//===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file implements the OpenMPIRBuilder class, which is used as a /// convenient way to create LLVM instructions for OpenMP directives. /// //===----------------------------------------------------------------------===// #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Value.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/CodeExtractor.h" #include "llvm/Transforms/Utils/LoopPeel.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include #define DEBUG_TYPE "openmp-ir-builder" using namespace llvm; using namespace omp; static cl::opt OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden, cl::desc("Use optimistic attributes describing " "'as-if' properties of runtime calls."), cl::init(false)); static cl::opt UnrollThresholdFactor( "openmp-ir-builder-unroll-threshold-factor", cl::Hidden, cl::desc("Factor for the unroll threshold to account for code " "simplifications still taking place"), cl::init(1.5)); #ifndef NDEBUG /// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions /// at position IP1 may change the meaning of IP2 or vice-versa. This is because /// an InsertPoint stores the instruction before something is inserted. For /// instance, if both point to the same instruction, two IRBuilders alternating /// creating instruction will cause the instructions to be interleaved. static bool isConflictIP(IRBuilder<>::InsertPoint IP1, IRBuilder<>::InsertPoint IP2) { if (!IP1.isSet() || !IP2.isSet()) return false; return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint(); } static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) { // Valid ordered/unordered and base algorithm combinations. switch (SchedType & ~OMPScheduleType::MonotonicityMask) { case OMPScheduleType::UnorderedStaticChunked: case OMPScheduleType::UnorderedStatic: case OMPScheduleType::UnorderedDynamicChunked: case OMPScheduleType::UnorderedGuidedChunked: case OMPScheduleType::UnorderedRuntime: case OMPScheduleType::UnorderedAuto: case OMPScheduleType::UnorderedTrapezoidal: case OMPScheduleType::UnorderedGreedy: case OMPScheduleType::UnorderedBalanced: case OMPScheduleType::UnorderedGuidedIterativeChunked: case OMPScheduleType::UnorderedGuidedAnalyticalChunked: case OMPScheduleType::UnorderedSteal: case OMPScheduleType::UnorderedStaticBalancedChunked: case OMPScheduleType::UnorderedGuidedSimd: case OMPScheduleType::UnorderedRuntimeSimd: case OMPScheduleType::OrderedStaticChunked: case OMPScheduleType::OrderedStatic: case OMPScheduleType::OrderedDynamicChunked: case OMPScheduleType::OrderedGuidedChunked: case OMPScheduleType::OrderedRuntime: case OMPScheduleType::OrderedAuto: case OMPScheduleType::OrderdTrapezoidal: case OMPScheduleType::NomergeUnorderedStaticChunked: case OMPScheduleType::NomergeUnorderedStatic: case OMPScheduleType::NomergeUnorderedDynamicChunked: case OMPScheduleType::NomergeUnorderedGuidedChunked: case OMPScheduleType::NomergeUnorderedRuntime: case OMPScheduleType::NomergeUnorderedAuto: case OMPScheduleType::NomergeUnorderedTrapezoidal: case OMPScheduleType::NomergeUnorderedGreedy: case OMPScheduleType::NomergeUnorderedBalanced: case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked: case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked: case OMPScheduleType::NomergeUnorderedSteal: case OMPScheduleType::NomergeOrderedStaticChunked: case OMPScheduleType::NomergeOrderedStatic: case OMPScheduleType::NomergeOrderedDynamicChunked: case OMPScheduleType::NomergeOrderedGuidedChunked: case OMPScheduleType::NomergeOrderedRuntime: case OMPScheduleType::NomergeOrderedAuto: case OMPScheduleType::NomergeOrderedTrapezoidal: break; default: return false; } // Must not set both monotonicity modifiers at the same time. OMPScheduleType MonotonicityFlags = SchedType & OMPScheduleType::MonotonicityMask; if (MonotonicityFlags == OMPScheduleType::MonotonicityMask) return false; return true; } #endif /// Determine which scheduling algorithm to use, determined from schedule clause /// arguments. static OMPScheduleType getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks, bool HasSimdModifier) { // Currently, the default schedule it static. switch (ClauseKind) { case OMP_SCHEDULE_Default: case OMP_SCHEDULE_Static: return HasChunks ? OMPScheduleType::BaseStaticChunked : OMPScheduleType::BaseStatic; case OMP_SCHEDULE_Dynamic: return OMPScheduleType::BaseDynamicChunked; case OMP_SCHEDULE_Guided: return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd : OMPScheduleType::BaseGuidedChunked; case OMP_SCHEDULE_Auto: return llvm::omp::OMPScheduleType::BaseAuto; case OMP_SCHEDULE_Runtime: return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd : OMPScheduleType::BaseRuntime; } llvm_unreachable("unhandled schedule clause argument"); } /// Adds ordering modifier flags to schedule type. static OMPScheduleType getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType, bool HasOrderedClause) { assert((BaseScheduleType & OMPScheduleType::ModifierMask) == OMPScheduleType::None && "Must not have ordering nor monotonicity flags already set"); OMPScheduleType OrderingModifier = HasOrderedClause ? OMPScheduleType::ModifierOrdered : OMPScheduleType::ModifierUnordered; OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier; // Unsupported combinations if (OrderingScheduleType == (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered)) return OMPScheduleType::OrderedGuidedChunked; else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd | OMPScheduleType::ModifierOrdered)) return OMPScheduleType::OrderedRuntime; return OrderingScheduleType; } /// Adds monotonicity modifier flags to schedule type. static OMPScheduleType getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType, bool HasSimdModifier, bool HasMonotonic, bool HasNonmonotonic, bool HasOrderedClause) { assert((ScheduleType & OMPScheduleType::MonotonicityMask) == OMPScheduleType::None && "Must not have monotonicity flags already set"); assert((!HasMonotonic || !HasNonmonotonic) && "Monotonic and Nonmonotonic are contradicting each other"); if (HasMonotonic) { return ScheduleType | OMPScheduleType::ModifierMonotonic; } else if (HasNonmonotonic) { return ScheduleType | OMPScheduleType::ModifierNonmonotonic; } else { // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description. // If the static schedule kind is specified or if the ordered clause is // specified, and if the nonmonotonic modifier is not specified, the // effect is as if the monotonic modifier is specified. Otherwise, unless // the monotonic modifier is specified, the effect is as if the // nonmonotonic modifier is specified. OMPScheduleType BaseScheduleType = ScheduleType & ~OMPScheduleType::ModifierMask; if ((BaseScheduleType == OMPScheduleType::BaseStatic) || (BaseScheduleType == OMPScheduleType::BaseStaticChunked) || HasOrderedClause) { // The monotonic is used by default in openmp runtime library, so no need // to set it. return ScheduleType; } else { return ScheduleType | OMPScheduleType::ModifierNonmonotonic; } } } /// Determine the schedule type using schedule and ordering clause arguments. static OMPScheduleType computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks, bool HasSimdModifier, bool HasMonotonicModifier, bool HasNonmonotonicModifier, bool HasOrderedClause) { OMPScheduleType BaseSchedule = getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier); OMPScheduleType OrderedSchedule = getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause); OMPScheduleType Result = getOpenMPMonotonicityScheduleType( OrderedSchedule, HasSimdModifier, HasMonotonicModifier, HasNonmonotonicModifier, HasOrderedClause); assert(isValidWorkshareLoopScheduleType(Result)); return Result; } /// Make \p Source branch to \p Target. /// /// Handles two situations: /// * \p Source already has an unconditional branch. /// * \p Source is a degenerate block (no terminator because the BB is /// the current head of the IR construction). static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) { if (Instruction *Term = Source->getTerminator()) { auto *Br = cast(Term); assert(!Br->isConditional() && "BB's terminator must be an unconditional branch (or degenerate)"); BasicBlock *Succ = Br->getSuccessor(0); Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true); Br->setSuccessor(0, Target); return; } auto *NewBr = BranchInst::Create(Target, Source); NewBr->setDebugLoc(DL); } void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New, bool CreateBranch) { assert(New->getFirstInsertionPt() == New->begin() && "Target BB must not have PHI nodes"); // Move instructions to new block. BasicBlock *Old = IP.getBlock(); New->getInstList().splice(New->begin(), Old->getInstList(), IP.getPoint(), Old->end()); if (CreateBranch) BranchInst::Create(New, Old); } void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) { DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); BasicBlock *Old = Builder.GetInsertBlock(); spliceBB(Builder.saveIP(), New, CreateBranch); if (CreateBranch) Builder.SetInsertPoint(Old->getTerminator()); else Builder.SetInsertPoint(Old); // SetInsertPoint also updates the Builder's debug location, but we want to // keep the one the Builder was configured to use. Builder.SetCurrentDebugLocation(DebugLoc); } BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch, llvm::Twine Name) { BasicBlock *Old = IP.getBlock(); BasicBlock *New = BasicBlock::Create( Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name, Old->getParent(), Old->getNextNode()); spliceBB(IP, New, CreateBranch); New->replaceSuccessorsPhiUsesWith(Old, New); return New; } BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch, llvm::Twine Name) { DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name); if (CreateBranch) Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); else Builder.SetInsertPoint(Builder.GetInsertBlock()); // SetInsertPoint also updates the Builder's debug location, but we want to // keep the one the Builder was configured to use. Builder.SetCurrentDebugLocation(DebugLoc); return New; } BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch, llvm::Twine Name) { DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name); if (CreateBranch) Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); else Builder.SetInsertPoint(Builder.GetInsertBlock()); // SetInsertPoint also updates the Builder's debug location, but we want to // keep the one the Builder was configured to use. Builder.SetCurrentDebugLocation(DebugLoc); return New; } BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch, llvm::Twine Suffix) { BasicBlock *Old = Builder.GetInsertBlock(); return splitBB(Builder, CreateBranch, Old->getName() + Suffix); } void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) { LLVMContext &Ctx = Fn.getContext(); // Get the function's current attributes. auto Attrs = Fn.getAttributes(); auto FnAttrs = Attrs.getFnAttrs(); auto RetAttrs = Attrs.getRetAttrs(); SmallVector ArgAttrs; for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo) ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo)); #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet; #include "llvm/Frontend/OpenMP/OMPKinds.def" // Add attributes to the function declaration. switch (FnID) { #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \ case Enum: \ FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \ RetAttrs = RetAttrs.addAttributes(Ctx, RetAttrSet); \ for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \ ArgAttrs[ArgNo] = \ ArgAttrs[ArgNo].addAttributes(Ctx, ArgAttrSets[ArgNo]); \ Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" default: // Attributes are optional. break; } } FunctionCallee OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) { FunctionType *FnTy = nullptr; Function *Fn = nullptr; // Try to find the declation in the module first. switch (FnID) { #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \ case Enum: \ FnTy = FunctionType::get(ReturnType, ArrayRef{__VA_ARGS__}, \ IsVarArg); \ Fn = M.getFunction(Str); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" } if (!Fn) { // Create a new declaration if we need one. switch (FnID) { #define OMP_RTL(Enum, Str, ...) \ case Enum: \ Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" } // Add information if the runtime function takes a callback function if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) { if (!Fn->hasMetadata(LLVMContext::MD_callback)) { LLVMContext &Ctx = Fn->getContext(); MDBuilder MDB(Ctx); // Annotate the callback behavior of the runtime function: // - The callback callee is argument number 2 (microtask). // - The first two arguments of the callback callee are unknown (-1). // - All variadic arguments to the runtime function are passed to the // callback callee. Fn->addMetadata( LLVMContext::MD_callback, *MDNode::get(Ctx, {MDB.createCallbackEncoding( 2, {-1, -1}, /* VarArgsArePassed */ true)})); } } LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName() << " with type " << *Fn->getFunctionType() << "\n"); addAttributes(FnID, *Fn); } else { LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName() << " with type " << *Fn->getFunctionType() << "\n"); } assert(Fn && "Failed to create OpenMP runtime function"); // Cast the function to the expected type if necessary Constant *C = ConstantExpr::getBitCast(Fn, FnTy->getPointerTo()); return {FnTy, C}; } Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) { FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID); auto *Fn = dyn_cast(RTLFn.getCallee()); assert(Fn && "Failed to create OpenMP runtime function pointer"); return Fn; } void OpenMPIRBuilder::initialize() { initializeTypes(M); } void OpenMPIRBuilder::finalize(Function *Fn) { SmallPtrSet ParallelRegionBlockSet; SmallVector Blocks; SmallVector DeferredOutlines; for (OutlineInfo &OI : OutlineInfos) { // Skip functions that have not finalized yet; may happen with nested // function generation. if (Fn && OI.getFunction() != Fn) { DeferredOutlines.push_back(OI); continue; } ParallelRegionBlockSet.clear(); Blocks.clear(); OI.collectBlocks(ParallelRegionBlockSet, Blocks); Function *OuterFn = OI.getFunction(); CodeExtractorAnalysisCache CEAC(*OuterFn); CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, /* AggregateArgs */ true, /* BlockFrequencyInfo */ nullptr, /* BranchProbabilityInfo */ nullptr, /* AssumptionCache */ nullptr, /* AllowVarArgs */ true, /* AllowAlloca */ true, /* AllocaBlock*/ OI.OuterAllocaBB, /* Suffix */ ".omp_par"); LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n"); LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName() << " Exit: " << OI.ExitBB->getName() << "\n"); assert(Extractor.isEligible() && "Expected OpenMP outlining to be possible!"); for (auto *V : OI.ExcludeArgsFromAggregate) Extractor.excludeArgFromAggregate(V); Function *OutlinedFn = Extractor.extractCodeRegion(CEAC); LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n"); LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n"); assert(OutlinedFn->getReturnType()->isVoidTy() && "OpenMP outlined functions should not return a value!"); // For compability with the clang CG we move the outlined function after the // one with the parallel region. OutlinedFn->removeFromParent(); M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn); // Remove the artificial entry introduced by the extractor right away, we // made our own entry block after all. { BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock(); assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB); assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry); // Move instructions from the to-be-deleted ArtificialEntry to the entry // basic block of the parallel region. CodeExtractor generates // instructions to unwrap the aggregate argument and may sink // allocas/bitcasts for values that are solely used in the outlined region // and do not escape. assert(!ArtificialEntry.empty() && "Expected instructions to add in the outlined region entry"); for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(), End = ArtificialEntry.rend(); It != End;) { Instruction &I = *It; It++; if (I.isTerminator()) continue; I.moveBefore(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt()); } OI.EntryBB->moveBefore(&ArtificialEntry); ArtificialEntry.eraseFromParent(); } assert(&OutlinedFn->getEntryBlock() == OI.EntryBB); assert(OutlinedFn && OutlinedFn->getNumUses() == 1); // Run a user callback, e.g. to add attributes. if (OI.PostOutlineCB) OI.PostOutlineCB(*OutlinedFn); } // Remove work items that have been completed. OutlineInfos = std::move(DeferredOutlines); } OpenMPIRBuilder::~OpenMPIRBuilder() { assert(OutlineInfos.empty() && "There must be no outstanding outlinings"); } GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) { IntegerType *I32Ty = Type::getInt32Ty(M.getContext()); auto *GV = new GlobalVariable(M, I32Ty, /* isConstant = */ true, GlobalValue::WeakODRLinkage, ConstantInt::get(I32Ty, Value), Name); GV->setVisibility(GlobalValue::HiddenVisibility); return GV; } Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr, uint32_t SrcLocStrSize, IdentFlag LocFlags, unsigned Reserve2Flags) { // Enable "C-mode". LocFlags |= OMP_IDENT_FLAG_KMPC; Constant *&Ident = IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}]; if (!Ident) { Constant *I32Null = ConstantInt::getNullValue(Int32); Constant *IdentData[] = {I32Null, ConstantInt::get(Int32, uint32_t(LocFlags)), ConstantInt::get(Int32, Reserve2Flags), ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr}; Constant *Initializer = ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData); // Look for existing encoding of the location + flags, not needed but // minimizes the difference to the existing solution while we transition. for (GlobalVariable &GV : M.getGlobalList()) if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer()) if (GV.getInitializer() == Initializer) Ident = &GV; if (!Ident) { auto *GV = new GlobalVariable( M, OpenMPIRBuilder::Ident, /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "", nullptr, GlobalValue::NotThreadLocal, M.getDataLayout().getDefaultGlobalsAddressSpace()); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); GV->setAlignment(Align(8)); Ident = GV; } } return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr); } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr, uint32_t &SrcLocStrSize) { SrcLocStrSize = LocStr.size(); Constant *&SrcLocStr = SrcLocStrMap[LocStr]; if (!SrcLocStr) { Constant *Initializer = ConstantDataArray::getString(M.getContext(), LocStr); // Look for existing encoding of the location, not needed but minimizes the // difference to the existing solution while we transition. for (GlobalVariable &GV : M.getGlobalList()) if (GV.isConstant() && GV.hasInitializer() && GV.getInitializer() == Initializer) return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr); SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "", /* AddressSpace */ 0, &M); } return SrcLocStr; } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName, StringRef FileName, unsigned Line, unsigned Column, uint32_t &SrcLocStrSize) { SmallString<128> Buffer; Buffer.push_back(';'); Buffer.append(FileName); Buffer.push_back(';'); Buffer.append(FunctionName); Buffer.push_back(';'); Buffer.append(std::to_string(Line)); Buffer.push_back(';'); Buffer.append(std::to_string(Column)); Buffer.push_back(';'); Buffer.push_back(';'); return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize); } Constant * OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) { StringRef UnknownLoc = ";unknown;unknown;0;0;;"; return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize); } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL, uint32_t &SrcLocStrSize, Function *F) { DILocation *DIL = DL.get(); if (!DIL) return getOrCreateDefaultSrcLocStr(SrcLocStrSize); StringRef FileName = M.getName(); if (DIFile *DIF = DIL->getFile()) if (Optional Source = DIF->getSource()) FileName = *Source; StringRef Function = DIL->getScope()->getSubprogram()->getName(); if (Function.empty() && F) Function = F->getName(); return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(), DIL->getColumn(), SrcLocStrSize); } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc, uint32_t &SrcLocStrSize) { return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize, Loc.IP.getBlock()->getParent()); } Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) { return Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident, "omp_global_thread_num"); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK, bool ForceSimpleCall, bool CheckCancelFlag) { if (!updateToLocation(Loc)) return Loc.IP; return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind, bool ForceSimpleCall, bool CheckCancelFlag) { // Build call __kmpc_cancel_barrier(loc, thread_id) or // __kmpc_barrier(loc, thread_id); IdentFlag BarrierLocFlags; switch (Kind) { case OMPD_for: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR; break; case OMPD_sections: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS; break; case OMPD_single: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE; break; case OMPD_barrier: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL; break; default: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL; break; } uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Args[] = { getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags), getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))}; // If we are in a cancellable parallel region, barriers are cancellation // points. // TODO: Check why we would force simple calls or to ignore the cancel flag. bool UseCancelBarrier = !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel); Value *Result = Builder.CreateCall(getOrCreateRuntimeFunctionPtr( UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier : OMPRTL___kmpc_barrier), Args); if (UseCancelBarrier && CheckCancelFlag) emitCancelationCheckImpl(Result, OMPD_parallel); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCancel(const LocationDescription &Loc, Value *IfCondition, omp::Directive CanceledDirective) { if (!updateToLocation(Loc)) return Loc.IP; // LLVM utilities like blocks with terminators. auto *UI = Builder.CreateUnreachable(); Instruction *ThenTI = UI, *ElseTI = nullptr; if (IfCondition) SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI); Builder.SetInsertPoint(ThenTI); Value *CancelKind = nullptr; switch (CanceledDirective) { #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \ case DirectiveEnum: \ CancelKind = Builder.getInt32(Value); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" default: llvm_unreachable("Unknown cancel kind!"); } uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind}; Value *Result = Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args); auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) { if (CanceledDirective == OMPD_parallel) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false); } }; // The actual cancel logic is shared with others, e.g., cancel_barriers. emitCancelationCheckImpl(Result, CanceledDirective, ExitCB); // Update the insertion point and remove the terminator we introduced. Builder.SetInsertPoint(UI->getParent()); UI->eraseFromParent(); return Builder.saveIP(); } void OpenMPIRBuilder::emitOffloadingEntry(Constant *Addr, StringRef Name, uint64_t Size, int32_t Flags, StringRef SectionName) { Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); Type *Int32Ty = Type::getInt32Ty(M.getContext()); Type *SizeTy = M.getDataLayout().getIntPtrType(M.getContext()); Constant *AddrName = ConstantDataArray::getString(M.getContext(), Name); // Create the constant string used to look up the symbol in the device. auto *Str = new llvm::GlobalVariable(M, AddrName->getType(), /*isConstant=*/true, llvm::GlobalValue::InternalLinkage, AddrName, ".omp_offloading.entry_name"); Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); // Construct the offloading entry. Constant *EntryData[] = { ConstantExpr::getPointerBitCastOrAddrSpaceCast(Addr, Int8PtrTy), ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, Int8PtrTy), ConstantInt::get(SizeTy, Size), ConstantInt::get(Int32Ty, Flags), ConstantInt::get(Int32Ty, 0), }; Constant *EntryInitializer = ConstantStruct::get(OpenMPIRBuilder::OffloadEntry, EntryData); auto *Entry = new GlobalVariable( M, OpenMPIRBuilder::OffloadEntry, /* isConstant = */ true, GlobalValue::WeakAnyLinkage, EntryInitializer, ".omp_offloading.entry." + Name, nullptr, GlobalValue::NotThreadLocal, M.getDataLayout().getDefaultGlobalsAddressSpace()); // The entry has to be created in the section the linker expects it to be. Entry->setSection(SectionName); Entry->setAlignment(Align(1)); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel( const LocationDescription &Loc, Value *&Return, Value *Ident, Value *DeviceID, Value *NumTeams, Value *NumThreads, Value *HostPtr, ArrayRef KernelArgs, ArrayRef NoWaitArgs) { if (!updateToLocation(Loc)) return Loc.IP; auto *KernelArgsPtr = Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args"); for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) { llvm::Value *Arg = Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I); Builder.CreateAlignedStore( KernelArgs[I], Arg, M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType())); } bool HasNoWait = !NoWaitArgs.empty(); SmallVector OffloadingArgs{Ident, DeviceID, NumTeams, NumThreads, HostPtr, KernelArgsPtr}; if (HasNoWait) OffloadingArgs.append(NoWaitArgs.begin(), NoWaitArgs.end()); Return = Builder.CreateCall( HasNoWait ? getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel_nowait) : getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel), OffloadingArgs); return Builder.saveIP(); } void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag, omp::Directive CanceledDirective, FinalizeCallbackTy ExitCB) { assert(isLastFinalizationInfoCancellable(CanceledDirective) && "Unexpected cancellation!"); // For a cancel barrier we create two new blocks. BasicBlock *BB = Builder.GetInsertBlock(); BasicBlock *NonCancellationBlock; if (Builder.GetInsertPoint() == BB->end()) { // TODO: This branch will not be needed once we moved to the // OpenMPIRBuilder codegen completely. NonCancellationBlock = BasicBlock::Create( BB->getContext(), BB->getName() + ".cont", BB->getParent()); } else { NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint()); BB->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(BB); } BasicBlock *CancellationBlock = BasicBlock::Create( BB->getContext(), BB->getName() + ".cncl", BB->getParent()); // Jump to them based on the return value. Value *Cmp = Builder.CreateIsNull(CancelFlag); Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock, /* TODO weight */ nullptr, nullptr); // From the cancellation block we finalize all variables and go to the // post finalization block that is known to the FiniCB callback. Builder.SetInsertPoint(CancellationBlock); if (ExitCB) ExitCB(Builder.saveIP()); auto &FI = FinalizationStack.back(); FI.FiniCB(Builder.saveIP()); // The continuation block is where code generation continues. Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin()); } IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel( const LocationDescription &Loc, InsertPointTy OuterAllocaIP, BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB, FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads, omp::ProcBindKind ProcBind, bool IsCancellable) { assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous"); if (!updateToLocation(Loc)) return Loc.IP; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadID = getOrCreateThreadID(Ident); if (NumThreads) { // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads) Value *Args[] = { Ident, ThreadID, Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)}; Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args); } if (ProcBind != OMP_PROC_BIND_default) { // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind) Value *Args[] = { Ident, ThreadID, ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)}; Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args); } BasicBlock *InsertBB = Builder.GetInsertBlock(); Function *OuterFn = InsertBB->getParent(); // Save the outer alloca block because the insertion iterator may get // invalidated and we still need this later. BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock(); // Vector to remember instructions we used only during the modeling but which // we want to delete at the end. SmallVector ToBeDeleted; // Change the location to the outer alloca insertion point to create and // initialize the allocas we pass into the parallel region. Builder.restoreIP(OuterAllocaIP); AllocaInst *TIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr"); AllocaInst *ZeroAddr = Builder.CreateAlloca(Int32, nullptr, "zero.addr"); // If there is an if condition we actually use the TIDAddr and ZeroAddr in the // program, otherwise we only need them for modeling purposes to get the // associated arguments in the outlined function. In the former case, // initialize the allocas properly, in the latter case, delete them later. if (IfCondition) { Builder.CreateStore(Constant::getNullValue(Int32), TIDAddr); Builder.CreateStore(Constant::getNullValue(Int32), ZeroAddr); } else { ToBeDeleted.push_back(TIDAddr); ToBeDeleted.push_back(ZeroAddr); } // Create an artificial insertion point that will also ensure the blocks we // are about to split are not degenerated. auto *UI = new UnreachableInst(Builder.getContext(), InsertBB); Instruction *ThenTI = UI, *ElseTI = nullptr; if (IfCondition) SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI); BasicBlock *ThenBB = ThenTI->getParent(); BasicBlock *PRegEntryBB = ThenBB->splitBasicBlock(ThenTI, "omp.par.entry"); BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(ThenTI, "omp.par.region"); BasicBlock *PRegPreFiniBB = PRegBodyBB->splitBasicBlock(ThenTI, "omp.par.pre_finalize"); BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(ThenTI, "omp.par.exit"); auto FiniCBWrapper = [&](InsertPointTy IP) { // Hide "open-ended" blocks from the given FiniCB by setting the right jump // target to the region exit block. if (IP.getBlock()->end() == IP.getPoint()) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); Instruction *I = Builder.CreateBr(PRegExitBB); IP = InsertPointTy(I->getParent(), I->getIterator()); } assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && "Unexpected insertion point for finalization call!"); return FiniCB(IP); }; FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable}); // Generate the privatization allocas in the block that will become the entry // of the outlined function. Builder.SetInsertPoint(PRegEntryBB->getTerminator()); InsertPointTy InnerAllocaIP = Builder.saveIP(); AllocaInst *PrivTIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr.local"); Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid"); // Add some fake uses for OpenMP provided arguments. ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use")); Instruction *ZeroAddrUse = Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use"); ToBeDeleted.push_back(ZeroAddrUse); // ThenBB // | // V // PRegionEntryBB <- Privatization allocas are placed here. // | // V // PRegionBodyBB <- BodeGen is invoked here. // | // V // PRegPreFiniBB <- The block we will start finalization from. // | // V // PRegionExitBB <- A common exit to simplify block collection. // LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n"); // Let the caller create the body. assert(BodyGenCB && "Expected body generation callback!"); InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin()); BodyGenCB(InnerAllocaIP, CodeGenIP); LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n"); FunctionCallee RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call); if (auto *F = dyn_cast(RTLFn.getCallee())) { if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { llvm::LLVMContext &Ctx = F->getContext(); MDBuilder MDB(Ctx); // Annotate the callback behavior of the __kmpc_fork_call: // - The callback callee is argument number 2 (microtask). // - The first two arguments of the callback callee are unknown (-1). // - All variadic arguments to the __kmpc_fork_call are passed to the // callback callee. F->addMetadata( llvm::LLVMContext::MD_callback, *llvm::MDNode::get( Ctx, {MDB.createCallbackEncoding(2, {-1, -1}, /* VarArgsArePassed */ true)})); } } OutlineInfo OI; OI.PostOutlineCB = [=](Function &OutlinedFn) { // Add some known attributes. OutlinedFn.addParamAttr(0, Attribute::NoAlias); OutlinedFn.addParamAttr(1, Attribute::NoAlias); OutlinedFn.addFnAttr(Attribute::NoUnwind); OutlinedFn.addFnAttr(Attribute::NoRecurse); assert(OutlinedFn.arg_size() >= 2 && "Expected at least tid and bounded tid as arguments"); unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2; CallInst *CI = cast(OutlinedFn.user_back()); CI->getParent()->setName("omp_parallel"); Builder.SetInsertPoint(CI); // Build call __kmpc_fork_call(Ident, n, microtask, var1, .., varn); Value *ForkCallArgs[] = { Ident, Builder.getInt32(NumCapturedVars), Builder.CreateBitCast(&OutlinedFn, ParallelTaskPtr)}; SmallVector RealArgs; RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs)); RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end()); Builder.CreateCall(RTLFn, RealArgs); LLVM_DEBUG(dbgs() << "With fork_call placed: " << *Builder.GetInsertBlock()->getParent() << "\n"); InsertPointTy ExitIP(PRegExitBB, PRegExitBB->end()); // Initialize the local TID stack location with the argument value. Builder.SetInsertPoint(PrivTID); Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin(); Builder.CreateStore(Builder.CreateLoad(Int32, OutlinedAI), PrivTIDAddr); // If no "if" clause was present we do not need the call created during // outlining, otherwise we reuse it in the serialized parallel region. if (!ElseTI) { CI->eraseFromParent(); } else { // If an "if" clause was present we are now generating the serialized // version into the "else" branch. Builder.SetInsertPoint(ElseTI); // Build calls __kmpc_serialized_parallel(&Ident, GTid); Value *SerializedParallelCallArgs[] = {Ident, ThreadID}; Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_serialized_parallel), SerializedParallelCallArgs); // OutlinedFn(>id, &zero, CapturedStruct); CI->removeFromParent(); Builder.Insert(CI); // __kmpc_end_serialized_parallel(&Ident, GTid); Value *EndArgs[] = {Ident, ThreadID}; Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_serialized_parallel), EndArgs); LLVM_DEBUG(dbgs() << "With serialized parallel region: " << *Builder.GetInsertBlock()->getParent() << "\n"); } for (Instruction *I : ToBeDeleted) I->eraseFromParent(); }; // Adjust the finalization stack, verify the adjustment, and call the // finalize function a last time to finalize values between the pre-fini // block and the exit block if we left the parallel "the normal way". auto FiniInfo = FinalizationStack.pop_back_val(); (void)FiniInfo; assert(FiniInfo.DK == OMPD_parallel && "Unexpected finalization stack state!"); Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator(); InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator()); FiniCB(PreFiniIP); OI.OuterAllocaBB = OuterAllocaBlock; OI.EntryBB = PRegEntryBB; OI.ExitBB = PRegExitBB; SmallPtrSet ParallelRegionBlockSet; SmallVector Blocks; OI.collectBlocks(ParallelRegionBlockSet, Blocks); // Ensure a single exit node for the outlined region by creating one. // We might have multiple incoming edges to the exit now due to finalizations, // e.g., cancel calls that cause the control flow to leave the region. BasicBlock *PRegOutlinedExitBB = PRegExitBB; PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt()); PRegOutlinedExitBB->setName("omp.par.outlined.exit"); Blocks.push_back(PRegOutlinedExitBB); CodeExtractorAnalysisCache CEAC(*OuterFn); CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, /* AggregateArgs */ false, /* BlockFrequencyInfo */ nullptr, /* BranchProbabilityInfo */ nullptr, /* AssumptionCache */ nullptr, /* AllowVarArgs */ true, /* AllowAlloca */ true, /* AllocationBlock */ OuterAllocaBlock, /* Suffix */ ".omp_par"); // Find inputs to, outputs from the code region. BasicBlock *CommonExit = nullptr; SetVector Inputs, Outputs, SinkingCands, HoistingCands; Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands); LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n"); FunctionCallee TIDRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num); auto PrivHelper = [&](Value &V) { if (&V == TIDAddr || &V == ZeroAddr) { OI.ExcludeArgsFromAggregate.push_back(&V); return; } SetVector Uses; for (Use &U : V.uses()) if (auto *UserI = dyn_cast(U.getUser())) if (ParallelRegionBlockSet.count(UserI->getParent())) Uses.insert(&U); // __kmpc_fork_call expects extra arguments as pointers. If the input // already has a pointer type, everything is fine. Otherwise, store the // value onto stack and load it back inside the to-be-outlined region. This // will ensure only the pointer will be passed to the function. // FIXME: if there are more than 15 trailing arguments, they must be // additionally packed in a struct. Value *Inner = &V; if (!V.getType()->isPointerTy()) { IRBuilder<>::InsertPointGuard Guard(Builder); LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n"); Builder.restoreIP(OuterAllocaIP); Value *Ptr = Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded"); // Store to stack at end of the block that currently branches to the entry // block of the to-be-outlined region. Builder.SetInsertPoint(InsertBB, InsertBB->getTerminator()->getIterator()); Builder.CreateStore(&V, Ptr); // Load back next to allocations in the to-be-outlined region. Builder.restoreIP(InnerAllocaIP); Inner = Builder.CreateLoad(V.getType(), Ptr); } Value *ReplacementValue = nullptr; CallInst *CI = dyn_cast(&V); if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) { ReplacementValue = PrivTID; } else { Builder.restoreIP( PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue)); assert(ReplacementValue && "Expected copy/create callback to set replacement value!"); if (ReplacementValue == &V) return; } for (Use *UPtr : Uses) UPtr->set(ReplacementValue); }; // Reset the inner alloca insertion as it will be used for loading the values // wrapped into pointers before passing them into the to-be-outlined region. // Configure it to insert immediately after the fake use of zero address so // that they are available in the generated body and so that the // OpenMP-related values (thread ID and zero address pointers) remain leading // in the argument list. InnerAllocaIP = IRBuilder<>::InsertPoint( ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator()); // Reset the outer alloca insertion point to the entry of the relevant block // in case it was invalidated. OuterAllocaIP = IRBuilder<>::InsertPoint( OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt()); for (Value *Input : Inputs) { LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n"); PrivHelper(*Input); } LLVM_DEBUG({ for (Value *Output : Outputs) LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n"); }); assert(Outputs.empty() && "OpenMP outlining should not produce live-out values!"); LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n"); LLVM_DEBUG({ for (auto *BB : Blocks) dbgs() << " PBR: " << BB->getName() << "\n"; }); // Register the outlined info. addOutlineInfo(std::move(OI)); InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end()); UI->eraseFromParent(); return AfterIP; } void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) { // Build call void __kmpc_flush(ident_t *loc) uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)}; Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args); } void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) { if (!updateToLocation(Loc)) return; emitFlush(Loc); } void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) { // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 // global_tid); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *Args[] = {Ident, getOrCreateThreadID(Ident)}; // Ignore return result until untied tasks are supported. Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait), Args); } void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) { if (!updateToLocation(Loc)) return; emitTaskwaitImpl(Loc); } void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) { // Build call __kmpc_omp_taskyield(loc, thread_id, 0); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Constant *I32Null = ConstantInt::getNullValue(Int32); Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null}; Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield), Args); } void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) { if (!updateToLocation(Loc)) return; emitTaskyieldImpl(Loc); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTask(const LocationDescription &Loc, InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB, bool Tied, Value *Final) { if (!updateToLocation(Loc)) return InsertPointTy(); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); // The current basic block is split into four basic blocks. After outlining, // they will be mapped as follows: // ``` // def current_fn() { // current_basic_block: // br label %task.exit // task.exit: // ; instructions after task // } // def outlined_fn() { // task.alloca: // br label %task.body // task.body: // ret void // } // ``` BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit"); BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body"); BasicBlock *TaskAllocaBB = splitBB(Builder, /*CreateBranch=*/true, "task.alloca"); OutlineInfo OI; OI.EntryBB = TaskAllocaBB; OI.OuterAllocaBB = AllocaIP.getBlock(); OI.ExitBB = TaskExitBB; OI.PostOutlineCB = [this, Ident, Tied, Final](Function &OutlinedFn) { // The input IR here looks like the following- // ``` // func @current_fn() { // outlined_fn(%args) // } // func @outlined_fn(%args) { ... } // ``` // // This is changed to the following- // // ``` // func @current_fn() { // runtime_call(..., wrapper_fn, ...) // } // func @wrapper_fn(..., %args) { // outlined_fn(%args) // } // func @outlined_fn(%args) { ... } // ``` // The stale call instruction will be replaced with a new call instruction // for runtime call with a wrapper function. assert(OutlinedFn.getNumUses() == 1 && "there must be a single user for the outlined function"); CallInst *StaleCI = cast(OutlinedFn.user_back()); // HasTaskData is true if any variables are captured in the outlined region, // false otherwise. bool HasTaskData = StaleCI->arg_size() > 0; Builder.SetInsertPoint(StaleCI); // Gather the arguments for emitting the runtime call for // @__kmpc_omp_task_alloc Function *TaskAllocFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc); // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID) // call. Value *ThreadID = getOrCreateThreadID(Ident); // Argument - `flags` // Task is tied iff (Flags & 1) == 1. // Task is untied iff (Flags & 1) == 0. // Task is final iff (Flags & 2) == 2. // Task is not final iff (Flags & 2) == 0. // TODO: Handle the other flags. Value *Flags = Builder.getInt32(Tied); if (Final) { Value *FinalFlag = Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0)); Flags = Builder.CreateOr(FinalFlag, Flags); } // Argument - `sizeof_kmp_task_t` (TaskSize) // Tasksize refers to the size in bytes of kmp_task_t data structure // including private vars accessed in task. Value *TaskSize = Builder.getInt64(0); if (HasTaskData) { AllocaInst *ArgStructAlloca = dyn_cast(StaleCI->getArgOperand(0)); assert(ArgStructAlloca && "Unable to find the alloca instruction corresponding to arguments " "for extracted function"); StructType *ArgStructType = dyn_cast(ArgStructAlloca->getAllocatedType()); assert(ArgStructType && "Unable to find struct type corresponding to " "arguments for extracted function"); TaskSize = Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType)); } // TODO: Argument - sizeof_shareds // Argument - task_entry (the wrapper function) // If the outlined function has some captured variables (i.e. HasTaskData is // true), then the wrapper function will have an additional argument (the // struct containing captured variables). Otherwise, no such argument will // be present. SmallVector WrapperArgTys{Builder.getInt32Ty()}; if (HasTaskData) WrapperArgTys.push_back(OutlinedFn.getArg(0)->getType()); FunctionCallee WrapperFuncVal = M.getOrInsertFunction( (Twine(OutlinedFn.getName()) + ".wrapper").str(), FunctionType::get(Builder.getInt32Ty(), WrapperArgTys, false)); Function *WrapperFunc = dyn_cast(WrapperFuncVal.getCallee()); PointerType *WrapperFuncBitcastType = FunctionType::get(Builder.getInt32Ty(), {Builder.getInt32Ty(), Builder.getInt8PtrTy()}, false) ->getPointerTo(); Value *WrapperFuncBitcast = ConstantExpr::getBitCast(WrapperFunc, WrapperFuncBitcastType); // Emit the @__kmpc_omp_task_alloc runtime call // The runtime call returns a pointer to an area where the task captured // variables must be copied before the task is run (NewTaskData) CallInst *NewTaskData = Builder.CreateCall( TaskAllocFn, {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags, /*sizeof_task=*/TaskSize, /*sizeof_shared=*/Builder.getInt64(0), /*task_func=*/WrapperFuncBitcast}); // Copy the arguments for outlined function if (HasTaskData) { Value *TaskData = StaleCI->getArgOperand(0); Align Alignment = TaskData->getPointerAlignment(M.getDataLayout()); Builder.CreateMemCpy(NewTaskData, Alignment, TaskData, Alignment, TaskSize); } // Emit the @__kmpc_omp_task runtime call to spawn the task Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task); Builder.CreateCall(TaskFn, {Ident, ThreadID, NewTaskData}); StaleCI->eraseFromParent(); // Emit the body for wrapper function BasicBlock *WrapperEntryBB = BasicBlock::Create(M.getContext(), "", WrapperFunc); Builder.SetInsertPoint(WrapperEntryBB); if (HasTaskData) Builder.CreateCall(&OutlinedFn, {WrapperFunc->getArg(1)}); else Builder.CreateCall(&OutlinedFn); Builder.CreateRet(Builder.getInt32(0)); }; addOutlineInfo(std::move(OI)); InsertPointTy TaskAllocaIP = InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin()); InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin()); BodyGenCB(TaskAllocaIP, TaskBodyIP); Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin()); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc, InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB) { if (!updateToLocation(Loc)) return InsertPointTy(); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadID = getOrCreateThreadID(Ident); // Emit the @__kmpc_taskgroup runtime call to start the taskgroup Function *TaskgroupFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup); Builder.CreateCall(TaskgroupFn, {Ident, ThreadID}); BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit"); BodyGenCB(AllocaIP, Builder.saveIP()); Builder.SetInsertPoint(TaskgroupExitBB); // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup Function *EndTaskgroupFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup); Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID}); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections( const LocationDescription &Loc, InsertPointTy AllocaIP, ArrayRef SectionCBs, PrivatizeCallbackTy PrivCB, FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) { assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required"); if (!updateToLocation(Loc)) return Loc.IP; auto FiniCBWrapper = [&](InsertPointTy IP) { if (IP.getBlock()->end() != IP.getPoint()) return FiniCB(IP); // This must be done otherwise any nested constructs using FinalizeOMPRegion // will fail because that function requires the Finalization Basic Block to // have a terminator, which is already removed by EmitOMPRegionBody. // IP is currently at cancelation block. // We need to backtrack to the condition block to fetch // the exit block and create a branch from cancelation // to exit block. IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); auto *CaseBB = IP.getBlock()->getSinglePredecessor(); auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); Instruction *I = Builder.CreateBr(ExitBB); IP = InsertPointTy(I->getParent(), I->getIterator()); return FiniCB(IP); }; FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable}); // Each section is emitted as a switch case // Each finalization callback is handled from clang.EmitOMPSectionDirective() // -> OMP.createSection() which generates the IR for each section // Iterate through all sections and emit a switch construct: // switch (IV) { // case 0: // ; // break; // ... // case - 1: // - 1]>; // break; // } // ... // section_loop.after: // ; auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) { Builder.restoreIP(CodeGenIP); BasicBlock *Continue = splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after"); Function *CurFn = Continue->getParent(); SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue); unsigned CaseNumber = 0; for (auto SectionCB : SectionCBs) { BasicBlock *CaseBB = BasicBlock::Create( M.getContext(), "omp_section_loop.body.case", CurFn, Continue); SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB); Builder.SetInsertPoint(CaseBB); BranchInst *CaseEndBr = Builder.CreateBr(Continue); SectionCB(InsertPointTy(), {CaseEndBr->getParent(), CaseEndBr->getIterator()}); CaseNumber++; } // remove the existing terminator from body BB since there can be no // terminators after switch/case }; // Loop body ends here // LowerBound, UpperBound, and STride for createCanonicalLoop Type *I32Ty = Type::getInt32Ty(M.getContext()); Value *LB = ConstantInt::get(I32Ty, 0); Value *UB = ConstantInt::get(I32Ty, SectionCBs.size()); Value *ST = ConstantInt::get(I32Ty, 1); llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop( Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop"); InsertPointTy AfterIP = applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, !IsNowait); // Apply the finalization callback in LoopAfterBB auto FiniInfo = FinalizationStack.pop_back_val(); assert(FiniInfo.DK == OMPD_sections && "Unexpected finalization stack state!"); if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) { Builder.restoreIP(AfterIP); BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini"); CB(Builder.saveIP()); AfterIP = {FiniBB, FiniBB->begin()}; } return AfterIP; } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSection(const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB) { if (!updateToLocation(Loc)) return Loc.IP; auto FiniCBWrapper = [&](InsertPointTy IP) { if (IP.getBlock()->end() != IP.getPoint()) return FiniCB(IP); // This must be done otherwise any nested constructs using FinalizeOMPRegion // will fail because that function requires the Finalization Basic Block to // have a terminator, which is already removed by EmitOMPRegionBody. // IP is currently at cancelation block. // We need to backtrack to the condition block to fetch // the exit block and create a branch from cancelation // to exit block. IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); auto *CaseBB = Loc.IP.getBlock(); auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); Instruction *I = Builder.CreateBr(ExitBB); IP = InsertPointTy(I->getParent(), I->getIterator()); return FiniCB(IP); }; Directive OMPD = Directive::OMPD_sections; // Since we are using Finalization Callback here, HasFinalize // and IsCancellable have to be true return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper, /*Conditional*/ false, /*hasFinalize*/ true, /*IsCancellable*/ true); } /// Create a function with a unique name and a "void (i8*, i8*)" signature in /// the given module and return it. Function *getFreshReductionFunc(Module &M) { Type *VoidTy = Type::getVoidTy(M.getContext()); Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); auto *FuncTy = FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false); return Function::Create(FuncTy, GlobalVariable::InternalLinkage, M.getDataLayout().getDefaultGlobalsAddressSpace(), ".omp.reduction.func", &M); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions( const LocationDescription &Loc, InsertPointTy AllocaIP, ArrayRef ReductionInfos, bool IsNoWait) { for (const ReductionInfo &RI : ReductionInfos) { (void)RI; assert(RI.Variable && "expected non-null variable"); assert(RI.PrivateVariable && "expected non-null private variable"); assert(RI.ReductionGen && "expected non-null reduction generator callback"); assert(RI.Variable->getType() == RI.PrivateVariable->getType() && "expected variables and their private equivalents to have the same " "type"); assert(RI.Variable->getType()->isPointerTy() && "expected variables to be pointers"); } if (!updateToLocation(Loc)) return InsertPointTy(); BasicBlock *InsertBlock = Loc.IP.getBlock(); BasicBlock *ContinuationBlock = InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize"); InsertBlock->getTerminator()->eraseFromParent(); // Create and populate array of type-erased pointers to private reduction // values. unsigned NumReductions = ReductionInfos.size(); Type *RedArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumReductions); Builder.restoreIP(AllocaIP); Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array"); Builder.SetInsertPoint(InsertBlock, InsertBlock->end()); for (auto En : enumerate(ReductionInfos)) { unsigned Index = En.index(); const ReductionInfo &RI = En.value(); Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64( RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index)); Value *Casted = Builder.CreateBitCast(RI.PrivateVariable, Builder.getInt8PtrTy(), "private.red.var." + Twine(Index) + ".casted"); Builder.CreateStore(Casted, RedArrayElemPtr); } // Emit a call to the runtime function that orchestrates the reduction. // Declare the reduction function in the process. Function *Func = Builder.GetInsertBlock()->getParent(); Module *Module = Func->getParent(); Value *RedArrayPtr = Builder.CreateBitCast(RedArray, Builder.getInt8PtrTy(), "red.array.ptr"); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); bool CanGenerateAtomic = llvm::all_of(ReductionInfos, [](const ReductionInfo &RI) { return RI.AtomicReductionGen; }); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize, CanGenerateAtomic ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE : IdentFlag(0)); Value *ThreadId = getOrCreateThreadID(Ident); Constant *NumVariables = Builder.getInt32(NumReductions); const DataLayout &DL = Module->getDataLayout(); unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy); Constant *RedArraySize = Builder.getInt64(RedArrayByteSize); Function *ReductionFunc = getFreshReductionFunc(*Module); Value *Lock = getOMPCriticalRegionLock(".reduction"); Function *ReduceFunc = getOrCreateRuntimeFunctionPtr( IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait : RuntimeFunction::OMPRTL___kmpc_reduce); CallInst *ReduceCall = Builder.CreateCall(ReduceFunc, {Ident, ThreadId, NumVariables, RedArraySize, RedArrayPtr, ReductionFunc, Lock}, "reduce"); // Create final reduction entry blocks for the atomic and non-atomic case. // Emit IR that dispatches control flow to one of the blocks based on the // reduction supporting the atomic mode. BasicBlock *NonAtomicRedBlock = BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func); BasicBlock *AtomicRedBlock = BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func); SwitchInst *Switch = Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2); Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock); Switch->addCase(Builder.getInt32(2), AtomicRedBlock); // Populate the non-atomic reduction using the elementwise reduction function. // This loads the elements from the global and private variables and reduces // them before storing back the result to the global variable. Builder.SetInsertPoint(NonAtomicRedBlock); for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); Type *ValueType = RI.ElementType; Value *RedValue = Builder.CreateLoad(ValueType, RI.Variable, "red.value." + Twine(En.index())); Value *PrivateRedValue = Builder.CreateLoad(ValueType, RI.PrivateVariable, "red.private.value." + Twine(En.index())); Value *Reduced; Builder.restoreIP( RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced)); if (!Builder.GetInsertBlock()) return InsertPointTy(); Builder.CreateStore(Reduced, RI.Variable); } Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr( IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait : RuntimeFunction::OMPRTL___kmpc_end_reduce); Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock}); Builder.CreateBr(ContinuationBlock); // Populate the atomic reduction using the atomic elementwise reduction // function. There are no loads/stores here because they will be happening // inside the atomic elementwise reduction. Builder.SetInsertPoint(AtomicRedBlock); if (CanGenerateAtomic) { for (const ReductionInfo &RI : ReductionInfos) { Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType, RI.Variable, RI.PrivateVariable)); if (!Builder.GetInsertBlock()) return InsertPointTy(); } Builder.CreateBr(ContinuationBlock); } else { Builder.CreateUnreachable(); } // Populate the outlined reduction function using the elementwise reduction // function. Partial values are extracted from the type-erased array of // pointers to private variables. BasicBlock *ReductionFuncBlock = BasicBlock::Create(Module->getContext(), "", ReductionFunc); Builder.SetInsertPoint(ReductionFuncBlock); Value *LHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(0), RedArrayTy->getPointerTo()); Value *RHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(1), RedArrayTy->getPointerTo()); for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( RedArrayTy, LHSArrayPtr, 0, En.index()); Value *LHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), LHSI8PtrPtr); Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType()); Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr); Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( RedArrayTy, RHSArrayPtr, 0, En.index()); Value *RHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), RHSI8PtrPtr); Value *RHSPtr = Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType()); Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr); Value *Reduced; Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced)); if (!Builder.GetInsertBlock()) return InsertPointTy(); Builder.CreateStore(Reduced, LHSPtr); } Builder.CreateRetVoid(); Builder.SetInsertPoint(ContinuationBlock); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createMaster(const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_master; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master); Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ true, /*hasFinalize*/ true); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createMasked(const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, Value *Filter) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_masked; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId, Filter}; Value *ArgsEnd[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked); Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd); return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ true, /*hasFinalize*/ true); } CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton( DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore, BasicBlock *PostInsertBefore, const Twine &Name) { Module *M = F->getParent(); LLVMContext &Ctx = M->getContext(); Type *IndVarTy = TripCount->getType(); // Create the basic block structure. BasicBlock *Preheader = BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore); BasicBlock *Header = BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore); BasicBlock *Cond = BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore); BasicBlock *Body = BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore); BasicBlock *Latch = BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore); BasicBlock *Exit = BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore); BasicBlock *After = BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore); // Use specified DebugLoc for new instructions. Builder.SetCurrentDebugLocation(DL); Builder.SetInsertPoint(Preheader); Builder.CreateBr(Header); Builder.SetInsertPoint(Header); PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv"); IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader); Builder.CreateBr(Cond); Builder.SetInsertPoint(Cond); Value *Cmp = Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp"); Builder.CreateCondBr(Cmp, Body, Exit); Builder.SetInsertPoint(Body); Builder.CreateBr(Latch); Builder.SetInsertPoint(Latch); Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1), "omp_" + Name + ".next", /*HasNUW=*/true); Builder.CreateBr(Header); IndVarPHI->addIncoming(Next, Latch); Builder.SetInsertPoint(Exit); Builder.CreateBr(After); // Remember and return the canonical control flow. LoopInfos.emplace_front(); CanonicalLoopInfo *CL = &LoopInfos.front(); CL->Header = Header; CL->Cond = Cond; CL->Latch = Latch; CL->Exit = Exit; #ifndef NDEBUG CL->assertOK(); #endif return CL; } CanonicalLoopInfo * OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB, Value *TripCount, const Twine &Name) { BasicBlock *BB = Loc.IP.getBlock(); BasicBlock *NextBB = BB->getNextNode(); CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(), NextBB, NextBB, Name); BasicBlock *After = CL->getAfter(); // If location is not set, don't connect the loop. if (updateToLocation(Loc)) { // Split the loop at the insertion point: Branch to the preheader and move // every following instruction to after the loop (the After BB). Also, the // new successor is the loop's after block. spliceBB(Builder, After, /*CreateBranch=*/false); Builder.CreateBr(CL->getPreheader()); } // Emit the body content. We do it after connecting the loop to the CFG to // avoid that the callback encounters degenerate BBs. BodyGenCB(CL->getBodyIP(), CL->getIndVar()); #ifndef NDEBUG CL->assertOK(); #endif return CL; } CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop( const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB, Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop, InsertPointTy ComputeIP, const Twine &Name) { // Consider the following difficulties (assuming 8-bit signed integers): // * Adding \p Step to the loop counter which passes \p Stop may overflow: // DO I = 1, 100, 50 /// * A \p Step of INT_MIN cannot not be normalized to a positive direction: // DO I = 100, 0, -128 // Start, Stop and Step must be of the same integer type. auto *IndVarTy = cast(Start->getType()); assert(IndVarTy == Stop->getType() && "Stop type mismatch"); assert(IndVarTy == Step->getType() && "Step type mismatch"); LocationDescription ComputeLoc = ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc; updateToLocation(ComputeLoc); ConstantInt *Zero = ConstantInt::get(IndVarTy, 0); ConstantInt *One = ConstantInt::get(IndVarTy, 1); // Like Step, but always positive. Value *Incr = Step; // Distance between Start and Stop; always positive. Value *Span; // Condition whether there are no iterations are executed at all, e.g. because // UB < LB. Value *ZeroCmp; if (IsSigned) { // Ensure that increment is positive. If not, negate and invert LB and UB. Value *IsNeg = Builder.CreateICmpSLT(Step, Zero); Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step); Value *LB = Builder.CreateSelect(IsNeg, Stop, Start); Value *UB = Builder.CreateSelect(IsNeg, Start, Stop); Span = Builder.CreateSub(UB, LB, "", false, true); ZeroCmp = Builder.CreateICmp( InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB); } else { Span = Builder.CreateSub(Stop, Start, "", true); ZeroCmp = Builder.CreateICmp( InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start); } Value *CountIfLooping; if (InclusiveStop) { CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One); } else { // Avoid incrementing past stop since it could overflow. Value *CountIfTwo = Builder.CreateAdd( Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One); Value *OneCmp = Builder.CreateICmp( InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Span, Incr); CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo); } Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping, "omp_" + Name + ".tripcount"); auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) { Builder.restoreIP(CodeGenIP); Value *Span = Builder.CreateMul(IV, Step); Value *IndVar = Builder.CreateAdd(Span, Start); BodyGenCB(Builder.saveIP(), IndVar); }; LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP(); return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name); } // Returns an LLVM function to call for initializing loop bounds using OpenMP // static scheduling depending on `type`. Only i32 and i64 are supported by the // runtime. Always interpret integers as unsigned similarly to // CanonicalLoopInfo. static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, bool NeedsBarrier) { assert(CLI->isValid() && "Requires a valid canonical loop"); assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && "Require dedicated allocate IP"); // Set up the source location value for OpenMP runtime. Builder.restoreIP(CLI->getPreheaderIP()); Builder.SetCurrentDebugLocation(DL); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); // Declare useful OpenMP runtime functions. Value *IV = CLI->getIndVar(); Type *IVTy = IV->getType(); FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this); FunctionCallee StaticFini = getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); // Allocate space for computed loop bounds as expected by the "init" function. Builder.restoreIP(AllocaIP); Type *I32Type = Type::getInt32Ty(M.getContext()); Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); // At the end of the preheader, prepare for calling the "init" function by // storing the current loop bounds into the allocated space. A canonical loop // always iterates from 0 to trip-count with step 1. Note that "init" expects // and produces an inclusive upper bound. Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); Constant *Zero = ConstantInt::get(IVTy, 0); Constant *One = ConstantInt::get(IVTy, 1); Builder.CreateStore(Zero, PLowerBound); Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One); Builder.CreateStore(UpperBound, PUpperBound); Builder.CreateStore(One, PStride); Value *ThreadNum = getOrCreateThreadID(SrcLoc); Constant *SchedulingType = ConstantInt::get( I32Type, static_cast(OMPScheduleType::UnorderedStatic)); // Call the "init" function and update the trip count of the loop with the // value it produced. Builder.CreateCall(StaticInit, {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound, PUpperBound, PStride, One, Zero}); Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound); Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound); Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound); Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One); CLI->setTripCount(TripCount); // Update all uses of the induction variable except the one in the condition // block that compares it with the actual upper bound, and the increment in // the latch block. CLI->mapIndVar([&](Instruction *OldIV) -> Value * { Builder.SetInsertPoint(CLI->getBody(), CLI->getBody()->getFirstInsertionPt()); Builder.SetCurrentDebugLocation(DL); return Builder.CreateAdd(OldIV, LowerBound); }); // In the "exit" block, call the "fini" function. Builder.SetInsertPoint(CLI->getExit(), CLI->getExit()->getTerminator()->getIterator()); Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); // Add the barrier if requested. if (NeedsBarrier) createBarrier(LocationDescription(Builder.saveIP(), DL), omp::Directive::OMPD_for, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false); InsertPointTy AfterIP = CLI->getAfterIP(); CLI->invalidate(); return AfterIP; } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop( DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, bool NeedsBarrier, Value *ChunkSize) { assert(CLI->isValid() && "Requires a valid canonical loop"); assert(ChunkSize && "Chunk size is required"); LLVMContext &Ctx = CLI->getFunction()->getContext(); Value *IV = CLI->getIndVar(); Value *OrigTripCount = CLI->getTripCount(); Type *IVTy = IV->getType(); assert(IVTy->getIntegerBitWidth() <= 64 && "Max supported tripcount bitwidth is 64 bits"); Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx); Type *I32Type = Type::getInt32Ty(M.getContext()); Constant *Zero = ConstantInt::get(InternalIVTy, 0); Constant *One = ConstantInt::get(InternalIVTy, 1); // Declare useful OpenMP runtime functions. FunctionCallee StaticInit = getKmpcForStaticInitForType(InternalIVTy, M, *this); FunctionCallee StaticFini = getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); // Allocate space for computed loop bounds as expected by the "init" function. Builder.restoreIP(AllocaIP); Builder.SetCurrentDebugLocation(DL); Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); Value *PLowerBound = Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound"); Value *PUpperBound = Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound"); Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride"); // Set up the source location value for the OpenMP runtime. Builder.restoreIP(CLI->getPreheaderIP()); Builder.SetCurrentDebugLocation(DL); // TODO: Detect overflow in ubsan or max-out with current tripcount. Value *CastedChunkSize = Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize"); Value *CastedTripCount = Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount"); Constant *SchedulingType = ConstantInt::get( I32Type, static_cast(OMPScheduleType::UnorderedStaticChunked)); Builder.CreateStore(Zero, PLowerBound); Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One); Builder.CreateStore(OrigUpperBound, PUpperBound); Builder.CreateStore(One, PStride); // Call the "init" function and update the trip count of the loop with the // value it produced. uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadNum = getOrCreateThreadID(SrcLoc); Builder.CreateCall(StaticInit, {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum, /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter, /*plower=*/PLowerBound, /*pupper=*/PUpperBound, /*pstride=*/PStride, /*incr=*/One, /*chunk=*/CastedChunkSize}); // Load values written by the "init" function. Value *FirstChunkStart = Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb"); Value *FirstChunkStop = Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub"); Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One); Value *ChunkRange = Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range"); Value *NextChunkStride = Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride"); // Create outer "dispatch" loop for enumerating the chunks. BasicBlock *DispatchEnter = splitBB(Builder, true); Value *DispatchCounter; CanonicalLoopInfo *DispatchCLI = createCanonicalLoop( {Builder.saveIP(), DL}, [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; }, FirstChunkStart, CastedTripCount, NextChunkStride, /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{}, "dispatch"); // Remember the BasicBlocks of the dispatch loop we need, then invalidate to // not have to preserve the canonical invariant. BasicBlock *DispatchBody = DispatchCLI->getBody(); BasicBlock *DispatchLatch = DispatchCLI->getLatch(); BasicBlock *DispatchExit = DispatchCLI->getExit(); BasicBlock *DispatchAfter = DispatchCLI->getAfter(); DispatchCLI->invalidate(); // Rewire the original loop to become the chunk loop inside the dispatch loop. redirectTo(DispatchAfter, CLI->getAfter(), DL); redirectTo(CLI->getExit(), DispatchLatch, DL); redirectTo(DispatchBody, DispatchEnter, DL); // Prepare the prolog of the chunk loop. Builder.restoreIP(CLI->getPreheaderIP()); Builder.SetCurrentDebugLocation(DL); // Compute the number of iterations of the chunk loop. Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange); Value *IsLastChunk = Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last"); Value *CountUntilOrigTripCount = Builder.CreateSub(CastedTripCount, DispatchCounter); Value *ChunkTripCount = Builder.CreateSelect( IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount"); Value *BackcastedChunkTC = Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc"); CLI->setTripCount(BackcastedChunkTC); // Update all uses of the induction variable except the one in the condition // block that compares it with the actual upper bound, and the increment in // the latch block. Value *BackcastedDispatchCounter = Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc"); CLI->mapIndVar([&](Instruction *) -> Value * { Builder.restoreIP(CLI->getBodyIP()); return Builder.CreateAdd(IV, BackcastedDispatchCounter); }); // In the "exit" block, call the "fini" function. Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt()); Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); // Add the barrier if requested. if (NeedsBarrier) createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for, /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false); #ifndef NDEBUG // Even though we currently do not support applying additional methods to it, // the chunk loop should remain a canonical loop. CLI->assertOK(); #endif return {DispatchAfter, DispatchAfter->getFirstInsertionPt()}; } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop( DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, bool NeedsBarrier, llvm::omp::ScheduleKind SchedKind, llvm::Value *ChunkSize, bool HasSimdModifier, bool HasMonotonicModifier, bool HasNonmonotonicModifier, bool HasOrderedClause) { OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType( SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier, HasNonmonotonicModifier, HasOrderedClause); bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) == OMPScheduleType::ModifierOrdered; switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) { case OMPScheduleType::BaseStatic: assert(!ChunkSize && "No chunk size with static-chunked schedule"); if (IsOrdered) return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, NeedsBarrier, ChunkSize); // FIXME: Monotonicity ignored? return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier); case OMPScheduleType::BaseStaticChunked: if (IsOrdered) return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, NeedsBarrier, ChunkSize); // FIXME: Monotonicity ignored? return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier, ChunkSize); case OMPScheduleType::BaseRuntime: case OMPScheduleType::BaseAuto: case OMPScheduleType::BaseGreedy: case OMPScheduleType::BaseBalanced: case OMPScheduleType::BaseSteal: case OMPScheduleType::BaseGuidedSimd: case OMPScheduleType::BaseRuntimeSimd: assert(!ChunkSize && "schedule type does not support user-defined chunk sizes"); LLVM_FALLTHROUGH; case OMPScheduleType::BaseDynamicChunked: case OMPScheduleType::BaseGuidedChunked: case OMPScheduleType::BaseGuidedIterativeChunked: case OMPScheduleType::BaseGuidedAnalyticalChunked: case OMPScheduleType::BaseStaticBalancedChunked: return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, NeedsBarrier, ChunkSize); default: llvm_unreachable("Unknown/unimplemented schedule kind"); } } /// Returns an LLVM function to call for initializing loop bounds using OpenMP /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by /// the runtime. Always interpret integers as unsigned similarly to /// CanonicalLoopInfo. static FunctionCallee getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } /// Returns an LLVM function to call for updating the next loop using OpenMP /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by /// the runtime. Always interpret integers as unsigned similarly to /// CanonicalLoopInfo. static FunctionCallee getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } /// Returns an LLVM function to call for finalizing the dynamic loop using /// depending on `type`. Only i32 and i64 are supported by the runtime. Always /// interpret integers as unsigned similarly to CanonicalLoopInfo. static FunctionCallee getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop( DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) { assert(CLI->isValid() && "Requires a valid canonical loop"); assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && "Require dedicated allocate IP"); assert(isValidWorkshareLoopScheduleType(SchedType) && "Require valid schedule type"); bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) == OMPScheduleType::ModifierOrdered; // Set up the source location value for OpenMP runtime. Builder.SetCurrentDebugLocation(DL); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); // Declare useful OpenMP runtime functions. Value *IV = CLI->getIndVar(); Type *IVTy = IV->getType(); FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this); FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this); // Allocate space for computed loop bounds as expected by the "init" function. Builder.restoreIP(AllocaIP); Type *I32Type = Type::getInt32Ty(M.getContext()); Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); // At the end of the preheader, prepare for calling the "init" function by // storing the current loop bounds into the allocated space. A canonical loop // always iterates from 0 to trip-count with step 1. Note that "init" expects // and produces an inclusive upper bound. BasicBlock *PreHeader = CLI->getPreheader(); Builder.SetInsertPoint(PreHeader->getTerminator()); Constant *One = ConstantInt::get(IVTy, 1); Builder.CreateStore(One, PLowerBound); Value *UpperBound = CLI->getTripCount(); Builder.CreateStore(UpperBound, PUpperBound); Builder.CreateStore(One, PStride); BasicBlock *Header = CLI->getHeader(); BasicBlock *Exit = CLI->getExit(); BasicBlock *Cond = CLI->getCond(); BasicBlock *Latch = CLI->getLatch(); InsertPointTy AfterIP = CLI->getAfterIP(); // The CLI will be "broken" in the code below, as the loop is no longer // a valid canonical loop. if (!Chunk) Chunk = One; Value *ThreadNum = getOrCreateThreadID(SrcLoc); Constant *SchedulingType = ConstantInt::get(I32Type, static_cast(SchedType)); // Call the "init" function. Builder.CreateCall(DynamicInit, {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One, UpperBound, /* step */ One, Chunk}); // An outer loop around the existing one. BasicBlock *OuterCond = BasicBlock::Create( PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond", PreHeader->getParent()); // This needs to be 32-bit always, so can't use the IVTy Zero above. Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt()); Value *Res = Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter, PLowerBound, PUpperBound, PStride}); Constant *Zero32 = ConstantInt::get(I32Type, 0); Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32); Value *LowerBound = Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb"); Builder.CreateCondBr(MoreWork, Header, Exit); // Change PHI-node in loop header to use outer cond rather than preheader, // and set IV to the LowerBound. Instruction *Phi = &Header->front(); auto *PI = cast(Phi); PI->setIncomingBlock(0, OuterCond); PI->setIncomingValue(0, LowerBound); // Then set the pre-header to jump to the OuterCond Instruction *Term = PreHeader->getTerminator(); auto *Br = cast(Term); Br->setSuccessor(0, OuterCond); // Modify the inner condition: // * Use the UpperBound returned from the DynamicNext call. // * jump to the loop outer loop when done with one of the inner loops. Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt()); UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub"); Instruction *Comp = &*Builder.GetInsertPoint(); auto *CI = cast(Comp); CI->setOperand(1, UpperBound); // Redirect the inner exit to branch to outer condition. Instruction *Branch = &Cond->back(); auto *BI = cast(Branch); assert(BI->getSuccessor(1) == Exit); BI->setSuccessor(1, OuterCond); // Call the "fini" function if "ordered" is present in wsloop directive. if (Ordered) { Builder.SetInsertPoint(&Latch->back()); FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this); Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum}); } // Add the barrier if requested. if (NeedsBarrier) { Builder.SetInsertPoint(&Exit->back()); createBarrier(LocationDescription(Builder.saveIP(), DL), omp::Directive::OMPD_for, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false); } CLI->invalidate(); return AfterIP; } /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is, /// after this \p OldTarget will be orphaned. static void redirectAllPredecessorsTo(BasicBlock *OldTarget, BasicBlock *NewTarget, DebugLoc DL) { for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget))) redirectTo(Pred, NewTarget, DL); } /// Determine which blocks in \p BBs are reachable from outside and remove the /// ones that are not reachable from the function. static void removeUnusedBlocksFromParent(ArrayRef BBs) { SmallPtrSet BBsToErase{BBs.begin(), BBs.end()}; auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) { for (Use &U : BB->uses()) { auto *UseInst = dyn_cast(U.getUser()); if (!UseInst) continue; if (BBsToErase.count(UseInst->getParent())) continue; return true; } return false; }; while (true) { bool Changed = false; for (BasicBlock *BB : make_early_inc_range(BBsToErase)) { if (HasRemainingUses(BB)) { BBsToErase.erase(BB); Changed = true; } } if (!Changed) break; } SmallVector BBVec(BBsToErase.begin(), BBsToErase.end()); DeleteDeadBlocks(BBVec); } CanonicalLoopInfo * OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef Loops, InsertPointTy ComputeIP) { assert(Loops.size() >= 1 && "At least one loop required"); size_t NumLoops = Loops.size(); // Nothing to do if there is already just one loop. if (NumLoops == 1) return Loops.front(); CanonicalLoopInfo *Outermost = Loops.front(); CanonicalLoopInfo *Innermost = Loops.back(); BasicBlock *OrigPreheader = Outermost->getPreheader(); BasicBlock *OrigAfter = Outermost->getAfter(); Function *F = OrigPreheader->getParent(); // Loop control blocks that may become orphaned later. SmallVector OldControlBBs; OldControlBBs.reserve(6 * Loops.size()); for (CanonicalLoopInfo *Loop : Loops) Loop->collectControlBlocks(OldControlBBs); // Setup the IRBuilder for inserting the trip count computation. Builder.SetCurrentDebugLocation(DL); if (ComputeIP.isSet()) Builder.restoreIP(ComputeIP); else Builder.restoreIP(Outermost->getPreheaderIP()); // Derive the collapsed' loop trip count. // TODO: Find common/largest indvar type. Value *CollapsedTripCount = nullptr; for (CanonicalLoopInfo *L : Loops) { assert(L->isValid() && "All loops to collapse must be valid canonical loops"); Value *OrigTripCount = L->getTripCount(); if (!CollapsedTripCount) { CollapsedTripCount = OrigTripCount; continue; } // TODO: Enable UndefinedSanitizer to diagnose an overflow here. CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount, {}, /*HasNUW=*/true); } // Create the collapsed loop control flow. CanonicalLoopInfo *Result = createLoopSkeleton(DL, CollapsedTripCount, F, OrigPreheader->getNextNode(), OrigAfter, "collapsed"); // Build the collapsed loop body code. // Start with deriving the input loop induction variables from the collapsed // one, using a divmod scheme. To preserve the original loops' order, the // innermost loop use the least significant bits. Builder.restoreIP(Result->getBodyIP()); Value *Leftover = Result->getIndVar(); SmallVector NewIndVars; NewIndVars.resize(NumLoops); for (int i = NumLoops - 1; i >= 1; --i) { Value *OrigTripCount = Loops[i]->getTripCount(); Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount); NewIndVars[i] = NewIndVar; Leftover = Builder.CreateUDiv(Leftover, OrigTripCount); } // Outermost loop gets all the remaining bits. NewIndVars[0] = Leftover; // Construct the loop body control flow. // We progressively construct the branch structure following in direction of // the control flow, from the leading in-between code, the loop nest body, the // trailing in-between code, and rejoining the collapsed loop's latch. // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If // the ContinueBlock is set, continue with that block. If ContinuePred, use // its predecessors as sources. BasicBlock *ContinueBlock = Result->getBody(); BasicBlock *ContinuePred = nullptr; auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest, BasicBlock *NextSrc) { if (ContinueBlock) redirectTo(ContinueBlock, Dest, DL); else redirectAllPredecessorsTo(ContinuePred, Dest, DL); ContinueBlock = nullptr; ContinuePred = NextSrc; }; // The code before the nested loop of each level. // Because we are sinking it into the nest, it will be executed more often // that the original loop. More sophisticated schemes could keep track of what // the in-between code is and instantiate it only once per thread. for (size_t i = 0; i < NumLoops - 1; ++i) ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader()); // Connect the loop nest body. ContinueWith(Innermost->getBody(), Innermost->getLatch()); // The code after the nested loop at each level. for (size_t i = NumLoops - 1; i > 0; --i) ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch()); // Connect the finished loop to the collapsed loop latch. ContinueWith(Result->getLatch(), nullptr); // Replace the input loops with the new collapsed loop. redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL); redirectTo(Result->getAfter(), Outermost->getAfter(), DL); // Replace the input loop indvars with the derived ones. for (size_t i = 0; i < NumLoops; ++i) Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]); // Remove unused parts of the input loops. removeUnusedBlocksFromParent(OldControlBBs); for (CanonicalLoopInfo *L : Loops) L->invalidate(); #ifndef NDEBUG Result->assertOK(); #endif return Result; } std::vector OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef Loops, ArrayRef TileSizes) { assert(TileSizes.size() == Loops.size() && "Must pass as many tile sizes as there are loops"); int NumLoops = Loops.size(); assert(NumLoops >= 1 && "At least one loop to tile required"); CanonicalLoopInfo *OutermostLoop = Loops.front(); CanonicalLoopInfo *InnermostLoop = Loops.back(); Function *F = OutermostLoop->getBody()->getParent(); BasicBlock *InnerEnter = InnermostLoop->getBody(); BasicBlock *InnerLatch = InnermostLoop->getLatch(); // Loop control blocks that may become orphaned later. SmallVector OldControlBBs; OldControlBBs.reserve(6 * Loops.size()); for (CanonicalLoopInfo *Loop : Loops) Loop->collectControlBlocks(OldControlBBs); // Collect original trip counts and induction variable to be accessible by // index. Also, the structure of the original loops is not preserved during // the construction of the tiled loops, so do it before we scavenge the BBs of // any original CanonicalLoopInfo. SmallVector OrigTripCounts, OrigIndVars; for (CanonicalLoopInfo *L : Loops) { assert(L->isValid() && "All input loops must be valid canonical loops"); OrigTripCounts.push_back(L->getTripCount()); OrigIndVars.push_back(L->getIndVar()); } // Collect the code between loop headers. These may contain SSA definitions // that are used in the loop nest body. To be usable with in the innermost // body, these BasicBlocks will be sunk into the loop nest body. That is, // these instructions may be executed more often than before the tiling. // TODO: It would be sufficient to only sink them into body of the // corresponding tile loop. SmallVector, 4> InbetweenCode; for (int i = 0; i < NumLoops - 1; ++i) { CanonicalLoopInfo *Surrounding = Loops[i]; CanonicalLoopInfo *Nested = Loops[i + 1]; BasicBlock *EnterBB = Surrounding->getBody(); BasicBlock *ExitBB = Nested->getHeader(); InbetweenCode.emplace_back(EnterBB, ExitBB); } // Compute the trip counts of the floor loops. Builder.SetCurrentDebugLocation(DL); Builder.restoreIP(OutermostLoop->getPreheaderIP()); SmallVector FloorCount, FloorRems; for (int i = 0; i < NumLoops; ++i) { Value *TileSize = TileSizes[i]; Value *OrigTripCount = OrigTripCounts[i]; Type *IVType = OrigTripCount->getType(); Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize); Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize); // 0 if tripcount divides the tilesize, 1 otherwise. // 1 means we need an additional iteration for a partial tile. // // Unfortunately we cannot just use the roundup-formula // (tripcount + tilesize - 1)/tilesize // because the summation might overflow. We do not want introduce undefined // behavior when the untiled loop nest did not. Value *FloorTripOverflow = Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0)); FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType); FloorTripCount = Builder.CreateAdd(FloorTripCount, FloorTripOverflow, "omp_floor" + Twine(i) + ".tripcount", true); // Remember some values for later use. FloorCount.push_back(FloorTripCount); FloorRems.push_back(FloorTripRem); } // Generate the new loop nest, from the outermost to the innermost. std::vector Result; Result.reserve(NumLoops * 2); // The basic block of the surrounding loop that enters the nest generated // loop. BasicBlock *Enter = OutermostLoop->getPreheader(); // The basic block of the surrounding loop