//===------------- OrcABISupport.cpp - ABI specific support code ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/Orc/OrcABISupport.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Process.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "orc" using namespace llvm; using namespace llvm::orc; template static bool stubAndPointerRangesOk(ExecutorAddr StubBlockAddr, ExecutorAddr PointerBlockAddr, unsigned NumStubs) { constexpr unsigned MaxDisp = ORCABI::StubToPointerMaxDisplacement; ExecutorAddr FirstStub = StubBlockAddr; ExecutorAddr LastStub = FirstStub + ((NumStubs - 1) * ORCABI::StubSize); ExecutorAddr FirstPointer = PointerBlockAddr; ExecutorAddr LastPointer = FirstPointer + ((NumStubs - 1) * ORCABI::StubSize); if (FirstStub < FirstPointer) { if (LastStub >= FirstPointer) return false; // Ranges overlap. return (FirstPointer - FirstStub <= MaxDisp) && (LastPointer - LastStub <= MaxDisp); // out-of-range. } if (LastPointer >= FirstStub) return false; // Ranges overlap. return (FirstStub - FirstPointer <= MaxDisp) && (LastStub - LastPointer <= MaxDisp); } namespace llvm { namespace orc { void OrcAArch64::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr) { const uint32_t ResolverCode[] = { // resolver_entry: 0xa9bf47fd, // 0x000: stp x29, x17, [sp, #-16]! 0x910003fd, // 0x004: mov x29, sp 0xa9bf73fb, // 0x008: stp x27, x28, [sp, #-16]! 0xa9bf6bf9, // 0x00c: stp x25, x26, [sp, #-16]! 0xa9bf63f7, // 0x010: stp x23, x24, [sp, #-16]! 0xa9bf5bf5, // 0x014: stp x21, x22, [sp, #-16]! 0xa9bf53f3, // 0x018: stp x19, x20, [sp, #-16]! 0xa9bf3fee, // 0x01c: stp x14, x15, [sp, #-16]! 0xa9bf37ec, // 0x020: stp x12, x13, [sp, #-16]! 0xa9bf2fea, // 0x024: stp x10, x11, [sp, #-16]! 0xa9bf27e8, // 0x028: stp x8, x9, [sp, #-16]! 0xa9bf1fe6, // 0x02c: stp x6, x7, [sp, #-16]! 0xa9bf17e4, // 0x030: stp x4, x5, [sp, #-16]! 0xa9bf0fe2, // 0x034: stp x2, x3, [sp, #-16]! 0xa9bf07e0, // 0x038: stp x0, x1, [sp, #-16]! 0xadbf7ffe, // 0x03c: stp q30, q31, [sp, #-32]! 0xadbf77fc, // 0x040: stp q28, q29, [sp, #-32]! 0xadbf6ffa, // 0x044: stp q26, q27, [sp, #-32]! 0xadbf67f8, // 0x048: stp q24, q25, [sp, #-32]! 0xadbf5ff6, // 0x04c: stp q22, q23, [sp, #-32]! 0xadbf57f4, // 0x050: stp q20, q21, [sp, #-32]! 0xadbf4ff2, // 0x054: stp q18, q19, [sp, #-32]! 0xadbf47f0, // 0x058: stp q16, q17, [sp, #-32]! 0xadbf3fee, // 0x05c: stp q14, q15, [sp, #-32]! 0xadbf37ec, // 0x060: stp q12, q13, [sp, #-32]! 0xadbf2fea, // 0x064: stp q10, q11, [sp, #-32]! 0xadbf27e8, // 0x068: stp q8, q9, [sp, #-32]! 0xadbf1fe6, // 0x06c: stp q6, q7, [sp, #-32]! 0xadbf17e4, // 0x070: stp q4, q5, [sp, #-32]! 0xadbf0fe2, // 0x074: stp q2, q3, [sp, #-32]! 0xadbf07e0, // 0x078: stp q0, q1, [sp, #-32]! 0x580004e0, // 0x07c: ldr x0, Lreentry_ctx_ptr 0xaa1e03e1, // 0x080: mov x1, x30 0xd1003021, // 0x084: sub x1, x1, #12 0x58000442, // 0x088: ldr x2, Lreentry_fn_ptr 0xd63f0040, // 0x08c: blr x2 0xaa0003f1, // 0x090: mov x17, x0 0xacc107e0, // 0x094: ldp q0, q1, [sp], #32 0xacc10fe2, // 0x098: ldp q2, q3, [sp], #32 0xacc117e4, // 0x09c: ldp q4, q5, [sp], #32 0xacc11fe6, // 0x0a0: ldp q6, q7, [sp], #32 0xacc127e8, // 0x0a4: ldp q8, q9, [sp], #32 0xacc12fea, // 0x0a8: ldp q10, q11, [sp], #32 0xacc137ec, // 0x0ac: ldp q12, q13, [sp], #32 0xacc13fee, // 0x0b0: ldp q14, q15, [sp], #32 0xacc147f0, // 0x0b4: ldp q16, q17, [sp], #32 0xacc14ff2, // 0x0b8: ldp q18, q19, [sp], #32 0xacc157f4, // 0x0bc: ldp q20, q21, [sp], #32 0xacc15ff6, // 0x0c0: ldp q22, q23, [sp], #32 0xacc167f8, // 0x0c4: ldp q24, q25, [sp], #32 0xacc16ffa, // 0x0c8: ldp q26, q27, [sp], #32 0xacc177fc, // 0x0cc: ldp q28, q29, [sp], #32 0xacc17ffe, // 0x0d0: ldp q30, q31, [sp], #32 0xa8c107e0, // 0x0d4: ldp x0, x1, [sp], #16 0xa8c10fe2, // 0x0d8: ldp x2, x3, [sp], #16 0xa8c117e4, // 0x0dc: ldp x4, x5, [sp], #16 0xa8c11fe6, // 0x0e0: ldp x6, x7, [sp], #16 0xa8c127e8, // 0x0e4: ldp x8, x9, [sp], #16 0xa8c12fea, // 0x0e8: ldp x10, x11, [sp], #16 0xa8c137ec, // 0x0ec: ldp x12, x13, [sp], #16 0xa8c13fee, // 0x0f0: ldp x14, x15, [sp], #16 0xa8c153f3, // 0x0f4: ldp x19, x20, [sp], #16 0xa8c15bf5, // 0x0f8: ldp x21, x22, [sp], #16 0xa8c163f7, // 0x0fc: ldp x23, x24, [sp], #16 0xa8c16bf9, // 0x100: ldp x25, x26, [sp], #16 0xa8c173fb, // 0x104: ldp x27, x28, [sp], #16 0xa8c17bfd, // 0x108: ldp x29, x30, [sp], #16 0xd65f0220, // 0x10c: ret x17 0x01234567, // 0x110: Lreentry_fn_ptr: 0xdeadbeef, // 0x114: .quad 0 0x98765432, // 0x118: Lreentry_ctx_ptr: 0xcafef00d // 0x11c: .quad 0 }; const unsigned ReentryFnAddrOffset = 0x110; const unsigned ReentryCtxAddrOffset = 0x118; memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr, sizeof(uint64_t)); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr, sizeof(uint64_t)); } void OrcAArch64::writeTrampolines(char *TrampolineBlockWorkingMem, ExecutorAddr TrampolineBlockTargetAddress, ExecutorAddr ResolverAddr, unsigned NumTrampolines) { unsigned OffsetToPtr = alignTo(NumTrampolines * TrampolineSize, 8); memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr, sizeof(uint64_t)); // OffsetToPtr is actually the offset from the PC for the 2nd instruction, so // subtract 32-bits. OffsetToPtr -= 4; uint32_t *Trampolines = reinterpret_cast(TrampolineBlockWorkingMem); for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize) { Trampolines[3 * I + 0] = 0xaa1e03f1; // mov x17, x30 Trampolines[3 * I + 1] = 0x58000010 | (OffsetToPtr << 3); // adr x16, Lptr Trampolines[3 * I + 2] = 0xd63f0200; // blr x16 } } void OrcAArch64::writeIndirectStubsBlock( char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress, ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) { // Stub format is: // // .section __orc_stubs // stub1: // ldr x16, ptr1 ; PC-rel load of ptr1 // br x16 ; Jump to resolver // stub2: // ldr x16, ptr2 ; PC-rel load of ptr2 // br x16 ; Jump to resolver // // ... // // .section __orc_ptrs // ptr1: // .quad 0x0 // ptr2: // .quad 0x0 // // ... static_assert(StubSize == PointerSize, "Pointer and stub size must match for algorithm below"); assert(stubAndPointerRangesOk( StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) && "PointersBlock is out of range"); uint64_t PtrDisplacement = PointersBlockTargetAddress - StubsBlockTargetAddress; assert((PtrDisplacement % 8 == 0) && "Displacement to pointer is not a multiple of 8"); uint64_t *Stub = reinterpret_cast(StubsBlockWorkingMem); uint64_t PtrOffsetField = ((PtrDisplacement >> 2) & 0x7ffff) << 5; for (unsigned I = 0; I < NumStubs; ++I) Stub[I] = 0xd61f020058000010 | PtrOffsetField; } void OrcX86_64_Base::writeTrampolines(char *TrampolineBlockWorkingMem, ExecutorAddr TrampolineBlockTargetAddress, ExecutorAddr ResolverAddr, unsigned NumTrampolines) { unsigned OffsetToPtr = NumTrampolines * TrampolineSize; memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr, sizeof(uint64_t)); uint64_t *Trampolines = reinterpret_cast(TrampolineBlockWorkingMem); uint64_t CallIndirPCRel = 0xf1c40000000015ff; for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize) Trampolines[I] = CallIndirPCRel | ((OffsetToPtr - 6) << 16); } void OrcX86_64_Base::writeIndirectStubsBlock( char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress, ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) { // Stub format is: // // .section __orc_stubs // stub1: // jmpq *ptr1(%rip) // .byte 0xC4 ; <- Invalid opcode padding. // .byte 0xF1 // stub2: // jmpq *ptr2(%rip) // // ... // // .section __orc_ptrs // ptr1: // .quad 0x0 // ptr2: // .quad 0x0 // // ... // Populate the stubs page stubs and mark it executable. static_assert(StubSize == PointerSize, "Pointer and stub size must match for algorithm below"); assert(stubAndPointerRangesOk( StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) && "PointersBlock is out of range"); uint64_t *Stub = reinterpret_cast(StubsBlockWorkingMem); uint64_t PtrOffsetField = (PointersBlockTargetAddress - StubsBlockTargetAddress - 6) << 16; for (unsigned I = 0; I < NumStubs; ++I) Stub[I] = 0xF1C40000000025ff | PtrOffsetField; } void OrcX86_64_SysV::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr) { LLVM_DEBUG({ dbgs() << "Writing resolver code to " << formatv("{0:x16}", ResolverTargetAddress) << "\n"; }); const uint8_t ResolverCode[] = { // resolver_entry: 0x55, // 0x00: pushq %rbp 0x48, 0x89, 0xe5, // 0x01: movq %rsp, %rbp 0x50, // 0x04: pushq %rax 0x53, // 0x05: pushq %rbx 0x51, // 0x06: pushq %rcx 0x52, // 0x07: pushq %rdx 0x56, // 0x08: pushq %rsi 0x57, // 0x09: pushq %rdi 0x41, 0x50, // 0x0a: pushq %r8 0x41, 0x51, // 0x0c: pushq %r9 0x41, 0x52, // 0x0e: pushq %r10 0x41, 0x53, // 0x10: pushq %r11 0x41, 0x54, // 0x12: pushq %r12 0x41, 0x55, // 0x14: pushq %r13 0x41, 0x56, // 0x16: pushq %r14 0x41, 0x57, // 0x18: pushq %r15 0x48, 0x81, 0xec, 0x08, 0x02, 0x00, 0x00, // 0x1a: subq 0x208, %rsp 0x48, 0x0f, 0xae, 0x04, 0x24, // 0x21: fxsave64 (%rsp) 0x48, 0xbf, // 0x26: movabsq , %rdi // 0x28: JIT re-entry ctx addr. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x8b, 0x75, 0x08, // 0x30: movq 8(%rbp), %rsi 0x48, 0x83, 0xee, 0x06, // 0x34: subq $6, %rsi 0x48, 0xb8, // 0x38: movabsq , %rax // 0x3a: JIT re-entry fn addr: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xd0, // 0x42: callq *%rax 0x48, 0x89, 0x45, 0x08, // 0x44: movq %rax, 8(%rbp) 0x48, 0x0f, 0xae, 0x0c, 0x24, // 0x48: fxrstor64 (%rsp) 0x48, 0x81, 0xc4, 0x08, 0x02, 0x00, 0x00, // 0x4d: addq 0x208, %rsp 0x41, 0x5f, // 0x54: popq %r15 0x41, 0x5e, // 0x56: popq %r14 0x41, 0x5d, // 0x58: popq %r13 0x41, 0x5c, // 0x5a: popq %r12 0x41, 0x5b, // 0x5c: popq %r11 0x41, 0x5a, // 0x5e: popq %r10 0x41, 0x59, // 0x60: popq %r9 0x41, 0x58, // 0x62: popq %r8 0x5f, // 0x64: popq %rdi 0x5e, // 0x65: popq %rsi 0x5a, // 0x66: popq %rdx 0x59, // 0x67: popq %rcx 0x5b, // 0x68: popq %rbx 0x58, // 0x69: popq %rax 0x5d, // 0x6a: popq %rbp 0xc3, // 0x6b: retq }; const unsigned ReentryFnAddrOffset = 