//===--- Core.cpp - Core ORC APIs (MaterializationUnit, JITDylib, etc.) ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/Orc/Core.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Config/llvm-config.h" #include "llvm/ExecutionEngine/Orc/DebugUtils.h" #include "llvm/ExecutionEngine/Orc/Shared/OrcError.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MSVCErrorWorkarounds.h" #include #include #include #define DEBUG_TYPE "orc" namespace llvm { namespace orc { char ResourceTrackerDefunct::ID = 0; char FailedToMaterialize::ID = 0; char SymbolsNotFound::ID = 0; char SymbolsCouldNotBeRemoved::ID = 0; char MissingSymbolDefinitions::ID = 0; char UnexpectedSymbolDefinitions::ID = 0; char UnsatisfiedSymbolDependencies::ID = 0; char MaterializationTask::ID = 0; char LookupTask::ID = 0; RegisterDependenciesFunction NoDependenciesToRegister = RegisterDependenciesFunction(); void MaterializationUnit::anchor() {} ResourceTracker::ResourceTracker(JITDylibSP JD) { assert((reinterpret_cast(JD.get()) & 0x1) == 0 && "JITDylib must be two byte aligned"); JD->Retain(); JDAndFlag.store(reinterpret_cast(JD.get())); } ResourceTracker::~ResourceTracker() { getJITDylib().getExecutionSession().destroyResourceTracker(*this); getJITDylib().Release(); } Error ResourceTracker::remove() { return getJITDylib().getExecutionSession().removeResourceTracker(*this); } void ResourceTracker::transferTo(ResourceTracker &DstRT) { getJITDylib().getExecutionSession().transferResourceTracker(DstRT, *this); } void ResourceTracker::makeDefunct() { uintptr_t Val = JDAndFlag.load(); Val |= 0x1U; JDAndFlag.store(Val); } ResourceManager::~ResourceManager() = default; ResourceTrackerDefunct::ResourceTrackerDefunct(ResourceTrackerSP RT) : RT(std::move(RT)) {} std::error_code ResourceTrackerDefunct::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void ResourceTrackerDefunct::log(raw_ostream &OS) const { OS << "Resource tracker " << (void *)RT.get() << " became defunct"; } FailedToMaterialize::FailedToMaterialize( std::shared_ptr SSP, std::shared_ptr Symbols) : SSP(std::move(SSP)), Symbols(std::move(Symbols)) { assert(this->SSP && "String pool cannot be null"); assert(!this->Symbols->empty() && "Can not fail to resolve an empty set"); // FIXME: Use a new dep-map type for FailedToMaterialize errors so that we // don't have to manually retain/release. for (auto &[JD, Syms] : *this->Symbols) JD->Retain(); } FailedToMaterialize::~FailedToMaterialize() { for (auto &[JD, Syms] : *Symbols) JD->Release(); } std::error_code FailedToMaterialize::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void FailedToMaterialize::log(raw_ostream &OS) const { OS << "Failed to materialize symbols: " << *Symbols; } UnsatisfiedSymbolDependencies::UnsatisfiedSymbolDependencies( std::shared_ptr SSP, JITDylibSP JD, SymbolNameSet FailedSymbols, SymbolDependenceMap BadDeps, std::string Explanation) : SSP(std::move(SSP)), JD(std::move(JD)), FailedSymbols(std::move(FailedSymbols)), BadDeps(std::move(BadDeps)), Explanation(std::move(Explanation)) {} std::error_code UnsatisfiedSymbolDependencies::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void UnsatisfiedSymbolDependencies::log(raw_ostream &OS) const { OS << "In " << JD->getName() << ", failed to materialize " << FailedSymbols << ", due to unsatisfied dependencies " << BadDeps; if (!Explanation.empty()) OS << " (" << Explanation << ")"; } SymbolsNotFound::SymbolsNotFound(std::shared_ptr SSP, SymbolNameSet Symbols) : SSP(std::move(SSP)) { for (auto &Sym : Symbols) this->Symbols.push_back(Sym); assert(!this->Symbols.empty() && "Can not fail to resolve an empty set"); } SymbolsNotFound::SymbolsNotFound(std::shared_ptr SSP, SymbolNameVector Symbols) : SSP(std::move(SSP)), Symbols(std::move(Symbols)) { assert(!this->Symbols.empty() && "Can not fail to resolve an empty set"); } std::error_code SymbolsNotFound::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void SymbolsNotFound::log(raw_ostream &OS) const { OS << "Symbols not found: " << Symbols; } SymbolsCouldNotBeRemoved::SymbolsCouldNotBeRemoved( std::shared_ptr SSP, SymbolNameSet Symbols) : SSP(std::move(SSP)), Symbols(std::move(Symbols)) { assert(!this->Symbols.empty() && "Can not fail to resolve an empty set"); } std::error_code SymbolsCouldNotBeRemoved::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void SymbolsCouldNotBeRemoved::log(raw_ostream &OS) const { OS << "Symbols could not be removed: " << Symbols; } std::error_code MissingSymbolDefinitions::convertToErrorCode() const { return orcError(OrcErrorCode::MissingSymbolDefinitions); } void MissingSymbolDefinitions::log(raw_ostream &OS) const { OS << "Missing definitions in module " << ModuleName << ": " << Symbols; } std::error_code UnexpectedSymbolDefinitions::convertToErrorCode() const { return orcError(OrcErrorCode::UnexpectedSymbolDefinitions); } void UnexpectedSymbolDefinitions::log(raw_ostream &OS) const { OS << "Unexpected definitions in module " << ModuleName << ": " << Symbols; } AsynchronousSymbolQuery::AsynchronousSymbolQuery( const SymbolLookupSet &Symbols, SymbolState RequiredState, SymbolsResolvedCallback NotifyComplete) : NotifyComplete(std::move(NotifyComplete)), RequiredState(RequiredState) { assert(RequiredState >= SymbolState::Resolved && "Cannot query for a symbols that have not reached the resolve state " "yet"); OutstandingSymbolsCount = Symbols.size(); for (auto &[Name, Flags] : Symbols) ResolvedSymbols[Name] = ExecutorSymbolDef(); } void AsynchronousSymbolQuery::notifySymbolMetRequiredState( const SymbolStringPtr &Name, ExecutorSymbolDef Sym) { auto I = ResolvedSymbols.find(Name); assert(I != ResolvedSymbols.end() && "Resolving symbol outside the requested set"); assert(I->second == ExecutorSymbolDef() && "Redundantly resolving symbol Name"); // If this is a materialization-side-effects-only symbol then drop it, // otherwise update its map entry with its resolved address. if (Sym.getFlags().hasMaterializationSideEffectsOnly()) ResolvedSymbols.erase(I); else I->second = std::move(Sym); --OutstandingSymbolsCount; } void AsynchronousSymbolQuery::handleComplete(ExecutionSession &ES) { assert(OutstandingSymbolsCount == 0 && "Symbols remain, handleComplete called prematurely"); class RunQueryCompleteTask : public Task { public: RunQueryCompleteTask(SymbolMap ResolvedSymbols, SymbolsResolvedCallback NotifyComplete) : ResolvedSymbols(std::move(ResolvedSymbols)), NotifyComplete(std::move(NotifyComplete)) {} void printDescription(raw_ostream &OS) override { OS << "Execute query complete callback for " << ResolvedSymbols; } void run() override { NotifyComplete(std::move(ResolvedSymbols)); } private: SymbolMap ResolvedSymbols; SymbolsResolvedCallback NotifyComplete; }; auto T = std::make_unique(std::move(ResolvedSymbols), std::move(NotifyComplete)); NotifyComplete = SymbolsResolvedCallback(); ES.dispatchTask(std::move(T)); } void AsynchronousSymbolQuery::handleFailed(Error Err) { assert(QueryRegistrations.empty() && ResolvedSymbols.empty() && OutstandingSymbolsCount == 0 && "Query should already have been abandoned"); NotifyComplete(std::move(Err)); NotifyComplete = SymbolsResolvedCallback(); } void AsynchronousSymbolQuery::addQueryDependence(JITDylib &JD, SymbolStringPtr Name) { bool Added = QueryRegistrations[&JD].insert(std::move(Name)).second; (void)Added; assert(Added && "Duplicate dependence notification?"); } void AsynchronousSymbolQuery::removeQueryDependence( JITDylib &JD, const SymbolStringPtr &Name) { auto QRI = QueryRegistrations.find(&JD); assert(QRI != QueryRegistrations.end() && "No dependencies registered for JD"); assert(QRI->second.count(Name) && "No dependency on Name in JD"); QRI->second.erase(Name); if (QRI->second.empty()) QueryRegistrations.erase(QRI); } void AsynchronousSymbolQuery::dropSymbol(const SymbolStringPtr &Name) { auto I = ResolvedSymbols.find(Name); assert(I != ResolvedSymbols.end() && "Redundant removal of weakly-referenced symbol"); ResolvedSymbols.erase(I); --OutstandingSymbolsCount; } void AsynchronousSymbolQuery::detach() { ResolvedSymbols.clear(); OutstandingSymbolsCount = 0; for (auto &[JD, Syms] : QueryRegistrations) JD->detachQueryHelper(*this, Syms); QueryRegistrations.clear(); } AbsoluteSymbolsMaterializationUnit::AbsoluteSymbolsMaterializationUnit( SymbolMap Symbols) : MaterializationUnit(extractFlags(Symbols)), Symbols(std::move(Symbols)) {} StringRef AbsoluteSymbolsMaterializationUnit::getName() const { return ""; } void AbsoluteSymbolsMaterializationUnit::materialize( std::unique_ptr R) { // Even though these are just absolute symbols we need to check for failure // to resolve/emit: the tracker for these symbols may have been removed while // the materialization was in flight (e.g. due to a failure in some action // triggered by the queries attached to the resolution/emission of these // symbols). if (auto Err = R->notifyResolved(Symbols)) { R->getExecutionSession().reportError(std::move(Err)); R->failMaterialization(); return; } if (auto Err = R->notifyEmitted({})) { R->getExecutionSession().reportError(std::move(Err)); R->failMaterialization(); return; } } void AbsoluteSymbolsMaterializationUnit::discard(const JITDylib &JD, const SymbolStringPtr &Name) { assert(Symbols.count(Name) && "Symbol is not part of this MU"); Symbols.erase(Name); } MaterializationUnit::Interface AbsoluteSymbolsMaterializationUnit::extractFlags(const SymbolMap &Symbols) { SymbolFlagsMap Flags; for (const auto &[Name, Def] : Symbols) Flags[Name] = Def.getFlags(); return MaterializationUnit::Interface(std::move(Flags), nullptr); } ReExportsMaterializationUnit::ReExportsMaterializationUnit( JITDylib *SourceJD, JITDylibLookupFlags SourceJDLookupFlags, SymbolAliasMap Aliases) : MaterializationUnit(extractFlags(Aliases)), SourceJD(SourceJD), SourceJDLookupFlags(SourceJDLookupFlags), Aliases(std::move(Aliases)) {} StringRef ReExportsMaterializationUnit::getName() const { return ""; } void ReExportsMaterializationUnit::materialize( std::unique_ptr R) { auto &ES = R->getTargetJITDylib().getExecutionSession(); JITDylib &TgtJD = R->getTargetJITDylib(); JITDylib &SrcJD = SourceJD ? *SourceJD : TgtJD; // Find the set of requested aliases and aliasees. Return any unrequested // aliases back to the JITDylib so as to not prematurely materialize any // aliasees. auto RequestedSymbols = R->getRequestedSymbols(); SymbolAliasMap RequestedAliases; for (auto &Name : RequestedSymbols) { auto I = Aliases.find(Name); assert(I != Aliases.end() && "Symbol not found in aliases map?"); RequestedAliases[Name] = std::move(I->second); Aliases.erase(I); } LLVM_DEBUG({ ES.runSessionLocked([&]() { dbgs() << "materializing reexports: target = " << TgtJD.getName() << ", source = " << SrcJD.getName() << " " << RequestedAliases << "\n"; }); }); if (!Aliases.empty()) { auto Err = SourceJD ? R->replace(reexports(*SourceJD, std::move(Aliases), SourceJDLookupFlags)) : R->replace(symbolAliases(std::move(Aliases))); if (Err) { // FIXME: Should this be reported / treated as failure to materialize? // Or should this be treated as a sanctioned bailing-out? ES.reportError(std::move(Err)); R->failMaterialization(); return; } } // The OnResolveInfo struct will hold the aliases and responsibility for each // query in the list. struct OnResolveInfo { OnResolveInfo(std::unique_ptr R, SymbolAliasMap Aliases) : R(std::move(R)), Aliases(std::move(Aliases)) {} std::unique_ptr R; SymbolAliasMap Aliases; std::vector SDGs; }; // Build a list of queries to issue. In each round we build a query for the // largest set of aliases that we can resolve without encountering a chain of // aliases (e.g. Foo -> Bar, Bar -> Baz). Such a chain would deadlock as the // query would be waiting on a symbol that it itself had to resolve. Creating // a new query for each link in such a chain eliminates the possibility of // deadlock. In practice chains are likely to be rare, and this algorithm will // usually result in a single query to issue. std::vector>> QueryInfos; while (!RequestedAliases.empty()) { SymbolNameSet ResponsibilitySymbols; SymbolLookupSet QuerySymbols; SymbolAliasMap QueryAliases; // Collect as many aliases as we can without including a chain. for (auto &KV : RequestedAliases) { // Chain detected. Skip this symbol for this round. if (&SrcJD == &TgtJD && (QueryAliases.count(KV.second.Aliasee) || RequestedAliases.count(KV.second.Aliasee))) continue; ResponsibilitySymbols.insert(KV.first); QuerySymbols.add(KV.second.Aliasee, KV.second.AliasFlags.hasMaterializationSideEffectsOnly() ? SymbolLookupFlags::WeaklyReferencedSymbol : SymbolLookupFlags::RequiredSymbol); QueryAliases[KV.first] = std::move(KV.second); } // Remove the aliases collected this round from the RequestedAliases map. for (auto &KV : QueryAliases) RequestedAliases.erase(KV.first); assert(!QuerySymbols.empty() && "Alias cycle detected!"); auto NewR = R->delegate(ResponsibilitySymbols); if (!NewR) { ES.reportError(NewR.takeError()); R->failMaterialization(); return; } auto QueryInfo = std::make_shared(std::move(*NewR), std::move(QueryAliases)); QueryInfos.push_back( make_pair(std::move(QuerySymbols), std::move(QueryInfo))); } // Issue the queries. while (!QueryInfos.empty()) { auto QuerySymbols = std::move(QueryInfos.back().first); auto QueryInfo = std::move(QueryInfos.back().second); QueryInfos.pop_back(); auto RegisterDependencies = [QueryInfo, &SrcJD](const SymbolDependenceMap &Deps) { // If there were no materializing symbols, just bail out. if (Deps.empty()) return; // Otherwise the only deps should be on SrcJD. assert(Deps.size() == 1 && Deps.count(&SrcJD) && "Unexpected dependencies for reexports"); auto &SrcJDDeps = Deps.find(&SrcJD)->second; for (auto &[Alias, AliasInfo] : QueryInfo->Aliases) if (SrcJDDeps.count(AliasInfo.Aliasee)) QueryInfo->SDGs.push_back({{Alias}, {{&SrcJD, {AliasInfo.Aliasee}}}}); }; auto OnComplete = [QueryInfo](Expected Result) { auto &ES = QueryInfo->R->getTargetJITDylib().getExecutionSession(); if (Result) { SymbolMap ResolutionMap; for (auto &KV : QueryInfo->Aliases) { assert((KV.second.AliasFlags.hasMaterializationSideEffectsOnly() || Result->count(KV.second.Aliasee)) && "Result map missing entry?"); // Don't try to resolve materialization-side-effects-only symbols. if (KV.second.AliasFlags.hasMaterializationSideEffectsOnly()) continue; ResolutionMap[KV.first] = {(*Result)[KV.second.Aliasee].getAddress(), KV.second.AliasFlags}; } if (auto Err = QueryInfo->R->notifyResolved(ResolutionMap)) { ES.reportError(std::move(Err)); QueryInfo->R->failMaterialization(); return; } if (auto Err = QueryInfo->R->notifyEmitted(QueryInfo->SDGs)) { ES.reportError(std::move(Err)); QueryInfo->R->failMaterialization(); return; } } else { ES.reportError(Result.takeError()); QueryInfo->R->failMaterialization(); } }; ES.lookup(LookupKind::Static, JITDylibSearchOrder({{&SrcJD, SourceJDLookupFlags}}), QuerySymbols, SymbolState::Resolved, std::move(OnComplete), std::move(RegisterDependencies)); } } void ReExportsMaterializationUnit::discard(const JITDylib &JD, const SymbolStringPtr &Name) { assert(Aliases.count(Name) && "Symbol not covered by this MaterializationUnit"); Aliases.erase(Name); } MaterializationUnit::Interface ReExportsMaterializationUnit::extractFlags(const SymbolAliasMap &Aliases) { SymbolFlagsMap SymbolFlags; for (auto &KV : Aliases) SymbolFlags[KV.first] = KV.second.AliasFlags; return MaterializationUnit::Interface(std::move(SymbolFlags), nullptr); } Expected buildSimpleReexportsAliasMap(JITDylib &SourceJD, SymbolNameSet Symbols) { SymbolLookupSet LookupSet(Symbols); auto Flags = SourceJD.getExecutionSession().lookupFlags( LookupKind::Static, {{&SourceJD, JITDylibLookupFlags::MatchAllSymbols}}, SymbolLookupSet(std::move(Symbols))); if (!Flags) return Flags.takeError(); SymbolAliasMap Result; for (auto &Name : Symbols) { assert(Flags->count(Name) && "Missing entry in flags map"); Result[Name] = SymbolAliasMapEntry(Name, (*Flags)[Name]); } return Result; } class InProgressLookupState { public: // FIXME: Reduce the number of SymbolStringPtrs here. See // https://github.com/llvm/llvm-project/issues/55576. InProgressLookupState(LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet, SymbolState RequiredState) : K(K), SearchOrder(std::move(SearchOrder)), LookupSet(std::move(LookupSet)), RequiredState(RequiredState) { DefGeneratorCandidates = this->LookupSet; } virtual ~InProgressLookupState() = default; virtual void complete(std::unique_ptr IPLS) = 0; virtual void fail(Error Err) = 0; LookupKind K; JITDylibSearchOrder SearchOrder; SymbolLookupSet LookupSet; SymbolState RequiredState; size_t CurSearchOrderIndex = 0; bool NewJITDylib = true; SymbolLookupSet DefGeneratorCandidates; SymbolLookupSet DefGeneratorNonCandidates; enum { NotInGenerator, // Not currently using a generator. ResumedForGenerator, // Resumed after being auto-suspended before generator. InGenerator // Currently using generator. } GenState = NotInGenerator; std::vector> CurDefGeneratorStack; }; class InProgressLookupFlagsState : public InProgressLookupState { public: InProgressLookupFlagsState( LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet, unique_function)> OnComplete) : InProgressLookupState(K, std::move(SearchOrder), std::move(LookupSet), SymbolState::NeverSearched), OnComplete(std::move(OnComplete)) {} void complete(std::unique_ptr IPLS) override { auto &ES = SearchOrder.front().first->getExecutionSession(); ES.OL_completeLookupFlags(std::move(IPLS), std::move(OnComplete)); } void fail(Error Err) override { OnComplete(std::move(Err)); } private: unique_function)> OnComplete; }; class InProgressFullLookupState : public InProgressLookupState { public: InProgressFullLookupState(LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet, SymbolState RequiredState, std::shared_ptr Q, RegisterDependenciesFunction RegisterDependencies) : InProgressLookupState(K, std::move(SearchOrder), std::move(LookupSet), RequiredState), Q(std::move(Q)), RegisterDependencies(std::move(RegisterDependencies)) { } void complete(std::unique_ptr IPLS) override { auto &ES = SearchOrder.front().first->getExecutionSession(); ES.OL_completeLookup(std::move(IPLS), std::move(Q), std::move(RegisterDependencies)); } void fail(Error Err) override { Q->detach(); Q->handleFailed(std::move(Err)); } private: std::shared_ptr Q; RegisterDependenciesFunction RegisterDependencies; }; ReexportsGenerator::ReexportsGenerator(JITDylib &SourceJD, JITDylibLookupFlags SourceJDLookupFlags, SymbolPredicate Allow) : SourceJD(SourceJD), SourceJDLookupFlags(SourceJDLookupFlags), Allow(std::move(Allow)) {} Error ReexportsGenerator::tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD, JITDylibLookupFlags JDLookupFlags, const SymbolLookupSet &LookupSet) { assert(&JD != &SourceJD && "Cannot re-export from the same dylib"); // Use lookupFlags to find the subset of symbols that match our lookup. auto Flags = JD.getExecutionSession().lookupFlags( K, {{&SourceJD, JDLookupFlags}}, LookupSet); if (!Flags) return Flags.takeError(); // Create an alias map. orc::SymbolAliasMap AliasMap; for (auto &KV : *Flags) if (!Allow || Allow(KV.first)) AliasMap[KV.first] = SymbolAliasMapEntry(KV.first, KV.second); if (AliasMap.empty()) return Error::success(); // Define the re-exports. return JD.define(reexports(SourceJD, AliasMap, SourceJDLookupFlags)); } LookupState::LookupState(std::unique_ptr IPLS) : IPLS(std::move(IPLS)) {} void LookupState::reset(InProgressLookupState *IPLS) { this->IPLS.reset(IPLS); } LookupState::LookupState() = default; LookupState::LookupState(LookupState &&) = default; LookupState &LookupState::operator=(LookupState &&) = default; LookupState::~LookupState() = default; void LookupState::continueLookup(Error Err) { assert(IPLS && "Cannot call continueLookup on empty LookupState"); auto &ES = IPLS->SearchOrder.begin()->first->getExecutionSession(); ES.OL_applyQueryPhase1(std::move(IPLS), std::move(Err)); } DefinitionGenerator::~DefinitionGenerator() { std::deque LookupsToFail; { std::lock_guard Lock(M); std::swap(PendingLookups, LookupsToFail); InUse = false; } for (auto &LS : LookupsToFail) LS.continueLookup(make_error( "Query waiting on DefinitionGenerator that was destroyed", inconvertibleErrorCode())); } JITDylib::~JITDylib() { LLVM_DEBUG(dbgs() << "Destroying JITDylib " << getName() << "\n"); } Error JITDylib::clear() { std::vector TrackersToRemove; ES.runSessionLocked([&]() { assert(State != Closed && "JD is defunct"); for (auto &KV : TrackerSymbols) TrackersToRemove.push_back(KV.first); TrackersToRemove.push_back(getDefaultResourceTracker()); }); Error Err = Error::success(); for (auto &RT : TrackersToRemove) Err = joinErrors(std::move(Err), RT->remove()); return Err; } ResourceTrackerSP JITDylib::getDefaultResourceTracker() { return ES.runSessionLocked([this] { assert(State != Closed && "JD is defunct"); if (!DefaultTracker) DefaultTracker = new ResourceTracker(this); return DefaultTracker; }); } ResourceTrackerSP JITDylib::createResourceTracker() { return ES.runSessionLocked([this] { assert(State == Open && "JD is defunct"); ResourceTrackerSP RT = new ResourceTracker(this); return RT; }); } void JITDylib::removeGenerator(DefinitionGenerator &G) { // DefGenerator moved into TmpDG to ensure that it's destroyed outside the // session lock (since it may have to send errors to pending queries). std::shared_ptr TmpDG; ES.runSessionLocked([&] { assert(State == Open && "JD is defunct"); auto I = llvm::find_if(DefGenerators, [&](const std::shared_ptr &H) { return H.get() == &G; }); assert(I != DefGenerators.end() && "Generator not found"); TmpDG = std::move(*I); DefGenerators.erase(I); }); } Expected JITDylib::defineMaterializing(MaterializationResponsibility &FromMR, SymbolFlagsMap SymbolFlags) { return ES.runSessionLocked([&]() -> Expected { if (FromMR.RT->isDefunct()) return make_error(FromMR.RT); std::vector AddedSyms; std::vector RejectedWeakDefs; for (auto SFItr = SymbolFlags.begin(), SFEnd = SymbolFlags.end(); SFItr != SFEnd; ++SFItr) { auto &Name = SFItr->first; auto &Flags = SFItr->second; auto EntryItr = Symbols.find(Name); // If the entry already exists... if (EntryItr != Symbols.end()) { // If this is a strong definition then error out. if (!Flags.isWeak()) { // Remove any symbols already added. for (auto &S : AddedSyms) Symbols.erase(Symbols.find_as(S)); // FIXME: Return all duplicates. return make_error(std::string(*Name)); } // Otherwise just make a note to discard this symbol after the loop. RejectedWeakDefs.push_back(NonOwningSymbolStringPtr(Name)); continue; } else EntryItr = Symbols.insert(std::make_pair(Name, SymbolTableEntry(Flags))).first; AddedSyms.push_back(NonOwningSymbolStringPtr(Name)); EntryItr->second.setState(SymbolState::Materializing); } // Remove any rejected weak definitions from the SymbolFlags map. while (!RejectedWeakDefs.empty()) { SymbolFlags.erase(SymbolFlags.find_as(RejectedWeakDefs.back())); RejectedWeakDefs.pop_back(); } return SymbolFlags; }); } Error JITDylib::replace(MaterializationResponsibility &FromMR, std::unique_ptr MU) { assert(MU != nullptr && "Can not replace with a null MaterializationUnit"); std::unique_ptr MustRunMU; std::unique_ptr MustRunMR; auto Err = ES.runSessionLocked([&, this]() -> Error { if (FromMR.RT->isDefunct()) return make_error(std::move(FromMR.RT)); #ifndef NDEBUG for (auto &KV : MU->getSymbols()) { auto SymI = Symbols.find(KV.first); assert(SymI != Symbols.end() && "Replacing unknown symbol"); assert(SymI->second.getState() == SymbolState::Materializing && "Can not replace a symbol that ha is not materializing"); assert(!SymI->second.hasMaterializerAttached() && "Symbol should not have materializer attached already"); assert(UnmaterializedInfos.count(KV.first) == 0 && "Symbol being replaced should have no UnmaterializedInfo"); } #endif // NDEBUG // If the tracker is defunct we need to bail out immediately. // If any symbol has pending queries against it then we need to // materialize MU immediately. for (auto &KV : MU->getSymbols()) { auto MII = MaterializingInfos.find(KV.first); if (MII != MaterializingInfos.end()) { if (MII->second.hasQueriesPending()) { MustRunMR = ES.createMaterializationResponsibility( *FromMR.RT, std::move(MU->SymbolFlags), std::move(MU->InitSymbol)); MustRunMU = std::move(MU); return Error::success(); } } } // Otherwise, make MU responsible for all the symbols. auto UMI = std::make_shared(std::move(MU), FromMR.RT.get()); for (auto &KV : UMI->MU->getSymbols()) { auto SymI = Symbols.find(KV.first); assert(SymI->second.getState() == SymbolState::Materializing && "Can not replace a symbol that is not materializing"); assert(!SymI->second.hasMaterializerAttached() && "Can not replace a symbol that has a materializer attached"); assert(UnmaterializedInfos.count(KV.first) == 0 && "Unexpected materializer entry in map"); SymI->second.setAddress(SymI->second.getAddress()); SymI->second.setMaterializerAttached(true); auto &UMIEntry = UnmaterializedInfos[KV.first]; assert((!UMIEntry || !UMIEntry->MU) && "Replacing symbol with materializer still attached"); UMIEntry = UMI; } return Error::success(); }); if (Err) return Err; if (MustRunMU) { assert(MustRunMR && "MustRunMU set implies MustRunMR set"); ES.dispatchTask(std::make_unique( std::move(MustRunMU), std::move(MustRunMR))); } else { assert(!MustRunMR && "MustRunMU unset implies MustRunMR unset"); } return Error::success(); } Expected> JITDylib::delegate(MaterializationResponsibility &FromMR, SymbolFlagsMap SymbolFlags, SymbolStringPtr InitSymbol) { return ES.runSessionLocked( [&]() -> Expected> { if (FromMR.RT->isDefunct()) return make_error(std::move(FromMR.RT)); return ES.createMaterializationResponsibility( *FromMR.RT, std::move(SymbolFlags), std::move(InitSymbol)); }); } SymbolNameSet JITDylib::getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const { return ES.runSessionLocked([&]() { SymbolNameSet RequestedSymbols; for (auto &KV : SymbolFlags) { assert(Symbols.count(KV.first) && "JITDylib does not cover this symbol?"); assert(Symbols.find(KV.first)->second.getState() != SymbolState::NeverSearched && Symbols.find(KV.first)->second.getState() != SymbolState::Ready && "getRequestedSymbols can only be called for symbols that have " "started materializing"); auto I = MaterializingInfos.find(KV.first); if (I == MaterializingInfos.end()) continue; if (I->second.hasQueriesPending()) RequestedSymbols.insert(KV.first); } return RequestedSymbols; }); } Error JITDylib::resolve(MaterializationResponsibility &MR, const SymbolMap &Resolved) { AsynchronousSymbolQuerySet CompletedQueries; if (auto Err = ES.runSessionLocked([&, this]() -> Error { if (MR.RT->isDefunct()) return make_error(MR.RT); if (State != Open) return make_error("JITDylib " + getName() + " is defunct", inconvertibleErrorCode()); struct WorklistEntry { SymbolTable::iterator SymI; ExecutorSymbolDef ResolvedSym; }; SymbolNameSet SymbolsInErrorState; std::vector Worklist; Worklist.reserve(Resolved.size()); // Build worklist and check for any symbols in the error state. for (const auto &KV : Resolved) { assert(!KV.second.getFlags().hasError() && "Resolution result can not have error flag set"); auto SymI = Symbols.find(KV.first); assert(SymI != Symbols.end() && "Symbol not found"); assert(!SymI->second.hasMaterializerAttached() && "Resolving symbol with materializer attached?"); assert(SymI->second.getState() == SymbolState::Materializing && "Symbol should