//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implementation of ELF support for the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #include "RuntimeDyldELF.h" #include "RuntimeDyldCheckerImpl.h" #include "Targets/RuntimeDyldELFMips.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/TargetParser/Triple.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; #define DEBUG_TYPE "dyld" static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); } static void or32AArch64Imm(void *L, uint64_t Imm) { or32le(L, (Imm & 0xFFF) << 10); } template static void write(bool isBE, void *P, T V) { isBE ? write(P, V) : write(P, V); } static void write32AArch64Addr(void *L, uint64_t Imm) { uint32_t ImmLo = (Imm & 0x3) << 29; uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); } // Return the bits [Start, End] from Val shifted Start bits. // For instance, getBits(0xF0, 4, 8) returns 0xF. static uint64_t getBits(uint64_t Val, int Start, int End) { uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; return (Val >> Start) & Mask; } namespace { template class DyldELFObject : public ELFObjectFile { LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) typedef typename ELFT::uint addr_type; DyldELFObject(ELFObjectFile &&Obj); public: static Expected> create(MemoryBufferRef Wrapper); void updateSectionAddress(const SectionRef &Sec, uint64_t Addr); void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr); // Methods for type inquiry through isa, cast and dyn_cast static bool classof(const Binary *v) { return (isa>(v) && classof(cast>(v))); } static bool classof(const ELFObjectFile *v) { return v->isDyldType(); } }; // The MemoryBuffer passed into this constructor is just a wrapper around the // actual memory. Ultimately, the Binary parent class will take ownership of // this MemoryBuffer object but not the underlying memory. template DyldELFObject::DyldELFObject(ELFObjectFile &&Obj) : ELFObjectFile(std::move(Obj)) { this->isDyldELFObject = true; } template Expected>> DyldELFObject::create(MemoryBufferRef Wrapper) { auto Obj = ELFObjectFile::create(Wrapper); if (auto E = Obj.takeError()) return std::move(E); std::unique_ptr> Ret( new DyldELFObject(std::move(*Obj))); return std::move(Ret); } template void DyldELFObject::updateSectionAddress(const SectionRef &Sec, uint64_t Addr) { DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); Elf_Shdr *shdr = const_cast(reinterpret_cast(ShdrRef.p)); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. shdr->sh_addr = static_cast(Addr); } template void DyldELFObject::updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr) { Elf_Sym *sym = const_cast( ELFObjectFile::getSymbol(SymRef.getRawDataRefImpl())); // This assumes the address passed in matches the target address bitness // The template-based type cast handles everything else. sym->st_value = static_cast(Addr); } class LoadedELFObjectInfo final : public LoadedObjectInfoHelper { public: LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap) : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {} OwningBinary getObjectForDebug(const ObjectFile &Obj) const override; }; template static Expected>> createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject, const LoadedELFObjectInfo &L) { typedef typename ELFT::Shdr Elf_Shdr; typedef typename ELFT::uint addr_type; Expected>> ObjOrErr = DyldELFObject::create(Buffer); if (Error E = ObjOrErr.takeError()) return std::move(E); std::unique_ptr> Obj = std::move(*ObjOrErr); // Iterate over all sections in the object. auto SI = SourceObject.section_begin(); for (const auto &Sec : Obj->sections()) { Expected NameOrErr = Sec.getName(); if (!NameOrErr) { consumeError(NameOrErr.takeError()); continue; } if (*NameOrErr != "") { DataRefImpl ShdrRef = Sec.getRawDataRefImpl(); Elf_Shdr *shdr = const_cast( reinterpret_cast(ShdrRef.p)); if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) { // This assumes that the address passed in matches the target address // bitness. The template-based type cast handles everything else. shdr->sh_addr = static_cast(SecLoadAddr); } } ++SI; } return std::move(Obj); } static OwningBinary createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) { assert(Obj.isELF() && "Not an ELF object file."); std::unique_ptr Buffer = MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName()); Expected> DebugObj(nullptr); handleAllErrors(DebugObj.takeError()); if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), Obj, L); else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), Obj, L); else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), Obj, L); else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) DebugObj = createRTDyldELFObject(Buffer->getMemBufferRef(), Obj, L); else llvm_unreachable("Unexpected ELF format"); handleAllErrors(DebugObj.takeError()); return OwningBinary(std::move(*DebugObj), std::move(Buffer)); } OwningBinary LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const { return createELFDebugObject(Obj, *this); } } // anonymous namespace namespace llvm { RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver) : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {} RuntimeDyldELF::~RuntimeDyldELF() = default; void RuntimeDyldELF::registerEHFrames() { for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) { SID EHFrameSID = UnregisteredEHFrameSections[i]; uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress(); uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress(); size_t EHFrameSize = Sections[EHFrameSID].getSize(); MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize); } UnregisteredEHFrameSections.clear(); } std::unique_ptr llvm::RuntimeDyldELF::create(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver) { switch (Arch) { default: return std::make_unique(MemMgr, Resolver); case Triple::mips: case Triple::mipsel: case Triple::mips64: case Triple::mips64el: return std::make_unique(MemMgr, Resolver); } } std::unique_ptr RuntimeDyldELF::loadObject(const object::ObjectFile &O) { if (auto ObjSectionToIDOrErr = loadObjectImpl(O)) return std::make_unique(*this, *ObjSectionToIDOrErr); else { HasError = true; raw_string_ostream ErrStream(ErrorStr); logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream); return nullptr; } } void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend, uint64_t SymOffset) { switch (Type) { default: report_fatal_error("Relocation type not implemented yet!"); break; case ELF::R_X86_64_NONE: break; case ELF::R_X86_64_8: { Value += Addend; assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN); uint8_t TruncatedAddr = (Value & 0xFF); *Section.getAddressWithOffset(Offset) = TruncatedAddr; LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " << format("%p\n", Section.getAddressWithOffset(Offset))); break; } case ELF::R_X86_64_16: { Value += Addend; assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN); uint16_t TruncatedAddr = (Value & 0xFFFF); support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) = TruncatedAddr; LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " << format("%p\n", Section.getAddressWithOffset(Offset))); break; } case ELF::R_X86_64_64: { support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = Value + Addend; LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " << format("%p\n", Section.getAddressWithOffset(Offset))); break; } case ELF::R_X86_64_32: case ELF::R_X86_64_32S: { Value += Addend; assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) || (Type == ELF::R_X86_64_32S && ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN))); uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = TruncatedAddr; LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at " << format("%p\n", Section.getAddressWithOffset(Offset))); break; } case ELF::R_X86_64_PC8: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); int64_t RealOffset = Value + Addend - FinalAddress; assert(isInt<8>(RealOffset)); int8_t TruncOffset = (RealOffset & 0xFF); Section.getAddress()[Offset] = TruncOffset; break; } case ELF::R_X86_64_PC32: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); int64_t RealOffset = Value + Addend - FinalAddress; assert(isInt<32>(RealOffset)); int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = TruncOffset; break; } case ELF::R_X86_64_PC64: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); int64_t RealOffset = Value + Addend - FinalAddress; support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = RealOffset; LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at " << format("%p\n", FinalAddress)); break; } case ELF::R_X86_64_GOTOFF64: { // Compute Value - GOTBase. uint64_t GOTBase = 0; for (const auto &Section : Sections) { if (Section.getName() == ".got") { GOTBase = Section.getLoadAddressWithOffset(0); break; } } assert(GOTBase != 0 && "missing GOT"); int64_t GOTOffset = Value - GOTBase + Addend; support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset; break; } case ELF::R_X86_64_DTPMOD64: { // We only have one DSO, so the module id is always 1. support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1; break; } case ELF::R_X86_64_DTPOFF64: case ELF::R_X86_64_TPOFF64: { // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the // offset in the *initial* TLS block. Since we are statically linking, all // TLS blocks already exist in the initial block, so resolve both // relocations equally. support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = Value + Addend; break; } case ELF::R_X86_64_DTPOFF32: case ELF::R_X86_64_TPOFF32: { // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can // be resolved equally. int64_t RealValue = Value + Addend; assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX); int32_t TruncValue = RealValue; support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = TruncValue; break; } } } void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section, uint64_t