0x3a; const unsigned ReentryCtxAddrOffset = 0x28; memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr, sizeof(uint64_t)); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr, sizeof(uint64_t)); } void OrcX86_64_Win32::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr) { // resolverCode is similar to OrcX86_64 with differences specific to windows // x64 calling convention: arguments go into rcx, rdx and come in reverse // order, shadow space allocation on stack const uint8_t ResolverCode[] = { // resolver_entry: 0x55, // 0x00: pushq %rbp 0x48, 0x89, 0xe5, // 0x01: movq %rsp, %rbp 0x50, // 0x04: pushq %rax 0x53, // 0x05: pushq %rbx 0x51, // 0x06: pushq %rcx 0x52, // 0x07: pushq %rdx 0x56, // 0x08: pushq %rsi 0x57, // 0x09: pushq %rdi 0x41, 0x50, // 0x0a: pushq %r8 0x41, 0x51, // 0x0c: pushq %r9 0x41, 0x52, // 0x0e: pushq %r10 0x41, 0x53, // 0x10: pushq %r11 0x41, 0x54, // 0x12: pushq %r12 0x41, 0x55, // 0x14: pushq %r13 0x41, 0x56, // 0x16: pushq %r14 0x41, 0x57, // 0x18: pushq %r15 0x48, 0x81, 0xec, 0x08, 0x02, 0x00, 0x00, // 0x1a: subq 0x208, %rsp 0x48, 0x0f, 0xae, 0x04, 0x24, // 0x21: fxsave64 (%rsp) 0x48, 0xb9, // 0x26: movabsq , %rcx // 0x28: JIT re-entry ctx addr. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x8B, 0x55, 0x08, // 0x30: mov rdx, [rbp+0x8] 0x48, 0x83, 0xea, 0x06, // 0x34: sub rdx, 0x6 0x48, 0xb8, // 0x38: movabsq , %rax // 0x3a: JIT re-entry fn addr: 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x42: sub rsp, 0x20 (Allocate shadow space) 0x48, 0x83, 0xEC, 0x20, 0xff, 0xd0, // 0x46: callq *%rax // 0x48: add rsp, 0x20 (Free shadow space) 0x48, 0x83, 0xC4, 0x20, 0x48, 0x89, 0x45, 0x08, // 0x4C: movq %rax, 8(%rbp) 0x48, 0x0f, 0xae, 0x0c, 0x24, // 0x50: fxrstor64 (%rsp) 0x48, 0x81, 0xc4, 0x08, 0x02, 0x00, 0x00, // 0x55: addq 0x208, %rsp 0x41, 0x5f, // 0x5C: popq %r15 0x41, 0x5e, // 0x5E: popq %r14 0x41, 0x5d, // 0x60: popq %r13 0x41, 0x5c, // 0x62: popq %r12 0x41, 0x5b, // 0x64: popq %r11 0x41, 0x5a, // 0x66: popq %r10 0x41, 0x59, // 0x68: popq %r9 0x41, 0x58, // 0x6a: popq %r8 0x5f, // 0x6c: popq %rdi 0x5e, // 0x6d: popq %rsi 0x5a, // 0x6e: popq %rdx 0x59, // 0x6f: popq %rcx 0x5b, // 0x70: popq %rbx 0x58, // 0x71: popq %rax 0x5d, // 0x72: popq %rbp 0xc3, // 0x73: retq }; const unsigned ReentryFnAddrOffset = 0x3a; const unsigned ReentryCtxAddrOffset = 0x28; memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr, sizeof(uint64_t)); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr, sizeof(uint64_t)); } void OrcI386::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr) { assert((ReentryFnAddr.getValue() >> 32) == 0 && "ReentryFnAddr out of range"); assert((ReentryCtxAddr.getValue() >> 32) == 0 && "ReentryCtxAddr out of range"); const uint8_t ResolverCode[] = { // resolver_entry: 0x55, // 0x00: pushl %ebp 0x89, 0xe5, // 0x01: movl %esp, %ebp 0x54, // 0x03: pushl %esp 0x83, 0xe4, 0xf0, // 0x04: andl $-0x10, %esp 0x50, // 0x07: pushl %eax 0x53, // 0x08: pushl %ebx 0x51, // 0x09: pushl %ecx 0x52, // 0x0a: pushl %edx 0x56, // 0x0b: pushl %esi 0x57, // 0x0c: pushl %edi 0x81, 0xec, 0x18, 0x02, 0x00, 0x00, // 0x0d: subl $0x218, %esp 0x0f, 0xae, 0x44, 0x24, 0x10, // 0x13: fxsave 0x10(%esp) 0x8b, 0x75, 0x04, // 0x18: movl 0x4(%ebp), %esi 0x83, 0xee, 0x05, // 0x1b: subl $0x5, %esi 0x89, 0x74, 0x24, 0x04, // 0x1e: movl %esi, 0x4(%esp) 0xc7, 0x04, 0x24, 0x00, 0x00, 0x00, 0x00, // 0x22: movl , (%esp) 0xb8, 0x00, 0x00, 0x00, 0x00, // 0x29: movl , %eax 0xff, 0xd0, // 0x2e: calll *%eax 0x89, 0x45, 0x04, // 0x30: movl %eax, 0x4(%ebp) 0x0f, 0xae, 0x4c, 0x24, 0x10, // 0x33: fxrstor 0x10(%esp) 0x81, 0xc4, 0x18, 0x02, 0x00, 0x00, // 0x38: addl $0x218, %esp 0x5f, // 0x3e: popl %edi 0x5e, // 0x3f: popl %esi 0x5a, // 0x40: popl %edx 0x59, // 0x41: popl %ecx 0x5b, // 0x42: popl %ebx 0x58, // 0x43: popl %eax 0x8b, 0x65, 0xfc, // 0x44: movl -0x4(%ebp), %esp 0x5d, // 0x48: popl %ebp 0xc3 // 0x49: retl }; const unsigned ReentryFnAddrOffset = 0x2a; const unsigned ReentryCtxAddrOffset = 0x25; memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr, sizeof(uint32_t)); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr, sizeof(uint32_t)); } void OrcI386::writeTrampolines(char *TrampolineWorkingMem, ExecutorAddr TrampolineBlockTargetAddress, ExecutorAddr ResolverAddr, unsigned NumTrampolines) { assert((ResolverAddr.getValue() >> 32) == 0 && "ResolverAddr out of range"); uint64_t CallRelImm = 0xF1C4C400000000e8; uint64_t ResolverRel = ResolverAddr - TrampolineBlockTargetAddress - 5; uint64_t *Trampolines = reinterpret_cast(TrampolineWorkingMem); for (unsigned I = 0; I < NumTrampolines; ++I, ResolverRel -= TrampolineSize) Trampolines[I] = CallRelImm | (ResolverRel << 8); } void OrcI386::writeIndirectStubsBlock(char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress, ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) { assert((StubsBlockTargetAddress.getValue() >> 32) == 0 && "StubsBlockTargetAddress