be materializing"); assert(SymI->second.getAddress() == ExecutorAddr() && "Symbol has already been resolved"); if (SymI->second.getFlags().hasError()) SymbolsInErrorState.insert(KV.first); else { auto Flags = KV.second.getFlags(); Flags &= ~JITSymbolFlags::Common; assert(Flags == (SymI->second.getFlags() & ~JITSymbolFlags::Common) && "Resolved flags should match the declared flags"); Worklist.push_back({SymI, {KV.second.getAddress(), Flags}}); } } // If any symbols were in the error state then bail out. if (!SymbolsInErrorState.empty()) { auto FailedSymbolsDepMap = std::make_shared(); (*FailedSymbolsDepMap)[this] = std::move(SymbolsInErrorState); return make_error( getExecutionSession().getSymbolStringPool(), std::move(FailedSymbolsDepMap)); } while (!Worklist.empty()) { auto SymI = Worklist.back().SymI; auto ResolvedSym = Worklist.back().ResolvedSym; Worklist.pop_back(); auto &Name = SymI->first; // Resolved symbols can not be weak: discard the weak flag. JITSymbolFlags ResolvedFlags = ResolvedSym.getFlags(); SymI->second.setAddress(ResolvedSym.getAddress()); SymI->second.setFlags(ResolvedFlags); SymI->second.setState(SymbolState::Resolved); auto MII = MaterializingInfos.find(Name); if (MII == MaterializingInfos.end()) continue; auto &MI = MII->second; for (auto &Q : MI.takeQueriesMeeting(SymbolState::Resolved)) { Q->notifySymbolMetRequiredState(Name, ResolvedSym); Q->removeQueryDependence(*this, Name); if (Q->isComplete()) CompletedQueries.insert(std::move(Q)); } } return Error::success(); })) return Err; // Otherwise notify all the completed queries. for (auto &Q : CompletedQueries) { assert(Q->isComplete() && "Q not completed"); Q->handleComplete(ES); } return Error::success(); } void JITDylib::unlinkMaterializationResponsibility( MaterializationResponsibility &MR) { ES.runSessionLocked([&]() { auto I = TrackerMRs.find(MR.RT.get()); assert(I != TrackerMRs.end() && "No MRs in TrackerMRs list for RT"); assert(I->second.count(&MR) && "MR not in TrackerMRs list for RT"); I->second.erase(&MR); if (I->second.empty()) TrackerMRs.erase(MR.RT.get()); }); } void JITDylib::shrinkMaterializationInfoMemory() { // DenseMap::erase never shrinks its storage; use clear to heuristically free // memory since we may have long-lived JDs after linking is done. if (UnmaterializedInfos.empty()) UnmaterializedInfos.clear(); if (MaterializingInfos.empty()) MaterializingInfos.clear(); } void JITDylib::setLinkOrder(JITDylibSearchOrder NewLinkOrder, bool LinkAgainstThisJITDylibFirst) { ES.runSessionLocked([&]() { assert(State == Open && "JD is defunct"); if (LinkAgainstThisJITDylibFirst) { LinkOrder.clear(); if (NewLinkOrder.empty() || NewLinkOrder.front().first != this) LinkOrder.push_back( std::make_pair(this, JITDylibLookupFlags::MatchAllSymbols)); llvm::append_range(LinkOrder, NewLinkOrder); } else LinkOrder = std::move(NewLinkOrder); }); } void JITDylib::addToLinkOrder(const JITDylibSearchOrder &NewLinks) { ES.runSessionLocked([&]() { for (auto &KV : NewLinks) { // Skip elements of NewLinks that are already in the link order. if (llvm::is_contained(LinkOrder, KV)) continue; LinkOrder.push_back(std::move(KV)); } }); } void JITDylib::addToLinkOrder(JITDylib &JD, JITDylibLookupFlags JDLookupFlags) { ES.runSessionLocked([&]() { LinkOrder.push_back({&JD, JDLookupFlags}); }); } void JITDylib::replaceInLinkOrder(JITDylib &OldJD, JITDylib &NewJD, JITDylibLookupFlags JDLookupFlags) { ES.runSessionLocked([&]() { assert(State == Open && "JD is defunct"); for (auto &KV : LinkOrder) if (KV.first == &OldJD) { KV = {&NewJD, JDLookupFlags}; break; } }); } void JITDylib::removeFromLinkOrder(JITDylib &JD) { ES.runSessionLocked([&]() { assert(State == Open && "JD is defunct"); auto I = llvm::find_if(LinkOrder, [&](const JITDylibSearchOrder::value_type &KV) { return KV.first == &JD; }); if (I != LinkOrder.end()) LinkOrder.erase(I); }); } Error JITDylib::remove(const SymbolNameSet &Names) { return ES.runSessionLocked([&]() -> Error { assert(State == Open && "JD is defunct"); using SymbolMaterializerItrPair = std::pair; std::vector SymbolsToRemove; SymbolNameSet Missing; SymbolNameSet Materializing; for (auto &Name : Names) { auto I = Symbols.find(Name); // Note symbol missing. if (I == Symbols.end()) { Missing.insert(Name); continue; } // Note symbol materializing. if (I->second.getState() != SymbolState::NeverSearched && I->second.getState() != SymbolState::Ready) { Materializing.insert(Name); continue; } auto UMII = I->second.hasMaterializerAttached() ? UnmaterializedInfos.find(Name) : UnmaterializedInfos.end(); SymbolsToRemove.push_back(std::make_pair(I, UMII)); } // If any of the symbols are not defined, return an error. if (!Missing.empty()) return make_error(ES.getSymbolStringPool(), std::move(Missing)); // If any of the symbols are currently materializing, return an error. if (!Materializing.empty()) return make_error(ES.getSymbolStringPool(), std::move(Materializing)); // Remove the symbols. for (auto &SymbolMaterializerItrPair : SymbolsToRemove) { auto UMII = SymbolMaterializerItrPair.second; // If there is a materializer attached, call discard. if (UMII != UnmaterializedInfos.end()) { UMII->second->MU->doDiscard(*this, UMII->first); UnmaterializedInfos.erase(UMII); } auto SymI = SymbolMaterializerItrPair.first; Symbols.erase(SymI); } shrinkMaterializationInfoMemory(); return Error::success(); }); } void JITDylib::dump(raw_ostream &OS) { ES.runSessionLocked([&, this]() { OS << "JITDylib \"" << getName() << "\" (ES: " << format("0x%016" PRIx64, reinterpret_cast(&ES)) << ", State = "; switch (State) { case Open: OS << "Open"; break; case Closing: OS << "Closing"; break; case Closed: OS << "Closed"; break; } OS << ")\n"; if (State == Closed) return; OS << "Link order: " << LinkOrder << "\n" << "Symbol table:\n"; // Sort symbols so we get a deterministic order and can check them in tests. std::vector> SymbolsSorted; for (auto &KV : Symbols) SymbolsSorted.emplace_back(KV.first, &KV.second); std::sort(SymbolsSorted.begin(), SymbolsSorted.end(), [](const auto &L, const auto &R) { return *L.first < *R.first; }); for (auto &KV : SymbolsSorted) { OS << " \"" << *KV.first << "\": "; if (auto Addr = KV.second->getAddress()) OS << Addr; else OS << " "; OS << " " << KV.second->getFlags() << " " << KV.second->getState(); if (KV.second->hasMaterializerAttached()) { OS << " (Materializer "; auto I = UnmaterializedInfos.find(KV.first); assert(I != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"); OS << I->second->MU.get() << ", " << I->second->MU->getName() << ")\n"; } else OS << "\n"; } if (!MaterializingInfos.empty()) OS << " MaterializingInfos entries:\n"; for (auto &KV : MaterializingInfos) { OS << " \"" << *KV.first << "\":\n" << " " << KV.second.pendingQueries().size() << " pending queries: { "; for (const auto &Q : KV.second.pendingQueries()) OS << Q.get() << " (" << Q->getRequiredState() << ") "; OS << "}\n Defining EDU: "; if (KV.second.DefiningEDU) { OS << KV.second.DefiningEDU.get() << " { "; for (auto &[Name, Flags] : KV.second.DefiningEDU->Symbols) OS << Name << " "; OS << "}\n"; OS << " Dependencies:\n"; if (!KV.second.DefiningEDU->Dependencies.empty()) { for (auto &[DepJD, Deps] : KV.second.DefiningEDU->Dependencies) { OS << " " << DepJD->getName() << ": [ "; for (auto &Dep : Deps) OS << Dep << " "; OS << "]\n"; } } else OS << " none\n"; } else OS << "none\n"; OS << " Dependant EDUs:\n"; if (!KV.second.DependantEDUs.empty()) { for (auto &DependantEDU : KV.second.DependantEDUs) { OS << " " << DependantEDU << ": " << DependantEDU->JD->getName() << " { "; for (auto &[Name, Flags] : DependantEDU->Symbols) OS << Name << " "; OS << "}\n"; } } else OS << " none\n"; assert((Symbols[KV.first].getState() != SymbolState::Ready || (KV.second.pendingQueries().empty() && !KV.second.DefiningEDU && !KV.second.DependantEDUs.empty())) && "Stale materializing info entry"); } }); } void JITDylib::MaterializingInfo::addQuery( std::shared_ptr Q) { auto I = llvm::lower_bound( llvm::reverse(PendingQueries), Q->getRequiredState(), [](const std::shared_ptr &V, SymbolState S) { return V->getRequiredState() <= S; }); PendingQueries.insert(I.base(), std::move(Q)); } void JITDylib::MaterializingInfo::removeQuery( const AsynchronousSymbolQuery &Q) { // FIXME: Implement 'find_as' for shared_ptr/T*. auto I = llvm::find_if( PendingQueries, [&Q](const std::shared_ptr &V) { return V.get() == &Q; }); assert(I != PendingQueries.end() && "Query is not attached to this MaterializingInfo"); PendingQueries.erase(I); } JITDylib::AsynchronousSymbolQueryList JITDylib::MaterializingInfo::takeQueriesMeeting(SymbolState RequiredState) { AsynchronousSymbolQueryList Result; while (!PendingQueries.empty()) { if (PendingQueries.back()->getRequiredState() > RequiredState) break; Result.push_back(std::move(PendingQueries.back())); PendingQueries.pop_back(); } return Result; } JITDylib::JITDylib(ExecutionSession &ES, std::string Name) : JITLinkDylib(std::move(Name)), ES(ES) { LinkOrder.push_back({this, JITDylibLookupFlags::MatchAllSymbols}); } std::pair> JITDylib::IL_removeTracker(ResourceTracker &RT) { // Note: Should be called under the session lock. assert(State != Closed && "JD is defunct"); SymbolNameVector SymbolsToRemove; SymbolNameVector SymbolsToFail; if (&RT == DefaultTracker.get()) { SymbolNameSet TrackedSymbols; for (auto &KV : TrackerSymbols) for (auto &Sym : KV.second) TrackedSymbols.insert(Sym); for (auto &KV : Symbols) { auto &Sym = KV.first; if (!TrackedSymbols.count(Sym)) SymbolsToRemove.push_back(Sym); } DefaultTracker.reset(); } else { /// Check for a non-default tracker. auto I = TrackerSymbols.find(&RT); if (I != TrackerSymbols.end()) { SymbolsToRemove = std::move(I->second); TrackerSymbols.erase(I); } // ... if not found this tracker was already defunct. Nothing to do. } for (auto &Sym : SymbolsToRemove) { assert(Symbols.count(Sym) && "Symbol not in symbol table"); // If there is a MaterializingInfo then collect any queries to fail. auto MII = MaterializingInfos.find(Sym); if (MII != MaterializingInfos.end()) SymbolsToFail.push_back(Sym); } auto Result = ES.IL_failSymbols(*this, std::move(SymbolsToFail)); // Removed symbols should be taken out of the table altogether. for (auto &Sym : SymbolsToRemove) { auto I = Symbols.find(Sym); assert(I != Symbols.end() && "Symbol not present in table"); // Remove Materializer if present. if (I->second.hasMaterializerAttached()) { // FIXME: Should this discard the symbols? UnmaterializedInfos.erase(Sym); } else { assert(!UnmaterializedInfos.count(Sym) && "Symbol has materializer attached"); } Symbols.erase(I); } shrinkMaterializationInfoMemory(); return Result; } void JITDylib::transferTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT) { assert(State != Closed && "JD is defunct"); assert(&DstRT != &SrcRT && "No-op transfers shouldn't call transferTracker"); assert(&DstRT.getJITDylib() == this && "DstRT is not for this JITDylib"); assert(&SrcRT.getJITDylib() == this && "SrcRT is not for this JITDylib"); // Update trackers for any not-yet materialized units. for (auto &KV : UnmaterializedInfos) { if (KV.second->RT == &SrcRT) KV.second->RT = &DstRT; } // Update trackers for any active materialization responsibilities. { auto I = TrackerMRs.find(&SrcRT); if (I != TrackerMRs.end()) { auto &SrcMRs = I->second; auto &DstMRs = TrackerMRs[&DstRT]; for (auto *MR : SrcMRs) MR->RT = &DstRT; if (DstMRs.empty()) DstMRs = std::move(SrcMRs); else for (auto *MR : SrcMRs) DstMRs.insert(MR); // Erase SrcRT entry in TrackerMRs. Use &SrcRT key rather than iterator I // for this, since I may have been invalidated by 'TrackerMRs[&DstRT]'. TrackerMRs.erase(&SrcRT); } } // If we're transfering to the default tracker we just need to delete the // tracked symbols for the source tracker. if (&DstRT == DefaultTracker.get()) { TrackerSymbols.erase(&SrcRT); return; } // If we're transferring from the default tracker we need to find all // currently untracked symbols. if (&SrcRT == DefaultTracker.get()) { assert(!TrackerSymbols.count(&SrcRT) && "Default tracker should not appear in TrackerSymbols"); SymbolNameVector SymbolsToTrack; SymbolNameSet CurrentlyTrackedSymbols; for (auto &KV : TrackerSymbols) for (auto &Sym : KV.second) CurrentlyTrackedSymbols.insert(Sym); for (auto &KV : Symbols) { auto &Sym = KV.first; if (!CurrentlyTrackedSymbols.count(Sym)) SymbolsToTrack.push_back(Sym); } TrackerSymbols[&DstRT] = std::move(SymbolsToTrack); return; } auto &DstTrackedSymbols = TrackerSymbols[&DstRT]; // Finally if neither SrtRT or DstRT are the default tracker then // just append DstRT's tracked symbols to SrtRT's. auto SI = TrackerSymbols.find(&SrcRT); if (SI == TrackerSymbols.end()) return; DstTrackedSymbols.reserve(DstTrackedSymbols.size() + SI->second.size()); for (auto &Sym : SI->second) DstTrackedSymbols.push_back(std::move(Sym)); TrackerSymbols.erase(SI); } Error JITDylib::defineImpl(MaterializationUnit &MU) { LLVM_DEBUG({ dbgs() << " " << MU.getSymbols() << "\n"; }); SymbolNameSet Duplicates; std::vector ExistingDefsOverridden; std::vector MUDefsOverridden; for (const auto &KV : MU.getSymbols()) { auto I = Symbols.find(KV.first); if (I != Symbols.end()) { if (KV.second.isStrong()) { if (I->second.getFlags().isStrong() || I->second.getState() > SymbolState::NeverSearched) Duplicates.insert(KV.first); else { assert(I->second.getState() == SymbolState::NeverSearched && "Overridden existing def should be in the never-searched " "state"); ExistingDefsOverridden.push_back(KV.first); } } else MUDefsOverridden.push_back(KV.first); } } // If there were any duplicate definitions then bail out. if (!Duplicates.empty()) { LLVM_DEBUG( { dbgs() << " Error: Duplicate symbols " << Duplicates << "\n"; }); return make_error(std::string(**Duplicates.begin())); } // Discard any overridden defs in this MU. LLVM_DEBUG({ if (!MUDefsOverridden.empty()) dbgs() << " Defs in this MU overridden: " << MUDefsOverridden << "\n"; }); for (auto &S : MUDefsOverridden) MU.doDiscard(*this, S); // Discard existing overridden defs. LLVM_DEBUG({ if (!ExistingDefsOverridden.empty()) dbgs() << " Existing defs overridden by this MU: " << MUDefsOverridden << "\n"; }); for (auto &S : ExistingDefsOverridden) { auto UMII = UnmaterializedInfos.find(S); assert(UMII != UnmaterializedInfos.end() && "Overridden existing def should have an UnmaterializedInfo"); UMII->second->MU->doDiscard(*this, S); } // Finally, add the defs from this MU. for (auto &KV : MU.getSymbols()) { auto &SymEntry = Symbols[KV.first]; SymEntry.setFlags(KV.second); SymEntry.setState(SymbolState::NeverSearched); SymEntry.setMaterializerAttached(true); } return Error::success(); } void JITDylib::installMaterializationUnit( std::unique_ptr MU, ResourceTracker &RT) { /// defineImpl succeeded. if (&RT != DefaultTracker.get()) { auto &TS = TrackerSymbols[&RT]; TS.reserve(TS.size() + MU->getSymbols().size()); for (auto &KV : MU->getSymbols()) TS.push_back(KV.first); } auto UMI = std::make_shared(std::move(MU), &RT); for (auto &KV : UMI->MU->getSymbols()) UnmaterializedInfos[KV.first] = UMI; } void JITDylib::detachQueryHelper(AsynchronousSymbolQuery &Q, const SymbolNameSet &QuerySymbols) { for (auto &QuerySymbol : QuerySymbols) { assert(MaterializingInfos.count(QuerySymbol) && "QuerySymbol does not have MaterializingInfo"); auto &MI = MaterializingInfos[QuerySymbol]; MI.removeQuery(Q); } } Platform::~Platform() = default; Expected> Platform::lookupInitSymbols( ExecutionSession &ES, const DenseMap &InitSyms) { DenseMap CompoundResult; Error CompoundErr = Error::success(); std::mutex LookupMutex; std::condition_variable CV; uint64_t Count = InitSyms.size(); LLVM_DEBUG({ dbgs() << "Issuing init-symbol lookup:\n"; for (auto &KV : InitSyms) dbgs() << " " << KV.first->getName() << ": " << KV.second << "\n"; }); for (auto &KV : InitSyms) { auto *JD = KV.first; auto Names = std::move(KV.second); ES.lookup( LookupKind::Static, JITDylibSearchOrder({{JD, JITDylibLookupFlags::MatchAllSymbols}}), std::move(Names), SymbolState::Ready, [&, JD](Expected Result) { { std::lock_guard Lock(LookupMutex); --Count; if (Result) { assert(!CompoundResult.count(JD) && "Duplicate JITDylib in lookup?"); CompoundResult[JD] = std::move(*Result); } else CompoundErr = joinErrors(std::move(CompoundErr), Result.takeError()); } CV.notify_one(); }, NoDependenciesToRegister); } std::unique_lock Lock(LookupMutex); CV.wait(Lock, [&] { return Count == 0 || CompoundErr; }); if (CompoundErr) return std::move(CompoundErr); return std::move(CompoundResult); } void Platform::lookupInitSymbolsAsync( unique_function OnComplete, ExecutionSession &ES, const DenseMap &InitSyms) { class TriggerOnComplete { public: using OnCompleteFn = unique_function; TriggerOnComplete(OnCompleteFn OnComplete) : OnComplete(std::move(OnComplete)) {} ~TriggerOnComplete() { OnComplete(std::move(LookupResult)); } void reportResult(Error Err) { std::lock_guard Lock(ResultMutex); LookupResult = joinErrors(std::move(LookupResult), std::move(Err)); } private: std::mutex ResultMutex; Error LookupResult{Error::success()}; OnCompleteFn OnComplete; }; LLVM_DEBUG({ dbgs() << "Issuing init-symbol lookup:\n"; for (auto &KV : InitSyms) dbgs() << " " << KV.first->getName() << ": " << KV.second << "\n"; }); auto TOC = std::make_shared(std::move(OnComplete)); for (auto &KV : InitSyms) { auto *JD = KV.first; auto Names = std::move(KV.second); ES.lookup( LookupKind::Static, JITDylibSearchOrder({{JD, JITDylibLookupFlags::MatchAllSymbols}}), std::move(Names), SymbolState::Ready, [TOC](Expected Result) { TOC->reportResult(Result.takeError()); }, NoDependenciesToRegister); } } void MaterializationTask::printDescription(raw_ostream &OS) { OS << "Materialization task: " << MU->getName() << " in " << MR->getTargetJITDylib().getName(); } void MaterializationTask::run() { MU->materialize(std::move(MR)); } void LookupTask::printDescription(raw_ostream &OS) { OS << "Lookup task"; } void LookupTask::run() { LS.continueLookup(Error::success()); } ExecutionSession::ExecutionSession(std::unique_ptr EPC) : EPC(std::move(EPC)) { // Associated EPC and this. this->EPC->ES = this; } ExecutionSession::~ExecutionSession() { // You must call endSession prior to destroying the session. assert(!SessionOpen && "Session still open. Did you forget to call endSession?"); } Error ExecutionSession::endSession() { LLVM_DEBUG(dbgs() << "Ending ExecutionSession " << this << "\n"); auto JDsToRemove = runSessionLocked([&] { #ifdef EXPENSIVE_CHECKS verifySessionState("Entering ExecutionSession::endSession"); #endif SessionOpen = false; return JDs; }); std::reverse(JDsToRemove.begin(), JDsToRemove.end()); auto Err = removeJITDylibs(std::move(JDsToRemove)); Err = joinErrors(std::move(Err), EPC->disconnect()); return Err; } void ExecutionSession::registerResourceManager(ResourceManager &RM) { runSessionLocked([&] { ResourceManagers.push_back(&RM); }); } void ExecutionSession::deregisterResourceManager(ResourceManager &RM) { runSessionLocked([&] { assert(!ResourceManagers.empty() && "No managers registered"); if (ResourceManagers.back() == &RM) ResourceManagers.pop_back(); else { auto I = llvm::find(ResourceManagers, &RM); assert(I != ResourceManagers.end() && "RM not registered"); ResourceManagers.erase(I); } }); } JITDylib *ExecutionSession::getJITDylibByName(StringRef Name) { return runSessionLocked([&, this]() -> JITDylib * { for (auto &JD : JDs) if (JD->getName() == Name) return JD.get(); return nullptr; }); } JITDylib &ExecutionSession::createBareJITDylib(std::string Name) { assert(!getJITDylibByName(Name) && "JITDylib with that name already exists"); return runSessionLocked([&, this]() -> JITDylib & { assert(SessionOpen && "Cannot create JITDylib after session is closed"); JDs.push_back(new JITDylib(*this, std::move(Name))); return *JDs.back(); }); } Expected ExecutionSession::createJITDylib(std::string Name) { auto &JD = createBareJITDylib(Name); if (P) if (auto Err = P->setupJITDylib(JD)) return std::move(Err); return JD; } Error ExecutionSession::removeJITDylibs(std::vector JDsToRemove) { // Set JD to 'Closing' state and remove JD from the ExecutionSession. runSessionLocked([&] { for (auto &JD : JDsToRemove) { assert(JD->State == JITDylib::Open && "JD already closed"); JD->State = JITDylib::Closing; auto I = llvm::find(JDs, JD); assert(I != JDs.end() && "JD does not appear in session JDs"); JDs.erase(I); } }); // Clear JITDylibs and notify the platform. Error Err = Error::success(); for (auto JD : JDsToRemove) { Err = joinErrors(std::move(Err), JD->clear()); if (P) Err = joinErrors(std::move(Err), P->teardownJITDylib(*JD)); } // Set JD to closed state. Clear remaining data structures. runSessionLocked([&] { for (auto &JD : JDsToRemove) { assert(JD->State == JITDylib::Closing && "JD should be closing"); JD->State = JITDylib::Closed; assert(JD->Symbols.empty() && "JD.Symbols is not empty after clear"); assert(JD->UnmaterializedInfos.empty() && "JD.UnmaterializedInfos is not empty after clear"); assert(JD->MaterializingInfos.empty() && "JD.MaterializingInfos is not empty after clear"); assert(JD->TrackerSymbols.empty() && "TrackerSymbols is not empty after clear"); JD->DefGenerators.clear(); JD->LinkOrder.clear(); } }); return Err; } Expected> JITDylib::getDFSLinkOrder(ArrayRef JDs) { if (JDs.empty()) return std::vector(); auto &ES = JDs.front()->getExecutionSession(); return ES.runSessionLocked([&]() -> Expected> { DenseSet Visited; std::vector Result; for (auto &JD : JDs) { if (JD->State != Open) return make_error( "Error building link order: " + JD->getName() + " is defunct", inconvertibleErrorCode()); if (Visited.count(JD.get())) continue; SmallVector WorkStack; WorkStack.push_back(JD); Visited.insert(JD.get()); while (!WorkStack.empty()) { Result.push_back(std::move(WorkStack.back())); WorkStack.pop_back(); for (auto &KV : llvm::reverse(Result.back()->LinkOrder)) { auto &JD = *KV.first; if (!Visited.insert(&JD).second) continue; WorkStack.push_back(&JD); } } } return Result; }); } Expected> JITDylib::getReverseDFSLinkOrder(ArrayRef JDs) { auto Result = getDFSLinkOrder(JDs); if (Result) std::reverse(Result->begin(), Result->end()); return Result; } Expected> JITDylib::getDFSLinkOrder() { return getDFSLinkOrder({this}); } Expected> JITDylib::getReverseDFSLinkOrder() { return getReverseDFSLinkOrder({this}); } void ExecutionSession::lookupFlags( LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet, unique_function)> OnComplete) { OL_applyQueryPhase1(std::make_unique( K, std::move(SearchOrder), std::move(LookupSet), std::move(OnComplete)), Error::success()); } Expected ExecutionSession::lookupFlags(LookupKind K, JITDylibSearchOrder SearchOrder, SymbolLookupSet LookupSet) { std::promise> ResultP; OL_applyQueryPhase1(std::make_unique( K, std::move(SearchOrder), std::move(LookupSet), [&ResultP](Expected Result) { ResultP.set_value(std::move(Result)); }), Error::success()); auto ResultF = ResultP.get_future(); return ResultF.get(); } void ExecutionSession::lookup( LookupKind K, const JITDylibSearchOrder &SearchOrder, SymbolLookupSet Symbols, SymbolState RequiredState, SymbolsResolvedCallback NotifyComplete, RegisterDependenciesFunction RegisterDependencies) { LLVM_DEBUG({ runSessionLocked([&]() { dbgs() << "Looking up " << Symbols << " in " << SearchOrder << " (required state: " << RequiredState << ")\n"; }); }); // lookup can be re-entered recursively if running on a single thread. Run any // outstanding MUs in case this query depends on them, otherwise this lookup // will starve waiting for a result from an MU that is stuck in the queue. dispatchOutstandingMUs(); auto Unresolved = std::move(Symbols); auto Q = std::make_shared(Unresolved, RequiredState, std::move(NotifyComplete)); auto IPLS = std::make_unique( K, SearchOrder, std::move(Unresolved), RequiredState, std::move(Q), std::move(RegisterDependencies)); OL_applyQueryPhase1(std::move(IPLS), Error::success()); } Expected ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder, SymbolLookupSet Symbols, LookupKind K, SymbolState RequiredState, RegisterDependenciesFunction RegisterDependencies) { #if LLVM_ENABLE_THREADS // In the threaded case we use promises to return the results. std::promise PromisedResult; Error ResolutionError = Error::success(); auto NotifyComplete = [&](Expected R) { if (R) PromisedResult.set_value(std::move(*R)); else { ErrorAsOutParameter _(&ResolutionError); ResolutionError = R.takeError(); PromisedResult.set_value(SymbolMap()); } }; #else SymbolMap Result; Error ResolutionError = Error::success(); auto NotifyComplete = [&](Expected R) { ErrorAsOutParameter _(&ResolutionError); if (R) Result = std::move(*R); else ResolutionError = R.takeError(); }; #endif // Perform the asynchronous lookup. lookup(K, SearchOrder, std::move(Symbols), RequiredState, NotifyComplete, RegisterDependencies); #if LLVM_ENABLE_THREADS auto ResultFuture = PromisedResult.get_future(); auto Result = ResultFuture.get(); if (ResolutionError) return std::move(ResolutionError); return std::move(Result); #else if (ResolutionError) return std::move(ResolutionError); return Result; #endif } Expected ExecutionSession::lookup(const JITDylibSearchOrder &SearchOrder, SymbolStringPtr Name, SymbolState RequiredState) { SymbolLookupSet Names({Name}); if (auto ResultMap = lookup(SearchOrder, std::move(Names), LookupKind::Static, RequiredState, NoDependenciesToRegister)) { assert(ResultMap->size() == 1 && "Unexpected number of results"); assert(ResultMap->count(Name) && "Missing result for symbol"); return std::move(ResultMap->begin()->second); } else return ResultMap.takeError(); } Expected ExecutionSession::lookup(ArrayRef SearchOrder, SymbolStringPtr Name, SymbolState RequiredState) { return lookup(makeJITDylibSearchOrder(SearchOrder), Name, RequiredState); } Expected ExecutionSession::lookup(ArrayRef SearchOrder, StringRef Name, SymbolState RequiredState) { return lookup(SearchOrder, intern(Name), RequiredState); } Error ExecutionSession::registerJITDispatchHandlers( JITDylib &JD, JITDispatchHandlerAssociationMap WFs) { auto TagAddrs = lookup({{&JD, JITDylibLookupFlags::MatchAllSymbols}}, SymbolLookupSet::fromMapKeys( WFs, SymbolLookupFlags::WeaklyReferencedSymbol)); if (!TagAddrs) return TagAddrs.takeError(); // Associate tag addresses with implementations. std::lock_guard Lock(JITDispatchHandlersMutex); for (auto &KV : *TagAddrs) { auto TagAddr = KV.second.getAddress(); if (JITDispatchHandlers.count(TagAddr)) return make_error("Tag " + formatv("{0:x16}", TagAddr) + " (for " + *KV.first + ") already registered", inconvertibleErrorCode()); auto I = WFs.find(KV.first); assert(I != WFs.end() && I->second && "JITDispatchHandler implementation missing"); JITDispatchHandlers[KV.second.getAddress()] = std::make_shared(std::move(I->second)); LLVM_DEBUG({ dbgs() << "Associated function tag \"" << *KV.first << "\" (" << formatv("{0:x}", KV.second.getAddress()) << ") with handler\n"; }); } return Error::success(); } void ExecutionSession::runJITDispatchHandler(SendResultFunction SendResult, ExecutorAddr HandlerFnTagAddr, ArrayRef ArgBuffer) { std::shared_ptr F; { std::lock_guard Lock(JITDispatchHandlersMutex); auto I = JITDispatchHandlers.find(HandlerFnTagAddr); if (I != JITDispatchHandlers.end()) F = I->second; } if (F) (*F)(std::move(SendResult), ArgBuffer.data(), ArgBuffer.size()); else SendResult(shared::WrapperFunctionResult::createOutOfBandError( ("No function registered for tag " + formatv("{0:x16}", HandlerFnTagAddr)) .str())); } void ExecutionSession::dump(raw_ostream &OS) { runSessionLocked([this, &OS]() { for (auto &JD : JDs) JD->dump(OS); }); } #ifdef EXPENSIVE_CHECKS bool ExecutionSession::verifySessionState(Twine Phase) { return runSessionLocked([&]() { bool AllOk = true; // We'll collect these and verify them later to avoid redundant checks. DenseSet EDUsToCheck; for (auto &JD : JDs) { auto LogFailure = [&]() -> raw_fd_ostream & { auto &Stream = errs(); if (AllOk) Stream << "ERROR: Bad ExecutionSession state detected " << Phase << "\n"; Stream << " In JITDylib " << JD->getName() << ", "; AllOk = false; return Stream; }; if (JD->State != JITDylib::Open) { LogFailure() << "state is not Open, but JD is in ExecutionSession list."; } // Check symbol table. // 1. If the entry state isn't resolved then check that no address has // been set. // 2. Check that if the hasMaterializerAttached flag is set then there is // an UnmaterializedInfo entry, and vice-versa. for (auto &[Sym, Entry] : JD->Symbols) { // Check that unresolved symbols have null addresses. if (Entry.getState() < SymbolState::Resolved) { if (Entry.getAddress()) { LogFailure() << "symbol " << Sym << " has state " << Entry.getState() << " (not-yet-resolved) but non-null address " << Entry.getAddress() << ".