Offset, uint32_t Value, uint32_t Type, int32_t Addend) { switch (Type) { case ELF::R_386_32: { support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = Value + Addend; break; } // Handle R_386_PLT32 like R_386_PC32 since it should be able to // reach any 32 bit address. case ELF::R_386_PLT32: case ELF::R_386_PC32: { uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; uint32_t RealOffset = Value + Addend - FinalAddress; support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) = RealOffset; break; } default: // There are other relocation types, but it appears these are the // only ones currently used by the LLVM ELF object writer report_fatal_error("Relocation type not implemented yet!"); break; } } void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { uint32_t *TargetPtr = reinterpret_cast(Section.getAddressWithOffset(Offset)); uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); // Data should use target endian. Code should always use little endian. bool isBE = Arch == Triple::aarch64_be; LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x" << format("%llx", Section.getAddressWithOffset(Offset)) << " FinalAddress: 0x" << format("%llx", FinalAddress) << " Value: 0x" << format("%llx", Value) << " Type: 0x" << format("%x", Type) << " Addend: 0x" << format("%llx", Addend) << "\n"); switch (Type) { default: report_fatal_error("Relocation type not implemented yet!"); break; case ELF::R_AARCH64_NONE: break; case ELF::R_AARCH64_ABS16: { uint64_t Result = Value + Addend; assert(Result == static_cast(llvm::SignExtend64(Result, 16)) || (Result >> 16) == 0); write(isBE, TargetPtr, static_cast(Result & 0xffffU)); break; } case ELF::R_AARCH64_ABS32: { uint64_t Result = Value + Addend; assert(Result == static_cast(llvm::SignExtend64(Result, 32)) || (Result >> 32) == 0); write(isBE, TargetPtr, static_cast(Result & 0xffffffffU)); break; } case ELF::R_AARCH64_ABS64: write(isBE, TargetPtr, Value + Addend); break; case ELF::R_AARCH64_PLT32: { uint64_t Result = Value + Addend - FinalAddress; assert(static_cast(Result) >= INT32_MIN && static_cast(Result) <= INT32_MAX); write(isBE, TargetPtr, static_cast(Result)); break; } case ELF::R_AARCH64_PREL16: { uint64_t Result = Value + Addend - FinalAddress; assert(static_cast(Result) >= INT16_MIN && static_cast(Result) <= UINT16_MAX); write(isBE, TargetPtr, static_cast(Result & 0xffffU)); break; } case ELF::R_AARCH64_PREL32: { uint64_t Result = Value + Addend - FinalAddress; assert(static_cast(Result) >= INT32_MIN && static_cast(Result) <= UINT32_MAX); write(isBE, TargetPtr, static_cast(Result & 0xffffffffU)); break; } case ELF::R_AARCH64_PREL64: write(isBE, TargetPtr, Value + Addend - FinalAddress); break; case ELF::R_AARCH64_CONDBR19: { uint64_t BranchImm = Value + Addend - FinalAddress; assert(isInt<21>(BranchImm)); *TargetPtr &= 0xff00001fU; // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3); break; } case ELF::R_AARCH64_TSTBR14: { uint64_t BranchImm = Value + Addend - FinalAddress; assert(isInt<16>(BranchImm)); uint32_t RawInstr = *(support::little32_t *)TargetPtr; *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU; // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3); break; } case ELF::R_AARCH64_CALL26: // fallthrough case ELF::R_AARCH64_JUMP26: { // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the // calculation. uint64_t BranchImm = Value + Addend - FinalAddress; // "Check that -2^27 <= result < 2^27". assert(isInt<28>(BranchImm)); or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2); break; } case ELF::R_AARCH64_MOVW_UABS_G3: or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43); break; case ELF::R_AARCH64_MOVW_UABS_G2_NC: or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27); break; case ELF::R_AARCH64_MOVW_UABS_G1_NC: or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11); break; case ELF::R_AARCH64_MOVW_UABS_G0_NC: or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5); break; case ELF::R_AARCH64_ADR_PREL_PG_HI21: { // Operation: Page(S+A) - Page(P) uint64_t Result = ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL); // Check that -2^32 <= X < 2^32 assert(isInt<33>(Result) && "overflow check failed for relocation"); // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken // from bits 32:12 of X. write32AArch64Addr(TargetPtr, Result >> 12); break; } case ELF::R_AARCH64_ADD_ABS_LO12_NC: // Operation: S + A // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:0 of X or32AArch64Imm(TargetPtr, Value + Addend); break; case ELF::R_AARCH64_LDST8_ABS_LO12_NC: // Operation: S + A // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:0 of X or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11)); break; case ELF::R_AARCH64_LDST16_ABS_LO12_NC: // Operation: S + A // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:1 of X or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11)); break; case ELF::R_AARCH64_LDST32_ABS_LO12_NC: // Operation: S + A // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:2 of X or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11)); break; case ELF::R_AARCH64_LDST64_ABS_LO12_NC: // Operation: S + A // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:3 of X or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11)); break; case ELF::R_AARCH64_LDST128_ABS_LO12_NC: // Operation: S + A // Immediate goes in bits 21:10 of LD/ST instruction, taken // from bits 11:4 of X or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11)); break; case ELF::R_AARCH64_LD_PREL_LO19: { // Operation: S + A - P uint64_t Result = Value + Addend - FinalAddress; // "Check that -2^20 <= result < 2^20". assert(isInt<21>(Result)); *TargetPtr &= 0xff00001fU; // Immediate goes in bits 23:5 of LD imm instruction, taken // from bits 20:2 of X *TargetPtr |= ((Result & 0xffc) << (5 - 2)); break; } case ELF::R_AARCH64_ADR_PREL_LO21: { // Operation: S + A - P uint64_t Result = Value + Addend - FinalAddress; // "Check that -2^20 <= result < 2^20". assert(isInt<21>(Result)); *TargetPtr &= 0x9f00001fU; // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken // from bits 20:0 of X *TargetPtr |= ((Result & 0xffc) << (5 - 2)); *TargetPtr |= (Result & 0x3) << 29; break; } } } void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section, uint64_t Offset, uint32_t Value, uint32_t Type, int32_t Addend) { // TODO: Add Thumb relocations. uint32_t *TargetPtr = reinterpret_cast(Section.getAddressWithOffset(Offset)); uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF; Value += Addend; LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << Section.getAddressWithOffset(Offset) << " FinalAddress: " << format("%p", FinalAddress) << " Value: " << format("%x", Value) << " Type: " << format("%x", Type) << " Addend: " << format("%x", Addend) << "\n"); switch (Type) { default: llvm_unreachable("Not implemented relocation type!"); case ELF::R_ARM_NONE: break; // Write a 31bit signed offset case ELF::R_ARM_PREL31: support::ulittle32_t::ref{TargetPtr} = (support::ulittle32_t::ref{TargetPtr} & 0x80000000) | ((Value - FinalAddress) & ~0x80000000); break; case ELF::R_ARM_TARGET1: case ELF::R_ARM_ABS32: support::ulittle32_t::ref{TargetPtr} = Value; break; // Write first 16 bit of 32 bit value to the mov instruction. // Last 4 bit should be shifted. case ELF::R_ARM_MOVW_ABS_NC: case ELF::R_ARM_MOVT_ABS: if (Type == ELF::R_ARM_MOVW_ABS_NC) Value = Value & 0xFFFF; else if (Type == ELF::R_ARM_MOVT_ABS) Value = (Value >> 16) & 0xFFFF; support::ulittle32_t::ref{TargetPtr} = (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) | (((Value >> 12) & 0xF) << 16); break; // Write 24 bit relative value to the branch instruction. case ELF::R_ARM_PC24: // Fall through. case ELF::R_ARM_CALL: // Fall through. case ELF::R_ARM_JUMP24: int32_t RelValue = static_cast(Value - FinalAddress - 8); RelValue = (RelValue & 0x03FFFFFC) >> 2; assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE); support::ulittle32_t::ref{TargetPtr} = (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue; break; } } void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) { if (Arch == Triple::UnknownArch || !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) { IsMipsO32ABI = false; IsMipsN32ABI = false; IsMipsN64ABI = false; return; } if (auto *E = dyn_cast(&Obj)) { unsigned AbiVariant = E->getPlatformFlags(); IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32; IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2; } IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips"); } // Return the .TOC. section and offset. Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj, ObjSectionToIDMap &LocalSections, RelocationValueRef &Rel) { // Set a default SectionID in case we do not find a TOC section below. // This may happen for references to TOC base base (sym@toc, .odp // relocation) without a .toc directive. In this case just use the // first section (which is usually the .odp) since the code won't // reference the .toc base directly. Rel.SymbolName = nullptr; Rel.SectionID = 0; // The TOC consists of sections .got, .toc, .tocbss, .plt in that // order. The TOC starts where the first of these sections starts. for (auto &Section : Obj.sections()) { Expected NameOrErr = Section.getName(); if (!NameOrErr) return NameOrErr.takeError(); StringRef SectionName = *NameOrErr; if (SectionName == ".got" || SectionName == ".toc" || SectionName == ".tocbss" || SectionName == ".plt") { if (auto SectionIDOrErr = findOrEmitSection(Obj, Section, false, LocalSections)) Rel.SectionID = *SectionIDOrErr; else return SectionIDOrErr.takeError(); break; } } // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. Rel.Addend = 0x8000; return Error::success(); } // Returns the sections and offset associated with the ODP entry referenced // by Symbol. Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj, ObjSectionToIDMap &LocalSections, RelocationValueRef &Rel) { // Get the ELF symbol value (st_value) to compare with Relocation offset in // .opd entries for (section_iterator si = Obj.section_begin(), se = Obj.section_end(); si != se; ++si) { Expected RelSecOrErr = si->getRelocatedSection(); if (!RelSecOrErr) report_fatal_error(Twine(toString(RelSecOrErr.takeError()))); section_iterator RelSecI = *RelSecOrErr; if (RelSecI == Obj.section_end()) continue; Expected NameOrErr = RelSecI->getName(); if (!NameOrErr) return NameOrErr.takeError(); StringRef RelSectionName = *NameOrErr; if (RelSectionName != ".opd") continue; for (elf_relocation_iterator i = si->relocation_begin(), e = si->relocation_end(); i != e;) { // The R_PPC64_ADDR64 relocation indicates the first field // of a .opd entry uint64_t TypeFunc = i->getType(); if (TypeFunc != ELF::R_PPC64_ADDR64) { ++i; continue; } uint64_t TargetSymbolOffset = i->getOffset(); symbol_iterator TargetSymbol = i->getSymbol(); int64_t Addend; if (auto AddendOrErr = i->getAddend()) Addend = *AddendOrErr; else return AddendOrErr.takeError(); ++i; if (i == e) break; // Just check if following relocation is a R_PPC64_TOC uint64_t TypeTOC = i->getType(); if (TypeTOC != ELF::R_PPC64_TOC) continue; // Finally compares the Symbol value and the target symbol offset // to check if this .opd entry refers to the symbol the relocation // points to. if (Rel.Addend != (int64_t)TargetSymbolOffset) continue; section_iterator TSI = Obj.section_end(); if (auto TSIOrErr = TargetSymbol->getSection()) TSI = *TSIOrErr; else return TSIOrErr.takeError(); assert(TSI != Obj.section_end() && "TSI should refer to a valid section"); bool IsCode = TSI->isText(); if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode, LocalSections)) Rel.SectionID = *SectionIDOrErr; else return SectionIDOrErr.takeError(); Rel.Addend = (intptr_t)Addend; return Error::success(); } } llvm_unreachable("Attempting to get address of ODP entry!"); } // Relocation masks following the #lo(value), #hi(value), #ha(value), // #higher(value), #highera(value), #highest(value), and #highesta(value) // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi // document. static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; } static inline uint16_t applyPPChi(uint64_t value) { return (value >> 16) & 0xffff; } static inline uint16_t applyPPCha (uint64_t value) { return ((value + 0x8000) >> 16) & 0xffff; } static inline uint16_t applyPPChigher(uint64_t value) { return (value >> 32) & 0xffff; } static inline uint16_t applyPPChighera (uint64_t value) { return ((value + 0x8000) >> 32) & 0xffff; } static inline uint16_t applyPPChighest(uint64_t value) { return (value >> 48) & 0xffff; } static inline uint16_t applyPPChighesta (uint64_t value) { return ((value + 0x8000) >> 48) & 0xffff; } void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); switch (Type) { default: report_fatal_error("Relocation type not implemented yet!"); break; case ELF::R_PPC_ADDR16_LO: writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; case ELF::R_PPC_ADDR16_HI: writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); break; case ELF::R_PPC_ADDR16_HA: writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); break; } } void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); switch (Type) { default: report_fatal_error("Relocation type not implemented yet!"); break; case ELF::R_PPC64_ADDR16: writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; case ELF::R_PPC64_ADDR16_DS: writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); break; case ELF::R_PPC64_ADDR16_LO: writeInt16BE(LocalAddress, applyPPClo(Value + Addend)); break; case ELF::R_PPC64_ADDR16_LO_DS: writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3); break; case ELF::R_PPC64_ADDR16_HI: case ELF::R_PPC64_ADDR16_HIGH: writeInt16BE(LocalAddress, applyPPChi(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HA: case ELF::R_PPC64_ADDR16_HIGHA: writeInt16BE(LocalAddress, applyPPCha(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHER: writeInt16BE(LocalAddress, applyPPChigher(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHERA: writeInt16BE(LocalAddress, applyPPChighera(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHEST: writeInt16BE(LocalAddress, applyPPChighest(Value + Addend)); break; case ELF::R_PPC64_ADDR16_HIGHESTA: writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend)); break; case ELF::R_PPC64_ADDR14: { assert(((Value + Addend) & 3) == 0); // Preserve the AA/LK bits in the branch instruction uint8_t aalk = *(LocalAddress + 3); writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc)); } break; case ELF::R_PPC64_REL16_LO: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt16BE(LocalAddress, applyPPClo(Delta)); } break; case ELF::R_PPC64_REL16_HI: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt16BE(LocalAddress, applyPPChi(Delta)); } break; case ELF::R_PPC64_REL16_HA: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt16BE(LocalAddress, applyPPCha(Delta)); } break; case ELF::R_PPC64_ADDR32: { int64_t Result = static_cast(Value + Addend); if (SignExtend64<32>(Result) != Result) llvm_unreachable("Relocation R_PPC64_ADDR32 overflow"); writeInt32BE(LocalAddress, Result); } break; case ELF::R_PPC64_REL24: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); int64_t delta = static_cast(Value - FinalAddress + Addend); if (SignExtend64<26>(delta) != delta) llvm_unreachable("Relocation R_PPC64_REL24 overflow"); // We preserve bits other than LI field, i.e. PO and AA/LK fields. uint32_t Inst = readBytesUnaligned(LocalAddress, 4); writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC)); } break; case ELF::R_PPC64_REL32: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); int64_t delta = static_cast(Value - FinalAddress + Addend); if (SignExtend64<32>(delta) != delta) llvm_unreachable("Relocation R_PPC64_REL32 overflow"); writeInt32BE(LocalAddress, delta); } break; case ELF::R_PPC64_REL64: { uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset); uint64_t Delta = Value - FinalAddress + Addend; writeInt64BE(LocalAddress, Delta); } break; case ELF::R_PPC64_ADDR64: writeInt64BE(LocalAddress, Value + Addend); break; } } void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { uint8_t *LocalAddress = Section.getAddressWithOffset(Offset); switch (Type) { default: report_fatal_error("Relocation type not implemented yet!"); break; case ELF::R_390_PC16DBL: case ELF::R_390_PLT16DBL: { int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow"); writeInt16BE(LocalAddress, Delta / 2); break; } case ELF::R_390_PC32DBL: case ELF::R_390_PLT32DBL: { int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow"); writeInt32BE(LocalAddress, Delta / 2); break; } case ELF::R_390_PC16: { int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); assert(int16_t(Delta) == Delta && "R_390_PC16 overflow"); writeInt16BE(LocalAddress, Delta); break; } case ELF::R_390_PC32: { int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); assert(int32_t(Delta) == Delta && "R_390_PC32 overflow"); writeInt32BE(LocalAddress, Delta); break; } case ELF::R_390_PC64: { int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset); writeInt64BE(LocalAddress, Delta); break; } case ELF::R_390_8: *LocalAddress = (uint8_t)(Value + Addend); break; case ELF::R_390_16: writeInt16BE(LocalAddress, Value + Addend); break; case ELF::R_390_32: writeInt32BE(LocalAddress, Value + Addend); break; case ELF::R_390_64: writeInt64BE(LocalAddress, Value + Addend); break; } } void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) { bool isBE = Arch == Triple::bpfeb; switch (Type) { default: report_fatal_error("Relocation type not implemented yet!"); break; case ELF::R_BPF_NONE: case ELF::R_BPF_64_64: case ELF::R_BPF_64_32: case ELF::R_BPF_64_NODYLD32: break; case ELF::R_BPF_64_ABS64: { write(isBE, Section.getAddressWithOffset(Offset), Value + Addend); LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at " << format("%p\n", Section.getAddressWithOffset(Offset))); break; } case ELF::R_BPF_64_ABS32: { Value += Addend; assert(Value <= UINT32_MAX); write(isBE, Section.getAddressWithOffset(Offset), static_cast(Value)); LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at " << format("%p\n", Section.getAddressWithOffset(Offset))); break; } } } // The target location for the relocation is described by RE.SectionID and // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each // SectionEntry has three members describing its location. // SectionEntry::Address is the address at which the section has been loaded // into memory in the current (host) process. SectionEntry::LoadAddress is the // address that the section will have in the target process. // SectionEntry::ObjAddress is the address of the bits for this section in the // original emitted object image (also in the current address space). // // Relocations will be applied as if the section were loaded at // SectionEntry::LoadAddress, but they will be applied at an address based // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to // Target memory contents if they are required for value calculations. // // The Value parameter here is the load address of the symbol for the // relocation to be applied. For relocations which refer to symbols in the // current object Value will be the LoadAddress of the section in which // the symbol resides (RE.Addend provides additional information about the // symbol location). For external symbols, Value will be the address of the // symbol in the target address space. void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE, uint64_t Value) { const SectionEntry &Section = Sections[RE.SectionID]; return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend, RE.SymOffset, RE.SectionID); } void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend, uint64_t SymOffset, SID SectionID) { switch (Arch) { case Triple::x86_64: resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset); break; case Triple::x86: resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::aarch64: case Triple::aarch64_be: resolveAArch64Relocation(Section, Offset, Value, Type, Addend); break; case Triple::arm: // Fall through. case Triple::armeb: case Triple::thumb: case Triple::thumbeb: resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type, (uint32_t)(Addend & 0xffffffffL)); break; case Triple::ppc: // Fall through. case Triple::ppcle: resolvePPC32Relocation(Section, Offset, Value, Type, Addend); break; case Triple::ppc64: // Fall through. case Triple::ppc64le: resolvePPC64Relocation(Section, Offset, Value, Type, Addend); break; case Triple::systemz: resolveSystemZRelocation(Section, Offset, Value, Type, Addend); break; case Triple::bpfel: case Triple::bpfeb: resolveBPFRelocation(Section, Offset, Value, Type, Addend); break; default: llvm_unreachable("Unsupported CPU type!"); } } void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const { return (void *)(Sections[SectionID].getObjAddress() + Offset); } void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) { RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType, bool IsLocal) const { switch (RelType) { case ELF::R_MICROMIPS_GOT16: if (IsLocal) return ELF::R_MICROMIPS_LO16; break; case ELF::R_MICROMIPS_HI16: return ELF::R_MICROMIPS_LO16; case ELF::R_MIPS_GOT16: if (IsLocal) return ELF::R_MIPS_LO16; break; case ELF::R_MIPS_HI16: return ELF::R_MIPS_LO16; case ELF::R_MIPS_PCHI16: return ELF::R_MIPS_PCLO16; default: break; } return ELF::R_MIPS_NONE; } // Sometimes we don't need to create thunk for a branch. // This typically happens when branch target is located // in the same object file. In such case target is either // a weak symbol or symbol in a different executable section. // This function checks if branch target is located in the // same object file and if distance between source and target // fits R_AARCH64_CALL26 relocation. If both conditions are // met, it emits direct jump to the target and returns true. // Otherwise false is returned and thunk is created. bool RuntimeDyldELF::resolveAArch64ShortBranch( unsigned SectionID, relocation_iterator RelI, const RelocationValueRef &Value) { uint64_t Address; if (Value.SymbolName) { auto Loc = GlobalSymbolTable.find(Value.SymbolName); // Don't create direct branch for external symbols. if (Loc == GlobalSymbolTable.end()) return false; const auto &SymInfo = Loc->second; Address = uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset( SymInfo.getOffset())); } else { Address = uint64_t(Sections[Value.SectionID].getLoadAddress()); } uint64_t Offset = RelI->getOffset(); uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset); // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27 // If distance between source and target is out of range then we should // create thunk. if (!isInt<28>(Address + Value.Addend - SourceAddress)) return false; resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(), Value.Addend); return true; } void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID, const RelocationValueRef &Value, relocation_iterator RelI, StubMap &Stubs) { LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation."); SectionEntry &Section = Sections[SectionID]; uint64_t Offset = RelI->getOffset(); unsigned RelType = RelI->getType(); // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { resolveRelocation(Section, Offset, (uint64_t)Section.getAddressWithOffset(i->second), RelType, 0); LLVM_DEBUG(dbgs() << " Stub function found\n"); } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) { // Create a new stub function. LLVM_DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.getStubOffset(); uint8_t *StubTargetAddr = createStubFunction( Section.getAddressWithOffset(Section.getStubOffset())); RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(), ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend); RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.getAddress() + 4, ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend); RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.getAddress() + 8, ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend); RelocationEntry REmovk_g0(SectionID, StubTargetAddr - Section.getAddress() + 12, ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REmovz_g3, Value.SymbolName); addRelocationForSymbol(REmovk_g2, Value.SymbolName); addRelocationForSymbol(REmovk_g1, Value.SymbolName); addRelocationForSymbol(REmovk_g0, Value.SymbolName); } else { addRelocationForSection(REmovz_g3, Value.SectionID); addRelocationForSection(REmovk_g2, Value.SectionID); addRelocationForSection(REmovk_g1, Value.SectionID); addRelocationForSection(REmovk_g0, Value.SectionID); } resolveRelocation(Section, Offset, reinterpret_cast(Section.getAddressWithOffset( Section.getStubOffset())), RelType, 0); Section.advanceStubOffset(getMaxStubSize()); } } Expected RuntimeDyldELF::processRelocationRef( unsigned SectionID, relocation_iterator RelI, const ObjectFile &O, ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) { const auto &Obj = cast(O); uint64_t RelType = RelI->getType(); int64_t Addend = 0; if (Expected AddendOrErr = ELFRelocationRef(*RelI).getAddend()) Addend = *AddendOrErr; else consumeError(AddendOrErr.takeError()); elf_symbol_iterator Symbol = RelI->getSymbol(); // Obtain the symbol name which is referenced in the relocation StringRef TargetName; if (Symbol != Obj.symbol_end()) { if (auto TargetNameOrErr = Symbol->getName()) TargetName = *TargetNameOrErr; else return TargetNameOrErr.takeError(); } LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend << " TargetName: " << TargetName << "\n"); RelocationValueRef Value; // First search for the symbol in the local symbol table SymbolRef::Type SymType = SymbolRef::ST_Unknown; // Search for the symbol in the global symbol table RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end(); if (Symbol != Obj.symbol_end()) { gsi = GlobalSymbolTable.find(TargetName.data()); Expected SymTypeOrErr = Symbol->getType(); if (!SymTypeOrErr) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(SymTypeOrErr.takeError(), OS); report_fatal_error(Twine(OS.str())); } SymType = *SymTypeOrErr; } if (gsi != GlobalSymbolTable.end()) { const auto &SymInfo = gsi->second; Value.SectionID = SymInfo.getSectionID(); Value.Offset = SymInfo.getOffset(); Value.Addend = SymInfo.getOffset() + Addend; } else { switch (SymType) { case SymbolRef::ST_Debug: { // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously // and can be changed by another developers. Maybe best way is add // a new symbol type ST_Section to SymbolRef and use it. auto SectionOrErr = Symbol->getSection(); if (!SectionOrErr) { std::string Buf; raw_string_ostream OS(Buf); logAllUnhandledErrors(SectionOrErr.takeError(), OS); report_fatal_error(Twine(OS.str())); } section_iterator si = *SectionOrErr; if (si == Obj.section_end()) llvm_unreachable("Symbol section not found, bad object file format!"); LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n"); bool isCode = si->isText(); if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID)) Value.SectionID = *SectionIDOrErr; else return SectionIDOrErr.takeError(); Value.Addend = Addend; break; } case SymbolRef::ST_Data: case SymbolRef::ST_Function: case SymbolRef::ST_Other: case SymbolRef::ST_Unknown: { Value.SymbolName = TargetName.data(); Value.Addend = Addend; // Absolute relocations will have a zero symbol ID (STN_UNDEF), which // will manifest here as a NULL symbol name. // We can set this as a valid (but empty) symbol name, and rely // on addRelocationForSymbol to handle this. if (!Value.SymbolName) Value.SymbolName = ""; break; } default: llvm_unreachable("Unresolved symbol type!"); break; } } uint64_t Offset = RelI->getOffset(); LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset << "\n"); if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) { if ((RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) && MemMgr.allowStubAllocation()) { resolveAArch64Branch(SectionID, Value, RelI, Stubs); } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) { // Create new GOT entry or find existing one. If GOT entry is // to be created, then we also emit ABS64 relocation for it. uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, ELF::R_AARCH64_ADR_PREL_PG_HI21); } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) { uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64); resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, ELF::R_AARCH64_LDST64_ABS_LO12_NC); } else { processSimpleRelocation(SectionID, Offset, RelType, Value); } } else if (Arch == Triple::arm) { if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL || RelType == ELF::R_ARM_JUMP24) { // This is an ARM branch relocation, need to use a stub function. LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n"); SectionEntry &Section = Sections[SectionID]; // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { resolveRelocation( Section, Offset, reinterpret_cast(Section.getAddressWithOffset(i->second)), RelType, 0); LLVM_DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. LLVM_DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.getStubOffset(); uint8_t *StubTargetAddr = createStubFunction( Section.getAddressWithOffset(Section.getStubOffset())); RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), ELF::R_ARM_ABS32, Value.Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); resolveRelocation(Section, Offset, reinterpret_cast( Section.getAddressWithOffset( Section.getStubOffset())), RelType, 0); Section.advanceStubOffset(getMaxStubSize()); } } else { uint32_t *Placeholder = reinterpret_cast(computePlaceholderAddress(SectionID, Offset)); if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 || RelType == ELF::R_ARM_ABS32) { Value.Addend += *Placeholder; } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) { // See ELF for ARM documentation Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12)); } processSimpleRelocation(SectionID, Offset, RelType, Value); } } else if (IsMipsO32ABI) { uint8_t *Placeholder = reinterpret_cast( computePlaceholderAddress(SectionID, Offset)); uint32_t Opcode = readBytesUnaligned(Placeholder, 4); if (RelType == ELF::R_MIPS_26) { // This is an Mips branch relocation, need to use a stub function. LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); SectionEntry &Section = Sections[SectionID]; // Extract the addend from the instruction. // We shift up by two since the Value will be down shifted again // when applying the relocation. uint32_t Addend = (Opcode & 0x03ffffff) << 2; Value.Addend += Addend; // Look up for existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { RelocationEntry RE(SectionID, Offset, RelType, i->second); addRelocationForSection(RE, SectionID); LLVM_DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. LLVM_DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.getStubOffset(); unsigned AbiVariant = Obj.getPlatformFlags(); uint8_t *StubTargetAddr = createStubFunction( Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); // Creating Hi and Lo relocations for the filled stub instructions. RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), ELF::R_MIPS_HI16, Value.Addend); RelocationEntry RELo(SectionID, StubTargetAddr - Section.getAddress() + 4, ELF::R_MIPS_LO16, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REHi, Value.SymbolName); addRelocationForSymbol(RELo, Value.SymbolName); } else { addRelocationForSection(REHi, Value.SectionID); addRelocationForSection(RELo, Value.SectionID); } RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); addRelocationForSection(RE, SectionID); Section.advanceStubOffset(getMaxStubSize()); } } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) { int64_t Addend = (Opcode & 0x0000ffff) << 16; RelocationEntry RE(SectionID, Offset, RelType, Addend); PendingRelocs.push_back(std::make_pair(Value, RE)); } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) { int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff); for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) { const RelocationValueRef &MatchingValue = I->first; RelocationEntry &Reloc = I->second; if (MatchingValue == Value && RelType == getMatchingLoRelocation(Reloc.RelType) && SectionID == Reloc.SectionID) { Reloc.Addend += Addend; if (Value.SymbolName) addRelocationForSymbol(Reloc, Value.SymbolName); else addRelocationForSection(Reloc, Value.SectionID); I = PendingRelocs.erase(I); } else ++I; } RelocationEntry RE(SectionID, Offset, RelType, Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } else { if (RelType == ELF::R_MIPS_32) Value.Addend += Opcode; else if (RelType == ELF::R_MIPS_PC16) Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2); else if (RelType == ELF::R_MIPS_PC19_S2) Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2); else if (RelType == ELF::R_MIPS_PC21_S2) Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2); else if (RelType == ELF::R_MIPS_PC26_S2) Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2); processSimpleRelocation(SectionID, Offset, RelType, Value); } } else if (IsMipsN32ABI || IsMipsN64ABI) { uint32_t r_type = RelType & 0xff; RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE || r_type == ELF::R_MIPS_GOT_DISP) { StringMap::iterator i = GOTSymbolOffsets.find(TargetName); if (i != GOTSymbolOffsets.end()) RE.SymOffset = i->second; else { RE.SymOffset = allocateGOTEntries(1); GOTSymbolOffsets[TargetName] = RE.SymOffset; } if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } else if (RelType == ELF::R_MIPS_26) { // This is an Mips branch relocation, need to use a stub function. LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation."); SectionEntry &Section = Sections[SectionID]; // Look up for existing stub. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { RelocationEntry RE(SectionID, Offset, RelType, i->second); addRelocationForSection(RE, SectionID); LLVM_DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. LLVM_DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.getStubOffset(); unsigned AbiVariant = Obj.getPlatformFlags(); uint8_t *StubTargetAddr = createStubFunction( Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); if (IsMipsN32ABI) { // Creating Hi and Lo relocations for the filled stub instructions. RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(), ELF::R_MIPS_HI16, Value.Addend); RelocationEntry RELo(SectionID, StubTargetAddr - Section.getAddress() + 4, ELF::R_MIPS_LO16, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REHi, Value.SymbolName); addRelocationForSymbol(RELo, Value.SymbolName); } else { addRelocationForSection(REHi, Value.SectionID); addRelocationForSection(RELo, Value.SectionID); } } else { // Creating Highest, Higher, Hi and Lo relocations for the filled stub // instructions. RelocationEntry REHighest(SectionID, StubTargetAddr - Section.getAddress(), ELF::R_MIPS_HIGHEST, Value.Addend); RelocationEntry REHigher(SectionID, StubTargetAddr - Section.getAddress() + 4, ELF::R_MIPS_HIGHER, Value.Addend); RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress() + 12, ELF::R_MIPS_HI16, Value.Addend); RelocationEntry RELo(SectionID, StubTargetAddr - Section.getAddress() + 20, ELF::R_MIPS_LO16, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REHighest, Value.SymbolName); addRelocationForSymbol(REHigher, Value.SymbolName); addRelocationForSymbol(REHi, Value.SymbolName); addRelocationForSymbol(RELo, Value.SymbolName); } else { addRelocationForSection(REHighest, Value.SectionID); addRelocationForSection(REHigher, Value.SectionID); addRelocationForSection(REHi, Value.SectionID); addRelocationForSection(RELo, Value.SectionID); } } RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset()); addRelocationForSection(RE, SectionID); Section.advanceStubOffset(getMaxStubSize()); } } else { processSimpleRelocation(SectionID, Offset, RelType, Value); } } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { if (RelType == ELF::R_PPC64_REL24) { // Determine ABI variant in use for this object. unsigned AbiVariant = Obj.getPlatformFlags(); AbiVariant &= ELF::EF_PPC64_ABI; // A PPC branch relocation will need a stub function if the target is // an external symbol (either Value.SymbolName is set, or SymType is // Symbol::ST_Unknown) or if the target address is not within the // signed 24-bits branch address. SectionEntry &Section = Sections[SectionID]; uint8_t *Target = Section.getAddressWithOffset(Offset); bool RangeOverflow = false; bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown; if (!IsExtern) { if (AbiVariant != 2) { // In the ELFv1 ABI, a function call may point to the .opd entry, // so the final symbol value is calculated based on the relocation // values in the .opd section. if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value)) return std::move(Err); } else { // In the ELFv2 ABI, a function symbol may provide a local entry // point, which must be used for direct calls. if (Value.SectionID == SectionID){ uint8_t SymOther = Symbol->getOther(); Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther); } } uint8_t *RelocTarget = Sections[Value.SectionID].getAddressWithOffset(Value.Addend); int64_t delta = static_cast(Target - RelocTarget); // If it is within 26-bits branch range, just set the branch target if (SignExtend64<26>(delta) != delta) { RangeOverflow = true; } else if ((AbiVariant != 2) || (AbiVariant == 2 && Value.SectionID == SectionID)) { RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); addRelocationForSection(RE, Value.SectionID); } } if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) || RangeOverflow) { // It is an external symbol (either Value.SymbolName is set, or // SymType is SymbolRef::ST_Unknown) or out of range. StubMap::const_iterator i = Stubs.find(Value); if (i != Stubs.end()) { // Symbol function stub already created, just relocate to it resolveRelocation(Section, Offset, reinterpret_cast( Section.getAddressWithOffset(i->second)), RelType, 0); LLVM_DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. LLVM_DEBUG(dbgs() << " Create a new stub function\n"); Stubs[Value] = Section.getStubOffset(); uint8_t *StubTargetAddr = createStubFunction( Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant); RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(), ELF::R_PPC64_ADDR64, Value.Addend); // Generates the 64-bits address loads as exemplified in section // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to // apply to the low part of the instructions, so we have to update // the offset according to the target endianness. uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress(); if (!IsTargetLittleEndian) StubRelocOffset += 2; RelocationEntry REhst(SectionID, StubRelocOffset + 0, ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend); RelocationEntry REhr(SectionID, StubRelocOffset + 4, ELF::R_PPC64_ADDR16_HIGHER, Value.Addend); RelocationEntry REh(SectionID, StubRelocOffset + 12, ELF::R_PPC64_ADDR16_HI, Value.Addend); RelocationEntry REl(SectionID, StubRelocOffset + 16, ELF::R_PPC64_ADDR16_LO, Value.Addend); if (Value.SymbolName) { addRelocationForSymbol(REhst, Value.SymbolName); addRelocationForSymbol(REhr, Value.SymbolName); addRelocationForSymbol(REh, Value.SymbolName); addRelocationForSymbol(REl, Value.SymbolName); } else { addRelocationForSection(REhst, Value.SectionID); addRelocationForSection(REhr, Value.SectionID); addRelocationForSection(REh, Value.SectionID); addRelocationForSection(REl, Value.SectionID); } resolveRelocation(Section, Offset, reinterpret_cast( Section.getAddressWithOffset( Section.getStubOffset())), RelType, 0); Section.advanceStubOffset(getMaxStubSize()); } if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) { // Restore