is out of range"); assert((PointersBlockTargetAddress.getValue() >> 32) == 0 && "PointersBlockTargetAddress is out of range"); // Stub format is: // // .section __orc_stubs // stub1: // jmpq *ptr1 // .byte 0xC4 ; <- Invalid opcode padding. // .byte 0xF1 // stub2: // jmpq *ptr2 // // ... // // .section __orc_ptrs // ptr1: // .quad 0x0 // ptr2: // .quad 0x0 // // ... assert(stubAndPointerRangesOk( StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) && "PointersBlock is out of range"); uint64_t *Stub = reinterpret_cast(StubsBlockWorkingMem); uint64_t PtrAddr = PointersBlockTargetAddress.getValue(); for (unsigned I = 0; I < NumStubs; ++I, PtrAddr += 4) Stub[I] = 0xF1C40000000025ff | (PtrAddr << 16); } void OrcMips32_Base::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr, bool isBigEndian) { const uint32_t ResolverCode[] = { // resolver_entry: 0x27bdff98, // 0x00: addiu $sp,$sp,-104 0xafa20000, // 0x04: sw $v0,0($sp) 0xafa30004, // 0x08: sw $v1,4($sp) 0xafa40008, // 0x0c: sw $a0,8($sp) 0xafa5000c, // 0x10: sw $a1,12($sp) 0xafa60010, // 0x14: sw $a2,16($sp) 0xafa70014, // 0x18: sw $a3,20($sp) 0xafb00018, // 0x1c: sw $s0,24($sp) 0xafb1001c, // 0x20: sw $s1,28($sp) 0xafb20020, // 0x24: sw $s2,32($sp) 0xafb30024, // 0x28: sw $s3,36($sp) 0xafb40028, // 0x2c: sw $s4,40($sp) 0xafb5002c, // 0x30: sw $s5,44($sp) 0xafb60030, // 0x34: sw $s6,48($sp) 0xafb70034, // 0x38: sw $s7,52($sp) 0xafa80038, // 0x3c: sw $t0,56($sp) 0xafa9003c, // 0x40: sw $t1,60($sp) 0xafaa0040, // 0x44: sw $t2,64($sp) 0xafab0044, // 0x48: sw $t3,68($sp) 0xafac0048, // 0x4c: sw $t4,72($sp) 0xafad004c, // 0x50: sw $t5,76($sp) 0xafae0050, // 0x54: sw $t6,80($sp) 0xafaf0054, // 0x58: sw $t7,84($sp) 0xafb80058, // 0x5c: sw $t8,88($sp) 0xafb9005c, // 0x60: sw $t9,92($sp) 0xafbe0060, // 0x64: sw $fp,96($sp) 0xafbf0064, // 0x68: sw $ra,100($sp) // JIT re-entry ctx addr. 0x00000000, // 0x6c: lui $a0,ctx 0x00000000, // 0x70: addiu $a0,$a0,ctx 0x03e02825, // 0x74: move $a1, $ra 0x24a5ffec, // 0x78: addiu $a1,$a1,-20 // JIT re-entry fn addr: 0x00000000, // 0x7c: lui $t9,reentry 0x00000000, // 0x80: addiu $t9,$t9,reentry 0x0320f809, // 0x84: jalr $t9 0x00000000, // 0x88: nop 0x8fbf0064, // 0x8c: lw $ra,100($sp) 0x8fbe0060, // 0x90: lw $fp,96($sp) 0x8fb9005c, // 0x94: lw $t9,92($sp) 0x8fb80058, // 0x98: lw $t8,88($sp) 0x8faf0054, // 0x9c: lw $t7,84($sp) 0x8fae0050, // 0xa0: lw $t6,80($sp) 0x8fad004c, // 0xa4: lw $t5,76($sp) 0x8fac0048, // 0xa8: lw $t4,72($sp) 0x8fab0044, // 0xac: lw $t3,68($sp) 0x8faa0040, // 0xb0: lw $t2,64($sp) 0x8fa9003c, // 0xb4: lw $t1,60($sp) 0x8fa80038, // 0xb8: lw $t0,56($sp) 0x8fb70034, // 0xbc: lw $s7,52($sp) 0x8fb60030, // 0xc0: lw $s6,48($sp) 0x8fb5002c, // 0xc4: lw $s5,44($sp) 0x8fb40028, // 0xc8: lw $s4,40($sp) 0x8fb30024, // 0xcc: lw $s3,36($sp) 0x8fb20020, // 0xd0: lw $s2,32($sp) 0x8fb1001c, // 0xd4: lw $s1,28($sp) 0x8fb00018, // 0xd8: lw $s0,24($sp) 0x8fa70014, // 0xdc: lw $a3,20($sp) 0x8fa60010, // 0xe0: lw $a2,16($sp) 0x8fa5000c, // 0xe4: lw $a1,12($sp) 0x8fa40008, // 0xe8: lw $a0,8($sp) 0x27bd0068, // 0xec: addiu $sp,$sp,104 0x0300f825, // 0xf0: move $ra, $t8 0x03200008, // 0xf4: jr $t9 0x00000000, // 0xf8: move $t9, $v0/v1 }; const unsigned ReentryFnAddrOffset = 0x7c; // JIT re-entry fn addr lui const unsigned ReentryCtxAddrOffset = 0x6c; // JIT re-entry context addr lui const unsigned Offsett = 0xf8; memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); // Depending on endian return value will be in v0 or v1. uint32_t MoveVxT9 = isBigEndian ? 0x0060c825 : 0x0040c825; memcpy(ResolverWorkingMem + Offsett, &MoveVxT9, sizeof(MoveVxT9)); uint32_t ReentryCtxLUi = 0x3c040000 | (((ReentryCtxAddr.getValue() + 0x8000) >> 16) & 0xFFFF); uint32_t ReentryCtxADDiu = 0x24840000 | (ReentryCtxAddr.getValue() & 0xFFFF); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxLUi, sizeof(ReentryCtxLUi)); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset + 4, &ReentryCtxADDiu, sizeof(ReentryCtxADDiu)); uint32_t ReentryFnLUi = 0x3c190000 | (((ReentryFnAddr.getValue() + 0x8000) >> 16) & 0xFFFF); uint32_t ReentryFnADDiu = 0x27390000 | (ReentryFnAddr.getValue() & 0xFFFF); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnLUi, sizeof(ReentryFnLUi)); memcpy(ResolverWorkingMem + ReentryFnAddrOffset + 4, &ReentryFnADDiu, sizeof(ReentryFnADDiu)); } void OrcMips32_Base::writeTrampolines(char *TrampolineBlockWorkingMem, ExecutorAddr TrampolineBlockTargetAddress, ExecutorAddr ResolverAddr, unsigned NumTrampolines) { assert((ResolverAddr.getValue() >> 32) == 0 && "ResolverAddr out of range"); uint32_t *Trampolines = reinterpret_cast(TrampolineBlockWorkingMem); uint32_t RHiAddr = ((ResolverAddr.getValue() + 0x8000) >> 16); for (unsigned I = 0; I < NumTrampolines; ++I) { // move $t8,$ra // lui $t9,ResolverAddr // addiu $t9,$t9,ResolverAddr // jalr $t9 // nop Trampolines[5 * I + 0] = 0x03e0c025; Trampolines[5 * I + 1] = 0x3c190000 | (RHiAddr & 0xFFFF); Trampolines[5 * I + 2] = 0x27390000 | (ResolverAddr.getValue() & 0xFFFF); Trampolines[5 * I + 3] = 0x0320f809; Trampolines[5 * I + 4] = 0x00000000; } } void OrcMips32_Base::writeIndirectStubsBlock( char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress, ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) { assert((StubsBlockTargetAddress.getValue() >> 32) == 0 && "InitialPtrVal is out of range"); // Stub format is: // // .section __orc_stubs // stub1: // lui $t9, ptr1 // lw $t9, %lo(ptr1)($t9) // jr $t9 // stub2: // lui $t9, ptr2 // lw $t9,%lo(ptr1)($t9) // jr $t9 // // ... // // .section __orc_ptrs // ptr1: // .word 0x0 // ptr2: // .word 0x0 // // i.. assert(stubAndPointerRangesOk( StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) && "PointersBlock is out of range"); // Populate the stubs page stubs and mark it executable. uint32_t *Stub = reinterpret_cast(StubsBlockWorkingMem); uint64_t PtrAddr = PointersBlockTargetAddress.getValue(); for (unsigned I = 0; I < NumStubs; ++I) { uint32_t HiAddr = ((PtrAddr + 0x8000) >> 16); Stub[4 * I + 0] = 0x3c190000 | (HiAddr & 0xFFFF); // lui $t9,ptr1 Stub[4 * I + 1] = 0x8f390000 | (PtrAddr & 0xFFFF); // lw $t9,%lo(ptr1)($t9) Stub[4 * I + 2] = 0x03200008; // jr $t9 Stub[4 * I + 3] = 0x00000000; // nop PtrAddr += 4; } } void OrcMips64::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr) { const uint32_t ResolverCode[] = { //resolver_entry: 0x67bdff30, // 0x00: daddiu $sp,$sp,-208 0xffa20000, // 0x04: sd v0,0(sp) 0xffa30008, // 0x08: sd v1,8(sp) 0xffa40010, // 0x0c: sd a0,16(sp) 0xffa50018, // 0x10: sd a1,24(sp) 0xffa60020, // 0x14: sd a2,32(sp) 0xffa70028, // 0x18: sd a3,40(sp) 0xffa80030, // 0x1c: sd a4,48(sp) 0xffa90038, // 0x20: sd a5,56(sp) 0xffaa0040, // 0x24: sd a6,64(sp) 0xffab0048, // 0x28: sd a7,72(sp) 0xffac0050, // 0x2c: sd t0,80(sp) 0xffad0058, // 0x30: sd t1,88(sp) 0xffae0060, // 0x34: sd t2,96(sp) 0xffaf0068, // 0x38: sd t3,104(sp) 0xffb00070, // 0x3c: sd s0,112(sp) 0xffb10078, // 0x40: sd s1,120(sp) 0xffb20080, // 0x44: sd s2,128(sp) 0xffb30088, // 0x48: sd s3,136(sp) 0xffb40090, // 0x4c: sd s4,144(sp) 0xffb50098, // 0x50: sd s5,152(sp) 0xffb600a0, // 0x54: sd s6,160(sp) 0xffb700a8, // 0x58: sd s7,168(sp) 0xffb800b0, // 0x5c: sd t8,176(sp) 0xffb900b8, // 0x60: sd t9,184(sp) 0xffbe00c0, // 0x64: sd fp,192(sp) 0xffbf00c8, // 0x68: sd ra,200(sp) // JIT re-entry ctx addr. 0x00000000, // 0x6c: lui $a0,heighest(ctx) 0x00000000, // 0x70: daddiu $a0,$a0,heigher(ctx) 0x00000000, // 0x74: dsll $a0,$a0,16 0x00000000, // 0x78: daddiu $a0,$a0,hi(ctx) 0x00000000, // 0x7c: dsll $a0,$a0,16 0x00000000, // 0x80: daddiu $a0,$a0,lo(ctx) 0x03e02825, // 0x84: move $a1, $ra 0x64a5ffdc, // 0x88: daddiu $a1,$a1,-36 // JIT re-entry fn addr: 0x00000000, // 0x8c: lui $t9,reentry 0x00000000, // 0x90: daddiu $t9,$t9,reentry 0x00000000, // 0x94: dsll $t9,$t9, 0x00000000, // 0x98: daddiu $t9,$t9, 0x00000000, // 0x9c: dsll $t9,$t9, 0x00000000, // 0xa0: daddiu $t9,$t9, 0x0320f809, // 0xa4: jalr $t9 0x00000000, // 0xa8: nop 0xdfbf00c8, // 0xac: ld ra, 200(sp) 0xdfbe00c0, // 0xb0: ld fp, 192(sp) 0xdfb900b8, // 0xb4: ld t9, 184(sp) 0xdfb800b0, // 0xb8: ld t8, 176(sp) 0xdfb700a8, // 0xbc: ld s7, 168(sp) 0xdfb600a0, // 0xc0: ld s6, 160(sp) 0xdfb50098, // 0xc4: ld s5, 152(sp) 0xdfb40090, // 0xc8: ld s4, 144(sp) 0xdfb30088, // 0xcc: ld s3, 136(sp) 0xdfb20080, // 0xd0: ld s2, 128(sp) 0xdfb10078, // 0xd4: ld s1, 120(sp) 0xdfb00070, // 0xd8: ld s0, 112(sp) 0xdfaf0068, // 0xdc: ld t3, 104(sp) 0xdfae0060, // 0xe0: ld t2, 96(sp) 0xdfad0058, // 0xe4: ld t1, 88(sp) 0xdfac0050, // 0xe8: ld t0, 80(sp) 0xdfab0048, // 0xec: ld a7, 72(sp) 0xdfaa0040, // 0xf0: ld a6, 64(sp) 0xdfa90038, // 0xf4: ld a5, 56(sp) 0xdfa80030, // 0xf8: ld a4, 48(sp) 0xdfa70028, // 0xfc: ld a3, 40(sp) 0xdfa60020, // 0x100: ld a2, 32(sp) 0xdfa50018, // 0x104: ld a1, 24(sp) 0xdfa40010, // 0x108: ld a0, 16(sp) 0xdfa30008, // 0x10c: ld v1, 8(sp) 0x67bd00d0, // 0x110: daddiu $sp,$sp,208 0x0300f825, // 0x114: move $ra, $t8 0x03200008, // 0x118: jr $t9 0x0040c825, // 0x11c: move $t9, $v0 }; const unsigned ReentryFnAddrOffset = 0x8c; // JIT re-entry fn addr lui const unsigned ReentryCtxAddrOffset = 0x6c; // JIT re-entry ctx addr lui memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); uint32_t ReentryCtxLUi = 0x3c040000 | (((ReentryCtxAddr.getValue() + 0x800080008000) >> 48) & 0xFFFF); uint32_t ReentryCtxDADDiu = 0x64840000 | (((ReentryCtxAddr.getValue() + 0x80008000) >> 32) & 0xFFFF); uint32_t ReentryCtxDSLL = 0x00042438; uint32_t ReentryCtxDADDiu2 = 0x64840000 | ((((ReentryCtxAddr.getValue() + 0x8000) >> 16) & 0xFFFF)); uint32_t ReentryCtxDSLL2 = 0x00042438; uint32_t ReentryCtxDADDiu3 = 0x64840000 | (ReentryCtxAddr.getValue() & 0xFFFF); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxLUi, sizeof(ReentryCtxLUi)); memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 4), &ReentryCtxDADDiu, sizeof(ReentryCtxDADDiu)); memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 