\n"; } } // Check that the hasMaterializerAttached flag is correct. auto UMIItr = JD->UnmaterializedInfos.find(Sym); if (Entry.hasMaterializerAttached()) { if (UMIItr == JD->UnmaterializedInfos.end()) { LogFailure() << "symbol " << Sym << " entry claims materializer attached, but " "UnmaterializedInfos has no corresponding entry.\n"; } } else if (UMIItr != JD->UnmaterializedInfos.end()) { LogFailure() << "symbol " << Sym << " entry claims no materializer attached, but " "UnmaterializedInfos has an unexpected entry for it.\n"; } } // Check that every UnmaterializedInfo entry has a corresponding entry // in the Symbols table. for (auto &[Sym, UMI] : JD->UnmaterializedInfos) { auto SymItr = JD->Symbols.find(Sym); if (SymItr == JD->Symbols.end()) { LogFailure() << "symbol " << Sym << " has UnmaterializedInfos entry, but no Symbols entry.\n"; } } // Check consistency of the MaterializingInfos table. for (auto &[Sym, MII] : JD->MaterializingInfos) { auto SymItr = JD->Symbols.find(Sym); if (SymItr == JD->Symbols.end()) { // If there's no Symbols entry for this MaterializingInfos entry then // report that. LogFailure() << "symbol " << Sym << " has MaterializingInfos entry, but no Symbols entry.\n"; } else { // Otherwise check consistency between Symbols and MaterializingInfos. // Ready symbols should not have MaterializingInfos. if (SymItr->second.getState() == SymbolState::Ready) { LogFailure() << "symbol " << Sym << " is in Ready state, should not have MaterializingInfo.\n"; } // Pending queries should be for subsequent states. auto CurState = static_cast( static_cast>( SymItr->second.getState()) + 1); for (auto &Q : MII.PendingQueries) { if (Q->getRequiredState() != CurState) { if (Q->getRequiredState() > CurState) CurState = Q->getRequiredState(); else LogFailure() << "symbol " << Sym << " has stale or misordered queries.\n"; } } // If there's a DefiningEDU then check that... // 1. The JD matches. // 2. The symbol is in the EDU's Symbols map. // 3. The symbol table entry is in the Emitted state. if (MII.DefiningEDU) { EDUsToCheck.insert(MII.DefiningEDU.get()); if (MII.DefiningEDU->JD != JD.get()) { LogFailure() << "symbol " << Sym << " has DefiningEDU with incorrect JD" << (llvm::is_contained(JDs, MII.DefiningEDU->JD) ? " (JD not currently in ExecutionSession" : "") << "\n"; } if (SymItr->second.getState() != SymbolState::Emitted) { LogFailure() << "symbol " << Sym << " has DefiningEDU, but is not in Emitted state.\n"; } } // Check that JDs for any DependantEDUs are also in the session -- // that guarantees that we'll also visit them during this loop. for (auto &DepEDU : MII.DependantEDUs) { if (!llvm::is_contained(JDs, DepEDU->JD)) { LogFailure() << "symbol " << Sym << " has DependantEDU " << (void *)DepEDU << " with JD (" << DepEDU->JD << ") that isn't in ExecutionSession.\n"; } } } } } // Check EDUs. for (auto *EDU : EDUsToCheck) { assert(EDU->JD->State == JITDylib::Open && "EDU->JD is not Open"); auto LogFailure = [&]() -> raw_fd_ostream & { AllOk = false; auto &Stream = errs(); Stream << "In EDU defining " << EDU->JD->getName() << ": { "; for (auto &[Sym, Flags] : EDU->Symbols) Stream << Sym << " "; Stream << "}, "; return Stream; }; if (EDU->Symbols.empty()) LogFailure() << "no symbols defined.\n"; else { for (auto &[Sym, Flags] : EDU->Symbols) { if (!Sym) LogFailure() << "null symbol defined.\n"; else { if (!EDU->JD->Symbols.count(SymbolStringPtr(Sym))) { LogFailure() << "symbol " << Sym << " isn't present in JD's symbol table.\n"; } } } } for (auto &[DepJD, Symbols] : EDU->Dependencies) { if (!llvm::is_contained(JDs, DepJD)) { LogFailure() << "dependant symbols listed for JD that isn't in " "ExecutionSession.\n"; } else { for (auto &DepSym : Symbols) { if (!DepJD->Symbols.count(SymbolStringPtr(DepSym))) { LogFailure() << "dependant symbol " << DepSym << " does not appear in symbol table for dependant JD " << DepJD->getName() << ".\n"; } } } } } return AllOk; }); } #endif // EXPENSIVE_CHECKS void ExecutionSession::dispatchOutstandingMUs() { LLVM_DEBUG(dbgs() << "Dispatching MaterializationUnits...\n"); while (true) { std::optional, std::unique_ptr>> JMU; { std::lock_guard Lock(OutstandingMUsMutex); if (!OutstandingMUs.empty()) { JMU.emplace(std::move(OutstandingMUs.back())); OutstandingMUs.pop_back(); } } if (!JMU) break; assert(JMU->first && "No MU?"); LLVM_DEBUG(dbgs() << " Dispatching \"" << JMU->first->getName() << "\"\n"); dispatchTask(std::make_unique(std::move(JMU->first), std::move(JMU->second))); } LLVM_DEBUG(dbgs() << "Done dispatching MaterializationUnits.\n"); } Error ExecutionSession::removeResourceTracker(ResourceTracker &RT) { LLVM_DEBUG({ dbgs() << "In " << RT.getJITDylib().getName() << " removing tracker " << formatv("{0:x}", RT.getKeyUnsafe()) << "\n"; }); std::vector CurrentResourceManagers; JITDylib::AsynchronousSymbolQuerySet QueriesToFail; std::shared_ptr FailedSymbols; runSessionLocked([&] { CurrentResourceManagers = ResourceManagers; RT.makeDefunct(); std::tie(QueriesToFail, FailedSymbols) = RT.getJITDylib().IL_removeTracker(RT); }); Error Err = Error::success(); auto &JD = RT.getJITDylib(); for (auto *L : reverse(CurrentResourceManagers)) Err = joinErrors(std::move(Err), L->handleRemoveResources(JD, RT.getKeyUnsafe())); for (auto &Q : QueriesToFail) Q->handleFailed( make_error(getSymbolStringPool(), FailedSymbols)); return Err; } void ExecutionSession::transferResourceTracker(ResourceTracker &DstRT, ResourceTracker &SrcRT) { LLVM_DEBUG({ dbgs() << "In " << SrcRT.getJITDylib().getName() << " transfering resources from tracker " << formatv("{0:x}", SrcRT.getKeyUnsafe()) << " to tracker " << formatv("{0:x}", DstRT.getKeyUnsafe()) << "\n"; }); // No-op transfers are allowed and do not invalidate the source. if (&DstRT == &SrcRT) return; assert(&DstRT.getJITDylib() == &SrcRT.getJITDylib() && "Can't transfer resources between JITDylibs"); runSessionLocked([&]() { SrcRT.makeDefunct(); auto &JD = DstRT.getJITDylib(); JD.transferTracker(DstRT, SrcRT); for (auto *L : reverse(ResourceManagers)) L->handleTransferResources(JD, DstRT.getKeyUnsafe(), SrcRT.getKeyUnsafe()); }); } void ExecutionSession::destroyResourceTracker(ResourceTracker &RT) { runSessionLocked([&]() { LLVM_DEBUG({ dbgs() << "In " << RT.getJITDylib().getName() << " destroying tracker " << formatv("{0:x}", RT.getKeyUnsafe()) << "\n"; }); if (!RT.isDefunct()) transferResourceTracker(*RT.getJITDylib().getDefaultResourceTracker(), RT); }); } Error ExecutionSession::IL_updateCandidatesFor( JITDylib &JD, JITDylibLookupFlags JDLookupFlags, SymbolLookupSet &Candidates, SymbolLookupSet *NonCandidates) { return Candidates.forEachWithRemoval( [&](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) -> Expected { /// Search for the symbol. If not found then continue without /// removal. auto SymI = JD.Symbols.find(Name); if (SymI == JD.Symbols.end()) return false; // If this is a non-exported symbol and we're matching exported // symbols only then remove this symbol from the candidates list. // // If we're tracking non-candidates then add this to the non-candidate // list. if (!SymI->second.getFlags().isExported() && JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly) { if (NonCandidates) NonCandidates->add(Name, SymLookupFlags); return true; } // If we match against a materialization-side-effects only symbol // then make sure it is weakly-referenced. Otherwise bail out with // an error. // FIXME: Use a "materialization-side-effects-only symbols must be // weakly referenced" specific error here to reduce confusion. if (SymI->second.getFlags().hasMaterializationSideEffectsOnly() && SymLookupFlags != SymbolLookupFlags::WeaklyReferencedSymbol) return make_error(getSymbolStringPool(), SymbolNameVector({Name})); // If we matched against this symbol but it is in the error state // then bail out and treat it as a failure to materialize. if (SymI->second.getFlags().hasError()) { auto FailedSymbolsMap = std::make_shared(); (*FailedSymbolsMap)[&JD] = {Name}; return make_error(getSymbolStringPool(), std::move(FailedSymbolsMap)); } // Otherwise this is a match. Remove it from the candidate set. return true; }); } void ExecutionSession::OL_resumeLookupAfterGeneration( InProgressLookupState &IPLS) { assert(IPLS.GenState != InProgressLookupState::NotInGenerator && "Should not be called for not-in-generator lookups"); IPLS.GenState = InProgressLookupState::NotInGenerator; LookupState LS; if (auto DG = IPLS.CurDefGeneratorStack.back().lock()) { IPLS.CurDefGeneratorStack.pop_back(); std::lock_guard Lock(DG->M); // If there are no pending lookups then mark the generator as free and // return. if (DG->PendingLookups.empty()) { DG->InUse = false; return; } // Otherwise resume the next lookup. LS = std::move(DG->PendingLookups.front()); DG->PendingLookups.pop_front(); } if (LS.IPLS) { LS.IPLS->GenState = InProgressLookupState::ResumedForGenerator; dispatchTask(std::make_unique(std::move(LS))); } } void ExecutionSession::OL_applyQueryPhase1( std::unique_ptr IPLS, Error Err) { LLVM_DEBUG({ dbgs() << "Entering OL_applyQueryPhase1:\n" << " Lookup kind: " << IPLS->K << "\n" << " Search order: " << IPLS->SearchOrder << ", Current index = " << IPLS->CurSearchOrderIndex << (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n" << " Lookup set: " << IPLS->LookupSet << "\n" << " Definition generator candidates: " << IPLS->DefGeneratorCandidates << "\n" << " Definition generator non-candidates: " << IPLS->DefGeneratorNonCandidates << "\n"; }); if (IPLS->GenState == InProgressLookupState::InGenerator) OL_resumeLookupAfterGeneration(*IPLS); assert(IPLS->GenState != InProgressLookupState::InGenerator && "Lookup should not be in InGenerator state here"); // FIXME: We should attach the query as we go: This provides a result in a // single pass in the common case where all symbols have already reached the // required state. The query could be detached again in the 'fail' method on // IPLS. Phase 2 would be reduced to collecting and dispatching the MUs. while (IPLS->CurSearchOrderIndex != IPLS->SearchOrder.size()) { // If we've been handed an error or received one back from a generator then // fail the query. We don't need to unlink: At this stage the query hasn't // actually been lodged. if (Err) return IPLS->fail(std::move(Err)); // Get the next JITDylib and lookup flags. auto &KV = IPLS->SearchOrder[IPLS->CurSearchOrderIndex]; auto &JD = *KV.first; auto JDLookupFlags = KV.second; LLVM_DEBUG({ dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags << ") with lookup set " << IPLS->LookupSet << ":\n"; }); // If we've just reached a new JITDylib then perform some setup. if (IPLS->NewJITDylib) { // Add any non-candidates from the last JITDylib (if any) back on to the // list of definition candidates for this JITDylib, reset definition // non-candidates to the empty set. SymbolLookupSet Tmp; std::swap(IPLS->DefGeneratorNonCandidates, Tmp); IPLS->DefGeneratorCandidates.append(std::move(Tmp)); LLVM_DEBUG({ dbgs() << " First time visiting " << JD.getName() << ", resetting candidate sets and building generator stack\n"; }); // Build the definition generator stack for this JITDylib. runSessionLocked([&] { IPLS->CurDefGeneratorStack.reserve(JD.DefGenerators.size()); for (auto &DG : reverse(JD.DefGenerators)) IPLS->CurDefGeneratorStack.push_back(DG); }); // Flag that we've done our initialization. IPLS->NewJITDylib = false; } // Remove any generation candidates that are already defined (and match) in // this JITDylib. runSessionLocked([&] { // Update the list of candidates (and non-candidates) for definition // generation. LLVM_DEBUG(dbgs() << " Updating candidate set...\n"); Err = IL_updateCandidatesFor( JD, JDLookupFlags, IPLS->DefGeneratorCandidates, JD.DefGenerators.empty() ? nullptr : &IPLS->DefGeneratorNonCandidates); LLVM_DEBUG({ dbgs() << " Remaining candidates = " << IPLS->DefGeneratorCandidates << "\n"; }); // If this lookup was resumed after auto-suspension but all candidates // have already been generated (by some previous call to the generator) // treat the lookup as if it had completed generation. if (IPLS->GenState == InProgressLookupState::ResumedForGenerator && IPLS->DefGeneratorCandidates.empty()) OL_resumeLookupAfterGeneration(*IPLS); }); // If we encountered an error while filtering generation candidates then // bail out. if (Err) return IPLS->fail(std::move(Err)); /// Apply any definition generators on the stack. LLVM_DEBUG({ if (IPLS->CurDefGeneratorStack.empty()) LLVM_DEBUG(dbgs() << " No generators to run for this JITDylib.