the TOC for external calls if (AbiVariant == 2) writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1) else writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1) } } } else if (RelType == ELF::R_PPC64_TOC16 || RelType == ELF::R_PPC64_TOC16_DS || RelType == ELF::R_PPC64_TOC16_LO || RelType == ELF::R_PPC64_TOC16_LO_DS || RelType == ELF::R_PPC64_TOC16_HI || RelType == ELF::R_PPC64_TOC16_HA) { // These relocations are supposed to subtract the TOC address from // the final value. This does not fit cleanly into the RuntimeDyld // scheme, since there may be *two* sections involved in determining // the relocation value (the section of the symbol referred to by the // relocation, and the TOC section associated with the current module). // // Fortunately, these relocations are currently only ever generated // referring to symbols that themselves reside in the TOC, which means // that the two sections are actually the same. Thus they cancel out // and we can immediately resolve the relocation right now. switch (RelType) { case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break; case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break; case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break; case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break; case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break; case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break; default: llvm_unreachable("Wrong relocation type."); } RelocationValueRef TOCValue; if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue)) return std::move(Err); if (Value.SymbolName || Value.SectionID != TOCValue.SectionID) llvm_unreachable("Unsupported TOC relocation."); Value.Addend -= TOCValue.Addend; resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0); } else { // There are two ways to refer to the TOC address directly: either // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are // ignored), or via any relocation that refers to the magic ".TOC." // symbols (in which case the addend is respected). if (RelType == ELF::R_PPC64_TOC) { RelType = ELF::R_PPC64_ADDR64; if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) return std::move(Err); } else if (TargetName == ".TOC.") { if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value)) return std::move(Err); Value.Addend += Addend; } RelocationEntry RE(SectionID, Offset, RelType, Value.Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } } else if (Arch == Triple::systemz && (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) { // Create function stubs for both PLT and GOT references, regardless of // whether the GOT reference is to data or code. The stub contains the // full address of the symbol, as needed by GOT references, and the // executable part only adds an overhead of 8 bytes. // // We could try to conserve space by allocating the code and data // parts of the stub separately. However, as things stand, we allocate // a stub for every relocation, so using a GOT in JIT code should be // no less space efficient than using an explicit constant pool. LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation."); SectionEntry &Section = Sections[SectionID]; // Look for an existing stub. StubMap::const_iterator i = Stubs.find(Value); uintptr_t StubAddress; if (i != Stubs.end()) { StubAddress = uintptr_t(Section.getAddressWithOffset(i->second)); LLVM_DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function. LLVM_DEBUG(dbgs() << " Create a new stub function\n"); uintptr_t BaseAddress = uintptr_t(Section.getAddress()); StubAddress = alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment()); unsigned StubOffset = StubAddress - BaseAddress; Stubs[Value] = StubOffset; createStubFunction((uint8_t *)StubAddress); RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64, Value.Offset); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); Section.advanceStubOffset(getMaxStubSize()); } if (RelType == ELF::R_390_GOTENT) resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL, Addend); else resolveRelocation(Section, Offset, StubAddress, RelType, Addend); } else if (Arch == Triple::x86_64) { if (RelType == ELF::R_X86_64_PLT32) { // The way the PLT relocations normally work is that the linker allocates // the // PLT and this relocation makes a PC-relative call into the PLT. The PLT // entry will then jump to an address provided by the GOT. On first call, // the // GOT address will point back into PLT code that resolves the symbol. After // the first call, the GOT entry points to the actual function. // // For local functions we're ignoring all of that here and just replacing // the PLT32 relocation type with PC32, which will translate the relocation // into a PC-relative call directly to the function. For external symbols we // can't be sure the function will be within 2^32 bytes of the call site, so // we need to create a stub, which calls into the GOT. This case is // equivalent to the usual PLT implementation except that we use the stub // mechanism in RuntimeDyld (which puts stubs at the end of the section) // rather than allocating a PLT section. if (Value.SymbolName && MemMgr.allowStubAllocation()) { // This is a call to an external function. // Look for an existing stub. SectionEntry *Section = &Sections[SectionID]; StubMap::const_iterator i = Stubs.find(Value); uintptr_t StubAddress; if (i != Stubs.end()) { StubAddress = uintptr_t(Section->getAddress()) + i->second; LLVM_DEBUG(dbgs() << " Stub function found\n"); } else { // Create a new stub function (equivalent to a PLT entry). LLVM_DEBUG(dbgs() << " Create a new stub function\n"); uintptr_t BaseAddress = uintptr_t(Section->getAddress()); StubAddress = alignTo(BaseAddress + Section->getStubOffset(), getStubAlignment()); unsigned StubOffset = StubAddress - BaseAddress; Stubs[Value] = StubOffset; createStubFunction((uint8_t *)StubAddress); // Bump our stub offset counter Section->advanceStubOffset(getMaxStubSize()); // Allocate a GOT Entry uint64_t GOTOffset = allocateGOTEntries(1); // This potentially creates a new Section which potentially // invalidates the Section pointer, so reload it. Section = &Sections[SectionID]; // The load of the GOT address has an addend of -4 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4, ELF::R_X86_64_PC32); // Fill in the value of the symbol we're targeting into the GOT addRelocationForSymbol( computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64), Value.SymbolName); } // Make the target call a call into the stub table. resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32, Addend); } else { Value.Addend += support::ulittle32_t::ref( computePlaceholderAddress(SectionID, Offset)); processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value); } } else if (RelType == ELF::R_X86_64_GOTPCREL || RelType == ELF::R_X86_64_GOTPCRELX || RelType == ELF::R_X86_64_REX_GOTPCRELX) { uint64_t GOTOffset = allocateGOTEntries(1); resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, ELF::R_X86_64_PC32); // Fill in the value of the symbol we're targeting into the GOT RelocationEntry RE = computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } else if (RelType == ELF::R_X86_64_GOT64) { // Fill in a 64-bit GOT offset. uint64_t GOTOffset = allocateGOTEntries(1); resolveRelocation(Sections[SectionID], Offset, GOTOffset, ELF::R_X86_64_64, 0); // Fill in the value of the symbol we're targeting into the GOT RelocationEntry RE = computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } else if (RelType == ELF::R_X86_64_GOTPC32) { // Materialize the address of the base of the GOT relative to the PC. // This doesn't create a GOT entry, but it does mean we need a GOT // section. (void)allocateGOTEntries(0); resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32); } else if (RelType == ELF::R_X86_64_GOTPC64) { (void)allocateGOTEntries(0); resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64); } else if (RelType == ELF::R_X86_64_GOTOFF64) { // GOTOFF relocations ultimately require a section difference relocation. (void)allocateGOTEntries(0); processSimpleRelocation(SectionID, Offset, RelType, Value); } else if (RelType == ELF::R_X86_64_PC32) { Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); processSimpleRelocation(SectionID, Offset, RelType, Value); } else if (RelType == ELF::R_X86_64_PC64) { Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset)); processSimpleRelocation(SectionID, Offset, RelType, Value); } else if (RelType == ELF::R_X86_64_GOTTPOFF) { processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend); } else if (RelType == ELF::R_X86_64_TLSGD || RelType == ELF::R_X86_64_TLSLD) { // The next relocation must be the relocation for __tls_get_addr. ++RelI; auto &GetAddrRelocation = *RelI; processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend, GetAddrRelocation); } else { processSimpleRelocation(SectionID, Offset, RelType, Value); } } else { if (Arch == Triple::x86) { Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset)); } processSimpleRelocation(SectionID, Offset, RelType, Value); } return ++RelI; } void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID, uint64_t Offset, RelocationValueRef Value, int64_t Addend) { // Use the approach from "x86-64 Linker Optimizations" from the TLS spec // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec // only mentions one optimization even though there are two different // code sequences for the Initial Exec TLS Model. We match the code to // find out which one was used. // A possible TLS code sequence and its replacement struct CodeSequence { // The expected code sequence ArrayRef ExpectedCodeSequence; // The negative offset of the GOTTPOFF relocation to the beginning of // the sequence uint64_t TLSSequenceOffset; // The new code sequence ArrayRef NewCodeSequence; // The offset of the new TPOFF relocation uint64_t TpoffRelocationOffset; }; std::array