where the inner code should // continue. BasicBlock *Continue = OutermostLoop->getAfter(); // Where the next loop basic block should be inserted. BasicBlock *OutroInsertBefore = InnermostLoop->getExit(); auto EmbeddNewLoop = [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore]( Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * { CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton( DL, TripCount, F, InnerEnter, OutroInsertBefore, Name); redirectTo(Enter, EmbeddedLoop->getPreheader(), DL); redirectTo(EmbeddedLoop->getAfter(), Continue, DL); // Setup the position where the next embedded loop connects to this loop. Enter = EmbeddedLoop->getBody(); Continue = EmbeddedLoop->getLatch(); OutroInsertBefore = EmbeddedLoop->getLatch(); return EmbeddedLoop; }; auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef TripCounts, const Twine &NameBase) { for (auto P : enumerate(TripCounts)) { CanonicalLoopInfo *EmbeddedLoop = EmbeddNewLoop(P.value(), NameBase + Twine(P.index())); Result.push_back(EmbeddedLoop); } }; EmbeddNewLoops(FloorCount, "floor"); // Within the innermost floor loop, emit the code that computes the tile // sizes. Builder.SetInsertPoint(Enter->getTerminator()); SmallVector TileCounts; for (int i = 0; i < NumLoops; ++i) { CanonicalLoopInfo *FloorLoop = Result[i]; Value *TileSize = TileSizes[i]; Value *FloorIsEpilogue = Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]); Value *TileTripCount = Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize); TileCounts.push_back(TileTripCount); } // Create the tile loops. EmbeddNewLoops(TileCounts, "tile"); // Insert the inbetween code into the body. BasicBlock *BodyEnter = Enter; BasicBlock *BodyEntered = nullptr; for (std::pair P : InbetweenCode) { BasicBlock *EnterBB = P.first; BasicBlock *ExitBB = P.second; if (BodyEnter) redirectTo(BodyEnter, EnterBB, DL); else redirectAllPredecessorsTo(BodyEntered, EnterBB, DL); BodyEnter = nullptr; BodyEntered = ExitBB; } // Append the original loop nest body into the generated loop nest body. if (BodyEnter) redirectTo(BodyEnter, InnerEnter, DL); else redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL); redirectAllPredecessorsTo(InnerLatch, Continue, DL); // Replace the original induction variable with an induction variable computed // from the tile and floor induction variables. Builder.restoreIP(Result.back()->getBodyIP()); for (int i = 0; i < NumLoops; ++i) { CanonicalLoopInfo *FloorLoop = Result[i]; CanonicalLoopInfo *TileLoop = Result[NumLoops + i]; Value *OrigIndVar = OrigIndVars[i]; Value *Size = TileSizes[i]; Value *Scale = Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true); Value *Shift = Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true); OrigIndVar->replaceAllUsesWith(Shift); } // Remove unused parts of the original loops. removeUnusedBlocksFromParent(OldControlBBs); for (CanonicalLoopInfo *L : Loops) L->invalidate(); #ifndef NDEBUG for (CanonicalLoopInfo *GenL : Result) GenL->assertOK(); #endif return Result; } /// Attach loop metadata \p Properties to the loop described by \p Loop. If the /// loop already has metadata, the loop properties are appended. static void addLoopMetadata(CanonicalLoopInfo *Loop, ArrayRef Properties) { assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo"); // Nothing to do if no property to attach. if (Properties.empty()) return; LLVMContext &Ctx = Loop->getFunction()->getContext(); SmallVector NewLoopProperties; NewLoopProperties.push_back(nullptr); // If the loop already has metadata, prepend it to the new metadata. BasicBlock *Latch = Loop->getLatch(); assert(Latch && "A valid CanonicalLoopInfo must have a unique latch"); MDNode *Existing = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop); if (Existing) append_range(NewLoopProperties, drop_begin(Existing->operands(), 1)); append_range(NewLoopProperties, Properties); MDNode *LoopID = MDNode::getDistinct(Ctx, NewLoopProperties); LoopID->replaceOperandWith(0, LoopID); Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); } /// Attach llvm.access.group metadata to the memref instructions of \p Block static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup, LoopInfo &LI) { for (Instruction &I : *Block) { if (I.mayReadOrWriteMemory()) { // TODO: This instruction may already have access group from // other pragmas e.g. #pragma clang loop vectorize. Append // so that the existing metadata is not overwritten. I.setMetadata(LLVMContext::MD_access_group, AccessGroup); } } } void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) { LLVMContext &Ctx = Builder.getContext(); addLoopMetadata( Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))}); } void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) { LLVMContext &Ctx = Builder.getContext(); addLoopMetadata( Loop, { MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), }); } void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop, ConstantInt *Simdlen) { LLVMContext &Ctx = Builder.getContext(); Function *F = CanonicalLoop->getFunction(); FunctionAnalysisManager FAM; FAM.registerPass([]() { return DominatorTreeAnalysis(); }); FAM.registerPass([]() { return LoopAnalysis(); }); FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); LoopAnalysis LIA; LoopInfo &&LI = LIA.run(*F, FAM); Loop *L = LI.getLoopFor(CanonicalLoop->getHeader()); SmallSet Reachable; // Get the basic blocks from the loop in which memref instructions // can be found. // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo, // preferably without running any passes. for (BasicBlock *Block : L->getBlocks()) { if (Block == CanonicalLoop->getCond() || Block == CanonicalLoop->getHeader()) continue; Reachable.insert(Block); } // Add access group metadata to memory-access instructions. MDNode *AccessGroup = MDNode::getDistinct(Ctx, {}); for (BasicBlock *BB : Reachable) addSimdMetadata(BB, AccessGroup, LI); // Use the above access group metadata to create loop level // metadata, which should be distinct for each loop. ConstantAsMetadata *BoolConst = ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx))); // TODO: If the loop has existing parallel access metadata, have // to combine two lists. addLoopMetadata( CanonicalLoop, {MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup}), MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst})}); if (Simdlen != nullptr) addLoopMetadata( CanonicalLoop, MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"), ConstantAsMetadata::get(Simdlen)})); } /// Create the TargetMachine object to query the backend for optimization /// preferences. /// /// Ideally, this would be passed from the front-end to the OpenMPBuilder, but /// e.g. Clang does not pass it to its CodeGen layer and creates it only when /// needed for the LLVM pass pipline. We use some default options to avoid /// having to pass too many settings from the frontend that probably do not /// matter. /// /// Currently, TargetMachine is only used sometimes by the unrollLoopPartial /// method. If we are going to use TargetMachine for more purposes, especially /// those that are sensitive to TargetOptions, RelocModel and CodeModel, it /// might become be worth requiring front-ends to pass on their TargetMachine, /// or at least cache it between methods. Note that while fontends such as Clang /// have just a single main TargetMachine per translation unit, "target-cpu" and /// "target-features" that determine the TargetMachine are per-function and can /// be overrided using __attribute__((target("OPTIONS"))). static std::unique_ptr createTargetMachine(Function *F, CodeGenOpt::Level OptLevel) { Module *M = F->getParent(); StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString(); StringRef Features = F->getFnAttribute("target-features").getValueAsString(); const std::string &Triple = M->getTargetTriple(); std::string Error; const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); if (!TheTarget) return {}; llvm::TargetOptions Options; return std::unique_ptr(TheTarget->createTargetMachine( Triple, CPU, Features, Options, /*RelocModel=*/None, /*CodeModel=*/None, OptLevel)); } /// Heuristically determine the best-performant unroll factor for \p CLI. This /// depends on the target processor. We are re-using the same heuristics as the /// LoopUnrollPass. static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) { Function *F = CLI->getFunction(); // Assume the user requests the most aggressive unrolling, even if the rest of // the code is optimized using a lower setting. CodeGenOpt::Level OptLevel = CodeGenOpt::Aggressive; std::unique_ptr TM = createTargetMachine(F, OptLevel); FunctionAnalysisManager FAM; FAM.registerPass([]() { return TargetLibraryAnalysis(); }); FAM.registerPass([]() { return AssumptionAnalysis(); }); FAM.registerPass([]() { return DominatorTreeAnalysis(); }); FAM.registerPass([]() { return LoopAnalysis(); }); FAM.registerPass([]() { return ScalarEvolutionAnalysis(); }); FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); TargetIRAnalysis TIRA; if (TM) TIRA = TargetIRAnalysis( [&](const Function &F) { return TM->getTargetTransformInfo(F); }); FAM.registerPass([&]() { return TIRA; }); TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM); ScalarEvolutionAnalysis SEA; ScalarEvolution &&SE = SEA.run(*F, FAM); DominatorTreeAnalysis DTA; DominatorTree &&DT = DTA.run(*F, FAM); LoopAnalysis LIA; LoopInfo &&LI = LIA.run(*F, FAM); AssumptionAnalysis ACT; AssumptionCache &&AC = ACT.run(*F, FAM); OptimizationRemarkEmitter ORE{F}; Loop *L = LI.getLoopFor(CLI->getHeader()); assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop"); TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(L, SE, TTI, /*BlockFrequencyInfo=*/nullptr, /*ProfileSummaryInfo=*/nullptr, ORE, OptLevel, /*UserThreshold=*/None, /*UserCount=*/None, /*UserAllowPartial=*/true, /*UserAllowRuntime=*/true, /*UserUpperBound=*/None, /*UserFullUnrollMaxCount=*/None); UP.Force = true; // Account for additional optimizations taking place before the LoopUnrollPass // would unroll the loop. UP.Threshold *= UnrollThresholdFactor; UP.PartialThreshold *= UnrollThresholdFactor; // Use normal unroll factors even if the rest of the code is optimized for // size. UP.OptSizeThreshold = UP.Threshold; UP.PartialOptSizeThreshold = UP.PartialThreshold; LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n" << " Threshold=" << UP.Threshold << "\n" << " PartialThreshold=" << UP.PartialThreshold << "\n" << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold << "\n"); // Disable peeling. TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(L, SE, TTI, /*UserAllowPeeling=*/false, /*UserAllowProfileBasedPeeling=*/false, /*UnrollingSpecficValues=*/false); SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(L, &AC, EphValues); // Assume that reads and writes to stack variables can be eliminated by // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's // size. for (BasicBlock *BB : L->blocks()) { for (Instruction &I : *BB) { Value *Ptr; if (auto *Load = dyn_cast(&I)) { Ptr = Load->getPointerOperand(); } else if (auto *Store = dyn_cast(&I)) { Ptr = Store->getPointerOperand(); } else continue; Ptr = Ptr->stripPointerCasts(); if (auto *Alloca = dyn_cast(Ptr)) { if (Alloca->getParent() == &F->getEntryBlock()) EphValues.insert(&I); } } } unsigned NumInlineCandidates; bool NotDuplicatable; bool Convergent; InstructionCost LoopSizeIC = ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, EphValues, UP.BEInsns); LLVM_DEBUG(dbgs() << "Estimated loop size is " << LoopSizeIC << "\n"); // Loop is not unrollable if the loop contains certain instructions. if (NotDuplicatable || Convergent || !LoopSizeIC.isValid()) { LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n"); return 1; } unsigned LoopSize = *LoopSizeIC.getValue(); // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might // be able to use it. int TripCount = 0; int MaxTripCount = 0; bool MaxOrZero = false; unsigned TripMultiple = 0; bool UseUpperBound = false; computeUnrollCount(L, TTI, DT, &LI, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, TripMultiple, LoopSize, UP, PP, UseUpperBound); unsigned Factor = UP.Count; LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n"); // This function returns 1 to signal to not unroll a loop. if (Factor == 0) return 1; return Factor; } void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop, int32_t Factor, CanonicalLoopInfo **UnrolledCLI) { assert(Factor >= 0 && "Unroll factor must not be negative"); Function *F = Loop->getFunction(); LLVMContext &Ctx = F->getContext(); // If the unrolled loop is not used for another loop-associated directive, it // is sufficient to add metadata for the LoopUnrollPass. if (!UnrolledCLI) { SmallVector LoopMetadata; LoopMetadata.push_back( MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable"))); if (Factor >= 1) { ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); LoopMetadata.push_back(MDNode::get( Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})); } addLoopMetadata(Loop, LoopMetadata); return; } // Heuristically determine the unroll factor. if (Factor == 0) Factor = computeHeuristicUnrollFactor(Loop); // No change required with unroll factor 1. if (Factor == 1) { *UnrolledCLI = Loop; return; } assert(Factor >= 2 && "unrolling only makes sense with a factor of 2 or larger"); Type *IndVarTy = Loop->getIndVarType(); // Apply partial unrolling by tiling the loop by the unroll-factor, then fully // unroll the inner loop. Value *FactorVal = ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor, /*isSigned=*/false)); std::vector LoopNest = tileLoops(DL, {Loop}, {FactorVal}); assert(LoopNest.size() == 2 && "Expect 2 loops after tiling"); *UnrolledCLI = LoopNest[0]; CanonicalLoopInfo *InnerLoop = LoopNest[1]; // LoopUnrollPass can only fully unroll loops with constant trip count. // Unroll by the unroll factor with a fallback epilog for the remainder // iterations if necessary. ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); addLoopMetadata( InnerLoop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), MDNode::get( Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})}); #ifndef NDEBUG (*UnrolledCLI)->assertOK(); #endif } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc, llvm::Value *BufSize, llvm::Value *CpyBuf, llvm::Value *CpyFn, llvm::Value *DidIt) { if (!updateToLocation(Loc)) return Loc.IP; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt); Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate); Builder.CreateCall(Fn, Args); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle( const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool IsNowait, llvm::Value *DidIt) { if (!updateToLocation(Loc)) return Loc.IP; // If needed (i.e. not null), initialize `DidIt` with 0 if (DidIt) { Builder.CreateStore(Builder.getInt32(0), DidIt); } Directive OMPD = Directive::OMPD_single; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single); Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); // generates the following: // if (__kmpc_single()) { // .... single region ... // __kmpc_end_single // } // __kmpc_barrier EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ true, /*hasFinalize*/ true); if (!IsNowait) createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical( const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_critical; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *LockVar = getOMPCriticalRegionLock(CriticalName); Value *Args[] = {Ident, ThreadId, LockVar}; SmallVector EnterArgs(std::begin(Args), std::end(Args)); Function *RTFn = nullptr; if (HintInst) { // Add Hint to entry Args and create call EnterArgs.push_back(HintInst); RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint); } else { RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical); } Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ false, /*hasFinalize*/ true); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc, InsertPointTy AllocaIP, unsigned NumLoops, ArrayRef StoreValues, const Twine &Name, bool IsDependSource) { for (size_t I = 0; I < StoreValues.size(); I++) assert(StoreValues[I]->getType()->isIntegerTy(64) && "OpenMP runtime requires depend vec with i64 type"); if (!updateToLocation(Loc)) return Loc.IP; // Allocate space for vector and generate alloc instruction. auto *ArrI64Ty = ArrayType::get(Int64, NumLoops); Builder.restoreIP(AllocaIP); AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name); ArgsBase->setAlignment(Align(8)); Builder.restoreIP(Loc.IP); // Store the index value with offset in depend vector. for (unsigned I = 0; I < NumLoops; ++I) { Value *DependAddrGEPIter = Builder.CreateInBoundsGEP( ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)}); StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter); STInst->setAlignment(Align(8)); } Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP( ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)}); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP}; Function *RTLFn = nullptr; if (IsDependSource) RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post); else RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait); Builder.CreateCall(RTLFn, Args); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd( const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool IsThreads) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_ordered; Instruction *EntryCall = nullptr; Instruction *ExitCall = nullptr; if (IsThreads) { uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered); EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered); ExitCall = Builder.CreateCall(ExitRTLFn, Args); } return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ false, /*hasFinalize*/ true); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion( Directive OMPD, Instruction *EntryCall, Instruction *ExitCall, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional, bool HasFinalize, bool IsCancellable) { if (HasFinalize) FinalizationStack.push_back({FiniCB, OMPD, IsCancellable}); // Create inlined region's entry and body blocks, in preparation // for conditional creation BasicBlock *EntryBB = Builder.GetInsertBlock(); Instruction *SplitPos = EntryBB->getTerminator(); if (!isa_and_nonnull(SplitPos)) SplitPos = new UnreachableInst(Builder.getContext(), EntryBB); BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end"); BasicBlock *FiniBB = EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize"); Builder.SetInsertPoint(EntryBB->getTerminator()); emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional); // generate body BodyGenCB(/* AllocaIP */ InsertPointTy(), /* CodeGenIP */ Builder.saveIP()); // emit exit call and do any needed finalization. auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt()); assert(FiniBB->getTerminator()->getNumSuccessors() == 1 && FiniBB->getTerminator()->getSuccessor(0) == ExitBB && "Unexpected control flow graph state!!"); emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize); assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB && "Unexpected Control Flow State!"); MergeBlockIntoPredecessor(FiniBB); // If we are skipping the region of a non conditional, remove the exit // block, and clear the builder's insertion point. assert(SplitPos->getParent() == ExitBB && "Unexpected Insertion point location!"); auto merged = MergeBlockIntoPredecessor(ExitBB); BasicBlock *ExitPredBB = SplitPos->getParent(); auto InsertBB = merged ? ExitPredBB : ExitBB; if (!isa_and_nonnull(SplitPos)) SplitPos->eraseFromParent(); Builder.SetInsertPoint(InsertBB); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry( Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) { // if nothing to do, Return current insertion point. if (!Conditional || !EntryCall) return Builder.saveIP(); BasicBlock *EntryBB = Builder.GetInsertBlock(); Value *CallBool = Builder.CreateIsNotNull(EntryCall); auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body"); auto *UI = new UnreachableInst(Builder.getContext(), ThenBB); // Emit thenBB and set the Builder's insertion point there for // body generation next. Place the block after the current block. Function *CurFn = EntryBB->getParent(); CurFn->getBasicBlockList().insertAfter(EntryBB->getIterator(), ThenBB); // Move Entry branch to end of ThenBB, and replace with conditional // branch (If-stmt) Instruction *EntryBBTI = EntryBB->getTerminator(); Builder.CreateCondBr(CallBool, ThenBB, ExitBB); EntryBBTI->removeFromParent(); Builder.SetInsertPoint(UI); Builder.Insert(EntryBBTI); UI->eraseFromParent(); Builder.SetInsertPoint(ThenBB->getTerminator()); // return an insertion point to ExitBB. return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt()); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit( omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall, bool HasFinalize) { Builder.restoreIP(FinIP); // If there is finalization to do, emit it before the exit call if (HasFinalize) { assert(!FinalizationStack.empty() && "Unexpected finalization stack state!"); FinalizationInfo Fi = FinalizationStack.pop_back_val(); assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!"); Fi.FiniCB(FinIP); BasicBlock *FiniBB = FinIP.getBlock(); Instruction *FiniBBTI = FiniBB->getTerminator(); // set Builder IP for call creation Builder.SetInsertPoint(FiniBBTI); } if (!ExitCall) return Builder.saveIP(); // place the Exitcall as last instruction before Finalization block terminator ExitCall->removeFromParent(); Builder.Insert(ExitCall); return IRBuilder<>::InsertPoint(ExitCall->getParent(), ExitCall->getIterator()); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks( InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr, llvm::IntegerType *IntPtrTy, bool BranchtoEnd) { if (!IP.isSet()) return IP; IRBuilder<>::InsertPointGuard IPG(Builder); // creates the following CFG structure // OMP_Entry : (MasterAddr != PrivateAddr)? // F T // | \ // | copin.not.master // | / // v / // copyin.not.master.end // | // v // OMP.Entry.Next BasicBlock *OMP_Entry = IP.getBlock(); Function *CurFn = OMP_Entry->getParent(); BasicBlock *CopyBegin = BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn); BasicBlock *CopyEnd = nullptr; // If entry block is terminated, split to preserve the branch to following // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is. if (isa_and_nonnull(OMP_Entry->getTerminator())) { CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(), "copyin.not.master.end"); OMP_Entry->getTerminator()->eraseFromParent(); } else { CopyEnd = BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn); } Builder.SetInsertPoint(OMP_Entry); Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy); Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy); Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr); Builder.CreateCondBr(cmp, CopyBegin, CopyEnd); Builder.SetInsertPoint(CopyBegin); if (BranchtoEnd) Builder.SetInsertPoint(Builder.CreateBr(CopyEnd)); return Builder.saveIP(); } CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc, Value *Size, Value *Allocator, std::string Name) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(Loc.IP); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {ThreadId, Size, Allocator}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc); return Builder.CreateCall(Fn, Args, Name); } CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc, Value *Addr, Value *Allocator, std::string Name) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(Loc.IP); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {ThreadId, Addr, Allocator}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free); return Builder.CreateCall(Fn, Args, Name); } CallInst *OpenMPIRBuilder::createOMPInteropInit( const LocationDescription &Loc, Value *InteropVar, omp::OMPInteropType InteropType, Value *Device, Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(Loc.IP); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); if (Device == nullptr) Device = ConstantInt::get(Int32, -1); Constant *InteropTypeVal = ConstantInt::get(Int64, (int)InteropType); if (NumDependences == nullptr) { NumDependences = ConstantInt::get(Int32, 0); PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); DependenceAddress = ConstantPointerNull::get(PointerTypeVar); } Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); Value *Args[] = { Ident, ThreadId, InteropVar, InteropTypeVal, Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init); return Builder.CreateCall(Fn, Args); } CallInst *OpenMPIRBuilder::createOMPInteropDestroy( const LocationDescription &Loc, Value *InteropVar, Value *Device, Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(Loc.IP); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); if (Device == nullptr) Device = ConstantInt::get(Int32, -1); if (NumDependences == nullptr) { NumDependences = ConstantInt::get(Int32, 0); PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); DependenceAddress = ConstantPointerNull::get(PointerTypeVar); } Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); Value *Args[] = { Ident, ThreadId, InteropVar, Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy); return Builder.CreateCall(Fn, Args); } CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc, Value *InteropVar, Value *Device, Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(Loc.IP); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); if (Device == nullptr) Device = ConstantInt::get(Int32, -1); if (NumDependences == nullptr) { NumDependences = ConstantInt::get(Int32, 0); PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); DependenceAddress = ConstantPointerNull::get(PointerTypeVar); } Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); Value *Args[] = { Ident, ThreadId, InteropVar, Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use); return Builder.CreateCall(Fn, Args); } CallInst *OpenMPIRBuilder::createCachedThreadPrivate( const LocationDescription &Loc, llvm::Value *Pointer, llvm::ConstantInt *Size, const llvm::Twine &Name) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(Loc.IP); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Constant *ThreadPrivateCache = getOrCreateOMPInternalVariable(Int8PtrPtr, Name); llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached); return Builder.CreateCall(Fn, Args); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD, bool RequiresFullRuntime) { if (!updateToLocation(Loc)) return Loc.IP; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); ConstantInt *IsSPMDVal = ConstantInt::getSigned( IntegerType::getInt8Ty(Int8->getContext()), IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC); ConstantInt *UseGenericStateMachine = ConstantInt::getBool(Int32->getContext(), !IsSPMD); ConstantInt *RequiresFullRuntimeVal = ConstantInt::getBool(Int32->getContext(), RequiresFullRuntime); Function *Fn = getOrCreateRuntimeFunctionPtr( omp::RuntimeFunction::OMPRTL___kmpc_target_init); CallInst *ThreadKind = Builder.CreateCall( Fn, {Ident, IsSPMDVal, UseGenericStateMachine, RequiresFullRuntimeVal}); Value *ExecUserCode = Builder.CreateICmpEQ( ThreadKind, ConstantInt::get(ThreadKind->getType(), -1), "exec_user_code"); // ThreadKind = __kmpc_target_init(...) // if (ThreadKind == -1) // user_code // else // return; auto *UI = Builder.CreateUnreachable(); BasicBlock *CheckBB = UI->getParent(); BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry"); BasicBlock *WorkerExitBB = BasicBlock::Create( CheckBB->getContext(), "worker.exit", CheckBB->getParent()); Builder.SetInsertPoint(WorkerExitBB); Builder.CreateRetVoid(); auto *CheckBBTI = CheckBB->getTerminator(); Builder.SetInsertPoint(CheckBBTI); Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB); CheckBBTI->eraseFromParent(); UI->eraseFromParent(); // Continue in the "user_code" block, see diagram above and in // openmp/libomptarget/deviceRTLs/common/include/target.h . return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt()); } void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc, bool IsSPMD, bool RequiresFullRuntime) { if (!updateToLocation(Loc)) return; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); ConstantInt *IsSPMDVal = ConstantInt::getSigned( IntegerType::getInt8Ty(Int8->getContext()), IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC); ConstantInt *RequiresFullRuntimeVal = ConstantInt::getBool(Int32->getContext(), RequiresFullRuntime); Function *Fn = getOrCreateRuntimeFunctionPtr( omp::RuntimeFunction::OMPRTL___kmpc_target_deinit); Builder.CreateCall(Fn, {Ident, IsSPMDVal, RequiresFullRuntimeVal}); } std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef Parts, StringRef FirstSeparator, StringRef Separator) { SmallString<128> Buffer; llvm::raw_svector_ostream OS(Buffer); StringRef Sep = FirstSeparator; for (StringRef Part : Parts) { OS << Sep << Part; Sep = Separator; } return OS.str().str(); } Constant *OpenMPIRBuilder::getOrCreateOMPInternalVariable( llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) { // TODO: Replace the twine arg with stringref to get rid of the conversion // logic. However This is taken from current implementation in clang as is. // Since this method is used in many places exclusively for OMP internal use // we will keep it as is for temporarily until we move all users to the // builder and then, if possible, fix it everywhere in one go. SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << Name; StringRef RuntimeName = Out.str(); auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first; if (Elem.second) { assert(cast(Elem.second->getType()) ->isOpaqueOrPointeeTypeMatches(Ty) && "OMP internal variable has different type than requested"); } else { // TODO: investigate the appropriate linkage type used for the global // variable for possibly changing that to internal or private, or maybe // create different versions of the function for different OMP internal // variables. Elem.second = new llvm::GlobalVariable( M, Ty, /*IsConstant*/ false, llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), Elem.first(), /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, AddressSpace); } return Elem.second; } Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) { std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); std::string Name = getNameWithSeparators({Prefix, "var"}, ".", "."); return getOrCreateOMPInternalVariable(KmpCriticalNameTy, Name); } GlobalVariable * OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl &Mappings, std::string VarName) { llvm::Constant *MaptypesArrayInit = llvm::ConstantDataArray::get(M.getContext(), Mappings); auto *MaptypesArrayGlobal = new llvm::GlobalVariable( M, MaptypesArrayInit->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit, VarName); MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); return MaptypesArrayGlobal; } void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc, InsertPointTy AllocaIP, unsigned NumOperands, struct MapperAllocas &MapperAllocas) { if (!updateToLocation(Loc)) return; auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); Builder.restoreIP(AllocaIP); AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI8PtrTy); AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy); AllocaInst *ArgSizes = Builder.CreateAlloca(ArrI64Ty); Builder.restoreIP(Loc.IP); MapperAllocas.ArgsBase = ArgsBase; MapperAllocas.Args = Args; MapperAllocas.ArgSizes = ArgSizes; } void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc, Function *MapperFunc, Value *SrcLocInfo, Value *MaptypesArg, Value *MapnamesArg, struct MapperAllocas &MapperAllocas, int64_t DeviceID, unsigned NumOperands) { if (!updateToLocation(Loc)) return; auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); Value *ArgsBaseGEP = Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase, {Builder.getInt32(0), Builder.getInt32(0)}); Value *ArgsGEP = Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args, {Builder.getInt32(0), Builder.getInt32(0)}); Value *ArgSizesGEP = Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes, {Builder.getInt32(0), Builder.getInt32(0)}); Value *NullPtr = Constant::getNullValue(Int8Ptr->getPointerTo()); Builder.CreateCall(MapperFunc, {SrcLocInfo, Builder.getInt64(DeviceID), Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP, ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr}); } bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic( const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) { assert(!(AO == AtomicOrdering::NotAtomic || AO == llvm::AtomicOrdering::Unordered) && "Unexpected Atomic Ordering."); bool Flush = false; llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic; switch (AK) { case Read: if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease || AO == AtomicOrdering::SequentiallyConsistent) { FlushAO = AtomicOrdering::Acquire; Flush = true; } break; case Write: case Compare: case Update: if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease || AO == AtomicOrdering::SequentiallyConsistent) { FlushAO = AtomicOrdering::Release; Flush = true; } break; case Capture: switch (AO) { case AtomicOrdering::Acquire: FlushAO = AtomicOrdering::Acquire; Flush = true; break; case AtomicOrdering::Release: FlushAO = AtomicOrdering::Release; Flush = true; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: FlushAO = AtomicOrdering::AcquireRelease; Flush = true; break; default: // do nothing - leave silently. break; } } if (Flush) { // Currently Flush RT call still doesn't take memory_ordering, so for when // that happens, this tries to do the resolution of which atomic ordering // to use with but issue the flush call // TODO: pass `FlushAO` after memory ordering support is added (void)FlushAO; emitFlush(Loc); } // for AO == AtomicOrdering::Monotonic and all other case combinations // do nothing return Flush; } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V, AtomicOrdering AO) { if (!updateToLocation(Loc)) return Loc.IP; Type *XTy = X.Var->getType(); assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic read expected a scalar type"); Value *XRead = nullptr; if (XElemTy->isIntegerTy()) { LoadInst *XLD = Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read"); XLD->setAtomic(AO); XRead = cast(XLD); } else { // We need to bitcast and perform atomic op as integer unsigned Addrspace = cast(XTy)->getAddressSpace(); IntegerType *IntCastTy = IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); Value *XBCast = Builder.CreateBitCast( X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.src.int.cast"); LoadInst *XLoad = Builder.CreateLoad(IntCastTy, XBCast, X.IsVolatile, "omp.atomic.load"); XLoad->setAtomic(AO); if (XElemTy->isFloatingPointTy()) { XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast"); } else { XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast"); } } checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read); Builder.CreateStore(XRead, V.Var, V.IsVolatile); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc, AtomicOpValue &X, Value *Expr, AtomicOrdering AO) { if (!updateToLocation(Loc)) return Loc.IP; Type *XTy = X.Var->getType(); assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic write expected a scalar type"); if (XElemTy->isIntegerTy()) { StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile); XSt->setAtomic(AO); } else { // We need to bitcast and perform atomic op as integers unsigned Addrspace = cast(XTy)->getAddressSpace(); IntegerType *IntCastTy = IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); Value *XBCast = Builder.CreateBitCast( X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.dst.int.cast"); Value *ExprCast = Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast"); StoreInst *XSt = Builder.CreateStore(ExprCast, XBCast, X.IsVolatile); XSt->setAtomic(AO); } checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate( const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) { assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous"); if (!updateToLocation(Loc)) return Loc.IP; LLVM_DEBUG({ Type *XTy = X.Var->getType(); assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"); assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && "OpenMP atomic does not support LT or GT operations"); }); emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp, X.IsVolatile, IsXBinopExpr); checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update); return Builder.saveIP(); } Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2, AtomicRMWInst::BinOp RMWOp) { switch (RMWOp) { case AtomicRMWInst::Add: return Builder.CreateAdd(Src1, Src2); case AtomicRMWInst::Sub: return Builder.CreateSub(Src1, Src2); case AtomicRMWInst::And: return Builder.CreateAnd(Src1, Src2); case AtomicRMWInst::Nand: return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2)); case AtomicRMWInst::Or: return Builder.CreateOr(Src1, Src2); case AtomicRMWInst::Xor: return Builder.CreateXor(Src1, Src2); case AtomicRMWInst::Xchg: case AtomicRMWInst::FAdd: case AtomicRMWInst::FSub: case AtomicRMWInst::BAD_BINOP: case AtomicRMWInst::Max: case AtomicRMWInst::Min: case AtomicRMWInst::UMax: case AtomicRMWInst::UMin: case AtomicRMWInst::FMax: case AtomicRMWInst::FMin: llvm_unreachable("Unsupported atomic update operation"); } llvm_unreachable("Unsupported atomic update operation"); } std::pair OpenMPIRBuilder::emitAtomicUpdate( InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) { // TODO: handle the case where XElemTy is not byte-sized or not a power of 2 // or a complex datatype. bool emitRMWOp = false; switch (RMWOp) { case AtomicRMWInst::Add: case AtomicRMWInst::And: case AtomicRMWInst::Nand: case AtomicRMWInst::Or: case AtomicRMWInst::Xor: case AtomicRMWInst::Xchg: emitRMWOp = XElemTy; break; case AtomicRMWInst::Sub: emitRMWOp = (IsXBinopExpr && XElemTy); break; default: emitRMWOp = false; } emitRMWOp &= XElemTy->isIntegerTy(); std::pair Res; if (emitRMWOp) { Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO); // not needed except in case of postfix captures. Generate anyway for // consistency with the else part. Will be removed with any DCE pass. // AtomicRMWInst::Xchg does not have a coressponding instruction. if (RMWOp == AtomicRMWInst::Xchg) Res.second = Res.first; else Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp); } else { unsigned Addrspace = cast(X->getType())->getAddressSpace(); IntegerType *IntCastTy = IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); Value *XBCast = Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace)); LoadInst *OldVal = Builder.CreateLoad(IntCastTy, XBCast, X->getName() + ".atomic.load"); OldVal->setAtomic(AO); // CurBB // | /---\ // ContBB | // | \---/ // ExitBB BasicBlock *CurBB = Builder.GetInsertBlock(); Instruction *CurBBTI = CurBB->getTerminator(); CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); BasicBlock *ExitBB = CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit"); BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(), X->getName() + ".atomic.cont"); ContBB->getTerminator()->eraseFromParent(); Builder.restoreIP(AllocaIP); AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy); NewAtomicAddr->setName(X->getName() + "x.new.val"); Builder.SetInsertPoint(ContBB); llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2); PHI->addIncoming(OldVal, CurBB); IntegerType *NewAtomicCastTy = IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); bool IsIntTy = XElemTy->isIntegerTy(); Value *NewAtomicIntAddr = (IsIntTy) ? NewAtomicAddr : Builder.CreateBitCast(NewAtomicAddr, NewAtomicCastTy->getPointerTo(Addrspace)); Value *OldExprVal = PHI; if (!IsIntTy) { if (XElemTy->isFloatingPointTy()) { OldExprVal = Builder.CreateBitCast(PHI, XElemTy, X->getName() + ".atomic.fltCast"); } else { OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy, X->getName() + ".atomic.ptrCast"); } } Value *Upd = UpdateOp(OldExprVal, Builder); Builder.CreateStore(Upd, NewAtomicAddr); LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicIntAddr); Value *XAddr = (IsIntTy) ? X : Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace)); AtomicOrdering Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg( XAddr, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure); Result->setVolatile(VolatileX); Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0); Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); PHI->addIncoming(PreviousVal, Builder.GetInsertBlock()); Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB); Res.first = OldExprVal; Res.second = Upd; // set Insertion point in exit block if (UnreachableInst *ExitTI = dyn_cast(ExitBB->getTerminator())) { CurBBTI->eraseFromParent(); Builder.SetInsertPoint(ExitBB); } else { Builder.SetInsertPoint(ExitTI); } } return Res; } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture( const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, AtomicOpValue &V, Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) { if (!updateToLocation(Loc)) return Loc.IP; LLVM_DEBUG({ Type *XTy = X.Var->getType(); assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"); assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"); }); // If UpdateExpr is 'x' updated with some `expr` not based on 'x', // 'x' is simply atomically rewritten with 'expr'. AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg); std::pair Result = emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp, X.IsVolatile, IsXBinopExpr); Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second); Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile); checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare( const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V, AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO, omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate, bool IsFailOnly) { if (!updateToLocation(Loc)) return Loc.IP; assert(X.Var->getType()->isPointerTy() && "OMP atomic expects a pointer to target memory"); // compare capture if (V.Var) { assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type"); assert(V.ElemTy == X.ElemTy && "x and v must be of same type"); } bool IsInteger = E->getType()->isIntegerTy(); if (Op == OMPAtomicCompareOp::EQ) { AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO); AtomicCmpXchgInst *Result = nullptr; if (!IsInteger) { unsigned Addrspace = cast(X.Var->getType())->getAddressSpace(); IntegerType *IntCastTy = IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits()); Value *XBCast = Builder.CreateBitCast(X.Var, IntCastTy->getPointerTo(Addrspace)); Value *EBCast = Builder.CreateBitCast(E, IntCastTy); Value *DBCast = Builder.CreateBitCast(D, IntCastTy); Result = Builder.CreateAtomicCmpXchg(XBCast, EBCast, DBCast, MaybeAlign(), AO, Failure); } else { Result = Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure); } if (V.Var) { Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0); if (!IsInteger) OldValue = Builder.CreateBitCast(OldValue, X.ElemTy); assert(OldValue->getType() == V.ElemTy && "OldValue and V must be of same type"); if (IsPostfixUpdate) { Builder.CreateStore(OldValue, V.Var, V.IsVolatile); } else { Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1); if (IsFailOnly) { // CurBB---- // | | // v | // ContBB | // | | // v | // ExitBB <- // // where ContBB only contains the store of old value to 'v'. BasicBlock *CurBB = Builder.GetInsertBlock(); Instruction *CurBBTI = CurBB->getTerminator(); CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); BasicBlock *ExitBB = CurBB->splitBasicBlock( CurBBTI, X.Var->getName() + ".atomic.exit"); BasicBlock *ContBB = CurBB->splitBasicBlock( CurBB->getTerminator(), X.Var->getName() + ".atomic.cont"); ContBB->getTerminator()->eraseFromParent(); CurBB->getTerminator()->eraseFromParent(); Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB); Builder.SetInsertPoint(ContBB); Builder.CreateStore(OldValue, V.Var); Builder.CreateBr(ExitBB); if (UnreachableInst *ExitTI = dyn_cast(ExitBB->getTerminator())) { CurBBTI->eraseFromParent(); Builder.SetInsertPoint(ExitBB); } else { Builder.SetInsertPoint(ExitTI); } } else { Value *CapturedValue = Builder.CreateSelect(SuccessOrFail, E, OldValue); Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); } } } // The comparison result has to be stored. if (R.Var) { assert(R.Var->getType()->isPointerTy() && "r.var must be of pointer type"); assert(R.ElemTy->isIntegerTy() && "r must be of integral type"); Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); Value *ResultCast = R.IsSigned ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy) : Builder.CreateZExt(SuccessFailureVal, R.ElemTy); Builder.CreateStore(ResultCast, R.Var, R.IsVolatile); } } else { assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) && "Op should be either max or min at this point"); assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is =="); // Reverse the ordop as the OpenMP forms are different from LLVM forms. // Let's take max as example. // OpenMP form: // x = x > expr ? expr : x; // LLVM form: // *ptr = *ptr > val ? *ptr : val; // We need to transform to LLVM form. // x = x <= expr ? x : expr; AtomicRMWInst::BinOp NewOp; if (IsXBinopExpr) { if (IsInteger) { if (X.IsSigned) NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min : AtomicRMWInst::Max; else NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin : AtomicRMWInst::UMax; } else { NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin : AtomicRMWInst::FMax; } } else { if (IsInteger) { if (X.IsSigned) NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max : AtomicRMWInst::Min; else NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax : AtomicRMWInst::UMin; } else { NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax : AtomicRMWInst::FMin; } } AtomicRMWInst *OldValue = Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO); if (V.Var) { Value *CapturedValue = nullptr; if (IsPostfixUpdate) { CapturedValue = OldValue; } else { CmpInst::Predicate Pred; switch (NewOp) { case AtomicRMWInst::Max: Pred = CmpInst::ICMP_SGT; break; case AtomicRMWInst::UMax: Pred = CmpInst::ICMP_UGT; break; case AtomicRMWInst::FMax: Pred = CmpInst::FCMP_OGT; break; case AtomicRMWInst::Min: Pred = CmpInst::ICMP_SLT; break; case AtomicRMWInst::UMin: Pred = CmpInst::ICMP_ULT; break; case AtomicRMWInst::FMin: Pred = CmpInst::FCMP_OLT; break; default: llvm_unreachable("unexpected comparison op"); } Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E); CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue); } Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); } } checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare); return Builder.saveIP(); } GlobalVariable * OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl &Names, std::string VarName) { llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get( llvm::ArrayType::get( llvm::Type::getInt8Ty(M.getContext())->getPointerTo(), Names.size()), Names); auto *MapNamesArrayGlobal = new llvm::GlobalVariable( M, MapNamesArrayInit->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit, VarName); return MapNamesArrayGlobal; } // Create all simple and struct types exposed by the runtime and remember // the llvm::PointerTypes of them for easy access later. void OpenMPIRBuilder::initializeTypes(Module &M) { LLVMContext &Ctx = M.getContext(); StructType *T; #define OMP_TYPE(VarName, InitValue) VarName = InitValue; #define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \ VarName##Ty = ArrayType::get(ElemTy, ArraySize); \ VarName##PtrTy = PointerType::getUnqual(VarName##Ty); #define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \ VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \ VarName##Ptr = PointerType::getUnqual(VarName); #define OMP_STRUCT_TYPE(VarName, StructName, ...) \ T = StructType::getTypeByName(Ctx, StructName); \ if (!T) \ T = StructType::create(Ctx, {__VA_ARGS__}, StructName); \ VarName = T; \ VarName##Ptr = PointerType::getUnqual(T); #include "llvm/Frontend/OpenMP/OMPKinds.def" } void OpenMPIRBuilder::OutlineInfo::collectBlocks( SmallPtrSetImpl &BlockSet, SmallVectorImpl &BlockVector) { SmallVector Worklist; BlockSet.insert(EntryBB); BlockSet.insert(ExitBB); Worklist.push_back(EntryBB); while (!Worklist.empty()) { BasicBlock *BB = Worklist.pop_back_val(); BlockVector.push_back(BB); for (BasicBlock *SuccBB : successors(BB)) if (BlockSet.insert(SuccBB).second) Worklist.push_back(SuccBB); } } void CanonicalLoopInfo::collectControlBlocks( SmallVectorImpl &BBs) { // We only count those BBs as control block for which we do not need to // reverse the CFG, i.e. not the loop body which can contain arbitrary control // flow. For consistency, this also means we do not add the Body block, which // is just the entry to the body code. BBs.reserve(BBs.size() + 6); BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()}); } BasicBlock *CanonicalLoopInfo::getPreheader() const { assert(isValid() && "Requires a valid canonical loop"); for (BasicBlock *Pred : predecessors(Header)) { if (Pred != Latch) return Pred; } llvm_unreachable("Missing preheader"); } void CanonicalLoopInfo::setTripCount(Value *TripCount) { assert(isValid() && "Requires a valid canonical loop"); Instruction *CmpI = &getCond()->front(); assert(isa(CmpI) && "First inst must compare IV with TripCount"); CmpI->setOperand(1, TripCount); #ifndef NDEBUG assertOK(); #endif } void CanonicalLoopInfo::mapIndVar( llvm::function_ref Updater) { assert(isValid() && "Requires a valid canonical loop"); Instruction *OldIV = getIndVar(); // Record all uses excluding those introduced by the updater. Uses by the // CanonicalLoopInfo itself to keep track of the number of iterations are // excluded. SmallVector ReplacableUses; for (Use &U : OldIV->uses()) { auto *User = dyn_cast(U.getUser()); if (!User) continue; if (User->getParent() == getCond()) continue; if (User->getParent() == getLatch()) continue; ReplacableUses.push_back(&U); } // Run the updater that may introduce new uses Value *NewIV = Updater(OldIV); // Replace the old uses with the value returned by the updater. for (Use *U : ReplacableUses) U->set(NewIV); #ifndef NDEBUG assertOK(); #endif } void CanonicalLoopInfo::assertOK() const { #ifndef NDEBUG // No constraints if this object currently does not describe a loop. if (!isValid()) return; BasicBlock *Preheader = getPreheader(); BasicBlock *Body = getBody(); BasicBlock *After = getAfter(); // Verify standard control-flow we use for OpenMP loops. assert(Preheader); assert(isa(Preheader->getTerminator()) && "Preheader must terminate with unconditional branch"); assert(Preheader->getSingleSuccessor() == Header && "Preheader must jump to header"); assert(Header); assert(isa(Header->getTerminator()) && "Header must terminate with unconditional branch"); assert(Header->getSingleSuccessor() == Cond && "Header must jump to exiting block"); assert(Cond); assert(Cond->getSinglePredecessor() == Header && "Exiting block only reachable from header"); assert(isa(Cond->getTerminator()) && "Exiting block must terminate with conditional branch"); assert(size(successors(Cond)) == 2 && "Exiting block must have two successors"); assert(cast(Cond->getTerminator())->getSuccessor(0) == Body && "Exiting block's first successor jump to the body"); assert(cast(Cond->getTerminator())->getSuccessor(1) == Exit && "Exiting block's second successor must exit the loop"); assert(Body); assert(Body->getSinglePredecessor() == Cond && "Body only reachable from exiting block"); assert(!isa(Body->front())); assert(Latch); assert(isa(Latch->getTerminator()) && "Latch must terminate with unconditional branch"); assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header"); // TODO: To support simple redirecting of the end of the body code that has // multiple; introduce another auxiliary basic block like preheader and after. assert(Latch->getSinglePredecessor() != nullptr); assert(!isa(Latch->front())); assert(Exit); assert(isa(Exit->getTerminator()) && "Exit block must terminate with unconditional branch"); assert(Exit->getSingleSuccessor() == After && "Exit block must jump to after block"); assert(After); assert(After->getSinglePredecessor() == Exit && "After block only reachable from exit block"); assert(After->empty() || !isa(After->front())); Instruction *IndVar = getIndVar(); assert(IndVar && "Canonical induction variable not found?"); assert(isa(IndVar->getType()) && "Induction variable must be an integer"); assert(cast(IndVar)->getParent() == Header && "Induction variable must be a PHI in the loop header"); assert(cast(IndVar)->getIncomingBlock(0) == Preheader); assert( cast(cast(IndVar)->getIncomingValue(0))->isZero()); assert(cast(IndVar)->getIncomingBlock(1) == Latch); auto *NextIndVar = cast(IndVar)->getIncomingValue(1); assert(cast(NextIndVar)->getParent() == Latch); assert(cast(NextIndVar)->getOpcode() == BinaryOperator::Add); assert(cast(NextIndVar)->getOperand(0) == IndVar); assert(cast(cast(NextIndVar)->getOperand(1)) ->isOne()); Value *TripCount = getTripCount(); assert(TripCount && "Loop trip count not found?"); assert(IndVar->getType() == TripCount->getType() && "Trip count and induction variable must have the same type"); auto *CmpI = cast(&Cond->front()); assert(CmpI->getPredicate() == CmpInst::ICMP_ULT && "Exit condition must be a signed less-than comparison"); assert(CmpI->getOperand(0) == IndVar && "Exit condition must compare the induction variable"); assert(CmpI->getOperand(1) == TripCount && "Exit condition must compare with the trip count"); #endif } void CanonicalLoopInfo::invalidate() { Header = nullptr; Cond = nullptr; Latch = nullptr; Exit = nullptr; }