LLVMMetadataRef LLVMDIBuilderCreateMemberType( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNo, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, LLVMDIFlags Flags, LLVMMetadataRef Ty) { return wrap(unwrap(Builder)->createMemberType(unwrapDI(Scope), {Name, NameLen}, unwrapDI(File), LineNo, SizeInBits, AlignInBits, OffsetInBits, map_from_llvmDIFlags(Flags), unwrapDI(Ty))); } LLVMMetadataRef LLVMDIBuilderCreateUnspecifiedType(LLVMDIBuilderRef Builder, const char *Name, size_t NameLen) { return wrap(unwrap(Builder)->createUnspecifiedType({Name, NameLen})); } LLVMMetadataRef LLVMDIBuilderCreateStaticMemberType( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNumber, LLVMMetadataRef Type, LLVMDIFlags Flags, LLVMValueRef ConstantVal, uint32_t AlignInBits) { return wrap(unwrap(Builder)->createStaticMemberType( unwrapDI(Scope), {Name, NameLen}, unwrapDI(File), LineNumber, unwrapDI(Type), map_from_llvmDIFlags(Flags), unwrap(ConstantVal), AlignInBits)); } LLVMMetadataRef LLVMDIBuilderCreateObjCIVar(LLVMDIBuilderRef Builder, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNo, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, LLVMDIFlags Flags, LLVMMetadataRef Ty, LLVMMetadataRef PropertyNode) { return wrap(unwrap(Builder)->createObjCIVar( {Name, NameLen}, unwrapDI(File), LineNo, SizeInBits, AlignInBits, OffsetInBits, map_from_llvmDIFlags(Flags), unwrapDI(Ty), unwrapDI(PropertyNode))); } LLVMMetadataRef LLVMDIBuilderCreateObjCProperty(LLVMDIBuilderRef Builder, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNo, const char *GetterName, size_t GetterNameLen, const char *SetterName, size_t SetterNameLen, unsigned PropertyAttributes, LLVMMetadataRef Ty) { return wrap(unwrap(Builder)->createObjCProperty( {Name, NameLen}, unwrapDI(File), LineNo, {GetterName, GetterNameLen}, {SetterName, SetterNameLen}, PropertyAttributes, unwrapDI(Ty))); } LLVMMetadataRef LLVMDIBuilderCreateObjectPointerType(LLVMDIBuilderRef Builder, LLVMMetadataRef Type) { return wrap(unwrap(Builder)->createObjectPointerType(unwrapDI(Type))); } LLVMMetadataRef LLVMDIBuilderCreateTypedef(LLVMDIBuilderRef Builder, LLVMMetadataRef Type, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Scope, uint32_t AlignInBits) { return wrap(unwrap(Builder)->createTypedef( unwrapDI(Type), {Name, NameLen}, unwrapDI(File), LineNo, unwrapDI(Scope), AlignInBits)); } LLVMMetadataRef LLVMDIBuilderCreateInheritance(LLVMDIBuilderRef Builder, LLVMMetadataRef Ty, LLVMMetadataRef BaseTy, uint64_t BaseOffset, uint32_t VBPtrOffset, LLVMDIFlags Flags) { return wrap(unwrap(Builder)->createInheritance( unwrapDI(Ty), unwrapDI(BaseTy), BaseOffset, VBPtrOffset, map_from_llvmDIFlags(Flags))); } LLVMMetadataRef LLVMDIBuilderCreateForwardDecl( LLVMDIBuilderRef Builder, unsigned Tag, const char *Name, size_t NameLen, LLVMMetadataRef Scope, LLVMMetadataRef File, unsigned Line, unsigned RuntimeLang, uint64_t SizeInBits, uint32_t AlignInBits, const char *UniqueIdentifier, size_t UniqueIdentifierLen) { return wrap(unwrap(Builder)->createForwardDecl( Tag, {Name, NameLen}, unwrapDI(Scope), unwrapDI(File), Line, RuntimeLang, SizeInBits, AlignInBits, {UniqueIdentifier, UniqueIdentifierLen})); } LLVMMetadataRef LLVMDIBuilderCreateReplaceableCompositeType( LLVMDIBuilderRef Builder, unsigned Tag, const char *Name, size_t NameLen, LLVMMetadataRef Scope, LLVMMetadataRef File, unsigned Line, unsigned RuntimeLang, uint64_t SizeInBits, uint32_t AlignInBits, LLVMDIFlags Flags, const char *UniqueIdentifier, size_t UniqueIdentifierLen) { return wrap(unwrap(Builder)->createReplaceableCompositeType( Tag, {Name, NameLen}, unwrapDI(Scope), unwrapDI(File), Line, RuntimeLang, SizeInBits, AlignInBits, map_from_llvmDIFlags(Flags), {UniqueIdentifier, UniqueIdentifierLen})); } LLVMMetadataRef LLVMDIBuilderCreateQualifiedType(LLVMDIBuilderRef Builder, unsigned