CodeSequences; // Initial Exec Code Model Sequence { static const std::initializer_list ExpectedCodeSequenceList = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip), // %rax }; CodeSequences[0].ExpectedCodeSequence = ArrayRef(ExpectedCodeSequenceList); CodeSequences[0].TLSSequenceOffset = 12; static const std::initializer_list NewCodeSequenceList = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax }; CodeSequences[0].NewCodeSequence = ArrayRef(NewCodeSequenceList); CodeSequences[0].TpoffRelocationOffset = 12; } // Initial Exec Code Model Sequence, II { static const std::initializer_list ExpectedCodeSequenceList = { 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax }; CodeSequences[1].ExpectedCodeSequence = ArrayRef(ExpectedCodeSequenceList); CodeSequences[1].TLSSequenceOffset = 3; static const std::initializer_list NewCodeSequenceList = { 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax }; CodeSequences[1].NewCodeSequence = ArrayRef(NewCodeSequenceList); CodeSequences[1].TpoffRelocationOffset = 10; } bool Resolved = false; auto &Section = Sections[SectionID]; for (const auto &C : CodeSequences) { assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() && "Old and new code sequences must have the same size"); if (Offset < C.TLSSequenceOffset || (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) > Section.getSize()) { // This can't be a matching sequence as it doesn't fit in the current // section continue; } auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset; auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset); if (ArrayRef(TLSSequence, C.ExpectedCodeSequence.size()) != C.ExpectedCodeSequence) { continue; } memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size()); // The original GOTTPOFF relocation has an addend as it is PC relative, // so it needs to be corrected. The TPOFF32 relocation is used as an // absolute value (which is an offset from %fs:0), so remove the addend // again. RelocationEntry RE(SectionID, TLSSequenceStartOffset + C.TpoffRelocationOffset, ELF::R_X86_64_TPOFF32, Value.Addend - Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); Resolved = true; break; } if (!Resolved) { // The GOTTPOFF relocation was not used in one of the sequences // described in the spec, so we can't optimize it to a TPOFF // relocation. uint64_t GOTOffset = allocateGOTEntries(1); resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend, ELF::R_X86_64_PC32); RelocationEntry RE = computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } } void RuntimeDyldELF::processX86_64TLSRelocation( unsigned SectionID, uint64_t Offset, uint64_t RelType, RelocationValueRef Value, int64_t Addend, const RelocationRef &GetAddrRelocation) { // Since we are statically linking and have no additional DSOs, we can resolve // the relocation directly without using __tls_get_addr. // Use the approach from "x86-64 Linker Optimizations" from the TLS spec // to replace it with the Local Exec relocation variant. // Find out whether the code was compiled with the large or small memory // model. For this we look at the next relocation which is the relocation // for the __tls_get_addr function. If it's a 32 bit relocation, it's the // small code model, with a 64 bit relocation it's the large code model. bool IsSmallCodeModel; // Is the relocation for the __tls_get_addr a PC-relative GOT relocation? bool IsGOTPCRel = false; switch (GetAddrRelocation.getType()) { case ELF::R_X86_64_GOTPCREL: case ELF::R_X86_64_REX_GOTPCRELX: case ELF::R_X86_64_GOTPCRELX: IsGOTPCRel = true; [[fallthrough]]; case ELF::R_X86_64_PLT32: IsSmallCodeModel = true; break; case ELF::R_X86_64_PLTOFF64: IsSmallCodeModel = false; break; default: report_fatal_error( "invalid TLS relocations for General/Local Dynamic TLS Model: " "expected PLT or GOT relocation for __tls_get_addr function"); } // The negative offset to the start of the TLS code sequence relative to // the offset of the TLSGD/TLSLD relocation uint64_t TLSSequenceOffset; // The expected start of the code sequence ArrayRef ExpectedCodeSequence; // The new TLS code sequence that will replace the existing code ArrayRef NewCodeSequence; if (RelType == ELF::R_X86_64_TLSGD) { // The offset of the new TPOFF32 relocation (offset starting from the // beginning of the whole TLS sequence) uint64_t TpoffRelocOffset; if (IsSmallCodeModel) { if (!IsGOTPCRel) { static const std::initializer_list CodeSequence = { 0x66, // data16 (no-op prefix) 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea (%rip), %rdi 0x66, 0x66, // two data16 prefixes 0x48, // rex64 (no-op prefix) 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt }; ExpectedCodeSequence = ArrayRef(CodeSequence); TLSSequenceOffset = 4; } else { // This code sequence is not described in the TLS spec but gcc // generates it sometimes. static const std::initializer_list CodeSequence = { 0x66, // data16 (no-op prefix) 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea (%rip), %rdi 0x66, // data16 prefix (no-op prefix) 0x48, // rex64 (no-op prefix) 0xff, 0x15, 0x00, 0x00, 0x00, 0x00 // call *__tls_get_addr@gotpcrel(%rip) }; ExpectedCodeSequence = ArrayRef(CodeSequence); TLSSequenceOffset = 4; } // The replacement code for the small code model. It's the same for // both sequences. static const std::initializer_list SmallSequence = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), // %rax }; NewCodeSequence = ArrayRef(SmallSequence); TpoffRelocOffset = 12; } else { static const std::initializer_list CodeSequence = { 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea (%rip), // %rdi 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // movabs $__tls_get_addr@pltoff, %rax 0x48, 0x01, 0xd8, // add %rbx, %rax 0xff, 0xd0 // call *%rax }; ExpectedCodeSequence = ArrayRef(CodeSequence); TLSSequenceOffset = 3; // The replacement code for the large code model static const std::initializer_list LargeSequence = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax), // %rax 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1) }; NewCodeSequence = ArrayRef(LargeSequence); TpoffRelocOffset = 12; } // The TLSGD/TLSLD relocations are PC-relative, so they have an addend. // The new TPOFF32 relocations is used as an absolute offset from // %fs:0, so remove the TLSGD/TLSLD addend again. RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset, ELF::R_X86_64_TPOFF32, Value.Addend - Addend); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); } else if (RelType == ELF::R_X86_64_TLSLD) { if (IsSmallCodeModel) { if (!IsGOTPCRel) { static const std::initializer_list CodeSequence = { 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq (%rip), %rdi 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt }; ExpectedCodeSequence = ArrayRef(CodeSequence); TLSSequenceOffset = 3; // The replacement code for the small code model static const std::initializer_list SmallSequence = { 0x66, 0x66, 0x66, // three data16 prefixes (no-op) 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax }; NewCodeSequence = ArrayRef(SmallSequence); } else { // This code sequence is not described in the TLS spec but gcc // generates it sometimes. static const std::initializer_list CodeSequence = { 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // leaq (%rip), %rdi 0xff, 0x15, 0x00, 0x00, 0x00, 0x00 // call // *__tls_get_addr@gotpcrel(%rip) }; ExpectedCodeSequence = ArrayRef(CodeSequence); TLSSequenceOffset = 3; // The replacement is code is just like above but it needs to be // one byte longer. static const std::initializer_list SmallSequence = { 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax }; NewCodeSequence = ArrayRef(SmallSequence); } } else { // This is the same sequence as for the TLSGD sequence with the large // memory model above static const std::initializer_list CodeSequence = { 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea (%rip), // %rdi 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, // movabs $__tls_get_addr@pltoff, %rax 0x01, 0xd8, // add %rbx, %rax 0xff, 0xd0 // call *%rax }; ExpectedCodeSequence = ArrayRef(CodeSequence); TLSSequenceOffset = 3; // The replacement code for the large code model static const std::initializer_list LargeSequence = { 0x66, 0x66, 0x66, // three data16 prefixes (no-op) 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, // 10 byte nop 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax }; NewCodeSequence = ArrayRef(LargeSequence); } } else { llvm_unreachable("both TLS relocations handled above"); } assert(ExpectedCodeSequence.size() == NewCodeSequence.size() && "Old and new code sequences must have the same size"); auto &Section = Sections[SectionID]; if (Offset < TLSSequenceOffset || (Offset - TLSSequenceOffset + NewCodeSequence.size()) > Section.getSize()) { report_fatal_error("unexpected end of section in TLS sequence"); } auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset); if (ArrayRef(TLSSequence, ExpectedCodeSequence.size()) != ExpectedCodeSequence) { report_fatal_error( "invalid TLS sequence for Global/Local Dynamic TLS Model"); } memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size()); } size_t RuntimeDyldELF::getGOTEntrySize() { // We don't use the GOT in all of these cases, but it's essentially free // to put them all here. size_t Result = 0; switch (Arch) { case Triple::x86_64: case Triple::aarch64: case Triple::aarch64_be: case Triple::ppc64: case Triple::ppc64le: case Triple::systemz: Result = sizeof(uint64_t); break; case Triple::x86: case Triple::arm: case Triple::thumb: Result = sizeof(uint32_t); break; case Triple::mips: case Triple::mipsel: case Triple::mips64: case Triple::mips64el: if (IsMipsO32ABI || IsMipsN32ABI) Result = sizeof(uint32_t); else if (IsMipsN64ABI) Result = sizeof(uint64_t); else llvm_unreachable("Mips ABI not handled"); break; default: llvm_unreachable("Unsupported CPU type!"); } return