8), &ReentryCtxDSLL, sizeof(ReentryCtxDSLL)); memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 12), &ReentryCtxDADDiu2, sizeof(ReentryCtxDADDiu2)); memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 16), &ReentryCtxDSLL2, sizeof(ReentryCtxDSLL2)); memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 20), &ReentryCtxDADDiu3, sizeof(ReentryCtxDADDiu3)); uint32_t ReentryFnLUi = 0x3c190000 | (((ReentryFnAddr.getValue() + 0x800080008000) >> 48) & 0xFFFF); uint32_t ReentryFnDADDiu = 0x67390000 | (((ReentryFnAddr.getValue() + 0x80008000) >> 32) & 0xFFFF); uint32_t ReentryFnDSLL = 0x0019cc38; uint32_t ReentryFnDADDiu2 = 0x67390000 | (((ReentryFnAddr.getValue() + 0x8000) >> 16) & 0xFFFF); uint32_t ReentryFnDSLL2 = 0x0019cc38; uint32_t ReentryFnDADDiu3 = 0x67390000 | (ReentryFnAddr.getValue() & 0xFFFF); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnLUi, sizeof(ReentryFnLUi)); memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 4), &ReentryFnDADDiu, sizeof(ReentryFnDADDiu)); memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 8), &ReentryFnDSLL, sizeof(ReentryFnDSLL)); memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 12), &ReentryFnDADDiu2, sizeof(ReentryFnDADDiu2)); memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 16), &ReentryFnDSLL2, sizeof(ReentryFnDSLL2)); memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 20), &ReentryFnDADDiu3, sizeof(ReentryFnDADDiu3)); } void OrcMips64::writeTrampolines(char *TrampolineBlockWorkingMem, ExecutorAddr TrampolineBlockTargetAddress, ExecutorAddr ResolverAddr, unsigned NumTrampolines) { uint32_t *Trampolines = reinterpret_cast(TrampolineBlockWorkingMem); uint64_t HeighestAddr = ((ResolverAddr.getValue() + 0x800080008000) >> 48); uint64_t HeigherAddr = ((ResolverAddr.getValue() + 0x80008000) >> 32); uint64_t HiAddr = ((ResolverAddr.getValue() + 0x8000) >> 16); for (unsigned I = 0; I < NumTrampolines; ++I) { Trampolines[10 * I + 0] = 0x03e0c025; // move $t8,$ra Trampolines[10 * I + 1] = 0x3c190000 | (HeighestAddr & 0xFFFF); // lui $t9,resolveAddr Trampolines[10 * I + 2] = 0x67390000 | (HeigherAddr & 0xFFFF); // daddiu $t9,$t9,%higher(resolveAddr) Trampolines[10 * I + 3] = 0x0019cc38; // dsll $t9,$t9,16 Trampolines[10 * I + 4] = 0x67390000 | (HiAddr & 0xFFFF); // daddiu $t9,$t9,%hi(ptr) Trampolines[10 * I + 5] = 0x0019cc38; // dsll $t9,$t9,16 Trampolines[10 * I + 6] = 0x67390000 | (ResolverAddr.getValue() & 0xFFFF); // daddiu $t9,$t9,%lo(ptr) Trampolines[10 * I + 7] = 0x0320f809; // jalr $t9 Trampolines[10 * I + 8] = 0x00000000; // nop Trampolines[10 * I + 9] = 0x00000000; // nop } } void OrcMips64::writeIndirectStubsBlock(char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress, ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) { // Stub format is: // // .section __orc_stubs // stub1: // lui $t9,ptr1 // dsll $t9,$t9,16 // daddiu $t9,$t9,%hi(ptr) // dsll $t9,$t9,16 // ld $t9,%lo(ptr) // jr $t9 // stub2: // lui $t9,ptr1 // dsll $t9,$t9,16 // daddiu $t9,$t9,%hi(ptr) // dsll $t9,$t9,16 // ld $t9,%lo(ptr) // jr $t9 // // ... // // .section __orc_ptrs // ptr1: // .dword 0x0 // ptr2: // .dword 0x0 // // ... assert(stubAndPointerRangesOk( StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) && "PointersBlock is out of range"); // Populate the stubs page stubs and mark it executable. uint32_t *Stub = reinterpret_cast(StubsBlockWorkingMem); uint64_t PtrAddr = PointersBlockTargetAddress.getValue(); for (unsigned I = 0; I < NumStubs; ++I, PtrAddr += 8) { uint64_t HeighestAddr = ((PtrAddr + 0x800080008000) >> 48); uint64_t HeigherAddr = ((PtrAddr + 0x80008000) >> 32); uint64_t HiAddr = ((PtrAddr + 0x8000) >> 16); Stub[8 * I + 0] = 0x3c190000 | (HeighestAddr & 0xFFFF); // lui $t9,ptr1 Stub[8 * I + 1] = 0x67390000 | (HeigherAddr & 0xFFFF); // daddiu $t9,$t9,%higher(ptr) Stub[8 * I + 2] = 0x0019cc38; // dsll $t9,$t9,16 Stub[8 * I + 3] = 0x67390000 | (HiAddr & 0xFFFF); // daddiu $t9,$t9,%hi(ptr) Stub[8 * I + 4] = 0x0019cc38; // dsll $t9,$t9,16 Stub[8 * I + 5] = 0xdf390000 | (PtrAddr & 0xFFFF); // ld $t9,%lo(ptr) Stub[8 * I + 6] = 0x03200008; // jr $t9 Stub[8 * I + 7] = 0x00000000; // nop } } void OrcRiscv64::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr) { const uint32_t ResolverCode[] = { 0xef810113, // 0x00: addi sp,sp,-264 0x00813023, // 0x04: sd s0,0(sp) 0x00913423, // 0x08: sd s1,8(sp) 0x01213823, // 0x0c: sd s2,16(sp) 0x01313c23, // 0x10: sd s3,24(sp) 0x03413023, // 0x14: sd s4,32(sp) 0x03513423, // 0x18: sd s5,40(sp) 0x03613823, // 0x1c: sd s6,48(sp) 0x03713c23, // 0x20: sd s7,56(sp) 0x05813023, // 0x24: sd s8,64(sp) 0x05913423, // 0x28: sd s9,72(sp) 0x05a13823, // 0x2c: sd s10,80(sp) 0x05b13c23, // 0x30: sd s11,88(sp) 0x06113023, // 0x34: sd ra,96(sp) 0x06a13423, // 0x38: sd a0,104(sp) 0x06b13823, // 0x3c: sd a1,112(sp) 0x06c13c23, // 0x40: sd a2,120(sp) 0x08d13023, // 0x44: sd a3,128(sp) 