\n"); else if (IPLS->DefGeneratorCandidates.empty()) LLVM_DEBUG(dbgs() << " No candidates to generate.\n"); else dbgs() << " Running " << IPLS->CurDefGeneratorStack.size() << " remaining generators for " << IPLS->DefGeneratorCandidates.size() << " candidates\n"; }); while (!IPLS->CurDefGeneratorStack.empty() && !IPLS->DefGeneratorCandidates.empty()) { auto DG = IPLS->CurDefGeneratorStack.back().lock(); if (!DG) return IPLS->fail(make_error( "DefinitionGenerator removed while lookup in progress", inconvertibleErrorCode())); // At this point the lookup is in either the NotInGenerator state, or in // the ResumedForGenerator state. // If this lookup is in the NotInGenerator state then check whether the // generator is in use. If the generator is not in use then move the // lookup to the InGenerator state and continue. If the generator is // already in use then just add this lookup to the pending lookups list // and bail out. // If this lookup is in the ResumedForGenerator state then just move it // to InGenerator and continue. if (IPLS->GenState == InProgressLookupState::NotInGenerator) { std::lock_guard Lock(DG->M); if (DG->InUse) { DG->PendingLookups.push_back(std::move(IPLS)); return; } DG->InUse = true; } IPLS->GenState = InProgressLookupState::InGenerator; auto K = IPLS->K; auto &LookupSet = IPLS->DefGeneratorCandidates; // Run the generator. If the generator takes ownership of QA then this // will break the loop. { LLVM_DEBUG(dbgs() << " Attempting to generate " << LookupSet << "\n"); LookupState LS(std::move(IPLS)); Err = DG->tryToGenerate(LS, K, JD, JDLookupFlags, LookupSet); IPLS = std::move(LS.IPLS); } // If the lookup returned then pop the generator stack and unblock the // next lookup on this generator (if any). if (IPLS) OL_resumeLookupAfterGeneration(*IPLS); // If there was an error then fail the query. if (Err) { LLVM_DEBUG({ dbgs() << " Error attempting to generate " << LookupSet << "\n"; }); assert(IPLS && "LS cannot be retained if error is returned"); return IPLS->fail(std::move(Err)); } // Otherwise if QA was captured then break the loop. if (!IPLS) { LLVM_DEBUG( { dbgs() << " LookupState captured. Exiting phase1 for now.\n"; }); return; } // Otherwise if we're continuing around the loop then update candidates // for the next round. runSessionLocked([&] { LLVM_DEBUG(dbgs() << " Updating candidate set post-generation\n"); Err = IL_updateCandidatesFor( JD, JDLookupFlags, IPLS->DefGeneratorCandidates, JD.DefGenerators.empty() ? nullptr : &IPLS->DefGeneratorNonCandidates); }); // If updating candidates failed then fail the query. if (Err) { LLVM_DEBUG(dbgs() << " Error encountered while updating candidates\n"); return IPLS->fail(std::move(Err)); } } if (IPLS->DefGeneratorCandidates.empty() && IPLS->DefGeneratorNonCandidates.empty()) { // Early out if there are no remaining symbols. LLVM_DEBUG(dbgs() << "All symbols matched.\n"); IPLS->CurSearchOrderIndex = IPLS->SearchOrder.size(); break; } else { // If we get here then we've moved on to the next JITDylib with candidates // remaining. LLVM_DEBUG(dbgs() << "Phase 1 moving to next JITDylib.\n"); ++IPLS->CurSearchOrderIndex; IPLS->NewJITDylib = true; } } // Remove any weakly referenced candidates that could not be found/generated. IPLS->DefGeneratorCandidates.remove_if( [](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) { return SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol; }); // If we get here then we've finished searching all JITDylibs. // If we matched all symbols then move to phase 2, otherwise fail the query // with a SymbolsNotFound error. if (IPLS->DefGeneratorCandidates.empty()) { LLVM_DEBUG(dbgs() << "Phase 1 succeeded.\n"); IPLS->complete(std::move(IPLS)); } else { LLVM_DEBUG(dbgs() << "Phase 1 failed with unresolved symbols.\n"); IPLS->fail(make_error( getSymbolStringPool(), IPLS->DefGeneratorCandidates.getSymbolNames())); } } void ExecutionSession::OL_completeLookup( std::unique_ptr IPLS, std::shared_ptr Q, RegisterDependenciesFunction RegisterDependencies) { LLVM_DEBUG({ dbgs() << "Entering OL_completeLookup:\n" << " Lookup kind: " << IPLS->K << "\n" << " Search order: " << IPLS->SearchOrder << ", Current index = " << IPLS->CurSearchOrderIndex << (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n" << " Lookup set: " << IPLS->LookupSet << "\n" << " Definition generator candidates: " << IPLS->DefGeneratorCandidates << "\n" << " Definition generator non-candidates: " << IPLS->DefGeneratorNonCandidates << "\n"; }); bool QueryComplete = false; DenseMap CollectedUMIs; auto LodgingErr = runSessionLocked([&]() -> Error { for (auto &KV : IPLS->SearchOrder) { auto &JD = *KV.first; auto JDLookupFlags = KV.second; LLVM_DEBUG({ dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags << ") with lookup set " << IPLS->LookupSet << ":\n"; }); auto Err = IPLS->LookupSet.forEachWithRemoval( [&](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) -> Expected { LLVM_DEBUG({ dbgs() << " Attempting to match \"" << Name << "\" (" << SymLookupFlags << ")... "; }); /// Search for the symbol. If not found then continue without /// removal. auto SymI = JD.Symbols.find(Name); if (SymI == JD.Symbols.end()) { LLVM_DEBUG(dbgs() << "skipping: not present\n"); return false; } // If this is a non-exported symbol and we're matching exported // symbols only then skip this symbol without removal. if (!SymI->second.getFlags().isExported() && JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly) { LLVM_DEBUG(dbgs() << "skipping: not exported\n"); return false; } // If we match against a materialization-side-effects only symbol // then make sure it is weakly-referenced. Otherwise bail out with // an error. // FIXME: Use a "materialization-side-effects-only symbols must be // weakly referenced" specific error here to reduce confusion. if (SymI->second.getFlags().hasMaterializationSideEffectsOnly() && SymLookupFlags != SymbolLookupFlags::WeaklyReferencedSymbol) { LLVM_DEBUG({ dbgs() << "error: " "required, but symbol is has-side-effects-only\n"; }); return make_error(getSymbolStringPool(), SymbolNameVector({Name})); } // If we matched against this symbol but it is in the error state // then bail out and treat it as a failure to materialize. if (SymI->second.getFlags().hasError()) { LLVM_DEBUG(dbgs() << "error: symbol is in error state\n"); auto FailedSymbolsMap = std::make_shared(); (*FailedSymbolsMap)[&JD] = {Name}; return make_error( getSymbolStringPool(), std::move(FailedSymbolsMap)); } // Otherwise this is a match. // If this symbol is already in the required state then notify the // query, remove the symbol and continue. if (SymI->second.getState() >= Q->getRequiredState()) { LLVM_DEBUG(dbgs() << "matched, symbol already in required state\n"); Q->notifySymbolMetRequiredState(Name, SymI->second.getSymbol()); return true; } // Otherwise this symbol does not yet meet the required state. Check // whether it has a materializer attached, and if so prepare to run // it. if (SymI->second.hasMaterializerAttached()) { assert(SymI->second.getAddress() == ExecutorAddr() && "Symbol not resolved but already has address?"); auto UMII = JD.UnmaterializedInfos.find(Name); assert(UMII != JD.UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"); auto UMI = UMII->second; assert(UMI->MU && "Materializer should not be null"); assert(UMI->RT && "Tracker should not be null"); LLVM_DEBUG({ dbgs() << "matched, preparing to dispatch MU@" << UMI->MU.get() << " (" << UMI->MU->getName() << ")\n"; }); // Move all symbols associated with this MaterializationUnit into // materializing state. for (auto &KV : UMI->MU->getSymbols()) { auto SymK = JD.Symbols.find(KV.first); assert(SymK != JD.Symbols.end() && "No entry for symbol covered by MaterializationUnit"); SymK->second.setMaterializerAttached(false); SymK->second.setState(SymbolState::Materializing); JD.UnmaterializedInfos.erase(KV.first); } // Add MU to the list of MaterializationUnits to be materialized. CollectedUMIs[&JD].push_back(std::move(UMI)); } else LLVM_DEBUG(dbgs() << "matched, registering query"); // Add the query to the PendingQueries list and continue, deleting // the element from the lookup set. assert(SymI->second.getState() != SymbolState::NeverSearched && SymI->second.getState() != SymbolState::Ready && "By this line the symbol should be materializing"); auto &MI = JD.MaterializingInfos[Name]; MI.addQuery(Q); Q->addQueryDependence(JD, Name); return true; }); JD.shrinkMaterializationInfoMemory(); // Handle failure. if (Err) { LLVM_DEBUG({ dbgs() << "Lookup failed. Detaching query and replacing MUs.\n"; }); // Detach the query. Q->detach(); // Replace the MUs. for (auto &KV : CollectedUMIs) { auto &JD = *KV.first; for (auto &UMI : KV.second) for (auto &KV2 : UMI->MU->getSymbols()) { assert(!JD.UnmaterializedInfos.count(KV2.first) && "Unexpected materializer in map"); auto SymI = JD.Symbols.find(KV2.first); assert(SymI != JD.Symbols.end() && "Missing symbol entry"); assert(SymI->second.getState() == SymbolState::Materializing && "Can not replace symbol that is not materializing"); assert(!SymI->second.hasMaterializerAttached() && "MaterializerAttached flag should not be set"); SymI->second.setMaterializerAttached(true); JD.UnmaterializedInfos[KV2.first] = UMI; } } return Err; } } LLVM_DEBUG(dbgs() << "Stripping unmatched weakly-referenced symbols\n"); IPLS->LookupSet.forEachWithRemoval( [&](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) { if (SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol) { Q->dropSymbol(Name); return true; } else return false; }); if (!IPLS->LookupSet.empty()) { LLVM_DEBUG(dbgs() << "Failing due to unresolved symbols\n"); return make_error(getSymbolStringPool(), IPLS->LookupSet.getSymbolNames()); } // Record whether the query completed. QueryComplete = Q->isComplete(); LLVM_DEBUG({ dbgs() << "Query successfully " << (QueryComplete ? "completed" : "lodged") << "\n"; }); // Move the collected MUs to the OutstandingMUs list. if (!CollectedUMIs.empty()) { std::lock_guard Lock(OutstandingMUsMutex); LLVM_DEBUG(dbgs() << "Adding MUs to dispatch:\n"); for (auto &KV : CollectedUMIs) { LLVM_DEBUG({ auto &JD = *KV.first; dbgs() << " For " << JD.getName() << ": Adding " << KV.second.size() << " MUs.\n"; }); for (auto &UMI : KV.second) { auto MR = createMaterializationResponsibility( *UMI->RT, std::move(UMI->MU->SymbolFlags), std::move(UMI->MU->InitSymbol)); OutstandingMUs.push_back( std::make_pair(std::move(UMI->MU), std::move(MR))); } } } else LLVM_DEBUG(dbgs() << "No MUs to dispatch.\n"); if (RegisterDependencies && !Q->QueryRegistrations.empty()) { LLVM_DEBUG(dbgs() << "Registering dependencies\n"); RegisterDependencies(Q->QueryRegistrations); } else LLVM_DEBUG(dbgs() << "No dependencies to register\n"); return Error::success(); }); if (LodgingErr) { LLVM_DEBUG(dbgs() << "Failing query\n"); Q->detach(); Q->handleFailed(std::move(LodgingErr)); return; } if (QueryComplete) { LLVM_DEBUG(dbgs() << "Completing query\n"); Q->handleComplete(*this); } dispatchOutstandingMUs(); } void ExecutionSession::OL_completeLookupFlags( std::unique_ptr IPLS, unique_function)> OnComplete) { auto Result = runSessionLocked([&]() -> Expected { LLVM_DEBUG({ dbgs() << "Entering OL_completeLookupFlags:\n" << " Lookup kind: " << IPLS->K << "\n" << " Search order: " << IPLS->SearchOrder << ", Current index = " << IPLS->CurSearchOrderIndex << (IPLS->NewJITDylib ? " (entering new JITDylib)" : "") << "\n" << " Lookup set: " << IPLS->LookupSet << "\n" << " Definition generator candidates: " << IPLS->DefGeneratorCandidates << "\n" << " Definition generator non-candidates: " << IPLS->DefGeneratorNonCandidates << "\n"; }); SymbolFlagsMap Result; // Attempt to find flags for each symbol. for (auto &KV : IPLS->SearchOrder) { auto &JD = *KV.first; auto JDLookupFlags = KV.second; LLVM_DEBUG({ dbgs() << "Visiting \"" << JD.getName() << "\" (" << JDLookupFlags << ") with lookup set " << IPLS->LookupSet << ":\n"; }); IPLS->LookupSet.forEachWithRemoval([&](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) { LLVM_DEBUG({ dbgs() << " Attempting to match \"" << Name << "\" (" << SymLookupFlags << ")... "; }); // Search for the symbol. If not found then continue without removing // from the lookup set. auto SymI = JD.Symbols.find(Name); if (SymI == JD.Symbols.end()) { LLVM_DEBUG(dbgs() << "skipping: not present\n"); return false; } // If this is a non-exported symbol then it doesn't match. Skip it. if (!SymI->second.getFlags().isExported() && JDLookupFlags == JITDylibLookupFlags::MatchExportedSymbolsOnly) { LLVM_DEBUG(dbgs() << "skipping: not exported\n"); return false; } LLVM_DEBUG({ dbgs() << "matched, \"" << Name << "\" -> " << SymI->second.getFlags() << "\n"; }); Result[Name] = SymI->second.getFlags(); return true; }); } // Remove any weakly referenced symbols that haven't been resolved. IPLS->LookupSet.remove_if( [](const SymbolStringPtr &Name, SymbolLookupFlags SymLookupFlags) { return SymLookupFlags == SymbolLookupFlags::WeaklyReferencedSymbol; }); if (!IPLS->LookupSet.empty()) { LLVM_DEBUG(dbgs() << "Failing due to unresolved symbols\n"); return make_error(getSymbolStringPool(), IPLS->LookupSet.getSymbolNames()); } LLVM_DEBUG(dbgs() << "Succeded, result = " << Result << "\n"); return Result; }); // Run the callback on the result. LLVM_DEBUG(dbgs() << "Sending result to handler.