Result; } uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) { if (GOTSectionID == 0) { GOTSectionID = Sections.size(); // Reserve a section id. We'll allocate the section later // once we know the total size Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0)); } uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize(); CurrentGOTIndex += no; return StartOffset; } uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value, unsigned GOTRelType) { auto E = GOTOffsetMap.insert({Value, 0}); if (E.second) { uint64_t GOTOffset = allocateGOTEntries(1); // Create relocation for newly created GOT entry RelocationEntry RE = computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType); if (Value.SymbolName) addRelocationForSymbol(RE, Value.SymbolName); else addRelocationForSection(RE, Value.SectionID); E.first->second = GOTOffset; } return E.first->second; } void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset, uint32_t Type) { // Fill in the relative address of the GOT Entry into the stub RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset); addRelocationForSection(GOTRE, GOTSectionID); } RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset, uint64_t SymbolOffset, uint32_t Type) { return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset); } void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) { // This should never return an error as `processNewSymbol` wouldn't have been // called if getFlags() returned an error before. auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags()); if (ObjSymbolFlags & SymbolRef::SF_Indirect) { if (IFuncStubSectionID == 0) { // Create a dummy section for the ifunc stubs. It will be actually // allocated in finalizeLoad() below. IFuncStubSectionID = Sections.size(); Sections.push_back( SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0)); // First 64B are reserverd for the IFunc resolver IFuncStubOffset = 64; } IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol}); // Modify the symbol so that it points to the ifunc stub instead of to the // resolver function. Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset, Symbol.getFlags()); IFuncStubOffset += getMaxIFuncStubSize(); } } Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj, ObjSectionToIDMap &SectionMap) { if (IsMipsO32ABI) if (!PendingRelocs.empty()) return make_error("Can't find matching LO16 reloc"); // Create the IFunc stubs if necessary. This must be done before processing // the GOT entries, as the IFunc stubs may create some. if (IFuncStubSectionID != 0) { uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection( IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs"); if (!IFuncStubsAddr) return make_error( "Unable to allocate memory for IFunc stubs!"); Sections[IFuncStubSectionID] = SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset, IFuncStubOffset, 0); createIFuncResolver(IFuncStubsAddr); LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: " << IFuncStubSectionID << " Addr: " << Sections[IFuncStubSectionID].getAddress() << '\n'); for (auto &IFuncStub : IFuncStubs) { auto &Symbol = IFuncStub.OriginalSymbol; LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID() << " Offset: " << format("%p", Symbol.getOffset()) << " IFuncStubOffset: " << format("%p\n", IFuncStub.StubOffset)); createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset, Symbol.getSectionID(), Symbol.getOffset()); } IFuncStubSectionID = 0; IFuncStubOffset = 0; IFuncStubs.clear(); } // If necessary, allocate the global offset table if (GOTSectionID != 0) { // Allocate memory for the section size_t TotalSize = CurrentGOTIndex * getGOTEntrySize(); uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(), GOTSectionID, ".got", false); if (!Addr) return make_error("Unable to allocate memory for GOT!"); Sections[GOTSectionID] = SectionEntry(".got", Addr, TotalSize, TotalSize, 0); // For now, initialize all GOT entries to zero. We'll fill them in as // needed when GOT-based relocations are applied. memset(Addr, 0, TotalSize); if (IsMipsN32ABI || IsMipsN64ABI) { // To correctly resolve Mips GOT relocations, we need a mapping from // object's sections to GOTs. for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); SI != SE; ++SI) { if (SI->relocation_begin() != SI->relocation_end()) { Expected RelSecOrErr = SI->getRelocatedSection(); if (!RelSecOrErr) return make_error( toString(RelSecOrErr.takeError())); section_iterator RelocatedSection = *RelSecOrErr; ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection); assert(i != SectionMap.end()); SectionToGOTMap[i->second] = GOTSectionID; } } GOTSymbolOffsets.clear(); } } // Look for and record the EH frame section. ObjSectionToIDMap::iterator i, e; for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) { const SectionRef &Section = i->first; StringRef Name; Expected NameOrErr = Section.getName(); if (NameOrErr) Name = *NameOrErr; else consumeError(NameOrErr.takeError()); if (Name == ".eh_frame") { UnregisteredEHFrameSections.push_back(i->second); break; } } GOTOffsetMap.clear(); GOTSectionID = 0; CurrentGOTIndex = 0; return Error::success(); } bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const { return Obj.isELF(); } void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const { if (Arch == Triple::x86_64) { // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8 // (see createIFuncStub() for details) // The following code first saves all registers that contain the original // function arguments as those registers are not saved by the resolver // function. %r11 is saved as well so that the GOT2 entry can be updated // afterwards. Then it calls the actual IFunc resolver function whose // address is stored in GOT2. After the resolver function returns, all // saved registers are restored and the return value is written to GOT1. // Finally, jump to the now resolved function. // clang-format off const uint8_t StubCode[] = { 0x57, // push %rdi 0x56, // push %rsi 0x52, // push %rdx 0x51, // push %rcx 0x41, 0x50, // push %r8 0x41, 0x51, // push %r9 0x41, 0x53, // push %r11 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11) 0x41, 0x5b, // pop %r11 0x41, 0x59, // pop %r9 0x41, 0x58, // pop %r8 0x59, // pop %rcx 0x5a, // pop %rdx 0x5e, // pop %rsi 0x5f, // pop %rdi 0x49, 0x89, 0x03, // mov %rax,(%r11) 0xff, 0xe0 // jmp *%rax }; // clang-format on static_assert(sizeof(StubCode) <= 64, "maximum size of the IFunc resolver is 64B"); memcpy(Addr, StubCode, sizeof(StubCode)); } else { report_fatal_error( "IFunc resolver is not supported for target architecture"); } } void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID, uint64_t IFuncResolverOffset, uint64_t IFuncStubOffset, unsigned IFuncSectionID, uint64_t IFuncOffset) { auto &IFuncStubSection = Sections[IFuncStubSectionID]; auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset); if (Arch == Triple::x86_64) { // The first instruction loads a PC-relative address into %r11 which is a // GOT entry for this stub. This initially contains the address to the // IFunc resolver. We can use %r11 here as it's caller saved but not used // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for // code in the PLT. The IFunc resolver will use %r11 to update the GOT // entry. // // The next instruction just jumps to the address contained in the GOT // entry. As mentioned above, we do this two-step jump by first setting // %r11 so that the IFunc resolver has access to it. // // The IFunc resolver of course also needs to know the actual address of // the actual IFunc resolver function. This will be stored in a GOT entry // right next to the first one for this stub. So, the IFunc resolver will // be able to call it with %r11+8. // // In total, two adjacent GOT entries (+relocation) and one additional // relocation are required: // GOT1: Address of the IFunc resolver. // GOT2: Address of the IFunc resolver function. // IFuncStubOffset+3: 32-bit PC-relative address of GOT1. uint64_t GOT1 = allocateGOTEntries(2); uint64_t GOT2 = GOT1 + getGOTEntrySize(); RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64, IFuncResolverOffset, {}); addRelocationForSection(RE1, IFuncStubSectionID); RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {}); addRelocationForSection(RE2, IFuncSectionID); const uint8_t StubCode[] = { 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11 0x41, 0xff, 0x23 // jmpq *(%r11) }; assert(sizeof(StubCode) <= getMaxIFuncStubSize() && "IFunc stub size must not exceed getMaxIFuncStubSize()"); memcpy(Addr, StubCode, sizeof(StubCode)); // The PC-relative value starts 4 bytes from the end of the leaq // instruction, so the addend is -4. resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3, GOT1 - 4, ELF::R_X86_64_PC32); } else { report_fatal_error("IFunc stub is not supported for target architecture"); } } unsigned RuntimeDyldELF::getMaxIFuncStubSize() const { if (Arch == Triple::x86_64) { return 10; } return 0; } bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const { unsigned RelTy = R.getType(); if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE || RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC; if (Arch == Triple::x86_64) return RelTy == ELF::R_X86_64_GOTPCREL || RelTy == ELF::R_X86_64_GOTPCRELX || RelTy == ELF::R_X86_64_GOT64 || RelTy == ELF::R_X86_64_REX_GOTPCRELX; return false; } bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const { if (Arch != Triple::x86_64) return true; // Conservative answer switch (R.getType()) { default: return true; // Conservative answer case ELF::R_X86_64_GOTPCREL: case ELF::R_X86_64_GOTPCRELX: case ELF::R_X86_64_REX_GOTPCRELX: case ELF::R_X86_64_GOTPC64: case ELF::R_X86_64_GOT64: case ELF::R_X86_64_GOTOFF64: case ELF::R_X86_64_PC32: case ELF::R_X86_64_PC64: case ELF::R_X86_64_64: // We know that these reloation types won't need a stub function. This list // can be extended as needed. return false; } } } // namespace llvm