Tag, LLVMMetadataRef Type) { return wrap(unwrap(Builder)->createQualifiedType(Tag, unwrapDI(Type))); } LLVMMetadataRef LLVMDIBuilderCreateReferenceType(LLVMDIBuilderRef Builder, unsigned Tag, LLVMMetadataRef Type) { return wrap(unwrap(Builder)->createReferenceType(Tag, unwrapDI(Type))); } LLVMMetadataRef LLVMDIBuilderCreateNullPtrType(LLVMDIBuilderRef Builder) { return wrap(unwrap(Builder)->createNullPtrType()); } LLVMMetadataRef LLVMDIBuilderCreateMemberPointerType(LLVMDIBuilderRef Builder, LLVMMetadataRef PointeeType, LLVMMetadataRef ClassType, uint64_t SizeInBits, uint32_t AlignInBits, LLVMDIFlags Flags) { return wrap(unwrap(Builder)->createMemberPointerType( unwrapDI(PointeeType), unwrapDI(ClassType), AlignInBits, SizeInBits, map_from_llvmDIFlags(Flags))); } LLVMMetadataRef LLVMDIBuilderCreateBitFieldMemberType(LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNumber, uint64_t SizeInBits, uint64_t OffsetInBits, uint64_t StorageOffsetInBits, LLVMDIFlags Flags, LLVMMetadataRef Type) { return wrap(unwrap(Builder)->createBitFieldMemberType( unwrapDI(Scope), {Name, NameLen}, unwrapDI(File), LineNumber, SizeInBits, OffsetInBits, StorageOffsetInBits, map_from_llvmDIFlags(Flags), unwrapDI(Type))); } LLVMMetadataRef LLVMDIBuilderCreateClassType(LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNumber, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, LLVMDIFlags Flags, LLVMMetadataRef DerivedFrom, LLVMMetadataRef *Elements, unsigned NumElements, LLVMMetadataRef VTableHolder, LLVMMetadataRef TemplateParamsNode, const char *UniqueIdentifier, size_t UniqueIdentifierLen) { auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements}); return wrap(unwrap(Builder)->createClassType( unwrapDI(Scope), {Name, NameLen}, unwrapDI(File), LineNumber, SizeInBits, AlignInBits, OffsetInBits, map_from_llvmDIFlags(Flags), unwrapDI(DerivedFrom), Elts, unwrapDI(VTableHolder), unwrapDI(TemplateParamsNode), {UniqueIdentifier, UniqueIdentifierLen})); } LLVMMetadataRef LLVMDIBuilderCreateArtificialType(LLVMDIBuilderRef Builder, LLVMMetadataRef Type) { return wrap(unwrap(Builder)->createArtificialType(unwrapDI(Type))); } uint16_t LLVMGetDINodeTag(LLVMMetadataRef MD) { return unwrapDI(MD)->getTag(); } const char *LLVMDITypeGetName(LLVMMetadataRef DType, size_t *Length) { StringRef Str = unwrapDI(DType)->getName(); *Length = Str.size(); return Str.data(); } uint64_t LLVMDITypeGetSizeInBits(LLVMMetadataRef DType) { return unwrapDI(DType)->getSizeInBits(); } uint64_t LLVMDITypeGetOffsetInBits(LLVMMetadataRef DType) { return unwrapDI(DType)->getOffsetInBits(); } uint32_t LLVMDITypeGetAlignInBits(LLVMMetadataRef DType) { return unwrapDI(DType)->getAlignInBits(); } unsigned LLVMDITypeGetLine(LLVMMetadataRef DType) { return unwrapDI(DType)->getLine(); } LLVMDIFlags LLVMDITypeGetFlags(LLVMMetadataRef DType) { return map_to_llvmDIFlags(unwrapDI(DType)->getFlags()); } LLVMMetadataRef LLVMDIBuilderGetOrCreateTypeArray(LLVMDIBuilderRef Builder, LLVMMetadataRef *Types, size_t Length) { return wrap( unwrap(Builder)->getOrCreateTypeArray({unwrap(Types), Length}).get()); } LLVMMetadataRef LLVMDIBuilderCreateSubroutineType(LLVMDIBuilderRef Builder, LLVMMetadataRef File, LLVMMetadataRef *ParameterTypes, unsigned NumParameterTypes, LLVMDIFlags Flags) { auto Elts = unwrap(Builder)->getOrCreateTypeArray({unwrap(ParameterTypes), NumParameterTypes}); return wrap(unwrap(Builder)->createSubroutineType( Elts, map_from_llvmDIFlags(Flags))); } LLVMMetadataRef LLVMDIBuilderCreateExpression(LLVMDIBuilderRef Builder, uint64_t *Addr, size_t Length) { return wrap( unwrap(Builder)->createExpression(ArrayRef(Addr, Length))); } LLVMMetadataRef LLVMDIBuilderCreateConstantValueExpression(LLVMDIBuilderRef Builder, uint64_t Value) { return wrap(unwrap(Builder)->createConstantValueExpression(Value)); } LLVMMetadataRef