0x08e13423, // 0x48: sd a4,136(sp) 0x08f13823, // 0x4c: sd a5,144(sp) 0x09013c23, // 0x50: sd a6,152(sp) 0x0b113023, // 0x54: sd a7,160(sp) 0x0a813427, // 0x58: fsd fs0,168(sp) 0x0a913827, // 0x5c: fsd fs1,176(sp) 0x0b213c27, // 0x60: fsd fs2,184(sp) 0x0d313027, // 0x64: fsd fs3,192(sp) 0x0d413427, // 0x68: fsd fs4,200(sp) 0x0d513827, // 0x6c: fsd fs5,208(sp) 0x0d613c27, // 0x70: fsd fs6,216(sp) 0x0f713027, // 0x74: fsd fs7,224(sp) 0x0f813427, // 0x78: fsd fs8,232(sp) 0x0f913827, // 0x7c: fsd fs9,240(sp) 0x0fa13c27, // 0x80: fsd fs10,248(sp) 0x11b13027, // 0x84: fsd fs11,256(sp) 0x00000517, // 0x88: auipc a0,0x0 0x0b053503, // 0x8c: ld a0,176(a0) # 0x138 0x00030593, // 0x90: mv a1,t1 0xff458593, // 0x94: addi a1,a1,-12 0x00000617, // 0x98: auipc a2,0x0 0x0a863603, // 0x9c: ld a2,168(a2) # 0x140 0x000600e7, // 0xa0: jalr a2 0x00050293, // 0xa4: mv t0,a0 0x00013403, // 0xa8: ld s0,0(sp) 0x00813483, // 0xac: ld s1,8(sp) 0x01013903, // 0xb0: ld s2,16(sp) 0x01813983, // 0xb4: ld s3,24(sp) 0x02013a03, // 0xb8: ld s4,32(sp) 0x02813a83, // 0xbc: ld s5,40(sp) 0x03013b03, // 0xc0: ld s6,48(sp) 0x03813b83, // 0xc4: ld s7,56(sp) 0x04013c03, // 0xc8: ld s8,64(sp) 0x04813c83, // 0xcc: ld s9,72(sp) 0x05013d03, // 0xd0: ld s10,80(sp) 0x05813d83, // 0xd4: ld s11,88(sp) 0x06013083, // 0xd8: ld ra,96(sp) 0x06813503, // 0xdc: ld a0,104(sp) 0x07013583, // 0xe0: ld a1,112(sp) 0x07813603, // 0xe4: ld a2,120(sp) 0x08013683, // 0xe8: ld a3,128(sp) 0x08813703, // 0xec: ld a4,136(sp) 0x09013783, // 0xf0: ld a5,144(sp) 0x09813803, // 0xf4: ld a6,152(sp) 0x0a013883, // 0xf8: ld a7,160(sp) 0x0a813407, // 0xfc: fld fs0,168(sp) 0x0b013487, // 0x100: fld fs1,176(sp) 0x0b813907, // 0x104: fld fs2,184(sp) 0x0c013987, // 0x108: fld fs3,192(sp) 0x0c813a07, // 0x10c: fld fs4,200(sp) 0x0d013a87, // 0x110: fld fs5,208(sp) 0x0d813b07, // 0x114: fld fs6,216(sp) 0x0e013b87, // 0x118: fld fs7,224(sp) 0x0e813c07, // 0x11c: fld fs8,232(sp) 0x0f013c87, // 0x120: fld fs9,240(sp) 0x0f813d07, // 0x124: fld fs10,248(sp) 0x10013d87, // 0x128: fld fs11,256(sp) 0x10810113, // 0x12c: addi sp,sp,264 0x00028067, // 0x130: jr t0 0x12345678, // 0x134: padding to align at 8 byte 0x12345678, // 0x138: Lreentry_ctx_ptr: 0xdeadbeef, // 0x13c: .quad 0 0x98765432, // 0x140: Lreentry_fn_ptr: 0xcafef00d // 0x144: .quad 0 }; const unsigned ReentryCtxAddrOffset = 0x138; const unsigned ReentryFnAddrOffset = 0x140; memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr, sizeof(uint64_t)); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr, sizeof(uint64_t)); } void OrcRiscv64::writeTrampolines(char *TrampolineBlockWorkingMem, ExecutorAddr TrampolineBlockTargetAddress, ExecutorAddr ResolverAddr, unsigned NumTrampolines) { unsigned OffsetToPtr = alignTo(NumTrampolines * TrampolineSize, 8); memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr, sizeof(uint64_t)); uint32_t *Trampolines = reinterpret_cast(TrampolineBlockWorkingMem); for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize) { uint32_t Hi20 = (OffsetToPtr + 0x800) & 0xFFFFF000; uint32_t Lo12 = OffsetToPtr - Hi20; Trampolines[4 * I + 0] = 0x00000297 | Hi20; // auipc t0, %hi(Lptr) Trampolines[4 * I + 1] = 0x0002b283 | ((Lo12 & 0xFFF) << 20); // ld t0, %lo(Lptr) Trampolines[4 * I + 2] = 0x00028367; // jalr t1, t0 Trampolines[4 * I + 3] = 0xdeadface; // padding } } void OrcRiscv64::writeIndirectStubsBlock( char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress, ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) { // Stub format is: // // .section __orc_stubs // stub1: // auipc t0, %hi(ptr1) ; PC-rel load of ptr1 // ld t0, %lo(t0) // jr t0 ; Jump to resolver // .quad 0 ; Pad to 16 bytes // stub2: // auipc t0, %hi(ptr1) ; PC-rel load of ptr1 // ld t0, %lo(t0) // jr t0 ; Jump to resolver // .quad 0 // // ... // // .section __orc_ptrs // ptr1: // .quad 0x0 // ptr2: // .quad 0x0 // // ... assert(stubAndPointerRangesOk( StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) && "PointersBlock is out of range"); uint32_t *Stub = reinterpret_cast(StubsBlockWorkingMem); for (unsigned I = 0; I < NumStubs; ++I) { uint64_t PtrDisplacement = PointersBlockTargetAddress - StubsBlockTargetAddress; uint32_t Hi20 = (PtrDisplacement + 0x800) & 0xFFFFF000; uint32_t Lo12 = PtrDisplacement - Hi20; Stub[4 * I + 0] = 0x00000297 | Hi20; // auipc t0, %hi(Lptr) Stub[4 * I + 1] = 0x0002b283 | ((Lo12 & 0xFFF) << 20); // ld t0, %lo(Lptr) Stub[4 * I + 2] = 0x00028067; // jr t0 Stub[4 * I + 3] = 0xfeedbeef; // padding PointersBlockTargetAddress += PointerSize; StubsBlockTargetAddress += StubSize; } } void OrcLoongArch64::writeResolverCode(char *ResolverWorkingMem, ExecutorAddr ResolverTargetAddress, ExecutorAddr ReentryFnAddr, ExecutorAddr ReentryCtxAddr) { LLVM_DEBUG({ dbgs() << "Writing resolver code to " << formatv("{0:x16}", ResolverTargetAddress) << "\n"; }); const uint32_t ResolverCode[] = { 0x02fde063, // 0x0: addi.d $sp, $sp, -136(0xf78) 