\n"); OnComplete(std::move(Result)); } void ExecutionSession::OL_destroyMaterializationResponsibility( MaterializationResponsibility &MR) { assert(MR.SymbolFlags.empty() && "All symbols should have been explicitly materialized or failed"); MR.JD.unlinkMaterializationResponsibility(MR); } SymbolNameSet ExecutionSession::OL_getRequestedSymbols( const MaterializationResponsibility &MR) { return MR.JD.getRequestedSymbols(MR.SymbolFlags); } Error ExecutionSession::OL_notifyResolved(MaterializationResponsibility &MR, const SymbolMap &Symbols) { LLVM_DEBUG({ dbgs() << "In " << MR.JD.getName() << " resolving " << Symbols << "\n"; }); #ifndef NDEBUG for (auto &KV : Symbols) { auto I = MR.SymbolFlags.find(KV.first); assert(I != MR.SymbolFlags.end() && "Resolving symbol outside this responsibility set"); assert(!I->second.hasMaterializationSideEffectsOnly() && "Can't resolve materialization-side-effects-only symbol"); assert((KV.second.getFlags() & ~JITSymbolFlags::Common) == (I->second & ~JITSymbolFlags::Common) && "Resolving symbol with incorrect flags"); } #endif return MR.JD.resolve(MR, Symbols); } template void ExecutionSession::propagateExtraEmitDeps( std::deque Worklist, EDUInfosMap &EDUInfos, HandleNewDepFn HandleNewDep) { // Iterate to a fixed-point to propagate extra-emit dependencies through the // EDU graph. while (!Worklist.empty()) { auto &EDU = *Worklist.front(); Worklist.pop_front(); assert(EDUInfos.count(&EDU) && "No info entry for EDU"); auto &EDUInfo = EDUInfos[&EDU]; // Propagate new dependencies to users. for (auto *UserEDU : EDUInfo.IntraEmitUsers) { // UserEDUInfo only present if UserEDU has its own users. JITDylib::EmissionDepUnitInfo *UserEDUInfo = nullptr; { auto UserEDUInfoItr = EDUInfos.find(UserEDU); if (UserEDUInfoItr != EDUInfos.end()) UserEDUInfo = &UserEDUInfoItr->second; } for (auto &[DepJD, Deps] : EDUInfo.NewDeps) { auto &UserEDUDepsForJD = UserEDU->Dependencies[DepJD]; DenseSet *UserEDUNewDepsForJD = nullptr; for (auto Dep : Deps) { if (UserEDUDepsForJD.insert(Dep).second) { HandleNewDep(*UserEDU, *DepJD, Dep); if (UserEDUInfo) { if (!UserEDUNewDepsForJD) { // If UserEDU has no new deps then it's not in the worklist // yet, so add it. if (UserEDUInfo->NewDeps.empty()) Worklist.push_back(UserEDU); UserEDUNewDepsForJD = &UserEDUInfo->NewDeps[DepJD]; } // Add (DepJD, Dep) to NewDeps. UserEDUNewDepsForJD->insert(Dep); } } } } } EDUInfo.NewDeps.clear(); } } // Note: This method modifies the emitted set. ExecutionSession::EDUInfosMap ExecutionSession::simplifyDepGroups( MaterializationResponsibility &MR, ArrayRef EmittedDeps) { auto &TargetJD = MR.getTargetJITDylib(); // 1. Build initial EmissionDepUnit -> EmissionDepUnitInfo and // Symbol -> EmissionDepUnit mappings. DenseMap EDUInfos; EDUInfos.reserve(EmittedDeps.size()); DenseMap EDUForSymbol; for (auto &DG : EmittedDeps) { assert(!DG.Symbols.empty() && "DepGroup does not cover any symbols"); // Skip empty EDUs. if (DG.Dependencies.empty()) continue; auto TmpEDU = std::make_shared(TargetJD); auto &EDUInfo = EDUInfos[TmpEDU.get()]; EDUInfo.EDU = std::move(TmpEDU); for (const auto &Symbol : DG.Symbols) { NonOwningSymbolStringPtr NonOwningSymbol(Symbol); assert(!EDUForSymbol.count(NonOwningSymbol) && "Symbol should not appear in more than one SymbolDependenceGroup"); assert(MR.getSymbols().count(Symbol) && "Symbol in DepGroups not in the emitted set"); auto NewlyEmittedItr = MR.getSymbols().find(Symbol); EDUInfo.EDU->Symbols[NonOwningSymbol] = NewlyEmittedItr->second; EDUForSymbol[NonOwningSymbol] = EDUInfo.EDU.get(); } } // 2. Build a "residual" EDU to cover all symbols that have no dependencies. { DenseMap ResidualSymbolFlags; for (auto &[Sym, Flags] : MR.getSymbols()) { if (!EDUForSymbol.count(NonOwningSymbolStringPtr(Sym))) ResidualSymbolFlags[NonOwningSymbolStringPtr(Sym)] = Flags; } if (!ResidualSymbolFlags.empty()) { auto ResidualEDU = std::make_shared(TargetJD); ResidualEDU->Symbols = std::move(ResidualSymbolFlags); auto &ResidualEDUInfo = EDUInfos[ResidualEDU.get()]; ResidualEDUInfo.EDU = std::move(ResidualEDU); // If the residual EDU is the only one then bail out early. if (EDUInfos.size() == 1) return EDUInfos; // Otherwise add the residual EDU to the EDUForSymbol map. for (auto &[Sym, Flags] : ResidualEDUInfo.EDU->Symbols) EDUForSymbol[Sym] = ResidualEDUInfo.EDU.get(); } } #ifndef NDEBUG assert(EDUForSymbol.size() == MR.getSymbols().size() && "MR symbols not fully covered by EDUs?"); for (auto &[Sym, Flags] : MR.getSymbols()) { assert(EDUForSymbol.count(NonOwningSymbolStringPtr(Sym)) && "Sym in MR not covered by EDU"); } #endif // NDEBUG // 3. Use the DepGroups array to build a graph of dependencies between // EmissionDepUnits in this finalization. We want to remove these // intra-finalization uses, propagating dependencies on symbols outside // this finalization. Add EDUs to the worklist. for (auto &DG : EmittedDeps) { // Skip SymbolDependenceGroups with no dependencies. if (DG.Dependencies.empty()) continue; assert(EDUForSymbol.count(NonOwningSymbolStringPtr(*DG.Symbols.begin())) && "No EDU for DG"); auto &EDU = *EDUForSymbol.find(NonOwningSymbolStringPtr(*DG.Symbols.begin())) ->second; for (auto &[DepJD, Deps] : DG.Dependencies) { DenseSet NewDepsForJD; assert(!Deps.empty() && "Dependence set for DepJD is empty"); if (DepJD != &TargetJD) { // DepJD is some other JITDylib.There can't be any intra-finalization // edges here, so just skip. for (auto &Dep : Deps) NewDepsForJD.insert(NonOwningSymbolStringPtr(Dep)); } else { // DepJD is the Target JITDylib. Check for intra-finaliztaion edges, // skipping any and recording the intra-finalization use instead. for (auto &Dep : Deps) { NonOwningSymbolStringPtr NonOwningDep(Dep); auto I = EDUForSymbol.find(NonOwningDep); if (I == EDUForSymbol.end()) { if (!MR.getSymbols().count(Dep)) NewDepsForJD.insert(NonOwningDep); continue; } if (I->second != &EDU) EDUInfos[I->second].IntraEmitUsers.insert(&EDU); } } if (!NewDepsForJD.empty()) EDU.Dependencies[DepJD] = std::move(NewDepsForJD); } } // 4. Build the worklist. std::deque Worklist; for (auto &[EDU, EDUInfo] : EDUInfos) { // If this EDU has extra-finalization dependencies and intra-finalization // users then add it to the worklist. if (!EDU->Dependencies.empty()) { auto I = EDUInfos.find(EDU); if (I != EDUInfos.end()) { auto &EDUInfo = I->second; if (!EDUInfo.IntraEmitUsers.empty()) { EDUInfo.NewDeps = EDU->Dependencies; Worklist.push_back(EDU); } } } } // 4. Propagate dependencies through the EDU graph. propagateExtraEmitDeps( Worklist, EDUInfos, [](JITDylib::EmissionDepUnit &, JITDylib &, NonOwningSymbolStringPtr) {}); return EDUInfos; } void ExecutionSession::IL_makeEDUReady( std::shared_ptr EDU, JITDylib::AsynchronousSymbolQuerySet &Queries) { // The symbols for this EDU are ready. auto &JD = *EDU->JD; for (auto &[Sym, Flags] : EDU->Symbols) { assert(JD.Symbols.count(SymbolStringPtr(Sym)) && "JD does not have an entry for Sym"); auto &Entry = JD.Symbols[SymbolStringPtr(Sym)]; assert(((Entry.getFlags().hasMaterializationSideEffectsOnly() && Entry.getState() == SymbolState::Materializing) || Entry.getState() == SymbolState::Resolved || Entry.getState() == SymbolState::Emitted) && "Emitting from state other than Resolved"); Entry.setState(SymbolState::Ready); auto MII = JD.MaterializingInfos.find(SymbolStringPtr(Sym)); // Check for pending queries. if (MII == JD.MaterializingInfos.end()) continue; auto &MI = MII->second; for (auto &Q : MI.takeQueriesMeeting(SymbolState::Ready)) { Q->notifySymbolMetRequiredState(SymbolStringPtr(Sym), Entry.getSymbol()); if (Q->isComplete()) Queries.insert(Q); Q->removeQueryDependence(JD, SymbolStringPtr(Sym)); } JD.MaterializingInfos.erase(MII); } JD.shrinkMaterializationInfoMemory(); } void ExecutionSession::IL_makeEDUEmitted( std::shared_ptr EDU, JITDylib::AsynchronousSymbolQuerySet &Queries) { // The symbols for this EDU are emitted, but not ready. auto &JD = *EDU->JD; for (auto &[Sym, Flags] : EDU->Symbols) { assert(JD.Symbols.count(SymbolStringPtr(Sym)) && "JD does not have an entry for Sym"); auto &Entry = JD.Symbols[SymbolStringPtr(Sym)]; assert(((Entry.getFlags().hasMaterializationSideEffectsOnly() && Entry.getState() == SymbolState::Materializing) || Entry.getState() == SymbolState::Resolved || Entry.getState() == SymbolState::Emitted) && "Emitting from state other than Resolved"); if (Entry.getState() == SymbolState::Emitted) { // This was already emitted, so we can skip the rest of this loop. #ifndef NDEBUG for (auto &[Sym, Flags] : EDU->Symbols) { assert(JD.Symbols.count(SymbolStringPtr(Sym)) && "JD does not have an entry for Sym"); auto &Entry = JD.Symbols[SymbolStringPtr(Sym)]; assert(Entry.getState() == SymbolState::Emitted && "Symbols for EDU in inconsistent state"); assert(JD.MaterializingInfos.count(SymbolStringPtr(Sym)) && "Emitted symbol has no MI"); auto MI = JD.MaterializingInfos[SymbolStringPtr(Sym)]; assert(MI.takeQueriesMeeting(SymbolState::Emitted).empty() && "Already-emitted symbol has waiting-on-emitted queries"); } #endif // NDEBUG break; } Entry.setState(SymbolState::Emitted); auto &MI = JD.MaterializingInfos[SymbolStringPtr(Sym)]; MI.DefiningEDU = EDU; for (auto &Q : MI.takeQueriesMeeting(SymbolState::Emitted)) { Q->notifySymbolMetRequiredState(SymbolStringPtr(Sym), Entry.getSymbol()); if (Q->isComplete()) Queries.insert(Q); Q->removeQueryDependence(JD, SymbolStringPtr(Sym)); } } for (auto &[DepJD, Deps] : EDU->Dependencies) { for (auto &Dep : Deps) DepJD->MaterializingInfos[SymbolStringPtr(Dep)].DependantEDUs.insert( EDU.get()); } } /// Removes the given dependence from EDU. If EDU's dependence set becomes /// empty then this function adds an entry for it to the EDUInfos map. /// Returns true if a new EDUInfosMap entry is added. bool ExecutionSession::IL_removeEDUDependence(JITDylib::EmissionDepUnit &EDU, JITDylib &DepJD, NonOwningSymbolStringPtr DepSym, EDUInfosMap &EDUInfos) { assert(EDU.Dependencies.count(&DepJD) && "JD does not appear in Dependencies of DependantEDU"); assert(EDU.Dependencies[&DepJD].count(DepSym) && "Symbol does not appear in Dependencies of DependantEDU"); auto &JDDeps = EDU.Dependencies[&DepJD]; JDDeps.erase(DepSym); if (JDDeps.empty()) { EDU.Dependencies.erase(&DepJD); if (EDU.Dependencies.empty()) { // If the dependencies set has become empty then EDU _may_ be ready // (we won't know for sure until we've propagated the extra-emit deps). // Create an EDUInfo for it (if it doesn't have one already) so that // it'll be visited after propagation. auto &DepEDUInfo = EDUInfos[&EDU]; if (!DepEDUInfo.EDU) { assert(EDU.JD->Symbols.count( SymbolStringPtr(EDU.Symbols.begin()->first)) && "Missing symbol entry for first symbol in EDU"); auto DepEDUFirstMI = EDU.JD->MaterializingInfos.find( SymbolStringPtr(EDU.Symbols.begin()->first)); assert(DepEDUFirstMI != EDU.JD->MaterializingInfos.end() && "Missing MI for first symbol in DependantEDU"); DepEDUInfo.EDU = DepEDUFirstMI->second.DefiningEDU; return true; } } } return false; } Error ExecutionSession::makeJDClosedError(JITDylib::EmissionDepUnit &EDU, JITDylib &ClosedJD) { SymbolNameSet FailedSymbols; for (auto &[Sym, Flags] : EDU.Symbols) FailedSymbols.insert(SymbolStringPtr(Sym)); SymbolDependenceMap BadDeps; for (auto &Dep : EDU.Dependencies[&ClosedJD]) BadDeps[&ClosedJD].insert(SymbolStringPtr(Dep)); return make_error( ClosedJD.getExecutionSession().getSymbolStringPool(), EDU.JD, std::move(FailedSymbols), std::move(BadDeps), ClosedJD.getName() + " is closed"); } Error ExecutionSession::makeUnsatisfiedDepsError(JITDylib::EmissionDepUnit &EDU, JITDylib &BadJD, SymbolNameSet BadDeps) { SymbolNameSet FailedSymbols; for (auto &[Sym, Flags] : EDU.Symbols) FailedSymbols.insert(SymbolStringPtr(Sym)); SymbolDependenceMap BadDepsMap; BadDepsMap[&BadJD] = std::move(BadDeps); return make_error( BadJD.getExecutionSession().getSymbolStringPool(), &BadJD, std::move(FailedSymbols), std::move(BadDepsMap), "dependencies removed or in error state"); } Expected ExecutionSession::IL_emit(MaterializationResponsibility &MR, EDUInfosMap EDUInfos) { if (MR.RT->isDefunct()) return make_error(MR.RT); auto &TargetJD = MR.getTargetJITDylib(); if (TargetJD.State != JITDylib::Open) return make_error("JITDylib " + TargetJD.getName() + " is defunct", inconvertibleErrorCode()); #ifdef EXPENSIVE_CHECKS verifySessionState("entering ExecutionSession::IL_emit"); #endif // Walk all EDUs: // 1. Verifying that dependencies are available (not removed or in the error // state. // 2. Removing any dependencies that are already Ready. // 3. Lifting any EDUs for Emitted symbols into the EDUInfos map. // 4. Finding any dependant EDUs and lifting them into the EDUInfos map. std::deque Worklist; for (auto &[EDU, _] : EDUInfos) Worklist.push_back(EDU); for (auto *EDU : Worklist) { auto *EDUInfo = &EDUInfos[EDU]; SmallVector DepJDsToRemove; for (auto &[DepJD, Deps] : EDU->Dependencies) { if (DepJD->State != JITDylib::Open) return makeJDClosedError(*EDU, *DepJD); SymbolNameSet BadDeps; SmallVector DepsToRemove; for (auto &Dep : Deps) { auto DepEntryItr = DepJD->Symbols.find(SymbolStringPtr(Dep)); // If this dep has been removed or moved to the error state then add it // to the bad deps set. We aggregate these bad deps for more // comprehensive error messages. if (DepEntryItr == DepJD->Symbols.end() || DepEntryItr->second.getFlags().hasError()) { BadDeps.insert(SymbolStringPtr(Dep)); continue; } // If this dep isn't emitted yet then just add it to the NewDeps set to // be propagated. auto &DepEntry = DepEntryItr->second; if (DepEntry.getState() < SymbolState::Emitted) { EDUInfo->NewDeps[DepJD].insert(Dep); continue; } // This dep has been emitted, so add it to the list to be removed from // EDU. DepsToRemove.push_back(Dep); // If Dep is Ready then there's nothing further to do. if (DepEntry.getState() == SymbolState::Ready) { assert(!DepJD->MaterializingInfos.count(SymbolStringPtr(Dep)) && "Unexpected