LLVMDIBuilderCreateGlobalVariableExpression( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, const char *Linkage, size_t LinkLen, LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Ty, LLVMBool LocalToUnit, LLVMMetadataRef Expr, LLVMMetadataRef Decl, uint32_t AlignInBits) { return wrap(unwrap(Builder)->createGlobalVariableExpression( unwrapDI(Scope), {Name, NameLen}, {Linkage, LinkLen}, unwrapDI(File), LineNo, unwrapDI(Ty), LocalToUnit, true, unwrap(Expr), unwrapDI(Decl), nullptr, AlignInBits)); } LLVMMetadataRef LLVMDIGlobalVariableExpressionGetVariable(LLVMMetadataRef GVE) { return wrap(unwrapDI(GVE)->getVariable()); } LLVMMetadataRef LLVMDIGlobalVariableExpressionGetExpression( LLVMMetadataRef GVE) { return wrap(unwrapDI(GVE)->getExpression()); } LLVMMetadataRef LLVMDIVariableGetFile(LLVMMetadataRef Var) { return wrap(unwrapDI(Var)->getFile()); } LLVMMetadataRef LLVMDIVariableGetScope(LLVMMetadataRef Var) { return wrap(unwrapDI(Var)->getScope()); } unsigned LLVMDIVariableGetLine(LLVMMetadataRef Var) { return unwrapDI(Var)->getLine(); } LLVMMetadataRef LLVMTemporaryMDNode(LLVMContextRef Ctx, LLVMMetadataRef *Data, size_t Count) { return wrap( MDTuple::getTemporary(*unwrap(Ctx), {unwrap(Data), Count}).release()); } void LLVMDisposeTemporaryMDNode(LLVMMetadataRef TempNode) { MDNode::deleteTemporary(unwrapDI(TempNode)); } void LLVMMetadataReplaceAllUsesWith(LLVMMetadataRef TargetMetadata, LLVMMetadataRef Replacement) { auto *Node = unwrapDI(TargetMetadata); Node->replaceAllUsesWith(unwrap(Replacement)); MDNode::deleteTemporary(Node); } LLVMMetadataRef LLVMDIBuilderCreateTempGlobalVariableFwdDecl( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, const char *Linkage, size_t LnkLen, LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Ty, LLVMBool LocalToUnit, LLVMMetadataRef Decl, uint32_t AlignInBits) { return wrap(unwrap(Builder)->createTempGlobalVariableFwdDecl( unwrapDI(Scope), {Name, NameLen}, {Linkage, LnkLen}, unwrapDI(File), LineNo, unwrapDI(Ty), LocalToUnit, unwrapDI(Decl), nullptr, AlignInBits)); } LLVMValueRef LLVMDIBuilderInsertDeclareBefore(LLVMDIBuilderRef Builder, LLVMValueRef Storage, LLVMMetadataRef VarInfo, LLVMMetadataRef Expr, LLVMMetadataRef DL, LLVMValueRef Instr) { return wrap(unwrap(Builder)->insertDeclare( unwrap(Storage), unwrap(VarInfo), unwrap(Expr), unwrap(DL), unwrap(Instr))); } LLVMValueRef LLVMDIBuilderInsertDeclareAtEnd( LLVMDIBuilderRef Builder, LLVMValueRef Storage, LLVMMetadataRef VarInfo, LLVMMetadataRef Expr, LLVMMetadataRef DL, LLVMBasicBlockRef Block) { return wrap(unwrap(Builder)->insertDeclare( unwrap(Storage), unwrap(VarInfo), unwrap(Expr), unwrap(DL), unwrap(Block))); } LLVMValueRef LLVMDIBuilderInsertDbgValueBefore(LLVMDIBuilderRef Builder, LLVMValueRef Val, LLVMMetadataRef VarInfo, LLVMMetadataRef Expr, LLVMMetadataRef DebugLoc, LLVMValueRef Instr) { return wrap(unwrap(Builder)->insertDbgValueIntrinsic( unwrap(Val), unwrap(VarInfo), unwrap(Expr), unwrap(DebugLoc), unwrap(Instr))); } LLVMValueRef LLVMDIBuilderInsertDbgValueAtEnd(LLVMDIBuilderRef Builder, LLVMValueRef Val, LLVMMetadataRef VarInfo, LLVMMetadataRef Expr, LLVMMetadataRef DebugLoc, LLVMBasicBlockRef Block) { return wrap(unwrap(Builder)->insertDbgValueIntrinsic( unwrap(Val), unwrap(VarInfo), unwrap(Expr), unwrap(DebugLoc), unwrap(Block))); } LLVMMetadataRef LLVMDIBuilderCreateAutoVariable( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Ty, LLVMBool AlwaysPreserve, LLVMDIFlags Flags, uint32_t AlignInBits) { return wrap(unwrap(Builder)->createAutoVariable( unwrap(Scope), {Name, NameLen}, unwrap(File), LineNo, unwrap(Ty), AlwaysPreserve, map_from_llvmDIFlags(Flags), AlignInBits)); } LLVMMetadataRef LLVMDIBuilderCreateParameterVariable( LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name, size_t NameLen, unsigned ArgNo, LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Ty, LLVMBool