0x29c00061, // 0x4: st.d $ra, $sp, 0 0x29c02064, // 0x8: st.d $a0, $sp, 8(0x8) 0x29c04065, // 0xc: st.d $a1, $sp, 16(0x10) 0x29c06066, // 0x10: st.d $a2, $sp, 24(0x18) 0x29c08067, // 0x14: st.d $a3, $sp, 32(0x20) 0x29c0a068, // 0x18: st.d $a4, $sp, 40(0x28) 0x29c0c069, // 0x1c: st.d $a5, $sp, 48(0x30) 0x29c0e06a, // 0x20: st.d $a6, $sp, 56(0x38) 0x29c1006b, // 0x24: st.d $a7, $sp, 64(0x40) 0x2bc12060, // 0x28: fst.d $fa0, $sp, 72(0x48) 0x2bc14061, // 0x2c: fst.d $fa1, $sp, 80(0x50) 0x2bc16062, // 0x30: fst.d $fa2, $sp, 88(0x58) 0x2bc18063, // 0x34: fst.d $fa3, $sp, 96(0x60) 0x2bc1a064, // 0x38: fst.d $fa4, $sp, 104(0x68) 0x2bc1c065, // 0x3c: fst.d $fa5, $sp, 112(0x70) 0x2bc1e066, // 0x40: fst.d $fa6, $sp, 120(0x78) 0x2bc20067, // 0x44: fst.d $fa7, $sp, 128(0x80) 0x1c000004, // 0x48: pcaddu12i $a0, 0 0x28c1c084, // 0x4c: ld.d $a0, $a0, 112(0x70) 0x001501a5, // 0x50: move $a1, $t1 0x02ffd0a5, // 0x54: addi.d $a1, $a1, -12(0xff4) 0x1c000006, // 0x58: pcaddu12i $a2, 0 0x28c1a0c6, // 0x5c: ld.d $a2, $a2, 104(0x68) 0x4c0000c1, // 0x60: jirl $ra, $a2, 0 0x0015008c, // 0x64: move $t0, $a0 0x2b820067, // 0x68: fld.d $fa7, $sp, 128(0x80) 0x2b81e066, // 0x6c: fld.d $fa6, $sp, 120(0x78) 0x2b81c065, // 0x70: fld.d $fa5, $sp, 112(0x70) 0x2b81a064, // 0x74: fld.d $fa4, $sp, 104(0x68) 0x2b818063, // 0x78: fld.d $fa3, $sp, 96(0x60) 0x2b816062, // 0x7c: fld.d $fa2, $sp, 88(0x58) 0x2b814061, // 0x80: fld.d $fa1, $sp, 80(0x50) 0x2b812060, // 0x84: fld.d $fa0, $sp, 72(0x48) 0x28c1006b, // 0x88: ld.d $a7, $sp, 64(0x40) 0x28c0e06a, // 0x8c: ld.d $a6, $sp, 56(0x38) 0x28c0c069, // 0x90: ld.d $a5, $sp, 48(0x30) 0x28c0a068, // 0x94: ld.d $a4, $sp, 40(0x28) 0x28c08067, // 0x98: ld.d $a3, $sp, 32(0x20) 0x28c06066, // 0x9c: ld.d $a2, $sp, 24(0x18) 0x28c04065, // 0xa0: ld.d $a1, $sp, 16(0x10) 0x28c02064, // 0xa4: ld.d $a0, $sp, 8(0x8) 0x28c00061, // 0xa8: ld.d $ra, $sp, 0 0x02c22063, // 0xac: addi.d $sp, $sp, 136(0x88) 0x4c000180, // 0xb0: jr $t0 0x00000000, // 0xb4: padding to align at 8 bytes 0x01234567, // 0xb8: Lreentry_ctx_ptr: 0xdeedbeef, // 0xbc: .dword 0 0x98765432, // 0xc0: Lreentry_fn_ptr: 0xcafef00d, // 0xc4: .dword 0 }; const unsigned ReentryCtxAddrOffset = 0xb8; const unsigned ReentryFnAddrOffset = 0xc0; memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode)); memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr, sizeof(uint64_t)); memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr, sizeof(uint64_t)); } void OrcLoongArch64::writeTrampolines(char *TrampolineBlockWorkingMem, ExecutorAddr TrampolineBlockTargetAddress, ExecutorAddr ResolverAddr, unsigned NumTrampolines) { LLVM_DEBUG({ dbgs() << "Writing trampoline code to " << formatv("{0:x16}", TrampolineBlockTargetAddress) << "\n"; }); unsigned OffsetToPtr = alignTo(NumTrampolines * TrampolineSize, 8); memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr, sizeof(uint64_t)); uint32_t *Trampolines = reinterpret_cast(TrampolineBlockWorkingMem); for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize) { uint32_t Hi20 = (OffsetToPtr + 0x800) & 0xfffff000; uint32_t Lo12 = OffsetToPtr - Hi20; Trampolines[4 * I + 0] = 0x1c00000c | (((Hi20 >> 12) & 0xfffff) << 5); // pcaddu12i $t0, %pc_hi20(Lptr) Trampolines[4 * I + 1] = 0x28c0018c | ((Lo12 & 0xfff) << 10); // ld.d $t0, $t0, %pc_lo12(Lptr) Trampolines[4 * I + 2] = 0x4c00018d; // jirl $t1, $t0, 0 Trampolines[4 * I + 3] = 0x0; // padding } } void OrcLoongArch64::writeIndirectStubsBlock( char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress, ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) { // Stub format is: // // .section __orc_stubs // stub1: // pcaddu12i $t0, %pc_hi20(ptr1) ; PC-rel load of ptr1 // ld.d $t0, $t0, %pc_lo12(ptr1) // jr $t0 ; Jump to resolver // .dword 0 ; Pad to 16 bytes // stub2: // pcaddu12i $t0, %pc_hi20(ptr2) ; PC-rel load of ptr2 // ld.d $t0, $t0, %pc_lo12(ptr2) // jr $t0 ; Jump to resolver // .dword 0 ; Pad to 16 bytes // ... // // .section __orc_ptrs // ptr1: // .dword 0x0 // ptr2: // .dword 0x0 // ... LLVM_DEBUG({ dbgs() << "Writing stubs code to " << formatv("{0:x16}", StubsBlockTargetAddress) << "\n"; }); assert(stubAndPointerRangesOk( StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) && "PointersBlock is out of range"); uint32_t *Stub = reinterpret_cast(StubsBlockWorkingMem); for (unsigned I = 0; I < NumStubs; ++I) { uint64_t PtrDisplacement = PointersBlockTargetAddress - StubsBlockTargetAddress; uint32_t Hi20 = (PtrDisplacement + 0x800) & 0xfffff000; uint32_t Lo12 = PtrDisplacement - Hi20; Stub[4 * I + 0] = 0x1c00000c | (((Hi20 >> 12) & 0xfffff) << 5); // pcaddu12i $t0, %pc_hi20(Lptr) Stub[4 * I + 1] = 0x28c0018c | ((Lo12 & 0xfff) << 10); // ld.d $t0, $t0, %pc_lo12(Lptr) Stub[4 * I + 2] = 0x4c000180; // jr $t0 Stub[4 * I + 3] = 0x0; // padding PointersBlockTargetAddress += PointerSize; StubsBlockTargetAddress += StubSize; } } } // End namespace orc. } // End namespace llvm.