MaterializationInfo attached to ready symbol"); continue; } // If we get here thene Dep is Emitted. We need to look up its defining // EDU and add this EDU to the defining EDU's list of users (this means // creating an EDUInfos entry if the defining EDU doesn't have one // already). assert(DepJD->MaterializingInfos.count(SymbolStringPtr(Dep)) && "Expected MaterializationInfo for emitted dependency"); auto &DepMI = DepJD->MaterializingInfos[SymbolStringPtr(Dep)]; assert(DepMI.DefiningEDU && "Emitted symbol does not have a defining EDU"); assert(!DepMI.DefiningEDU->Dependencies.empty() && "Emitted symbol has empty dependencies (should be ready)"); assert(DepMI.DependantEDUs.empty() && "Already-emitted symbol has dependant EDUs?"); auto &DepEDUInfo = EDUInfos[DepMI.DefiningEDU.get()]; if (!DepEDUInfo.EDU) { // No EDUInfo yet -- build initial entry, and reset the EDUInfo // pointer, which we will have invalidated. EDUInfo = &EDUInfos[EDU]; DepEDUInfo.EDU = DepMI.DefiningEDU; for (auto &[DepDepJD, DepDeps] : DepEDUInfo.EDU->Dependencies) { if (DepDepJD == &TargetJD) { for (auto &DepDep : DepDeps) if (!MR.getSymbols().count(SymbolStringPtr(DepDep))) DepEDUInfo.NewDeps[DepDepJD].insert(DepDep); } else DepEDUInfo.NewDeps[DepDepJD] = DepDeps; } } DepEDUInfo.IntraEmitUsers.insert(EDU); } // Some dependencies were removed or in an error state -- error out. if (!BadDeps.empty()) return makeUnsatisfiedDepsError(*EDU, *DepJD, std::move(BadDeps)); // Remove the emitted / ready deps from DepJD. for (auto &Dep : DepsToRemove) Deps.erase(Dep); // If there are no further deps in DepJD then flag it for removal too. if (Deps.empty()) DepJDsToRemove.push_back(DepJD); } // Remove any JDs whose dependence sets have become empty. for (auto &DepJD : DepJDsToRemove) { assert(EDU->Dependencies.count(DepJD) && "Trying to remove non-existent dep entries"); EDU->Dependencies.erase(DepJD); } // Now look for users of this EDU. for (auto &[Sym, Flags] : EDU->Symbols) { assert(TargetJD.Symbols.count(SymbolStringPtr(Sym)) && "Sym not present in symbol table"); assert((TargetJD.Symbols[SymbolStringPtr(Sym)].getState() == SymbolState::Resolved || TargetJD.Symbols[SymbolStringPtr(Sym)] .getFlags() .hasMaterializationSideEffectsOnly()) && "Emitting symbol not in the resolved state"); assert(!TargetJD.Symbols[SymbolStringPtr(Sym)].getFlags().hasError() && "Symbol is already in an error state"); auto MII = TargetJD.MaterializingInfos.find(SymbolStringPtr(Sym)); if (MII == TargetJD.MaterializingInfos.end() || MII->second.DependantEDUs.empty()) continue; for (auto &DependantEDU : MII->second.DependantEDUs) { if (IL_removeEDUDependence(*DependantEDU, TargetJD, Sym, EDUInfos)) EDUInfo = &EDUInfos[EDU]; EDUInfo->IntraEmitUsers.insert(DependantEDU); } MII->second.DependantEDUs.clear(); } } Worklist.clear(); for (auto &[EDU, EDUInfo] : EDUInfos) { if (!EDUInfo.IntraEmitUsers.empty() && !EDU->Dependencies.empty()) { if (EDUInfo.NewDeps.empty()) EDUInfo.NewDeps = EDU->Dependencies; Worklist.push_back(EDU); } } propagateExtraEmitDeps( Worklist, EDUInfos, [](JITDylib::EmissionDepUnit &EDU, JITDylib &JD, NonOwningSymbolStringPtr Sym) { JD.MaterializingInfos[SymbolStringPtr(Sym)].DependantEDUs.insert(&EDU); }); JITDylib::AsynchronousSymbolQuerySet CompletedQueries; // Extract completed queries and lodge not-yet-ready EDUs in the // session. for (auto &[EDU, EDUInfo] : EDUInfos) { if (EDU->Dependencies.empty()) IL_makeEDUReady(std::move(EDUInfo.EDU), CompletedQueries); else IL_makeEDUEmitted(std::move(EDUInfo.EDU), CompletedQueries); } #ifdef EXPENSIVE_CHECKS verifySessionState("exiting ExecutionSession::IL_emit"); #endif return std::move(CompletedQueries); } Error ExecutionSession::OL_notifyEmitted( MaterializationResponsibility &MR, ArrayRef DepGroups) { LLVM_DEBUG({ dbgs() << "In " << MR.JD.getName() << " emitting " << MR.SymbolFlags << "\n"; if (!DepGroups.empty()) { dbgs() << " Initial dependencies:\n"; for (auto &SDG : DepGroups) { dbgs() << " Symbols: " << SDG.Symbols << ", Dependencies: " << SDG.Dependencies << "\n"; } } }); #ifndef NDEBUG SymbolNameSet Visited; for (auto &DG : DepGroups) { for (auto &Sym : DG.Symbols) { assert(MR.SymbolFlags.count(Sym) && "DG contains dependence for symbol outside this MR"); assert(Visited.insert(Sym).second && "DG contains duplicate entries for Name"); } } #endif // NDEBUG auto EDUInfos = simplifyDepGroups(MR, DepGroups); LLVM_DEBUG({ dbgs() << " Simplified dependencies:\n"; for (auto &[EDU, EDUInfo] : EDUInfos) { dbgs() << " Symbols: { "; for (auto &[Sym, Flags] : EDU->Symbols) dbgs() << Sym << " "; dbgs() << "}, Dependencies: { "; for (auto &[DepJD, Deps] : EDU->Dependencies) { dbgs() << "(" << DepJD->getName() << ", { "; for (auto &Dep : Deps) dbgs() << Dep << " "; dbgs() << "}) "; } dbgs() << "}\n"; } }); auto CompletedQueries = runSessionLocked([&]() { return IL_emit(MR, EDUInfos); }); // On error bail out. if (!CompletedQueries) return CompletedQueries.takeError(); MR.SymbolFlags.clear(); // Otherwise notify all the completed queries. for (auto &Q : *CompletedQueries) { assert(Q->isComplete() && "Q is not complete"); Q->handleComplete(*this); } return Error::success(); } Error ExecutionSession::OL_defineMaterializing( MaterializationResponsibility &MR, SymbolFlagsMap NewSymbolFlags) { LLVM_DEBUG({ dbgs() << "In " << MR.JD.getName() << " defining materializing symbols " << NewSymbolFlags << "\n"; }); if (auto AcceptedDefs = MR.JD.defineMaterializing(MR, std::move(NewSymbolFlags))) { // Add all newly accepted symbols to this responsibility object. for (auto &KV : *AcceptedDefs) MR.SymbolFlags.insert(KV); return Error::success(); } else return AcceptedDefs.takeError(); } std::pair> ExecutionSession::IL_failSymbols(JITDylib &JD, const SymbolNameVector &SymbolsToFail) { #ifdef EXPENSIVE_CHECKS verifySessionState("entering ExecutionSession::IL_failSymbols"); #endif JITDylib::AsynchronousSymbolQuerySet FailedQueries; auto FailedSymbolsMap = std::make_shared(); auto ExtractFailedQueries = [&](JITDylib::MaterializingInfo &MI) { JITDylib::AsynchronousSymbolQueryList ToDetach; for (auto &Q : MI.pendingQueries()) { // Add the query to the list to be failed and detach it. FailedQueries.insert(Q); ToDetach.push_back(Q); } for (auto &Q : ToDetach) Q->detach(); assert(!MI.hasQueriesPending() && "Queries still pending after detach"); }; for (auto &Name : SymbolsToFail) { (*FailedSymbolsMap)[&JD].insert(Name); // Look up the symbol to fail. auto SymI = JD.Symbols.find(Name); // FIXME: Revisit this. We should be able to assert sequencing between // ResourceTracker removal and symbol failure. // // It's possible that this symbol has already been removed, e.g. if a // materialization failure happens concurrently with a ResourceTracker or // JITDylib removal. In that case we can safely skip this symbol and // continue. if (SymI == JD.Symbols.end()) continue; auto &Sym = SymI->second; // If the symbol is already in the error state then we must have visited // it earlier. if (Sym.getFlags().hasError()) { assert(!JD.MaterializingInfos.count(Name) && "Symbol in error state still has MaterializingInfo"); continue; } // Move the symbol into the error state. Sym.setFlags(Sym.getFlags() | JITSymbolFlags::HasError); // FIXME: Come up with a sane mapping of state to // presence-of-MaterializingInfo so that we can assert presence / absence // here, rather than testing it. auto MII = JD.MaterializingInfos.find(Name); if (MII == JD.MaterializingInfos.end()) continue; auto &MI = MII->second; // Collect queries to be failed for this MII. ExtractFailedQueries(MI); if (MI.DefiningEDU) { // If there is a DefiningEDU for this symbol then remove this // symbol from it. assert(MI.DependantEDUs.empty() && "Symbol with DefiningEDU should not have DependantEDUs"); assert(Sym.getState() >= SymbolState::Emitted && "Symbol has EDU, should have been emitted"); assert(MI.DefiningEDU->Symbols.count(NonOwningSymbolStringPtr(Name)) && "Symbol does not appear in its DefiningEDU"); MI.DefiningEDU->Symbols.erase(NonOwningSymbolStringPtr(Name)); // Remove this EDU from the dependants lists of its dependencies. for (auto &[DepJD, DepSyms] : MI.DefiningEDU->Dependencies) { for (auto DepSym : DepSyms) { assert(DepJD->Symbols.count(SymbolStringPtr(DepSym)) && "DepSym not in DepJD"); assert(DepJD->MaterializingInfos.count(SymbolStringPtr(DepSym)) && "DepSym has not MaterializingInfo"); auto &SymMI = DepJD->MaterializingInfos[SymbolStringPtr(DepSym)]; assert(SymMI.DependantEDUs.count(MI.DefiningEDU.get()) && "DefiningEDU missing from DependantEDUs list of dependency"); SymMI.DependantEDUs.erase(MI.DefiningEDU.get()); } } MI.DefiningEDU = nullptr; } else { // Otherwise if there are any EDUs waiting on this symbol then move // those symbols to the error state too, and deregister them from the // symbols that they depend on. // Note: We use a copy of DependantEDUs here since we'll be removing // from the original set as we go. for (auto &DependantEDU : MI.DependantEDUs) { // Remove DependantEDU from all of its users DependantEDUs lists. for (auto &[DepJD, DepSyms] : DependantEDU->Dependencies) { for (auto DepSym : DepSyms) { // Skip self-reference to avoid invalidating the MI.DependantEDUs // map. We'll clear this later. if (DepJD == &JD && DepSym == Name) continue; assert(DepJD->Symbols.count(SymbolStringPtr(DepSym)) && "DepSym not in DepJD?"); assert(DepJD->MaterializingInfos.count(SymbolStringPtr(DepSym)) && "DependantEDU not registered with symbol it depends on"); auto &SymMI = DepJD->MaterializingInfos[SymbolStringPtr(DepSym)]; assert(SymMI.DependantEDUs.count(DependantEDU) && "DependantEDU missing from DependantEDUs list"); SymMI.DependantEDUs.erase(DependantEDU); } } // Move any symbols defined by DependantEDU into the error state and // fail any queries waiting on them. auto &DepJD = *DependantEDU->JD; auto DepEDUSymbols = std::move(DependantEDU->Symbols); for (auto &[DepName, Flags] : DepEDUSymbols) { auto DepSymItr = DepJD.Symbols.find(SymbolStringPtr(DepName)); assert(DepSymItr != DepJD.Symbols.end() && "Symbol not present in table"); auto &DepSym = DepSymItr->second; assert(DepSym.getState() >= SymbolState::Emitted && "Symbol has EDU, should have been emitted"); assert(!DepSym.getFlags().hasError() && "Symbol is already in the error state?"); DepSym.setFlags(DepSym.getFlags() | JITSymbolFlags::HasError); (*FailedSymbolsMap)[&DepJD].insert(SymbolStringPtr(DepName)); // This symbol has a defining EDU so its MaterializingInfo object must // exist. auto DepMIItr = DepJD.MaterializingInfos.find(SymbolStringPtr(DepName)); assert(DepMIItr != DepJD.MaterializingInfos.end() && "Symbol has defining EDU but not MaterializingInfo"); auto &DepMI = DepMIItr->second; assert(DepMI.DefiningEDU.get() == DependantEDU && "Bad EDU dependence edge"); assert(DepMI.DependantEDUs.empty() && "Symbol was emitted, should not have any DependantEDUs"); ExtractFailedQueries(DepMI); DepJD.MaterializingInfos.erase(SymbolStringPtr(DepName)); } DepJD.shrinkMaterializationInfoMemory(); } MI.DependantEDUs.clear(); } assert(!MI.DefiningEDU && "DefiningEDU should have been reset"); assert(MI.DependantEDUs.empty() && "DependantEDUs should have been removed above"); assert(!MI.hasQueriesPending() && "Can not delete MaterializingInfo with queries pending"); JD.MaterializingInfos.erase(Name); } JD.shrinkMaterializationInfoMemory(); #ifdef EXPENSIVE_CHECKS verifySessionState("exiting ExecutionSession::IL_failSymbols"); #endif return std::make_pair(std::move(FailedQueries), std::move(FailedSymbolsMap)); } void ExecutionSession::OL_notifyFailed(MaterializationResponsibility &MR) { LLVM_DEBUG({ dbgs() << "In " << MR.JD.getName() << " failing materialization for " << MR.SymbolFlags << "\n"; }); if (MR.SymbolFlags.empty()) return; SymbolNameVector SymbolsToFail; for (auto &[Name, Flags] : MR.SymbolFlags) SymbolsToFail.push_back(Name); MR.SymbolFlags.clear(); JITDylib::AsynchronousSymbolQuerySet FailedQueries; std::shared_ptr FailedSymbols; std::tie(FailedQueries, FailedSymbols) = runSessionLocked([&]() { // If the tracker is defunct then there's nothing to do here. if (MR.RT->isDefunct()) return std::pair>(); return IL_failSymbols(MR.getTargetJITDylib(), SymbolsToFail); }); for (auto &Q : FailedQueries) Q->handleFailed( make_error(getSymbolStringPool(), FailedSymbols)); } Error ExecutionSession::OL_replace(MaterializationResponsibility &MR, std::unique_ptr MU) { for (auto &KV : MU->getSymbols()) { assert(MR.SymbolFlags.count(KV.first) && "Replacing definition outside this responsibility set"); MR.SymbolFlags.erase(KV.first); } if (MU->getInitializerSymbol() == MR.InitSymbol) MR.InitSymbol = nullptr; LLVM_DEBUG(MR.JD.getExecutionSession().runSessionLocked([&]() { dbgs() << "In " << MR.JD.getName() << " replacing symbols with " << *MU << "\n"; });); return MR.JD.replace(MR, std::move(MU)); } Expected> ExecutionSession::OL_delegate(MaterializationResponsibility &MR, const SymbolNameSet &Symbols) { SymbolStringPtr DelegatedInitSymbol; SymbolFlagsMap DelegatedFlags; for (auto &Name : Symbols) { auto I = MR.SymbolFlags.find(Name); assert(I != MR.SymbolFlags.end() && "Symbol is not tracked by this MaterializationResponsibility " "instance"); DelegatedFlags[Name] = std::move(I->second); if (Name == MR.InitSymbol) std::swap(MR.InitSymbol, DelegatedInitSymbol); MR.SymbolFlags.erase(I); } return MR.JD.delegate(MR, std::move(DelegatedFlags), std::move(DelegatedInitSymbol)); } #ifndef NDEBUG void ExecutionSession::dumpDispatchInfo(Task &T) { runSessionLocked([&]() { dbgs() << "Dispatching: "; T.printDescription(dbgs()); dbgs() << "\n"; }); } #endif // NDEBUG } // End namespace orc. } // End namespace llvm.