AlwaysPreserve, LLVMDIFlags Flags) { return wrap(unwrap(Builder)->createParameterVariable( unwrap(Scope), {Name, NameLen}, ArgNo, unwrap(File), LineNo, unwrap(Ty), AlwaysPreserve, map_from_llvmDIFlags(Flags))); } LLVMMetadataRef LLVMDIBuilderGetOrCreateSubrange(LLVMDIBuilderRef Builder, int64_t Lo, int64_t Count) { return wrap(unwrap(Builder)->getOrCreateSubrange(Lo, Count)); } LLVMMetadataRef LLVMDIBuilderGetOrCreateArray(LLVMDIBuilderRef Builder, LLVMMetadataRef *Data, size_t Length) { Metadata **DataValue = unwrap(Data); return wrap(unwrap(Builder)->getOrCreateArray({DataValue, Length}).get()); } LLVMMetadataRef LLVMGetSubprogram(LLVMValueRef Func) { return wrap(unwrap(Func)->getSubprogram()); } void LLVMSetSubprogram(LLVMValueRef Func, LLVMMetadataRef SP) { unwrap(Func)->setSubprogram(unwrap(SP)); } unsigned LLVMDISubprogramGetLine(LLVMMetadataRef Subprogram) { return unwrapDI(Subprogram)->getLine(); } LLVMMetadataRef LLVMInstructionGetDebugLoc(LLVMValueRef Inst) { return wrap(unwrap(Inst)->getDebugLoc().getAsMDNode()); } void LLVMInstructionSetDebugLoc(LLVMValueRef Inst, LLVMMetadataRef Loc) { if (Loc) unwrap(Inst)->setDebugLoc(DebugLoc(unwrap(Loc))); else unwrap(Inst)->setDebugLoc(DebugLoc()); } LLVMMetadataKind LLVMGetMetadataKind(LLVMMetadataRef Metadata) { switch(unwrap(Metadata)->getMetadataID()) { #define HANDLE_METADATA_LEAF(CLASS) \ case Metadata::CLASS##Kind: \ return (LLVMMetadataKind)LLVM##CLASS##MetadataKind; #include "llvm/IR/Metadata.def" default: return (LLVMMetadataKind)LLVMGenericDINodeMetadataKind; } } AssignmentInstRange at::getAssignmentInsts(DIAssignID *ID) { assert(ID && "Expected non-null ID"); LLVMContext &Ctx = ID->getContext(); auto &Map = Ctx.pImpl->AssignmentIDToInstrs; auto MapIt = Map.find(ID); if (MapIt == Map.end()) return make_range(nullptr, nullptr); return make_range(MapIt->second.begin(), MapIt->second.end()); } AssignmentMarkerRange at::getAssignmentMarkers(DIAssignID *ID) { assert(ID && "Expected non-null ID"); LLVMContext &Ctx = ID->getContext(); auto *IDAsValue = MetadataAsValue::getIfExists(Ctx, ID); // The ID is only used wrapped in MetadataAsValue(ID), so lets check that // one of those already exists first. if (!IDAsValue) return make_range(Value::user_iterator(), Value::user_iterator()); return make_range(IDAsValue->user_begin(), IDAsValue->user_end()); } void at::deleteAssignmentMarkers(const Instruction *Inst) { auto Range = getAssignmentMarkers(Inst); if (Range.empty()) return; SmallVector ToDelete(Range.begin(), Range.end()); for (auto *DAI : ToDelete) DAI->eraseFromParent(); } void at::RAUW(DIAssignID *Old, DIAssignID *New) { // Replace MetadataAsValue uses. if (auto *OldIDAsValue = MetadataAsValue::getIfExists(Old->getContext(), Old)) { auto *NewIDAsValue = MetadataAsValue::get(Old->getContext(), New); OldIDAsValue->replaceAllUsesWith(NewIDAsValue); } // Replace attachments. AssignmentInstRange InstRange = getAssignmentInsts(Old); // Use intermediate storage for the instruction ptrs because the // getAssignmentInsts range iterators will be invalidated by adding and // removing DIAssignID attachments. SmallVector InstVec(InstRange.begin(), InstRange.end()); for (auto *I : InstVec) I->setMetadata(LLVMContext::MD_DIAssignID, New); } void at::deleteAll(Function *F) { SmallVector ToDelete; for (BasicBlock &BB : *F) { for (Instruction &I : BB) { if (auto *DAI = dyn_cast(&I)) ToDelete.push_back(DAI); else I.setMetadata(LLVMContext::MD_DIAssignID, nullptr); } } for (auto *DAI : ToDelete) DAI->eraseFromParent(); } bool at::calculateFragmentIntersect( const DataLayout &DL, const Value *Dest, uint64_t SliceOffsetInBits, uint64_t SliceSizeInBits, const DbgAssignIntrinsic *DAI, std::optional &Result) { // There are multiple offsets at play in this function, so let's break it // down. Starting with how variables may be stored in allocas: // // 1 Simplest case: variable is alloca sized and starts at offset 0. // 2 Variable is larger than the alloca: the alloca holds just a part of it. // 3 Variable is smaller than the alloca: the alloca may hold multiple // variables. // // Imagine we have a store to the entire alloca. In case (3) the store // affects bits outside of the bounds of each variable. In case (2), where // the alloca holds the Xth bit to the Yth bit of a variable, the // zero-offset store doesn't represent an assignment at offset zero to the // variable. It is an assignment to offset X. // // # Example 1 // Obviously, not all stores are alloca-sized and have zero offset. Imagine // the lower 32 bits of this store are dead and are going to be DSEd: // // store i64 %v, ptr %dest, !DIAssignID !1 // dbg.assign(..., !DIExpression(fragment, 128, 32), !1, %dest, // !DIExpression(DW_OP_plus_uconst, 4)) // // Goal: Given our dead bits at offset:0 size:32 for the store, determine the // part of the variable, which fits in the fragment expressed by the // dbg.assign, that has been killed, if any. // // calculateFragmentIntersect(..., SliceOffsetInBits=0, // SliceSizeInBits=32, Dest=%dest, DAI=dbg.assign) // // Drawing the store (s) in memory followed by the shortened version ($), // then the dbg.assign (d), with the fragment information on a seperate scale // underneath: // // Memory // offset // from // dest 0 63 // | | // s[######] - Original stores 64 bits to Dest. // $----[##] - DSE says the lower 32 bits are dead, to be removed. // d [##] - DAI's address-modifying expression adds 4 bytes to dest. // Variable | | // Fragment 128| // Offsets 159 // // The answer is achieved in a few steps: // 1. Add the fragment offset to the store offset: // SliceOffsetInBits:0 + VarFrag.OffsetInBits:128 = 128 // // 2. Subtract the address-modifying expression offset plus difference // between d.address and dest: // 128 - (expression_offset:32 + (d.address - dest):0) = 96 // // 3. That offset along with the store size (32) represents the bits of the // variable that'd be affected by the store. Call it SliceOfVariable. // Intersect that with DAI's fragment info: // SliceOfVariable ∩ DAI_fragment = none // // In this case: none of the dead bits of the store affect DAI. // // # Example 2 // Similar example with the same goal. This time the upper 16 bits // of the store are going to be DSE'd. // // store i64 %v, ptr %dest, !DIAssignID !1 // dbg.assign(..., !DIExpression(fragment, 128, 32), !1, %dest, // !DIExpression(DW_OP_plus_uconst, 4)) // // calculateFragmentIntersect(..., SliceOffsetInBits=48, // SliceSizeInBits=16, Dest=%dest, DAI=dbg.assign) // // Memory // offset // from // dest 0 63 // | | // s[######] - Original stores 64 bits to Dest. // $[####]-- - DSE says the upper 16 bits are dead, to be removed. // d [##] - DAI's address-modifying expression adds 4 bytes to dest. // Variable | | // Fragment 128| // Offsets 159 // // Using the same steps in the first example: // 1. SliceOffsetInBits:48 + VarFrag.OffsetInBits:128 = 176 // 2. 176 - (expression_offset:32 + (d.address - dest):0) = 144 // 3. SliceOfVariable offset = 144, size = 16: // SliceOfVariable ∩ DAI_fragment = (offset: 144, size: 16) // SliceOfVariable tells us the bits of the variable described by DAI that are // affected by the DSE. if (DAI->isKillAddress()) return false; DIExpression::FragmentInfo VarFrag = DAI->getFragmentOrEntireVariable(); if (VarFrag.SizeInBits == 0) return false; // Variable size is unknown. // Calculate the difference between Dest and the dbg.assign address + // address-modifying expression. int64_t PointerOffsetInBits; { auto DestOffsetInBytes = DAI->getAddress()->getPointerOffsetFrom(Dest, DL); if (!DestOffsetInBytes) return false; // Can't calculate difference in addresses. int64_t ExprOffsetInBytes; if (!DAI->getAddressExpression()->extractIfOffset(ExprOffsetInBytes)) return false; int64_t PointerOffsetInBytes = *DestOffsetInBytes + ExprOffsetInBytes; PointerOffsetInBits = PointerOffsetInBytes * 8; } // Adjust the slice offset so that we go from describing the a slice // of memory to a slice of the variable. int64_t NewOffsetInBits = SliceOffsetInBits + VarFrag.OffsetInBits - PointerOffsetInBits; if (NewOffsetInBits < 0) return false; // Fragment offsets can only be positive. DIExpression::FragmentInfo SliceOfVariable(SliceSizeInBits, NewOffsetInBits); // Intersect the variable slice with DAI's fragment to trim it down to size. DIExpression::FragmentInfo TrimmedSliceOfVariable = DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag); if (TrimmedSliceOfVariable == VarFrag) Result = std::nullopt; else Result = TrimmedSliceOfVariable; return true; } /// Collect constant properies (base, size, offset) of \p StoreDest. /// Return std::nullopt if any properties are not constants or the /// offset from the base pointer is negative. static std::optional getAssignmentInfoImpl(const DataLayout &DL, const Value *StoreDest, TypeSize SizeInBits) { if (SizeInBits.isScalable()) return std::nullopt; APInt GEPOffset(DL.getIndexTypeSizeInBits(StoreDest->getType()), 0); const Value *Base = StoreDest->stripAndAccumulateConstantOffsets( DL, GEPOffset, /*AllowNonInbounds*/ true); if (GEPOffset.isNegative()) return std::nullopt; uint64_t OffsetInBytes = GEPOffset.getLimitedValue(); // Check for overflow. if (OffsetInBytes == UINT64_MAX) return std::nullopt; if (const auto *Alloca = dyn_cast(Base)) return AssignmentInfo(DL, Alloca, OffsetInBytes * 8, SizeInBits); return std::nullopt; } std::optional at::getAssignmentInfo(const DataLayout &DL, const MemIntrinsic *I) { const Value *StoreDest = I->getRawDest(); // Assume 8 bit bytes. auto *ConstLengthInBytes = dyn_cast(I->getLength()); if (!ConstLengthInBytes) // We can't use a non-const size, bail. return std::nullopt; uint64_t SizeInBits = 8 * ConstLengthInBytes->getZExtValue(); return getAssignmentInfoImpl(DL, StoreDest, TypeSize::getFixed(SizeInBits)); } std::optional at::getAssignmentInfo(const DataLayout &DL, const StoreInst *SI) { TypeSize SizeInBits = DL.getTypeSizeInBits(SI->getValueOperand()->getType()); return getAssignmentInfoImpl(DL, SI->getPointerOperand(), SizeInBits); } std::optional at::getAssignmentInfo(const DataLayout &DL, const AllocaInst *AI) { TypeSize SizeInBits = DL.getTypeSizeInBits(AI->getAllocatedType()); return getAssignmentInfoImpl(DL, AI, SizeInBits); } /// Returns nullptr if the assignment shouldn't be attributed to this variable. static CallInst *emitDbgAssign(AssignmentInfo Info, Value *Val, Value *Dest, Instruction &StoreLikeInst, const VarRecord &VarRec, DIBuilder &DIB) { auto *ID = StoreLikeInst.getMetadata(LLVMContext::MD_DIAssignID); assert(ID && "Store instruction must have DIAssignID metadata"); (void)ID; const uint64_t StoreStartBit = Info.OffsetInBits; const uint64_t StoreEndBit = Info.OffsetInBits + Info.SizeInBits; uint64_t FragStartBit = StoreStartBit; uint64_t FragEndBit = StoreEndBit; bool StoreToWholeVariable = Info.StoreToWholeAlloca; if (auto Size = VarRec.Var->getSizeInBits()) { // NOTE: trackAssignments doesn't understand base expressions yet, so all // variables that reach here are guaranteed to start at offset 0 in the // alloca. const uint64_t VarStartBit = 0; const uint64_t VarEndBit = *Size; // FIXME: trim FragStartBit when nonzero VarStartBit is supported. FragEndBit = std::min(FragEndBit, VarEndBit); // Discard stores to bits outside this variable. if (FragStartBit >= FragEndBit) return nullptr; StoreToWholeVariable = FragStartBit <= VarStartBit && FragEndBit >= *Size; } DIExpression *Expr = DIExpression::get(StoreLikeInst.getContext(), std::nullopt); if (!StoreToWholeVariable) { auto R = DIExpression::createFragmentExpression(Expr, FragStartBit, FragEndBit - FragStartBit); assert(R.has_value() && "failed to create fragment expression"); Expr = *R; } DIExpression *AddrExpr = DIExpression::get(StoreLikeInst.getContext(), std::nullopt); return DIB.insertDbgAssign(&StoreLikeInst, Val, VarRec.Var, Expr, Dest, AddrExpr, VarRec.DL); } #undef DEBUG_TYPE // Silence redefinition warning (from ConstantsContext.h). #define DEBUG_TYPE "assignment-tracking" void at::trackAssignments(Function::iterator Start, Function::iterator End, const StorageToVarsMap &Vars, const DataLayout &DL, bool DebugPrints) { // Early-exit if there are no interesting variables. if (Vars.empty()) return; auto &Ctx = Start->getContext(); auto &Module = *Start->getModule(); // Undef type doesn't matter, so long as it isn't void. Let's just use i1. auto *Undef = UndefValue::get(Type::getInt1Ty(Ctx)); DIBuilder DIB(Module, /*AllowUnresolved*/ false); // Scan the instructions looking for stores to local variables' storage. LLVM_DEBUG(errs() << "# Scanning instructions\n"); for (auto BBI = Start; BBI != End; ++BBI) { for (Instruction &I : *BBI) { std::optional Info; Value *ValueComponent = nullptr; Value *DestComponent = nullptr; if (auto *AI = dyn_cast(&I)) { // We want to track the variable's stack home from its alloca's // position onwards so we treat it as an assignment (where the stored // value is Undef). Info = getAssignmentInfo(DL, AI); ValueComponent = Undef; DestComponent = AI; } else if (auto *SI = dyn_cast(&I)) { Info = getAssignmentInfo(DL, SI); ValueComponent = SI->getValueOperand(); DestComponent = SI->getPointerOperand(); } else if (auto *MI = dyn_cast(&I)) { Info = getAssignmentInfo(DL, MI); // May not be able to represent this value easily. ValueComponent = Undef; DestComponent = MI->getOperand(0); } else if (auto *MI = dyn_cast(&I)) { Info = getAssignmentInfo(DL, MI); // If we're zero-initing we can state the assigned value is zero, // otherwise use undef. auto *ConstValue = dyn_cast(MI->getOperand(1)); if (ConstValue && ConstValue->isZero()) ValueComponent = ConstValue; else ValueComponent = Undef; DestComponent = MI->getOperand(0); } else { // Not a store-like instruction. continue; } assert(ValueComponent && DestComponent); LLVM_DEBUG(errs() << "SCAN: Found store-like: " << I << "\n"); // Check if getAssignmentInfo failed to understand this store. if (!Info.has_value()) { LLVM_DEBUG( errs() << " | SKIP: Untrackable store (e.g. through non-const gep)\n"); continue; } LLVM_DEBUG(errs() << " | BASE: " << *Info->Base << "\n"); // Check if the store destination is a local variable with debug info. auto LocalIt = Vars.find(Info->Base); if (LocalIt == Vars.end()) { LLVM_DEBUG( errs() << " | SKIP: Base address not associated with local variable\n"); continue; } DIAssignID *ID = cast_or_null(I.getMetadata(LLVMContext::MD_DIAssignID)); if (!ID) { ID = DIAssignID::getDistinct(Ctx); I.setMetadata(LLVMContext::MD_DIAssignID, ID); } for (const VarRecord &R : LocalIt->second) { auto *Assign = emitDbgAssign(*Info, ValueComponent, DestComponent, I, R, DIB); (void)Assign; LLVM_DEBUG(if (Assign) errs() << " > INSERT: " << *Assign << "\n"); } } } } bool AssignmentTrackingPass::runOnFunction(Function &F) { // No value in assignment tracking without optimisations. if (F.hasFnAttribute(Attribute::OptimizeNone)) return /*Changed*/ false; bool Changed = false; auto *DL = &F.getParent()->getDataLayout(); // Collect a map of {backing storage : dbg.declares} (currently "backing // storage" is limited to Allocas). We'll use this to find dbg.declares to // delete after running `trackAssignments`. DenseMap> DbgDeclares; // Create another similar map of {storage : variables} that we'll pass to // trackAssignments. StorageToVarsMap Vars; for (auto &BB : F) { for (auto &I : BB) { DbgDeclareInst *DDI = dyn_cast(&I); if (!DDI) continue; // FIXME: trackAssignments doesn't let you specify any modifiers to the // variable (e.g. fragment) or location (e.g. offset), so we have to // leave dbg.declares with non-empty expressions in place. if (DDI->getExpression()->getNumElements() != 0) continue; if (!DDI->getAddress()) continue; if (AllocaInst *Alloca = dyn_cast(DDI->getAddress()->stripPointerCasts())) { // FIXME: Skip VLAs for now (let these variables use dbg.declares). if (!Alloca->isStaticAlloca()) continue; // Similarly, skip scalable vectors (use dbg.declares instead). if (auto Sz = Alloca->getAllocationSize(*DL); Sz && Sz->isScalable()) continue; DbgDeclares[Alloca].insert(DDI); Vars[Alloca].insert(VarRecord(DDI)); } } } // FIXME: Locals can be backed by caller allocas (sret, byval). // Note: trackAssignments doesn't respect dbg.declare's IR positions (as it // doesn't "understand" dbg.declares). However, this doesn't appear to break // any rules given this description of dbg.declare from // llvm/docs/SourceLevelDebugging.rst: // // It is not control-dependent, meaning that if a call to llvm.dbg.declare // exists and has a valid location argument, that address is considered to // be the true home of the variable across its entire lifetime. trackAssignments(F.begin(), F.end(), Vars, *DL); // Delete dbg.declares for variables now tracked with assignment tracking. for (auto &P : DbgDeclares) { const AllocaInst *Alloca = P.first; auto Markers = at::getAssignmentMarkers(Alloca); (void)Markers; for (DbgDeclareInst *DDI : P.second) { // Assert that the alloca that DDI uses is now linked to a dbg.assign // describing the same variable (i.e. check that this dbg.declare has // been replaced by a dbg.assign). Use DebugVariableAggregate to Discard // the fragment part because trackAssignments may alter the // fragment. e.g. if the alloca is smaller than the variable, then // trackAssignments will create an alloca-sized fragment for the // dbg.assign. assert(llvm::any_of(Markers, [DDI](DbgAssignIntrinsic *DAI) { return DebugVariableAggregate(DAI) == DebugVariableAggregate(DDI); })); // Delete DDI because the variable location is now tracked using // assignment tracking. DDI->eraseFromParent(); Changed = true; } } return Changed; } static const char *AssignmentTrackingModuleFlag = "debug-info-assignment-tracking"; static void setAssignmentTrackingModuleFlag(Module &M) { M.setModuleFlag(Module::ModFlagBehavior::Max, AssignmentTrackingModuleFlag, ConstantAsMetadata::get( ConstantInt::get(Type::getInt1Ty(M.getContext()), 1))); } static bool getAssignmentTrackingModuleFlag(const Module &M) { Metadata *Value = M.getModuleFlag(AssignmentTrackingModuleFlag); return Value && !cast(Value)->getValue()->isZeroValue(); } bool llvm::isAssignmentTrackingEnabled(const Module &M) { return getAssignmentTrackingModuleFlag(M); } PreservedAnalyses AssignmentTrackingPass::run(Function &F, FunctionAnalysisManager &AM) { if (!runOnFunction(F)) return PreservedAnalyses::all(); // Record that this module uses assignment tracking. It doesn't matter that // some functons in the module may not use it - the debug info in those // functions will still be handled properly. setAssignmentTrackingModuleFlag(*F.getParent()); // Q: Can we return a less conservative set than just CFGAnalyses? Can we // return PreservedAnalyses::all()? PreservedAnalyses PA; PA.preserveSet(); return PA; } PreservedAnalyses AssignmentTrackingPass::run(Module &M, ModuleAnalysisManager &AM) { bool Changed = false; for (auto &F : M) Changed |= runOnFunction(F); if (!Changed) return PreservedAnalyses::all(); // Record that this module uses assignment tracking. setAssignmentTrackingModuleFlag(M); // Q: Can we return a less conservative set than just CFGAnalyses? Can we // return PreservedAnalyses::all()? PreservedAnalyses PA; PA.preserveSet(); return PA; } #undef DEBUG_TYPE